To our customers,

Old Company Name in Catalogs and Other Documents

On April 1!, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

8.

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,

especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

RENESANS
Application Note

IC Communication with LCD Modules
In V850ES Microcontrollers

©March 2007. NEC Electronics America, Inc.
Printed in USA. All rights reserved.
Document no. U18520EU1VOUMOO

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

Contents
L. INTFOAUCTION Lo bbb ettt b et e bbb e s bt 1
2. HC COMMUNICALION ..ot e bt se e b e e n et 1
3. 1lIC Communication with an LCD MOAUIEccccceeieiicccccieeiees e 1
3.1 [ICO Communication in VB50ES MICrOCONTIOIEIS.........ccovuivviriierineinieeisseeissene s 3
3.2 Configuring the 11CO Peripheral for [IC COMMUNICALIONcccovvrrenriienreeeneesserese e 5
3.3 Communication iN MASLEI IMOUE ..o bbb 6
3.4 Program Description and SPeCIfiCAtiON...........cvvierieinivssee s sesessnnes 6
3.4.1 Matrix Orbital LCD MOUIE........ccoriiiriiirsenis s
3.4.2 Program FIOWCRHAIS ...t
3.4.3 Program Startup and Initialization
3.4.4 Main(): Main Program for IC Communication to the LCD Module...........c...cccce....... 10
3.4.5 1ICO_Init(): Initialize ICO Peripheral........c..cccoviviinsnccirsssesns s sesensnees 12
3.4.6 LCD_Init(): Initialize LCD MOAUIE........ccccoeviiiiiceircsccss st nees 13
3.4.7 LCD_ClearDisplay(): Clear Screen on LCD Module..........ccc.cccovonirirnninnincnnicnnenns 14
3.4.8 LCD_AutoTransmitkeyPressesOff(): Set LCD Module To Buffer Key Presses...15
3.4.9 LCD_PutStr(col, row, *str): Display String on LCD at Specified Column, Row..... 16
3.4.10 IlICO_MasterStartAndSend(sadr, *txbuf, txnum): Start Master, Send Data to 1IC
Slave 18
3.4.11 IlICO_MasterStart(mode, adr, wait): Start Master Read or Write To IIC Slave.......20
3.4.12 1ICO_MasterSendData(*txbuf, txnum): Master Send Data To IIC Slave.................. 21
3.4.13 MD_INTHCO(): Interrupt Service Routine for INTIICO Interrupt.........ccccovvvecvvervnrnnnes 22
3.4.14 1ICO_Stop(): Stop ICO OPEIALiON.......cccvericreirrcerrersee s nees 25
3.4.15 LCD_KeyPoll(*pkey): Poll LCD Module For Keypad INputcccooevniernieninenns 25

3.4.16 1ICO_MasterStartAndReceive(sadr, *rxbuf, rxnum): Start Master, Receive Data

From IIC Slave 26

3.5

3.6

3.7

3.4.17 1ICO_MasterReceiveData(*rxbuf, rxnum): Master Receive Data From IIC Slave.?28

APPlIlEt REFEIENCE DIV ..ottt bbbt 29
3.5.1 Configuring Applilet for Clock INitialization ... 30
3.5.2 Configuring Applilet for Operation with the [ICO Peripheral..........cccccocovivrvivvnrvnrnnne 31
3.5.3 Configuring Applilet for Timer 00 (TMOO)cccooivuminiinisnsees s esseees 33
3.5.4 Generating Code With APPlIlEL.........ccviii s 34
3.5.5 Applilet-Generated FilES........cccoeseees s 34
3.5.6 Applilet-Generated Files for [ICO OPerationcccvveninnneinnniessseessessesessenees 35

3.5.6.1 SEHALN s 35

B.5.6.2 SEHALC ..o 35

3.5.6.3 SErIAl_USEI.C .veeeiceiri sttt 36
3.5.7 Files for LCD ModUule ROULINESccoenriinnienenene st 38

3.5.7. 1 LCA MO Nt 38

3.5.7.2 LCO MO.Cuorrireccr ettt 38
DemonsStration PIAtFOIM ...ttt 38
3.68.1 RESOUICES......cuiuiiiiiiiieieietet ettt bbbt bbb b bbb bbbt et bbbttt 39
3.6.2 Demonstration Of PrOGram ... sesssssseses 41
Hardware BIOCK DIAQIaM..........cciiuiiiricinirieenteis ettt et 42

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

3.8 SOFWAIE MOGUIES ... 43
4. DeVeloPMENT TOOIS .ttt 45
5. SOftWAIE LISTINGS it 46

5.1 Files for IIC To LCD Module Demonstration Program ... 46

B.LL IMAIN.Corvriceicee ettt bbb 46
51,2 LCO MON o 48
L0 I oo [1 o o3PS 49
B.LAA INTAD.S oo s 53
515 SYSIEIMINIT.C ..ottt bbb 57
D516 SEIALIN.cc e 58
B.LL7 SEHALC .o 59
LN I S T = = LU 1= =Y o PP 69
5,19 TUMEE _USEI.Couvveieiiie ettt ettt bbb bbbt b bbbttt ettt aes 75
B.LLO B50.0IM ittt 77
5.2 Files Common to Serial Communication Demonstration Programs...........c.cccoeevneenncnnenas 78
B.2.1 GBS ittt bbb 80
B.2.2 SYSIEIMLINC oottt 84
L T 1 (=] 1 1R TR 85
5.2.4 SYSIEIM_USEI.Cotiviriiiieieiieisisis ettt bbb bbb bbb bbbt bbbt 87
B.2.5 THMEI Nt 88
0720 G T 1 0 0= TSP OTTT 90

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

1. INTRODUCTION

This document provides useful information and examples to help designers understand how
to use the on-chip peripherals of NEC Electronics microcontrollers:

e Description of peripheral features

e Example program specifications

o Software flowcharts

o Applilet reference drivers

o Demonstration platforms used

e Hardware block diagram

e Software modules

Applilet is a software tool that generates driver code for the peripherals and a convenient

means for generating code for fast evaluation. (Refer to the Applilet user's manual and other
related documents for further details.)

2. 1IC COMMUNICATION

The inter-integrated circuit (also known as I11C or I°C) is a synchronous communications
protocol that allows a master device to initiate communication with one or more slave
devices. The IIC bus uses two lines: serial clock (SCK) and serial data (SDA). These lines
are generally implemented as open-collector outputs with pull-up resistors to allow any node
on the bus to drive the lines and multiple master and slave devices to be connected. The last
part of this document illustrates an example of 11C communication with an LCD module.

3. 1IC COMMUNICATION WITH AN LCD MODULE

The 1IC interface is used for 8-bit data transfers between two or more devices. The 1IC bus
uses two signaling lines, called serial data bus (SDA) and serial clock (SCL). These lines
may be driven by any node or pulled up by external resistors. The protocol supports multiple
devices attached to the bus. A device may be a master or slave or both; multiple masters and
multiple slaves also can be attached to the bus.

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

Figure 1.
+ Voo + Voo
Il
(‘- r\-

Master CPU1 SDAg |- 22Nal data bus SDAG Master CPU2
Slave CPU1 Serial clack - Slave GPU2
Addrass 0 SCLo SCLo Addrass 1

SDA0 Slave CPU3

sclo Address 2
SDAD | spavelc
sCLo Address 3
SDao Slave I1C
SCLO Addrass N

A master device can initiate transfers, and will specify an address for a slave device as part
of the transfer. Master nodes may send data to slave nodes or read data from slave nodes.
Slave devices will detect the slave address specified at the beginning of the transfer; the least
significant bit (LSB) of the slave address specifies whether the transfer is a read or a write
cycle by the master. A slave device whose locally set slave address matches the address
specified by the master responds by receiving or sending the data.

A master device, by responding to a slave address sent by another master, can also
communicate as a slave, if the internal hardware supports this. NEC Electronics
microcontrollers with 11C peripherals can operate as both a master and slave.

Many NEC Electronics microcontrollers provide one or more internal peripherals such as an
I1CO port, which handles many of the functions of 11C communication. Other devices can
support 11C communication using two port pins connected to SCL and SDA and by
controlling the drive of these pins.

This section describes how to use the 11C peripheral of an NEC Electronics V850ES™
microcontroller for communication with an external liquid crystal display (LCD) module.

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

3.1 1ICO Communication in V850ES Microcontrollers

The I1CO peripherals in NEC Electronics V850ES microcontrollers support 11C
communication with the following features:

Hardware serialization of 11C input and output, with interrupt on completion, for low
overhead

Simple generation of START, ACK, and STOP states

Automatic sensing of 1IC bus states: BUSY, START, ACK, STOP

Avrbitration with other masters for bus access

Communication reservation function to obtain bus access when current transfer ends
Automatic generation and recognition of wait conditions in sending or receiving
Selectable clock for I1CO peripheral to support multiple data rates

Standard 11C rate of 100,000 bits per second (bps) and high-speed rates up to 400,000 bps
Digital filter for noise suppression in high-speed mode

I1C extension codes

Settable slave address register for response to different slave addresses

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

Pull-up

SDA

Pull-up

SCL

EXSCL

Figure 2. Simplified Block Diagram of 1ICO Serial Communication Circuit

Internal Bus

‘ }
Slave Address Register K
12C Status Register
i Match Signal |
h R
Schmitt 4—>| 12C Control Register |
—> . . >
N > 12C Shift Register LS?h |
4 atcl . R
L > |—> <—>| 12C Clock Selection Reglster|
A A
SCLx
, T, |
ACK Detect —> a5 <—>| 12C Flag Register |
o
S
= o
. N-%h _ & E
pen-Drain . o
> Start Condition Detect | + Start Condition
Generator <
—> -
Stop Condition Detect "
Stop Condition P
Generator b
Output Control <
< ACK <
Nl Generator
Schmitt
SCLx
3| Serial Clock Counter 3
™ Serial Clock C %
L~ > o Wakeup <
N-Ch Serial Clock @

Open-Drain

Prescaler

—
Controller
Wait Control
Serial Clock Controller % l

Interrupt Request <
T L Signal Generator L—» INTIIC
Star Stop
Condition Condition

Table 1 provides a summary of the functional blocks and registers supporting 11C

communication.

Table 1. Functional Blocks

Functional Block

Description

11C shift register

Converts 8-bit serial data to 8-bit parallel data and vice versa

Slave address register

Stores local addresses when in slave mode

SO latch

Retains the SDA output level

Wakeup controller

Generates an interrupt when the address received matches the address value
stored in the slave address register

Prescaler

Selects the sampling clock to be used

Serial clock counter

Counts the serial clocks that are output or input during transmit and receive
operation; used to verify that 8-bit data has been transmitted or received

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

Functional Block Description

Interrupt request signal Generates an interrupt request at the falling edge of the eighth or ninth serial
generator clock or upon detection of a stop condition

Serial clock controller Generates SCL clock output from the sampling clock in master mode

Serial clock wait controller | Controls waiting time

ACK generator/detector

Start/stop condition Generates and detects each condition
detector

Start condition generator Generates a start condition

Stop condition generator Generates a stop condition

Table 2. |IC Registers
Register Description

Enables/disables I1C operation; sets wait timing

Enables/disables an interrupt request upon detection of a stop condition

11C control register Controls wait timing and interrupt request generation

Controls ACK character

Triggers a start or stop condition

Detects the master or slave status of a device

I1C status register
Detects matching address, transmit, receive, ACK, START, STOP

11C flag register Indicates the operating mode and the status of the 11C bus
I1C clock selection register Specifies the transfer clock for the 11C bus

11C function expansion register Specifies the function expansion of 11C communication
Port mode and port registers Specifies port mode and the port functions

3.2 Configuring the IICO Peripheral for IC Communication

This procedure explains how to initiate IIC communication.

1. Clear the 11CEO bit in the 11ICCO control register to disable the peripheral while setting
other registers.

2. Set the registers that control the port pins to enable drive of the SCLO and SDAO pins.
3. Set the communication parameters in the 1ICFO flag register and 11CCO control register.

4. Select the clock source in the IICCLO clock register and specify the speed in the 1ICX0
extension register.

5. Set the interrupt priority using the appropriate interrupt priority register bit.

6. Set the slave address for slave mode in the SVAO slave address register.

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

7. Enable the INTIICO interrupt by clearing the appropriate interrupt mask bit.

8. Enable the 11CO peripheral by setting the IICEO bit in the 11CCO control register.

3.3 Communication in Master Mode

This procedure explains how to initiate communication in master mode.

1. Use the communication reservation function to acquire the bus and generate a start
condition or check the bus busy status and generate a start condition when the bus is not
busy.

2. Write the desired slave address using the LSB to set direction to the 11CO register

Additional communication in master mode is handled in response to the INTIHICO interrupt.
Communication in slave mode also is handled in response to an INTIICO interrupt received
after a master sends a matching slave address.

3.4 Program Description and Specification

The program uses I1C write operations to send commands and strings of data to an LCD
module through the 11C bus. The LCD module responds to the commands and data by
displaying strings on the display.

The LCD module also contains a keypad interface. When you press a key on the keypad, the
LCD module stores the keypress as ASCII code that can be read via an I1C read operation.
The program polls the LCD module for key press codes and displays them on the LCD.

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

Figure 3. SCL and SDA Interface Connections

Matrix Orbital
LK204-25
NEC
V850ES-Series 12 Lines £ E LCD Dlsplay 18,
Microcontroller PR 4 lines x 20 char i % ;i
ol et 'E 3
© | Connector| | Keypad Interfacel ©
Power/Data v
Connector OOgg
gg/‘; aoaad
[| | |
[[|

In this example, the SCL and SDA IIC interface lines, along with power and ground, are
connected to the 4-pin power/data connector of the Matrix Orbital LCD module to enable the
following:

Matrix Orbital LK204-25 LCD module as the I1C slave device
SDA and SCL lines with external pull-up resistors that allow either side to drive or float
I1C communication speed of 100,000 bps or lower (standard I1C data rate)

11CO peripheral for the master, with the SCLO and SDAO pins controlled by the 11CO
peripheral

Slave that responds to the 1IC slave address 0x50 for slave communication with the
master

Master write cycles to the slave using multiple-byte transfers of commands or string data
Master read cycles to the slave using one-byte transfers of key press values

Slave response with key value 00H if no buffered key press is available

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

34.1 Matrix Orbital LCD Module

The Matrix Orbital LK204-25 is a standalone LCD module with the following features.

¢ 20-character by 4-line text display
¢ Built-in fonts
¢ Communication over IIC or RS-232 interface

Figure 4. Block Diagram of Matrix Orbital LCD Module
Matrix Orbital Single-Wire
LK204-25 Comm. Terminal
| S|
1 |
! 1
— | .
2|+ LCD Display s
5| | 4linesx20char % §
alyl @ | = QO
1
a| TooTTmmmemmmmmmmmmmmmes S3
o |Connector | | Key-pad Interf. | ©
DB9 —
v v
Pin-1 = Power ¢

Pin-2 = RXD or SCL
Pin-3 = TXD or SDA
Pin-4 = GND

For 11C communication, the Matrix Orbital LK204-25 module can support:

Data rates up to 400 kilobits per second (Kbps)

Interface voltage level of 5 Vbc, CMOS level

7-bit address format, with the eighth bit indicating direction
Default address of 0x50 for writing to the module

Default address of 0x51 for reading keypad data

* & & o o

To display data, the LK204-25 uses

¢ Built-in dot-matrix fonts
¢ Up to eight user-defined characters

When text data is written, the LK204-25

¢ Receives a character
¢ Displays the character at its current position
¢ Displays a “space” in place of any undefined character

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

The LK204-25 uses a series of display commands that it sends with a special character
(OXFE) prefix followed by a command byte and the command data (if required).

The LK204-25 supports the attachment of a keypad matrix with up to five columns by
five rows, a maximum of 25 keys. When you press a key on the keypad, the key press is
sent immediately via the RS-232 interface, buffered for later polling by the RS-232
interface, or read via the I1C interface.

Refer to the LK204-25 User's Manual for more information.

3.4.2 Program Flowcharts

The demonstration program consists of the following major sections related to 11C
operation:

¢ Code for program and port initialization, called before the main() program starts

¢ The main program loop, which polls the LCD module for key presses and
transmits commands and strings through the 11C bus

¢ Subroutines for accessing the LCD module
¢ Subroutines for sending and receiving I1C data

¢ Interrupt service routines related to I1C communication

The programs also include sections not related directly to 11C operation, such as sections
about timer operation.

The flowcharts here illustrate the initialization sequence, the main program, and the
subroutines and interrupt routines related to 11C operation. Flowcharts are not included
for other initialization sequences, other peripheral operation subroutines, and other
peripheral interrupt service routines. The software listings include this code.

3.4.3 Program Startup and Initialization

For V850ES programs written in C language, the assembly language startup file,
generally named crte.s, supplies startup code for the C language program. This startup
code specifies the reset vector that determines the starting point of the program after a
hardware reset, and also provides the initial setup of system registers before calling the
main() program.

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

When you use Applilet to generate a C language program for the microcontroller, the
program automatically generates the crte.s startup file in assembly language. The crte.s
file calls the Clock_Init() function to set the system clock and then the SystemInit()
function to initialize subroutines for some (but not all) of the peripherals.

Figure 5. Startup Sequence

RESET
Crte.s

System Register Init

Clock_Init()

Set PCC and PLL

A

CALL Clock_Init()

other initialization .
Systeminit()

CALL SystemlInit()

A

CALL TMOO_Init()

CALL main() —>®

The SystemInit() program initializes the peripherals before the startup code calls the
main() routine of the user program. Therefore, the main() routine does not need to call the
individual peripheral initialization routines. (Note that the SystemInit() function does
NOT automatically call the 11CO_Init() routine to initialize the 11CO peripheral.)

3.4.4 Main(): Main Program for IC Communication to the LCD Module

When the startup code calls the main() program after peripheral initialization, main()
calls 11CO_Init() to initialize the 11CO peripheral and LCD_Init() to initialize the LCD
module by clearing the display, setting the keypad interface, and showing a startup
message on the LCD.

Main() calls TMOOQ_Start() to start the millisecond (ms) timer and SetMsecTimer(500) to
set the timer for a 500 ms delay. Main() then sets the local keycol and keyrow variables
to one, the display position for the initial string.

10

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

After completion of the main program loop, main() calls CheckMsecTimer() to check
whether the ms timer has elapsed. If it has not elapsed, the program does nothing and
checks the timer again.

Figure 6. Main() Program

| CALL 11CO_Init() status = LCD_KeyPoll(&keyval) L_g—l

Display “Keypoll Error”
Delay 2 seconds
CALL LCD_ClearDisplay()

| CALL LCD_Init()
SetMsecTimer(500) |

CALL LCD_ClearDisplay() [ﬁ_,

oo

CALL TMOO_Start()
SetMsecTimer(500)
keycol = keyrow = 1

Timer Done?

[«

Format keystr “Keycode = xx”
CALL LCD_PutStr(keycol, keyrow,
keystr)

keycol = keycol + 2
keyrow = keyrow + 1

No
[«

| SetMsecTimer(1) |

keycol = keyrow = 1

If the timer has elapsed, the program calls LCD_KeyPoll(&keyval) to check whether
there is key code to read. If the program encounters an I1CO error, the LCD displays an
error message for two seconds, after which the timer resets to 500 ms for the next poll
and the routine returns to the top of the loop.

If there is no error, the LCD_KeyPoll() routine stores the value of the key code returned
by the LCD module in keyval. If keyval is zero, there is no key press character available
from the LCD module; the timer is set to poll again in 500 ms and the routine returns to
the top of the loop.

11

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

If keyval is non-zero, the program has read a key press from the LCD module. If keyrow
is set at 1, the program calls LCD_ClearDisplay() to clear the display. The program then
formats a string in the keystr array to show the key values and then calls
LCD_Putstr(keycol, keyrow, keystr); to write the string to the display at the current
location.

The variables that set the string position are incremented: keycol is incremented by two
and keyrow is incremented by one. If keyrow is now set to more than four (the number
of rows on the display), the keycol and keyrow variables are set back to one.

Since the program has detected a key press, the timer delay before the next poll is setto 1
ms and the program returns to the top of the loop.

3.4.5 IICO_Init(): Initialize IICO Peripheral

The 1HCO_Init() routine initializes the 11CO peripheral settings but does not start operation.

First the appropriate port pins are set for 11C operation. For 11CO, the SDAO signal is on
pin P38/SDAOQ and the SCLO signal is on pin P39/SCLO. The port output latches for these
pins are set to 1. Note that port 3 is a 16-bit 1/0 port; when accessed in 8- or 1-bit mode,
the port is referred to as P3L (for bits 0—7) or P3H (for bits 8-15). The P3H.1 output latch
bit is the same as P3.9, the output latch for P39/SCLO. In a similar fashion, the
appropriate bits in the PF3 Port Function register are set for the alternate function and the
PMC3 Port Mode Control register bits are set for the 11C function.

The local slave address (if the processor will respond as a slave) is set to 00. This
program does not support response as a slave.

The CLXO0 bit in the 11CXO0 register and the SMCO (11CCL0.3), CLO1 (1ICCLO0.1) and
CLOO (11CCLO0.0) bits are set to control the clocking of the I1CO peripheral. This setting
causes the main system clock, fxx, to be divided by 198 to generate the SCLO transfer
clock. With this division, the clock rate will be 101,010 bps, just slightly over the
standard rate of 100 Kbps. Since the Matrix Orbital LCD module supports up to 400
Kbps, this setting will work.

The HCICO interrupt control register is set to enable the INTIICO interrupt by setting the
mask bit to 0, and the priority of this interrupt is set for the lowest-priority group.

12

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

Figure 7. IICO_Init() Routine

P3H.1-0 = 11 (P39-8 output latch)

PF3H.1-0 = 11 (P39-8 alternate func)
PMC3H.1-0 = 11 (P39-8 mode 11C0)

SVAO = 0x00 (set slave address)

CLX0 =0 (11CX0.0)
11CCL0.3-0 = 0011
Transfer clock = fxx/198 (101Kbps)

1ICMKO = 0 (1ICICO0.6) enable int
1ICPR2-0 = 111 (11CIC0.2-0) for
lowest priority

3.4.6 LCD_Init(): Initialize LCD Module

The LCD_Init() routine initializes the LCD module for display and key input. The routine
first calls LCD_ClearDisplay() to clear any power-up display on the LCD panel.

The routine then calls LCD_AutoTransmitKeyPressesOff(), to set the LCD module to
store key presses in a buffer. By default, the module is set to transmit key codes
immediately as pressed using the RS-232 interface. To read key presses via the 1IC
interface, turn off the autotransmit mode to have the LCD module store key presses in a
buffer (10 deep) and return one key press after each 11C read cycle.

The LCD_Init() routine displays “NEC V850ES/KJ1” on the first line of the screen and
“Application Note” on the second by calling LCD_Putstr() with the appropriate values
for column, row, and string.

If there are any errors, LCD_Init() stops initialization and returns an error; otherwise the
program returns a value indicating that initialization was successful.

13

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

Figure 8. CD_lInit() Routine

?

CALL LCD_ClearDisplay()

Yes

Error?

No

CALL LCD_AutoTransmitKey
PressesOff()

Yes

Error?
No

CALL LCD_PutStr(1, 1,
“NEC V850ES/KJ1”)

Yes

Error?
No

CALL LCD_PutStr(1, 2,
“Application Note™)

| le|le| o

Yes

A 4

Return OK Return Error

3.4.7 LCD_ClearDisplay(): Clear Screen on LCD Module

The LCD_ClearDisplay() routine clears the screen on the LCD module and sets up a
transmit buffer containing two bytes. The first byte is set to FEH, the special character
preceding commands for the Matrix Orbital LCD module, and the second to 58H, the
command to clear the display.

The routine calls the 11C0O_MasterStartAndSend(0x50, iic_tx_buf, 2) routine, which sends
two bytes to the LCD module by executing an 11C write transfer to slave address 50H, the
default slave address of the LCD module for write cycles.

If IICO_MasterStartAndSend() enounters an error, the error is returned to the calling
routine. Otherwise, I1CO_MasterStartAndSend() returns a value indicating success.

14

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

Figure 9. LCD_ClearDisplay() Routine

?

iic_tx_buf[0] = OXFE
iic_tx_buf[1] = 0x58

CALL IIC0_MasterStartAndSend(
0x50, iic_tx_buf, 2)

No
[Return OK] [Return Error]

3.4.8 LCD_AutoTransmitKeyPressesOff(): Set LCD Module To Buffer Key Presses

The LCD_AutoTransmitKeyPressesOff() routine sets the LCD module to store key press
codes until they are read. By default, the LCD module transmits key press codes via the
RS-232 interface as soon as the codes are detected; this routine causes the LCD module
to store key presses in a buffer (with a depth of ten key presses) until after completion of
a read operation on the 11C bus.

The routine first creates a transmit buffer containing two bytes. The first is set to FEH,
the special character preceding commands for the Matrix Orbital LCD module, and the
second is set to 4FH, the Auto Transmit Key Presses Off command.

15

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

Figure 10. LCD_AutoTransmitKeyPressesOff() Routine

P

iic_tx_buf[0] = OXFE
iic_tx_buf[1] = Ox4F

CALL I1CO_MasterStartAndSend(
0x50, iic_tx_buf, 2)

No

[Return OK] [Return Error]

The routine calls the 11C0_MasterStartAndSend(0x50, iic_tx_buf, 2), which sends two
bytes to the LCD module by executing an I1C write transfer to slave address 50H, the
default slave address of the LCD module for write cycles.

If successful, 11CO_MasterStartAndSend() returns a value indicating success. In the event
of error, the routine returns an error to the calling routine.

3.4.9 LCD_PutStr(col, row, *str): Display String on LCD at Specified Column, Row

The LCD_PutStr() routine displays a string at a specified position on the LCD screen.
The col parameter specifies the column position, with 1 being the first column. The row
parameter specifies the row position, with 1 being the first row. The *str parameter points
to a string, such as an array of bytes, with a zero byte terminating the string.

The routine first checks the length of the string. If the length is zero, nothing is written to
the display and the return value indicates success. The routine then verifies that the col
and row parameters are within the range allowed for the LCD and returns an error if they
are not. For the LCD module used in this example, col has a range of 1 to 20 and row a
range of 1 to 4.

The routine then creates a transmit buffer containing four bytes. The first is set to FEH,
the special character preceding commands for the Matrix Orbital LCD module, and the
second is set to 47H, the Set Cursor Position command. The third is the col parameter
and the fourth is the row parameter. The routine executes an 11C write transfer to slave

16

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

address 50H, the default slave write address, which calls
11CO_MasterStartAndSend(0x50, iic_tx_buf, 4) and sends the four bytes to the LCD.

In the event of error, 11CO_MasterStartAndSend() returns the error to the calling routine.
Otherwise, 11C0_MasterStartAndSend() calls 11CO_MasterStartAndSend(0x50, str, len) to
send the string of characters to the display by executing a second I1C write transfer, this
time with the address of the passed string defining the data, and the length of the string
defining the number of bytes to send. In the event of error, 11C0_MasterStartAndSend()
returns the error to the calling routine; otherwise 11C0_MasterStartAndSend() returns a
value indicating success.

Figure 11. LCD_PutStr(col, row, *str) Routine

?

len = strlen(str)

iic_tx_buf[0] = OXFE
iic_tx_buf1] = 0x47
iic_tx_buf[2] = col
iic_tx_buf[3] = row

CALL IIC0O_MasterStartAndSend(
0x50, iic_tx_buf, 4)

CALL I1C0_MasterStartAndSend(
0x50, str, len)

No

[Return OK] [Return Error]

17

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

3.4.10 IlICO_MasterStartAndSend(sadr, *txbuf, txnum): Start Master, Send Data to
lIC Slave

The 11C0_MasterStartAndSend(sadr, *txbuf, txnum) routine is a simple combination of
I1CO_MasterStart() and 11C0_MasterSendData(), which is necessary for sending 11C data
as a master. It was not created by Applilet. The sadr parameter is the slave address for
send data, the *txbuf parameter points to an array of bytes to send, and the txnum
parameter specifies the number of bytes to send.

Figure 12. 1ICO_MasterStartAndSend(sadr, *txbuf, txnum) Routine

?

Ul_MasterError = OK
UI_MasterSendEnd = ERROR
UI_MasterFindSlave = ERROR

Wait for IICBSY0 == 0 (not busy) |

CALL [IC0_MasterStart(Send,
sadr, 10)

Wait for Ul_MasterFindSlave or
Ul_MasterError

Error or
imeout?
No
CALL [IC0_MasterSendData(
txbuf, txnum)

Wiait for UI_MasterSendDone or
Ul_MasterError

imeout2
No

| CALL 11C0_Stop() @
Return OK

The routine first sets 11C communication flags to default settings; these flags will be
affected by 11CO callback functions during the 11C communication process.

18

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

Ul_MasterError is set to MD_OK (to indicate no error), Ul_MasterSendEnd is set to
MD_ERROR to indicate that sending is not done, and Ul_MasterFindSlave is set to
MD_ERROR to indicate that a slave is not found at this point.

The routine then waits until the bus is not busy, as indicated by the IICBSYO bit in the
IICFO flag register, to allow previous operations to complete or another master to finish
using the bus.

The routine then calls the 11C0_MasterStart(Send, sadr, 10) function, to start 1IC
communication as a master for sending data, and specifies the slave address of sadr. A
return indicates that either the 11CO peripheral has been enabled and the slave address
written to the 11CO register for transmission, or the 11C communication channel is busy,
which should not happen in this demonstration system.

The routine waits for Ul_MasterFindSlave to be OK or for Ul_MasterError to be set to an
error condition. The routine times out if neither condition occurs within a set time.

The 11CO peripheral receives an interrupt on the ninth clock bit; the interrupt is handled
by the MD_INTIICO interrupt service routine. If the LCD module has been properly
addressed with its slave address, the module responds with an ACK that sets the
Ul_MasterFindSlave flag. If there is no ACK, the interrupt service routine sets the
Ul_MasterError flag to MD_NACK.

If the slave is not found, 11C0_MasterStartAndSend() returns an error code. If the slave is
found, then the routine calls 11CO_MasterSendData(txbuf, txnum) to queue the data for
sending.

I1CO_MasterSendData() stores the buffer address and count, writes the first byte of data
to the 11CO register, and returns.

At this point, after every byte of data has been transmitted, an INTIICO interrupt occurs.
The MD_INTIICO interrupt service routine handles the interrupts by sending the next
byte of data, by setting Ul_MasterSendDone if all bytes have been sent and received, or
by setting an error if there is no ACK from the slave.

The 11C0_MasterStartAndSend() routine waits for the Ul_MasterSendDone condition to
be true or for Ul_MasterError to be set to an error condition, and times out if neither
condition occurs within a set time.

If an error occurs in transmission or if the routine times out, an error is returned.
Otherwise, the Ul_MasterSendDone flag was set and the transfer was successful. The
routine calls 11CO_Stop() to end the transfer and returns a value indicating success.

19

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

3.4.11 1ICO_MasterStart(mode, adr, wait): Start Master Read or Write To IIC Slave

The 11C0_MasterStart(mode, adr, wait) function starts 11IC communication in master
mode. The mode parameter is either Send or Receive, the adr parameter specifies the
slave address for communication, and the wait parameter controls the amount of time to
wait for a start condition to be generated.

Figure 13. 1ICO_MasterStart(mode, adr, wait) Routine

No

SPIEO = WTIMO = 1 (11CC0.4-3)
1ICEO = 1 (11CC0.7)

SPTO0 =1 (11CCO0.0) generate stop
Wait short timeout

SPD0 ==0?

No

Clear IICIFO interrupt flag

STTO =1 (11CCO0.1) generate start
Wait short timeout

Set Slave address LSB =1 Clear Slave address LSB =0

< |
<

Clear address sent flag
11CO = slave address

20

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

The routine checks to see of the 11C bus is busy, as indicated by the IICBSYO bit in the
IICFO flag register, and returns an error if so. The 11CCO register bits (SPIEO and
WTIMO) are set to enable interrupts on stop conditions and to interrupt after nine clocks
(master mode). The I1CCO bit 7 (1ICEOQ) then is set to 1 to enable the 11CO peripheral.

The SPTO bit (11CC0.0) is set to 1 to generate a stop condition (recommended when
IICEO is enabled), and a short timeout occurs to wait for a stop condition. The SPDO bit
(11CS0.0) is set to 1 to indicate when a stop condition is detected. If no stop condition is
detected, then an error is returned. The stop condition causes an interrupt so that the
interrupt flag is cleared.

The STTO bit (11CCO0.1) is set to 1 to generate a start condition, and a wait occurs to allow
the start condition to be registered. STDO (11CS0.1) indicates that a start condition exists.
If a start condition is not detected, then an error is returned.

If mode is set to Send, the least significant bit (LSB) of the slave address is set to 0,
which indicates a master-to-slave transmission of data. If mode is set to receive, the LSB
of the slave address is set to 1, which indicates a slave-to-master transmission of data.
The “address sent” flag, which is used by the MD_INTIICO() interrupt service routine to
determine the action to take on interrupt, is cleared and the slave address is written to the
I1CO register to start the 11C transfer. The routine then returns, having started
communication to the slave.

3.4.12 1ICO_MasterSendData(*txbuf, txnum): Master Send Data To IIC Slave

The 11C0_MasterSendData(*txbuf, txnum) function is called after 1C0O_MasterStart() has
been called, and after the Ul_MasterFindSlave flag has been set to indicate that the slave
is there and ready for data. The txbuf parameter points to an array of bytes to send, and
the txnum parameter specifies a count of bytes to send.

The routine checks to see if the “address sent” flag has been set, and returns an error if it
hasn’t. The latter would result if this routine were called before the INTIICO interrupt
occurs at the end of slave address transmission.

The routine then sets the buffer address for data to be sent to the location specified by the
txbuf pointer, sets the count of bytes to send to txnum, writes the first byte to the 11CO
register, increments the pointer, and decrements the count. The MD_INTIHCO interrupt
service routine sends the second and further bytes.

21

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

Figure 14. 1IC0_MasterSendData(*txbuf, txnum) Routine

Return Error

Transmit buffer pointer = txbuf
Transmit count = txnum

11CO = first byte from buffer
Increment transmit buffer pointer
Decrement transmit count

Return OK

3.4.13 MD_INTIICO(): Interrupt Service Routine for INTIICO Interrupt

The MD_INTIICO() interrupt service routine (ISR), and the functions it calls, do most of
the work for I1C transfers. The ISR checks the MSTSO bit in the 11CSO status register to
determine whether a master or slave operation is in progress and then calls the
appropriate handler routine, either 11C0_MasterHandler() or 11CO_SlaveHandler(). For
communication with the LCD module, this example uses master communication, so the
flowchart above shows the 11C0O_MasterHandler() flow.

The first interrupt of a master transmission occurs after the master has sent the slave
address and the ninth clock has been set.

The handler first checks whether the bus is non-busy, in other words, whether a stop
condition has been detected. This should not happen in normal master mode
communication, so Ul_MasterError() is called to indicate a stop error.

The handler then verifies whether the slave “address sent” flag has been set. If it has not
been set, this interrupt occurs at the end of sending the slave address. The routine checks
whether an ACK has been received from the slave; if not, the NACK error condition is
set. If the ACK has been received, then the slave responded to the address properly; the
Ul_MasterFindSlave flag is set, the “address sent” flags is set true, and the handler
returns.

22

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

Figure 15. MD_INTIICO() Routine

INTHCO

CALL 11C0_SlaveHandler()

11C0_MasterHandler()

ICCBSY ==0?

No
No

N

CALL CALL_MasterError(SPT)

Set address sent flag m
CALL CALL MasterFindSlave()
No
| CALL CALL_MasterError(NACK)

After the first interrupt, further interrupts occur after data bytes have been sent or when a
receive operation has been started. The handler checks to see if the transfer direction is
sending (master to slave, TRCO = 1) or receiving (slave to master, TRCO = 0). The
sending flow is shown in the figure below; the receiving flow is shown in the figure
following.

Figure 16. Sending Flow

STTO =1 (11CCO0.0) generate STOP
CALL CALL MasterError(NACK)

STTO =1 (11CCO0.0) generate STOP
CALL CALL MasterSendEnd()

11CO = next byte to send
Increment pointer to send bytes
Decrement count to send

23

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

If sending, the handler expects an ACK from the slave after each data byte sent. If the
ACK is not detected, a stop condition is set, the NACK error condition is set, and the
handler returns.

If the ACK was received, the handler checks the count of bytes to see if there are any
more left to send. If there are no more bytes to be sent, this interrupt occurred after the
last byte was sent and the transfer is done. The handler sets a stop condition to inform the
slave that the transfer is done, sets the Ul_MasterSendDone flag, and returns.

If the count is not zero, there are more bytes to be sent. The handler writes the next byte
to 11CO to start transmitting, updates the count and buffer pointers, and returns to wait for
the next INTIICO interrupt.

Figure 17. Receiving Flow

?

Next receive buffer location = 11C0
Increment pointer to receive buffer
Decrement count to receive

Yes ACKEO =0 (11CC0.2) clear ACK
STTO =1 (1ICC0.0) generate STOP

No CALL CALL_MasterReceiveEnd()

WRELO = 1 (I1ICCQ0.5) cancel wait

If receiving, 11CO peripheral has automatically generated a wait condition on the bus after
the data byte was received, to have the slave wait until the data is dealt with. The handler
reads the 11CO register to get the byte received, stores it in the receive buffer, increments
the pointer to the buffer, and decrements the count of bytes to receive.

If there are no more bytes to be received, the transfer is done. The handler clears the
ACKEDO bit, which will cause the slave to not see an ACK condition after the transfer
(this tells the slave the transfer is done), sets a stop condition to finish the transfer, sets
the Ul_MasterReceiveDone flag, and returns.

24

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

If there are more bytes to receive, the handler sets the WRELDO bit to release the wait
condition. At this point, the slave sees an ACK condition on the bus and begins sending
the next byte. The handler returns to wait for the next INTIICO interrupt.

3.4.14 1ICO_Stop(): Stop 1ICO Operation

The 11CO_Stop() routine ends the 11CO send or receive operation by clearing the 11CEOQ bit
in the 11CCO control register to zero, disabling the 11CO peripheral. The enable bit will be
set again on the next call to 11CO_MasterStart().

Figure 18. 1IC0O_Stop() Routine

?

IICEO = 0 (11CCO0.7) disable 11CO

3.4.15 LCD_KeyPoll(*pkey): Poll LCD Module For Keypad Input

The LCD_KeyPoll(*pkey) routine checks whether the LCD module has a key press
available in its buffer. The pkey parameter is a pointer to a byte location to store the key
code read. If no key is available, or if an error occurs, zero is stored for the key code.

First the routine checks to see if the pkey parameter is zero. If so, the pointer has not
been set, and an error is returned.

The routine then calls 11C0_MasterStartAndReceive(0x51, iic_rx_buf, 1) to start an 11C
transfer to read a byte of data from the LCD module. The 0x51 parameter is the I1C slave
address of the LCD module for reading; iic_rx_buf is a pointer to an array of bytes to
receive the data, and the 1 specifies one byte to receive.

If an error is returned, the key code stored is zero, and an error condition is returned.

If there is no error, the key code returned from the LCD module is in the first location of
the buffer. The location pointed to by pkey is set to iic_rx_buf[0] to return the key code
read, and the routine returns a value indicating success.

25

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

If no key is available in the LCD module key buffer, the LCD module returns a value of 0
for the key code.

Figure 19. LCD_KeyPoll(*pkey) Routine

CALL 11C0_MasterStartAndReceive
(0x51, iic_rx_buf, 1)

Yes

Error?

No

*pkey = iic_rx_buf[0] *pkey = 0

3.4.16 1ICO_MasterStartAndReceive(sadr, *rxbuf, rxnum): Start Master, Receive
Data From IIC Slave

The 11C0_MasterStartAndReceive(sadr, *rxbuf, rxnum) routine is a combination function
of 11C0_MasterStart() and I11CO_MasterReceiveData(). This function was not created by
Applilet, but is a simple combination of the two routines necessary for receiving I11C data
as a master. The sadr parameter is the slave address to receive data from, the *rxbuf
parameter is a pointer to an array of bytes to receive the data read, and the rxnum
parameter is the number of bytes to receive.

The routine first sets 11C communication flags to default settings; these flags will be
affected by 11CO callback functions during the 11C communication process.

Ul_MasterError is set to MD_OK (to indicate no error), Ul_MasterReceiveEnd is set to
MD_ERROR to indicate that receiving is not done; Ul_MasterFindSlave is set to
MD_ERROR to indicate that a slave is not found at this point.

The routine then waits for the bus not to be busy as indicated by the IICBSYO bit in the
IICFO flag register to allow previous operations to complete or in case another master is
using the bus.

26

NEC

[IC Communication with LCD Modules in V850ES Microcontrollers

Figure 20.

?

1ICO_MasterStartAndReceive(sadr, *rxbuf, rxnum) Routine

Ul_MasterError = OK
Ul_MasterReceiveEnd = ERROR
Ul_MasterFindSlave = ERROR

Wait for IICBSYO0 == 0 (not busy)

CALL 1ICO_MasterStart(Receive,
sadr, 10)

Yes

Wait for Ul_MasterFindSlave or
Ul_MasterError

Error or
imeout?
No

CALL 1IC0O_MasterReceiveData(

rxbuf, rxnum)

Wait for Ul_MasterReceiveDone or
Ul_MasterError

Error or
imeout?
No

CALL 11C0_Stop()

A2a

Return OK

The routine then calls 11C0_MasterStart(Send, sadr, 10) function to start 11C
communication as a master for sending data, and specifies the slave address of sadr.
Upon return, either the 11CO peripheral has been enabled and the slave address has been
written to the 11CO register for transmission, or the 11C communication channel is busy,
which should not happen in this demonstration system.

The routine then waits for either Ul_MasterFindSlave to be OK, or for Ul_MasterError to
be set to an error condition, and will timeout if neither condition occurs within a set time.

27

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

The 11CO peripheral gets an interrupt on the ninth clock bit, which will be handled by the
MD_INTIICO ISR. If the LCD module has been properly addressed with its slave
address, it will respond with an ACK that will set the Ul_MasterFindSlave flag. If there is
no ACK, the ISR sets the Ul_MasterError flag to MD_NACK.

If the slave is not found, 11CO_MasterStartAndReceive() returns an error code. If the
slave has been found, then the routine calls 11C0_MasterReceiveData(rxbuf, rxnum) to
specify the location and amount of data to receive.

I1CO_MasterReceiveData() stores the buffer address and count in preparation for the
interrupt at the end of the first byte received. It then signals the slave to send the first
byte.

At this point, after every byte of data has been received, an INTIICO interrupt occurs. The
MD_INTIICO ISR handles the interrupts by storing the byte of data received, by setting
Ul_MasterReceiveDone if all bytes have been received, or by setting an error if there is
no ACK from the slave.

The 11C0_MasterStartAndReceive() routine waits for the Ul_MasterReceiveDone
condition to be true, or for Ul_MasterError to be set to an error condition, and times out
if neither condition occurs within a set time.

If an error occurs in transmission, or if the routine times out, an error is returned.
Otherwise, the Ul_MasterReceiveDone flag was set and the transfer was successful. The
routine calls 11CO_Stop() to end the transfer and returns a value indicating success.

3.4.17 1IC0_MasterReceiveData(*rxbuf, rxnum): Master Receive Data From I[IC
Slave

The 11C0_MasterReceiveData(*rxbuf, rxnum) function is called after 11CO_MasterStart()
has been called and after the Ul_MasterFindSlave flag has been set to indicate that the
slave is there and ready to send data. The rxbuf parameter points to an array of bytes to
send and the rxnum parameter specifies a count of bytes to send.

The routine checks to see of the “address sent” flag has been set and returns an error if it
hasn’t. This condition would result if the routine were called before the INTIICO interrupt
occurs at the end of slave address transmission.

The routine then sets the buffer address for data to receive to the location pointed to by
rxbuf and sets the count of bytes to receive to rxnum.

28

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

Figure 21. IICO_MasterReceiveData(*rxbuf, rxnum) Routine

Receive buffer pointer = rxbuf
Receive count = rxnum

WTIMO = 0 (11CC0.3)
ACKEQO =1 (11CC0.2)
WRELO = 1 (11CC0.5)

At this point, the I1CO peripheral has automatically asserted a wait condition to pause
slave operations until the master is ready. The WTIMO bit is set to 0 to provide an ACK
after eight bits of data sent by the slave. The ACKEDQ bit is set to 1 to set the ACK state
after a byte is received, and the WRELDO bit is set to 1 to release the wait condition. The
slave then begins transmitting the first byte of data.

When this byte has been received by the I1CO peripheral, the peripheral sets the wait
condition again and the INTIICO interrupt occurs. The MD_INTIICO() ISR handles the
actual reading of data received, and prepares for the next byte or for ending the transfer.

3.5 Applilet Reference Driver

The Applilet program generator can automatically generate C or assembly language source
code to manage peripherals for NEC Electronics microcontroller devices. Refer to Section 5
to find out what version of Applilet is used.

Applilet produces the basic initialization code and main function for the program, the clock
initialization code, and the initialization and driver code for the 11C0O and TMOO timer
peripherals. After Applilet produces the basic code, users must add additional code to
customize the program’s functionality.

29

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

This section describes how to configure Applilet to produce code for these peripherals and
also lists the files and routines produced. Additional files not generated by Applilet, such as
those written for LCD module access, are also listed.

When Applilet is started, a new project file is created and saved as a .prx file. Applilet shows
a screen allowing different peripheral blocks to be selected for setup.

3.5.1 Configuring Applilet for Clock Initialization

The System box allows you to control clock initialization in the Clock_Init() routine.

1. On the Foundation Setting tab, select Main clock operation mode to enable
operation of the external crystal.

2. Select PLL function On to set the clock to use the PLL multiplier.

3. Set the external clock frequency to 5 MHz, which results in a system clock of 20
MHz with PLL on.

4. Verify that Ring-OSC can be stop by software is selected; if not, the watchdog
timer 2 (WDTMZ2) cannot be stopped. Watchdog timer 2 would reset the program
periodically if not disabled or cleared within a certain interval of time. To make the
program code clearer, the watchdog timer is not used.

Figure 22. System Dialog Box

System

Foundation setting | Startup setting | Watchdostimer 2 |

— Clack generatar operation mode —PLL function setting
% Tyain clock operation rode ¢ PLL function OFF

 Sub-Clock operation raods & PLL function ON
—Ring-05C setting

~ Ring-0SC option byvte selection
" Ring-0SC can not be stop by softwars

& Ring-0SC canhe stop by softwars " Disable Ring OSC cscillator

—Dscillates setfting

Iwlain osoillates{hTHz) 5

Ring-05C oscillaton K Hz) 240

Sub oscillates(KHz) 5376 j

— Oscillation stabilization time

Stable time(rns) Iﬁ_ﬁ j
petail | oerauit | Hew | m | ok

30

NEC

[IC Communication with LCD Modules in V850ES Microcontrollers

3.5.2

Configuring Applilet for Operation with the [ICO Peripheral

The Serial Communication Interface dialog box allows you to enable the 11CO
peripheral

1.

2.

In the 11CO box on the General tab, select Used to activate the 11CO tab, which will
allow you to specify settings that will control the code generated for the 1HCO_Init()
routine and for the routines used to read and write data.

Figure 23. General Tab (Serial Communication Interface Dialog Box)
Serial Communication Interface
General | 11C0 |
—LIARTO —LIART
& Tnused " Tnused
i Usged 1 Usged
—UART2ICSI00 —LART2IICT
" Poth unused % Poth urused
" UART2(Pir22,23) " TART2(Pirse,60)
¢ CsI00 I
=1yl —CBI02
% Unused % Unused
 Tsed 1 Tsed
— CElAD — CEIA1
@ [nused @ Tnused
 Tsed = Tlsed
o
¢ Unused
% Used
Detail | Default | Help | Info | 0K

The 11CO peripheral can operate in both slave and master mode or switch between the
two. Unless the device is in the middle of a transfer initiated as a master, it is in slave
mode and will respond to I1C transmissions from an external master that matches its
slave address. This demonstration does not operate in slave mode, so the slave
address remains the default O0H.

In the 11CO transfer speed box on the 11CO tab, select Normal to activate the list of
communication speeds available. Speeds are based on divisions of the peripheral
clock, so the available choices will depend on that. For this demonstration, select
100000 (100 Kbps), to be compatible with standard 11C bus rates. Since the digital
filter is only available in high-speed mode, that option is disabled.

31

NEC

IIC Communication with LCD Modules in V850ES Microcontrollers

Figure 24. 1ICO Tab (Serial Communication Interface Dialog Box)

Serial Communication Interface

Creneral £11CH]
IGO0 slave address
lraddress ID ‘

G0 transfer speed
@ Noraal

" High-speed raods
Hozmwalibps) 100000
High-speedibps) 230000

Digital filter
(I Enhle

IS0 interrupt setting
v IIC'0 transfer end intermipt

Ll

Priority lowest j
0 callback function
IV Iulaster error IV Ivlaster transmission end IV Ilaster reception end
[Slave error [Slave transmission end [Slave reception end
Detail | Default | Help | Infa | oK | Cancel |

3. Inthe I1CO interrupt setting box, select 11CO transfer end interrupt and lowest
priority.

4. Since Applilet generates several standard routines for operation, and has the option to
generate blank callback routines in which you may insert code to deal with particular

events, this example uses the callback routines to support master communication.
Therefore, in the 11CO callback function box, select Master error, Master

transmission end, and Master reception end.

32

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

3.5.3 Configuring Applilet for Timer 00 (TMOO)

The Timer dialog box displays a number of tabs showing the available timers. On the
TimerQ0 tab, select the Interval timer to provide a periodic interrupt.

Figure 25. Timer Dialog Box

5 Timer
Tiraer05 | TirmerS0| TizeerS1| TirerHO | TimerH1 |
TMPO Titeerd0 | Tiwer01 | Timerd2| TirerT3 | Timerld|

—Functian
" Urmsed

% Interval timer

" External event counter

" PPG output

" Square wave output

" Pulse width measurerment
" Oneshot pulse output

Defaultl Help | Infa | oK | Cancell

1. Click Detail to display the TMOO Interval timer dialog box.

Figure 26. TMOO Interval Timer Dialog Box

"+ TMO0 Interval timer

~Count clock

" buto & fionid

i o

o2 i fodtd

 forl2s ' TIOOD falling edge

" TI000 rising edge " TIO00 both edge

Ext cloclkiKHz) 100

Value scale
(Value soale Imsec j ‘
Interval timer
(Intemalvalue |1 ‘
Interrupt setting

[V TIVOO and CROON mateh, gererate a interrapt

Prinrity Ilowest j

e | | ok | cancer |

2. Inthe Count clock box, select fxx/2 to use a 10 MHz clock for the timer.
3. Inthe Value scale box, select msec for milliseconds.
4. Inthe Interval time box, enter 1.

5. Inthe Interrupt setting box, select TM00 and CR000 match, generate an
interrupt to have Timer 00 generate an interrupt every millisecond. The interrupt
will be used to count down a millisecond timer for timing delays.

33

NEC

IIC Communication with LCD Modules in V850ES Microcontrollers

354 Generating Code With Applilet

At this point, select the Generate code option. Applilet will show the peripherals and
functions to be generated, and allow you to select a directory to store the source code.

When you press the Generate button, Applilet creates the code in several C language
source files (extension .c), C header files (extension .h), and assembly language source
and header files (extensions .s and .inc), and shows the list of files created.

1. To support the initial startup code, Applilet generates the crte.s assembly source file.
For clock initialization, Applilet generates system.inc and system.s. The Systemlnit()
function is generated in systeminit.c.

2. To support the I1CO peripheral, Applilet generates serial.h, serial.c, and serial_user.c
(described in the next section).

3. To support the Timer 00 peripheral, Applilet generates timer.h, timer.c and
timer_user.c.

4. Several other files are generated, including a main.c file with a blank main function,
and a link directive file, 850.dir, which controls the linking process.

3.5.5 Applilet-Generated Files

For the demonstration program, Applilet generates the source files described in the
following table.

Table 3. Description of Applilet-Generated Source Files

File Function

Macrodriver.h

General header file for Applilet-generated programs

Crte.s

Reset vector, program startup code

System.inc

Assembly-language header for system.s

System.s

Assembly source for Clock_Init() routine

System_user.s

Empty file (would contain code for System interrupt if used)

Systeminit.c Systemlnit() routine for peripheral initialization

Main.c The main program routine

Inttab.s Interrupt vectors with RETI for unused interrupts
Serial.h Header file for serial.c

Serial.c CSI00 functions generated by Applilet

Serial_user.c Callback functions for UART1 and CSI00, for user code
Timer.h Header file for timer.c

34

NEC

[IC Communication with LCD Modules in V850ES Microcontrollers

File Function

Timer.c Timer 00 functions

Timer_user.c User code for INTTMOO0O interrupt
850.dir Link directive file

3.5.6 Applilet-Generated Files for 1ICO Operation

The serial.h, serial.c, and serial_user.c files contain the code generated for 11CO support.

3.5.6.1 Serial.h

1.

The serial.h header file contains declarations for the functions controlling 11C0 and
definitions of values for I1CO initialization. The macrodriver.h header file, used for
all Applilet-generated code, also defines some data types and values, such as the
MD_STATUS values returned by some functions.

We have added external declarations for the variables used to signal 11CO states, such
as Ul_MasterSendEnd, and for the 11CO_MasterStartAndSend() and
I1CO_MasterStartAndReceive() functions.

3.5.6.2 Serial.c

The Serial.c source file contains the following functions generated by Applilet for 11CO:

1.

The void 11CO_Init(void); routine initializes the 11CO peripheral as specified in the
Applilet 11CO detail dialog.

The MD_STATUS IIC0_MasterStart(TransferMode mode, UCHAR adr,
UCHAR wait); routine starts a master-mode communication operation. The mode
parameter is either “Send” or “Receive” to specify the direction; the adr parameter
specifies the 11C slave address; wait specifies a number of loop times to wait for a
start condition to occur. This routine creates a start condition and sends the slave
address.

The MD_STATUS I1CO_SlaveStart(UCHAR adr); routine prepares the 11CO to
respond to slave mode operation at the specified slave address. This routine is not
used in the demonstration program.

The void 11C0O_Stop(void); routine stops the 11CO peripheral.

The MD_STATUS I1C0_MasterSendData(UCHAR* txbuf , UINT txnum);
routine is called after 1CO_MasterStart() has started a “Send” transfer. The txbuf
parameter points to an array of bytes to send, and the txnum parameter specifies the
number of bytes to send. This routine sets the buffer pointer and count, and sends the

35

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

first byte in the buffer. Further bytes are sent in the MD_INTIHCO() interrupt service
routine.

6. The MD_STATUS IIC0_MasterReceiveData(UCHAR* rxbuf, UINT rxnum);
routine is called after 11CO_MasterStart() has started a “Receive” transfer. The rxbuf
parameter specifies the address of a buffer to store received characters, and rxnum
specifies the number of characters to receive.

7. The MD_STATUS I1C0_SlaveSendData(UCHAR™* txbuf, UINT txnum); routine
is called to send data when operating as a slave. This routine is not used in the
demonstration program.

8. The MD_STATUS IICO_SlaveReceiveData(UCHAR™* rxbuf, UINT rxnum);
routine is called to receive data when operating as a slave. This routine is not used in
the demonstration program.

9. The __interrupt void MD_INTIICO(void); I1CO interrupt service routine, invoked
by the INTIICO interrupt, calls either 11CO_MasterHandler(') or 11CO_SlaveHandler(),
depending on the 11C0O master or slave state.

10. The MD_STATUS I1CO0_SlaveHandler(void); routine, called by MD_INTIICO(),
handles 11CO interrupts in slave mode.

11. The MD_STATUS I1C0_MasterHandler(void); routine, called by
MD_INTIHCO(), handles I1CO interrupts in master mode.

3.5.6.3 Serial_user.c Source File

The serial_user.c source file contains stub functions for user code. The functions are
empty on code generation to allow you to add application-specific code. We have added
the following variables to enable subroutines to check the state of 11CO communication.

Table 4. [ICO Communication Subroutines

Name Description

MD_STATUS Ul_MasterError; Stores master errors

MD_STATUS Ul_MasterSendEnd,; Reports that master sending is done

MD_STATUS Ul_MasterReceiveEnd,; Reports that master receiving is done (not used)
MD_STATUS Ul_MasterFindSlave; Reports that slave has responded, send/receive can start

36

NEC

[IC Communication with LCD Modules in V850ES Microcontrollers

The void CALL_I1CO_MasterError(MD_STATUS flag); routine is called by
the 11CO_MasterHandler() routine when an error is detected. Code was added to
store the flag parameter in Ul_MasterError.

The void CALL_I1C0_MasterReceiveEnd(void); routine is called by
I1CO_MasterHandler() when the receive count reaches zero. Code was added to set
the Ul_MasterReceiveEnd flag to MD_OK.

The void CALL_I1CO_MasterSendEnd(void); routine is called by
I1CO_MasterHandler() when the last transmit byte has been sent. Code was added
to set the Ul_MasterSendEnd flag to MD_OK.

The void CALL_IICO_SlaveAddressMatch(void); routine is called by
I1CO_SlaveHandler() when the slave address received in slave mode matches the set
slave address for the 11CO peripheral. This routine is not used in the demonstration
program, and is left with no executable code.

The void CALL_I1C0O_MasterFindSlave(void); routine is called by
I1C0_MasterHandler() when an ACK has been received after the slave address has
been sent, indicating that a slave has responded to the slave address. This routine
sets the Ul_MasterFindSlave flag to MD_OK.

The following routines were not generated by Applilet, but were written for this
demonstration program.

1.

The MD_STATUS II1C0_MasterStartAndSend(UCHAR sadr, UCHAR* txbuf,
UINT txnum); routine combines the I11C0_MasterStart() and
I1CO_MasterSendData() functions, since these are done together to accomplish
sending data to a particular slave. First I1ICO_MasterStart(Send, sadr, 10) is called to
set up a sending transfer to the specified slave address; the routine then waits for
Ul_MasterFindSlave to be set, to indicate that the slave has responded.

Then 11CO_MasterSendData(txbuf, txnum) is called, to send the specified data. The
routine then waits for the Ul_MasterSendDone flag to be set, to indicate that the
transfer has been completed. The Ul_MasterError flag is monitored while waiting,
to check for error conditions in the sending of slave address or transfer of data.

The MD_STATUS I1C0_MasterStartAndReceive(UCHAR sadr, UCHAR*
rxbuf, UINT rxnum); routine combines the 11CO_MasterStart() and
I1CO_MasterReceiveData() functions, since these are done together to accomplish
receiving data from a particular slave. First ICO_MasterStart(Receive, sadr, 10) is
called to set up a receiving transfer from the specified slave address; the routine then
waits for Ul_MasterFindSlave to be set, to indicate that the slave has responded.

37

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

Then 11C0_MasterReceiveData(rxbuf, rxnum) is called, to receive the specified
number of bytes to the specified buffer. The routine then waits for the
Ul_MasterReceiveDone flag to be set, to indicate that the transfer has been
completed. The Ul_MasterError flag is monitored while waiting, to check for error
conditions in the sending of slave address or transfer of data.

357 Files for LCD Module Routines

The following files were written for Matrix Orbital LCD module handling.

3.5.7.1 Lcd_mo.h Header File

The lcd_mao.h header file contains declarations of functions for LCD module access and
definitions of maximum column and row values for the selected display.

3.5.7.2 Lcd_mo.c Source File
The lcd_mo.c source file contains the following functions for LCD module access:

1. The MD_STATUS LCD_Init(void); routine initializes the LCD module by
clearing the display, setting key buffering, and displaying initial messages.

2. The MD_STATUS LCD_ClearDisplay(void); routine clears the LCD screen.

3. The MD_STATUS LCD_AutoTransmitKeyPressesOff(void); routine sets the
LCD module to buffer key presses rather than sending immediately on key press.

4. The MD_STATUS LCD_PutStr(int col, int row, char *str); routine writes a
string of characters to the LCD at the specified column and row address.

5. The MD_STATUS LCD_KeyPoll(unsigned char *pkey); routine reads the LCD
module to see if a key press has occurred.

3.6 Demonstration Platform

A demonstration platform was chosen from the NEC Electronics America development tools
available at the time this document was prepared. In some cases, you may be able to
duplicate the same hardware using standard off-the-shelf components along with an NEC
Electronics microcontroller of your choice.

38

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

3.6.1 Resources
To demonstrate the program, we used the following resources:

— M-V850ES-KJ1 micro-board with 32-bit yPD70F3318Y (V850ES/KJ1+) MCU
— M-Station Il evaluation system with

» TB1 terminal block with SCL, SDA, and GND signals

» M-Station Il +15V power supply jumpered to the TB1 terminal block
— Matrix Orbital LK204-25-GW-V LCD module

» 4-line, 20-character/line LCD

» Keypad interface supporting a 5 x 5 matrix of keys

» 9to 15V voltage range

» Breadboard cable for connection to M-Station

» 15-button keypad for key input

For detailed information about this hardware, refer to the appropriate user’s manual,

available from NEC Electronics America upon request. For complete information about
the Matrix Orbital LK204-25, refer to the manufacturer’s user’s manual.

Figure 27.
O O yoo T ' @ @) | Inter-Brd Connector |<- - == Inter-Brd Connector
PWR USB ' VDD Voltage Select VDD VPP
gi + foi i ieisinin e S roeeem s Reset Circuit
2® PWR HelieXe) 001100 000001 Push-Buttons
i u>7 [! ' ' =
win NEC :O::OO OO::OOOO:OOOE E
- 1 (I 1 Ll s
o M-Station ol L 2
p <—>|:USB Rev-2.2 S [.
g g ' o Micro- o
T B ! i ! =|| Controller ||Z
I ! .) o)
' Prototype Area | CPU - 1/0 Signals ! a| |uPD70F3318Y 5
. i E ' | | v8s0ES/KIL+
|
o oy | i >
G P : bk <
: i H H I g g
I
ia! i 1 i T Main Clock 3
o 10110 O 001100 00000 = £
23 hex o ! ' & Sub-Clock o
> 02 10,0 O 001,00 00000, < Modules &
Trim . ol o) =
— N Pot
A
RST - Q Inter-Brd Connector |<, Y Inter-Brd Connector

M-V850ES-KJ1 Micro-Board

39

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

The M-V850ES-KJ1 micro-board attaches to the M-Station 11 through two 100-pin
connectors. When the micro-board is attached, the uPD70F3318Y microcontroller’s I1C
pins automatically connect to the terminal block on the M-Station Il. The SCL and SDA
lines have 2 kQ pull-up resistors mounted on the M-Station Il side of the communication

channel.

The LK202-25-GW-V Matrix Orbital LCD module connects to the M-Station |1 terminal
block through a cable. The M-Station terminal block has connections for SCL, SDA, and
GND. The M-Station Il can be set to connect +15V to the terminal block, and so can
supply power and ground, as well as communication signals to the LCD module.

Figure 28. Matrix Orbital Display

BANKNOTE DETECTOR
Metal Thread: 0Ok

Ualue of Hote: 56
Hote!: Genuine

The Matrix Orbital LK204-25-GW-V display has been modified from the factory default
settings for use with I1C communication:

¢
¢
¢
¢

Standard communication channel jumpers for RS-232 removed
Communication channel jumpers for 11C communication inserted

2.2K pull-up resistors added to SCL and SDA lines

15-button keypad added to keypad connector, to demonstrate key press input

40

NEC

[IC Communication with LCD Modules in V850ES Microcontrollers

3.6.2 Demonstration of Program

If the hardware has been configured correctly, and the uPD70F3318Y microcontroller has
been programmed with the demonstration program code, you can initiate the
demonstration as follows.

Connect the Matrix Orbital LK204-25-GW-V to the M-Station |1 terminal block with
the breadboarding cable (see hardware block diagram section).

Power on the M-Station II.

Power on Vop at 5V to the M-V850E-KJ1 micro-board. At this point, the program
will run and try to access the LCD module. Since the LCD module is not powered, it
will receive errors. The program will be in the state of polling for keys, getting an
error, displaying the key poll error (which will not be seen), clearing the display, and
polling again.

Connect +15V power to the LK204-25-GW-V by connecting JP2 pins 1, 2, and 3
together on the M-Station 11. You will see the default power-on display of the
module, and then the demonstration program will clear the display.

Press Reset on the M-Station |1 to start the application program. Observe the LCD,
which should be showing:

NEC Electronics V850ES/KJ1
SPI/1I1C Application Note

Press four keys on the keypad. The LCD will display the key code values on
successive lines, as in this example:

Keycode = 48H
Keycode = 57H
Keycode = 51H
Keycode = 55H

If you press the keypad a fifth time, the display will clear and display the new value:

Keycode = 58H

41

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

3.7 Hardware Block Diagram

The connections of SCL and SDA from the uPD70F3318Y MCU to the Matrix Orbital LCD
module are shown in the figure below.

Figure 29. Connections from the M-Station-Il Terminal Block to the LCD Module

Matrix Orbital
LK204-25-GW-V
= i ; P
NEC 6 Lines g ! LCD D|Sp|ay :.g o
<« E| ' 4linesx 20 char 1S3
uPD70F3318Y +15V ol ' . 12 E
o 5~
VB50ES/KJL+ JP2 o | Connector| | Keypad Interface| ©
A
TB1
2[5 VDD Y
P39/SCLO 1, SCL oo
P38/SDA0O > O SDA LCICIC
35 GND (I |
[I [|
GND

To have P39/SCLO of the uPD70F3318Y brought to the 100-pin connectors, it is necessary
to close shorting block SB7 on the M-V850ES-KJ1, and have SB6 open. The factory default
is to have SB7 open and SB6 closed.

The P39/SCLO and P38/SDAO lines of the uPD70F3318Y are brought to the 100-pin
connector between the M-V850ES-KJ1 micro-board and the M-Station 1. They are
connected to the SCL and SDA lines on the M-Station Il by shorting blocks, which are
connected by default. SB11 on the M-Station 11 connects P39/SCLO to SCL, and SB12 on
the M-Station Il connects P38/SDAO to SDA.

SCL and SDA on the M-Station 11 have 2 kQ pull-up resistors attached, to provide
termination for the signals on the M-Station side, and are brought to terminal block TB1,
pins 1 and 5, respectively.

42

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

To have the M-Station Il supply power and ground for the LCD module, connect pins JP2.1
and JP2.2 with wire wrap or solder. This will connect the M-Station +15V supply (JP2.1) to
the VIn supply for the LIN transceiver (JP2.2), which is the normal connection of JP2. Then,
placing a jumper between JP2.2 and JP2.3 (VBAT signal, pin 2 on TB1) will provide +15V
to the VVop line of the LK204-25-GW-V. The —V designation on the LCD module part
number indicates a wide voltage range of 9 to 15V. This jumper should only be connected
after power has been supplied to the uPD70F3318Y microcontroller.

GND is provided on TB1 pin 3.

The connection of signals from the pPD70F3318Y to the Matrix Orbital LK204-GW-V is
shown in Table 5.

Table 5.
wourn [so [MvesoEson [usaion o 181 [ggna [0t 2sowy
2 +15V 1
P39/SCLO SB7 P1.11 J1.11 SB11 | 1 SCL 2
P38/SDA0 | -- P1.12 J1.12 SB12 | 5 SDA 3
3 GND 4

3.8 Software Modules

The following files make up the software modules for the demonstration program. The table
below shows which files were generated by Applilet, and which of those needed
modification to create the demonstration program.

The listings for these files are located in Section 5.

Table 6.

File Purpose Generat_ed Modified

By Applilet By User
Main.c Main program Yes Yes
Macrodriver.h General definitions used by Applilet Yes No
Crte.s Reset vector, program startup code Yes No
Inttab.s Interrupt vectors for non-used interrupts (RETI) Yes No
System.inc Clock-related definitions Yes No
System.s Clock_Init() function Yes Yeshoe!
System_user.c File for System interrupt Yes No
Systeminit.c SystemlInit() and hdwinit() functions Yes No
Serial.h 11CO-related definitions Yes Yeshote?2

43

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

File Purpose (BBenerat_ed Modified
y Applilet By User
Serial.c 11CO-related functions Yes Yesoe?
Serial_user.c User code in 11CO callback routines Yes Yeshoe?
Timer.h Timer-related definitions Yes YesNore?
Timer.c Timer-related functions Yes No
Timer_user.c User code for Timer interrupt service Yes Yeshoe?
850.dir Link directive file Yes YesNoe
Lcd_mo.h LCD module definitions No -
Lcd_mo.c LCD module functions No --
Notes:
1. System.s was modified to correct an error in the Clock_Init() routine which resulted

in excessive time spent waiting for the PLL to stabilize.

Serial.h was modified to add the declarations of new functions
I1CO_MasterStartAndSend() and 11CO_MasterStartAndReceive(). Serial.c was
modified to correct the order of setting of P3 in 11CO_Init(), and to force a stop
condition after IICEOQ setting in 11CO_MasterStart(). Serial_user.c had variables
added, code inserted in callback functions to set these variables, and the routines
I1CO_MasterStartAndSend() and 11CO_MasterStartAndReceive() added.

Timer.h was modified to add the declaration of new functions defined in
timer_user.c. Timer_user.c was modified to add the code to handle the periodic
INTTMOOO interrupt in the MD_INTTMOOO() routine, which counts down the
millisecond timer, and to add the SetMsecTimer() and CheckMsecTimer() routines.

Note 4: As produced by Applilet, the 850.dir link directive file did not specify an
SCONST segment for initialized string constants. Since the demonstration program
uses string constants, an SCONST segment directive was added to 850.dir.

44

NEC

[IC Communication with LCD Modules in V850ES Microcontrollers

4. DEVELOPMENT TOOLS
The following software and hardware tools were used in the development of this document.

Table 7. Software Tools

Tool Version | Comments

Applilet E1.46¢c | Source code generation tool for NEC Electronics microcontrollers
V850ESKX1H.mcu | V1.33 Applilet MCU configuration for uPD70F3318Y (V850ES/KJ1+)

PM Plus V6.10 Project manager for program compilation and linking

CA850 V3.00 C compiler, assembler, linker for NEC Electronics V850ES microcontrollers
DF3318Y.800 V1.01 Device file for uPD70F3318Y (V850ES/KJ1+) microcontrollers

Table 8. Hardware Tools

Tool Version | Comments

M-Station 2 V2.1E Base platform for NEC Electronics America micro-board demonstration
M-V850ES-KJ1 V1.0 Micro-board for V850ES/KJ1+ with uPD70F3318YGJ CPU

45

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

5. SOFTWARE LISTINGS

This application program is based on specific files and a number that are used in other application notes
such as the one titled “NEC Electronics CSI-to-SPI Peripheral Communication”. For this reason the files
are listed in two separate sections here.

Since the Applilet program generation tool was used for both programs, some filenames, such as serial.h,
serial.c, or serial_user.c, are found in each program. At first glance, these files may seem to be identical,
because Applilet may place a large amount of similar code in each version of the file.

However, there are differences in initialization values for registers, or differences in generated code,
depending on the options selected in Applilet. The files listed in the sections for each demonstration
program may be different from the same-named files in other sections.

5.1 Files for IIC To LCD Module Demonstration Program

511 Main.c

/*
AEAEEAEAEAAEAAA KA AAA AKX A AKX A AKX A AXAAAXAAAXAEAAXAAAXAAXAXAAXAXAAXAXAAXAXAALAAAXAAAAAAXAXAAXAAAXAAAXAAXAXAdx

**x

** This device driver was created by Applilet for the V850ES/KJ1+,
VB50ES/KG1+,
** V850ES/KF1+, V850ES/KE1+ 32-Bit Single-Chip Microcontrollers

** Copyright(C) NEC Electronics Corporation 2002-2004
** All rights reserved by NEC Electronics Corporation

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses
incurred

** by customers or third parties arising from the use of this file.

** Filename : main.c
** Abstract : This file implements main function
** API1lib: V850ESKX1H.lib V1.33 [24 Sep 2004]

Device: uPD70F3318Y

**

** Compiler: NEC/CA850

*x

R T o
*/

/ *

KA AAA A A I A A A A AR A A AR A A A A AR AR A A A A A A A AR A A A A A AR AA A A LA A AAAAAA A AAAAAAAAALAAAAAAAAA A K

** Include files

R S e e e o S R e S o S R e R R e R R A A R R AR A R A e e e R A R A R R A R AR R R A S R S e R S R S

*/

46

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

#include "macrodriver.h"
#include "timer.h"
#include '"'serial.h"

/* added include for LCD panel/keypad */
#include "lIcd mo.h"

/*

AE AA AA A A AA LA AAAAAALAAAXAAAAAAAAAAAAAAAAAAAAAA AKX A LA XA ddhX

** MacroDefine

KE AAAAARI A A EAA AR A AR R A A A AR AR A A A A A AR A AR R A A AAA A AR R AT A AAAAAR R EAEAAAAAARARAAAAAAAAALAAAAA
*/

char keystr[64]; /* buffer to write key code string */

/*

**x

** Abstract:
*x main function

** Parameters:
el None

** Returns:

olal None

**

A L L o o
*/

void main(void)

{

UCHAR keyval ; /* key code returned by panel */

UCHAR keycol; /* column to display string */

UCHAR keyrow; /* row to display string */

MD_STATUS status; /* status from operations */

/* initialize 11CO interface */
11CO_Init(Q);

/* initialize the LCD display and keypad */
LCD_InitQ;

TMOO_Start(); /* start timer for millisecond counting */
SetMsecTimer(500); /* set for 1/2 second polling */

keycol = 1; /* set initial string display location */
keyrow = 1; /* for row 1, column 1 */

while (1) {

iT (CheckMsecTimer()) {
/* timer expired, poll keypad */
status = LCD_KeyPoll(&keyval);
if (status '= MD_OK) {
/* error on polling */
LCD_PutStr(l1, 4, "KeyPoll Error'); /* display error
*/

47

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

SetMsecTimer(2000);

while (ICheckMsecTimer()); /* for 2
sec */

LCD_ClearDisplay(); /*
then clear display */

SetMsecTimer(500); /*
poll again in 500 msec */

} else {

/* no error on polling, see if we have a key */
it (keyval == 0x00) {
/* no key, set up to poll again in 500 msec */
SetMsecTimer(500);
} else {
/* we have a key, handle it */
it (keyrow == 1) {
LCD_ClearDisplay(); /* clear the
display when we write to row 1 */

/* format string for display */
sprintf(keystr, 'Keycode = %02XH", keyval);
/* send string to display at keycol/keyrow
position */
LCD_PutStr(keycol, keyrow, keystr);
/* change position for next line */
keycol += 2;
keyrow += 1;
if (keyrow > LCD_ROW_NUM) {
/* if we pass the last row, start at the
top again */
keycol
keyrow

1;
1;

}
SetMsecTimer(1); /* if key pressed, poll again

quickly */
}
} /7* end check status of polling */
} /7* end of CheckMsecTimer */
} /* end of while(1) loop */

} /7* end of main() */

5.1.2 Lcd_mo.h
/*

AEAEEAEEAA A AA KA AA A AA A AKX KA AKX A AKX A AKX A AKX AAXAAAXA XXX XXX AXAXAAXAXAALAXAALAAAXAXAAXAXAAXAAAXAXAAXAAXAAdX

** This File was created for the NEC V850ES SPI/I1IC Application Note

** Copyright(C) NEC Electronics Corporation 2002 - 2006
** All rights reserved by NEC Electronics Corporation.

48

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

** This program should be used on your own responsibility.
** NEC Electronics Corporation assumes no responsibility for any losses
** incurred by customers or third parties arising from the use of this file.

** Filename : Icd mo.h
** Abstract : This file implements header for lcd_mo.c

** Device: uPD70F3318Y

** Compiler: NEC/CA850

R R R e R R R R R AR R R R AR AR R AR R R R S R R R AR R R R R e S SRR R AR AR R R R R R R R R R AR R AR AR R R R R R X
*x

*/
#ifndef _LCD_MO_H_
#define _LCD MO _H_
/*

R R S o B e R S R S R R S R B e R e R e R S R S R R R e R e R e R S R R e e R e R e R e R R R R R e R e R e S e S e e e
*x

** MacroDefine
AAEAEAIAITAIAAAAAAAATAITAXITAAAXAAXAAAATAXITAXITEAEAAXAAAATAAAXIAXAAXAAXAAXAATAAITAXAAIAAXAAXAAXAATAITAIA XX KK KK
*x

*/

/* LCD display defines */
#define LCD_ROW_NUM 4 /* number of rows (1 - 4) */
#define LCD_COL_NUM 20 /* number of columns (1 - 20) */

/* LCD functions */

MD_STATUS LCD_Init(void); /*
init LCD display/keypad */

MD_STATUS LCD_ClearDisplay(void); /* clear
LCD display screen */

MD_STATUS LCD_AutoTransmitKeyPressesOff(void); /* set for key
buffering */

MD_STATUS LCD_PutStr(int col, int row, char *str); /* write string
to display */

MD_STATUS LCD_KeyPoll(unsigned char *pkey); /* check if
key press available */

#endif /* LCD_MO_H_ */

5.1.3 Lcd_mo.c
/*

R S o e S S S S o R e S S e e S R R R e S S S A o R R R S S S e e e R R R S S S e S S R R R S S e e R R R S e
** This file was created for the NEC V850ES SPI/I1IC Application Note

** Copyright(C) NEC Electronics Corporation 2002 - 2006
** All rights reserved by NEC Electronics Corporation.

** This program should be used on your own responsibility.
** NEC Electronics Corporation assumes no responsibility for any losses

49

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

** incurred by customers or third parties arising from the use of this file.

** Filename : Icd mo.c
** Abstract : This file implements functions for 11C LCD display/keyboard

** Device: uPD70F3318Y

** Compiler: NEC/CA850

AEEEAETAAEAAA A AKX A AKX A AKX A AL A AL A AKX XXX EAAXA XXX XXX AXAXAAXAXAAXAXAALAAALAXAALAXAAXAAAXAAAXAAAXAAXAAdx
*x
*/
/*

R R R e R R e R R R R AR (R AR R AR AR R AR R R R R R AR R R R R R R e R SRR R AR AR R R R R R R R AR R AR AR R R R R AR R R X

xx

*/

#include "macrodriver.h"

#include "'serial.h" /* Tfor 1IC routines */
#include "lcd_mo.h" /* includes for this file */

/* local definitions for LCD panel 1IC access */
#define LCD_I11C_WADR Ox50 /* LCD display IIC slave address for write */
#define LCD_I1C_RADR (LCD_IIC_WADR + 1) /* slave address for read */

/* buffers for 11CO operation */

unsigned char iic_tx _buf[16]; /* for this app note, only need four locations
*/

unsigned char iic_rx buf[16]; /* really only need one character here */

/*

**x

** Abstract:
** Function to do LCD display/keypad Initialization

** Parameters: None
** Returns:
*x MD_OK iF initialize is successful, MD_ERROR if fails

*/
MD_STATUS LCD_Init(void)

{
MD_STATUS status;

/* clear the display */
status = LCD_ClearDisplay();

/* set Auto Transmit Key Presses Off */

if (status == MD_OK) {
status = LCD_AutoTransmitKeyPressesOff();

50

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

}

/* display text messages */
if (status == MD_OK) {

status = LCD_PutStr(1, 1, "NEC V850ES/KJ1");
}

if (status == MD_OK) {
status = LCD_PutStr(l1, 2, "SPI/1IC App Note'™);
}

return status;

** Abstract:
*x Function to clear the LCD display

** Parameters: None
** Returns:
** MD_OK if operation is successful, MD_ERROR if fails

*/

MD_STATUS LCD_ClearDisplay(void)
{

MD_STATUS status;

OXFE; /* special character */
0x58; /* command = Clear Display */

IBI
-+
|><
(=)
c
=h
=
=
e
I

/* transmit two bytes ghrough 11CO */
status = 11CO_MasterStartAndSend(LCD_I1C_WADR, iic_tx buf, 2);
return status;

** Abstract:
*x Function to turn automatic transmit of key presses off, so can poll via
11CO

**

** Parameters: None
** Returns:
*x MD_OK i1f operation is successful, MD_ERROR if fails

*/

MD_STATUS LCD_AutoTransmitKeyPressesOff(void)
{

MD_STATUS status;

iic_tx buf[0] = OxFE; /* special character */

51

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

iic_tx buf[1l] = Ox4F; /* command = Auto Transmit Key Presses Off */
/* transmit two bytes ghrough 11CO */

status = 11CO_MasterStartAndSend(LCD_I1C_WADR, iic_tx buf, 2);
return status;

** Abstract:
** Function to write a string to LCD panel display

** Parameters:

*x int col character position (1 - LCD_COL_NUM) to start string
*x int row line (1 - LCD_ROW_NUM) to display string

** char *str pointer to string to display, null terminated

** Returns:

*x MD_OK if string displayed properly

*x MD_ERROR if error in 11C communication

*x MD_ARGERROR iFf col/row are out of display range

*/
MD_STATUS LCD_PutStr(int col, int row, char *str)

MD_STATUS status
unsigned int len

MD_OK;
strlen(str);

if (len == 0) {
return MD_OK; /* skip writing empty strings */

}
if ((col == 0) |] (col > LCD_COL_NUM) || (row == 0) || (row >
LCD_ROW_NUM)) {
return MD_ARGERROR; /* starting position out of range
*/

3

/* issue command to set cursor position */

iic_tx_buf[0] OXFE; /* special character */

iic_tx _buf[1] 0x47; /* Command - Set Cursor */

iic_tx _buf[2] (unsigned char)col; /* column */

iic_tx_buf[3] (unsigned char)row; /* row */

status = 11CO_MasterStartAndSend(LCD_I1C_WADR, iic_tx buf, 4); /*
send four bytes */

/* if cursor set ok, send the string */
if (status == MD_OK) {
/* send the string */
status = 11CO_MasterStartAndSend(LCD_II1C_WADR, (unsigned char
*)str, len);

return status;

52

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

** Abstract:
*x Function to poll LCD display keypad for key press

** Parameters:

*x pkey = pointer to unsigned character

** Returns:

** MD_OK i1f operation is successful, MD_ERROR if fails,
*x MD_ARGERROR if pointer is null

*x *pkey set to 00 if error, keycode read otherwise

*x if no key press is in the buffer, display returns 00 for key code

K P
x/

/* poll LCD display keypad for key pressed */
MD_STATUS LCD_KeyPoll(unsigned char *pkey)

{
MD_STATUS status = MD_OK;

it (pkey == 0) {
return MD_ARGERROR; /* pointer is invalid */
}

/* read one character from keypad to receive buffer */
status = 11CO_MasterStartAndReceive(LCD_IIC_RADR, iic_rx_buf, 1);

if (status == MD_OK) {
pkey = 1ic_rx_buf[0]; / read successful, return key code if
any */
3} else {

pkey = 0; / return no key if error */

return status;

5.1.4 Inttab.s
——/*

R o S R e e e S R S S S R S R A R AR (R A A R R A AR A e S e R e e e S e R e e e R R A A R R R AR R R R E R

**x

--** This device driver was created by Applilet for the V850ES/KJ1+,
VB850ES/KG1+,
--** VB850ES/KF1+, V850ES/KEl+ 32-Bit Single-Chip Microcontrollers

-—** Copyright(C) NEC Electronics Corporation 2002-2004
--** All rights reserved by NEC Electronics Corporation .

--** This program should be used on your own responsibility.

--** NEC Electronics Corporation assumes no responsibility for any losses
incurred

--** by customers or third parties arising from the use of this file.

53

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

--** Filename
--** Abstract

--** API1lib:

: inttab.s

: This file implements interrupt vector table
VB50ESKX1H.lib V1.33 [24 Sep 2004]

R e o e R R R R AR AR R R R AR R R R R R o R R R AR R o R e e e e S R R AR R R R R R SR R S e S S R R

——*/

——INT vector

--.section "RESET", text

__j r

.section
reti

.section
reti

.section
reti

.section

-globl
__trap00:

reti

.section

-globl
__trapO1:

reti

.section

-globl
__ilgop:

reti

.section
reti

.section
reti

.section
reti

.section
reti

__start

“"NMI', text

"INTWDT1", text

"INTWDT2", text

"TRAPOO™, text
__trap00

"TRAP10™, text
__trap0O1

"ILGOP", text

__Tilgop

"INTWDTM1"™, text

"INTPO™", text

"INTP1", text

"INTP2'™, text

--nmi pin input

--WDT1 OVF nonmaskable

--WDT2 OVF nonmaskable

--TRAP instruction

--TRAP instruction

-—illegal op code

--WDT10VF maskable

-—INTPO pin

-—INTP1 pin

-—INTP2 pin

54

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

-section "INTP3", text -—INTP3 pin

reti

.section "INTP4", text -—INTP4 pin

reti

.section "INTP5", text -—INTP5 pin

reti

-section "INTP6", text -—INTP6 pin

reti

.section "INTTMOO1", text --TMOO and CROO1 match

reti

-section "INTTMO10", text --TMO1 and CR0O10 match

reti

.section "INTTMO11l", text --TMO1 and CR0O11 match

reti

.section "INTTM50", text --TM50 and CR50 match

reti

.section "INTTM51", text --TM51 and CR51 match

reti

.section "INTCSIOO0", text --CSI00 transfer complete

reti

-section "INTCSIO1", text --CSI101 transfer complete

reti

.section "INTSREO", text --UARTO reception error occurence
reti

.section "INTSRO", text --UARTO reception completion
reti

.section "INTSTO", text --UARTO translation completion
reti

.section "INTSRE1", text --UART1 reception error occurence
reti

.section "INTSR1", text --UART1 reception completion
reti

.section "INTST1", text --UART1 translation completion
reti

-section "INTTMHO", text --TMHO and CMPO0O/CMPO1 match
reti

55

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

match

.section
reti

.section
reti

.section
reti

.section
reti

.section
reti

.section
reti

.section

reti

.section
reti

.section
reti

.section
reti

.section
reti

.section
reti

.section
reti

.section
reti

.section
reti

.section
reti

.section
reti

.section
reti

"INTTMH1', text

"INTCSIAOQ", text

"INTAD", text

"INTKR", text

"INTWTI™, text

"INTWT™, text

"INTBRG", text

"INTTMO20™, text

"INTTMO21™, text

"INTTMO30", text

"INTTMO31"™, text

"INTCSIAL", text

"INTTMO40", text

"INTTMO41"™, text

"INTTMO50", text

"INTTMO51™, text

"INTCSI102", text

"INTSRE2', text

56

--TMH1 and CMP10/CMP11 match

--CSIAO transfer completion

--AD conversion end

--key return interrupt

--watchtimer interval

—--watchtimer referemce time

--watchtimer counter BRG and PRSCM

--TM02 and CR020 match

--TM02 and CR021 match

--TMO3 and CR0O30 match

--TMO3 and CR0O31 match

--CSI1A1 transfer completion

--TM04 and CR040 match

--TMO4 and CR041 match

--TMO5 and CRO50 match

--TMO5 and CRO51 match

--CS102 transfer completion

--UART2 reception error occurence

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

.section "INTSR2", text --UART2 reception completion
reti

.section "INTST2", text --UART2 translation completion
reti

.section "INTIIC1l", text --11C1 transfer completion
reti

-- end of file

5.1.5 Systeminit.c
/*
FEAIEAAIAAXAAXAAXAAXAAXAAXAAAXAAXAAXAAXAAXAAXAAAXAAIAAAIAAAXAAXAAAAAXAAAAhAAhkAXxAhAkAhAhhhhhhhhhxhiiiiik

*x

** This device driver was created by Applilet for the V850ES/KJ1+,
VB850ES/KG1+,
** VB850ES/KF1+, V850ES/KE1l+ 32-Bit Single-Chip Microcontrollers

** Copyright(C) NEC Electronics Corporation 2002-2004
** All rights reserved by NEC Electronics Corporation

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses
incurred

** by customers or third parties arising from the use of this file.

** Filename : systeminit.c
** Abstract : This file implements macro initiate
** API1lib: VB50ESKX1H.lib V1.33 [24 Sep 2004]

Device: uPD70F3318Y

*x
*x M -
Compiler: NEC/CA850

*x
AAEAEAAEAIEAXAAEAAXAAXAAXAXAAIAAXAAXAAXAAXAAXAAAIAAIAAXAIAAAXAAXAAAITAIAAIAIAAIAXAAXAAAIAAIAAAXAdXAAXAAAihiXx
*/
/ *
E R e o e e e e e S e o S b e o o
** Include files
FEAE AEATEAIEAIAAEAAXAAXAAXAXAAIAAXAAXAAXAAXAAXAIAAIAAIAAIAIAAAXAAXAATAIAAIAAAIAAIAXAAXAAAIAAIAAAXAdXAAhAiAihiXx
*/

= " -~ 1)
#include "macrodriver.h

= 1] - 1]
#include "timer.h

- 11 - 11
#include "serial.h
/*
FEE AEAITEAITAIAAEAAEAAAAAITAXITAAAXAAAAAATAXITAXITAAAXAAAAAATAXIAXTAXAAXAAXAATAITAITAIAAAAXAAXAATAXTAXAAI XX XK
** MacroDefine
E o e e e e e e e e e S S e o b e e e S e e o S e e e e e e e e e o e e e e e e b e e e e e e e e e
*/
extern unsigned long _S romp;

/*

57

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

** Abstract:
*x Init every Macro

** Parameters:
** None

** Returns:

holel None
R
*/
void Systemlnit(void)
{
_rcopy(&_S_romp, -1);
__asm('di'); /* disable interrupt */
TMOO_Init(); /* TMOO initiate */
__asm(ei'); /* enable interrupt */
}
5.1.6 Serial.h
/*

AE AA A A A A AAALAAAAAAALAAAAAAAAAAXAAAAAAAAAAAAAAAAAA A LA XAAdhX

** This device driver was created by Applilet for the V850ES/KX1+
** 32-Bit Single-Chip Microcontrollers

** Copyright(C) NEC Electronics Corporation 2002-2004
** All rights reserved by NEC Electronics Corporation

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses
incurred

** by customers or third parties arising from the use of this file.

** Filename : serial.h
** Abstract : This file implements a device driver for the SERIAL module
** API1lib: V850ESKX1H.lib V1.33 [24 Sep 2004]

Device: uPD70F3318Y

** Compiler: NEC/CA850

*x
AAEAEAIEAIEAIAAAAXAAXAAXAXAAIAAIAAXAAXAAXAAXAIAAIAAIAAIAIAAAXAAXAAAITAIAAAIAAIAXAAXAAAIAAIAAAdxAdxAAhAiAihiX
*/

#ifndef _MDSERIAL_

#define _MDSERIAL_

58

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

#define ADR_CSIAOBO OxfFfffe00 /* CSIAO automatic transfer RAM
address */

#define ADR_CSIA1BO OxFffffe20 /* CSIAl automatic transfer RAM
address */

#define CSIA_ AUTORAMSIZE 32 /* CSIA automatic transfer RAM size
*/

#define 11C_RECEIVEBUFSIZE 32

#define 11CO_SLAVEADDRESS 0x0

enum TransferMode { Send, Receive };

void 11CO_Init(void);

MD_STATUS 11CO_MasterStart(enum TransferMode , UCHAR , UCHAR);
MD_STATUS 11C0_MasterSendData(UCHAR* txbuf, UINT txnum);
MD_STATUS 11CO_MasterReceiveData(UCHAR* rxbuf, UINT rxnum);
MD_STATUS 11CO_SlaveStart(UCHAR);

MD_STATUS 11CO_SlaveSendData(UCHAR* txbuf, UINT txnum);
MD_STATUS 11CO_SlaveReceiveData(UCHAR* rxbuf, UINT rxnum);
void 11CO_Stop(void);

MD_STATUS 11CO_SlaveHandler(void);

MD_STATUS 11CO_MasterHandler(void);

void CALL_I11CO_SlaveAddressMatch(void);

void CALL_I1CO_MasterFindSlave(void);

void CALL_I11CO_MasterSendeEnd();

void CALL_I11CO_MasterReceiveEnd();

void CALL_11CO_MasterError(MD_STATUS flag);

/* added new function combining MasterStart and MasterSendData */
MD_STATUS 11C0O_MasterStartAndSend(UCHAR sadr, UCHAR* txbuf, UINT txnum);
/* added new function combining MasterStart and MasterReceiveData */
MD_STATUS 11CO_MasterStartAndReceive(UCHAR sadr, UCHAR* rxbuf, UINT rxnum);

#endif /* MDSERIAL_ */

5.1.7 Serial.c
/ *
R R o B e R S R S R R R S e R e R e R R S R R R e R e R e R R R R e R e R e R e R R R R R e B e R e S e S S e e S

**

** This device driver was created by Applilet for the V850ES/KX1+
** 32-Bit Single-Chip Microcontrollers

** Copyright(C) NEC Electronics Corporation 2002-2004
** All rights reserved by NEC Electronics Corporation

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses
incurred

** by customers or third parties arising from the use of this file.

** Filename : serial.c

** Abstract : This file implements a device driver for the SERIAL module
** API1lib: V850ESKX1H.lib V1.33 [24 Sep 2004]

59

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

**x

Device: uPD70F3318Y

*x

** Compiler: NEC/CA850

*x

AE AA A A A A AAA LA AAAAAAAAAXAAAAAAAXAAAAAAAAAAAAAAAAAAAAA LA XA ddhX

*/

#include "macrodriver.h"
#include '"'serial.h"

#pragma interrupt INTIICO MD_INTIICO

UCHAR 1icO_m sta flag; /* start flag for send address check by
master mode */

UCHAR *i1icO_m_send_pbuf; /* send data pointer by master mode
*

/

UINT 1icO_m send_size; /* send data size by master mode */

UCHAR *1icO_m_rev_pbuf; /* receive data pointer by master mode */
UINT 1icO_m_rev_size; /* receive data size by master mode */
UCHAR 1ic0O_s sta flag; /* start flag for send address check by
slave mode */

UCHAR *i1ic0O_s_send_pbuf; /* send data pointer by slave mode
*/

UINT 1icO_s_send_size; /* send data size by slave mode */

UCHAR *iicO_s _rev_pbuf; /* receive data pointer by slave mode */
UINT 1icO_s rev_size; /* receive data size by slave mode */

#define FIX_APPLILET _11CO_INIT 1 /* fix Applilet-generated code for init
*/

#define FIX_APPLILET 11CO_START 1 /* Tix Applilet-generated code for
start */

/*
*x

** Abstract:

*x Initialize the 11CO interface:acknowledge setting,start signal
generation

*x setting,stop signal generation setting,wait setting and INTIICO
priority

*x setting.

** Parameters:
el None.

** Returns:
faied None.

«
void 11CO_Init(void)

60

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

{

#if (FIX_APPLILET_HICO_INIT == 1)
/* reorder setting of P3 registers per documentation */
SetlORBit(P3H, 0x03); /* set P38 and P39 output latch to 1 */
SetlORBit(PF3H, 0x03); /* set P38 and P39 for alternate function */
SetlORBit(PMC3H, 0x03); /* set P38 and P39 port mode control for 11CO

*/
#else
/* original code generated by Applilet */
SetlORBit(PMC3H, 0x03);
SetlORBit(PF3H, 0x03);
SetlORBit(P3H, 0x03);
#endiF
SVAO = 11CO_SLAVEADDRESS;
CIrlIORBit(1ICX0, 0x01); /* Normal mode, txx/198 */
CIrIORBit(11CCLO, OxOb);
SetlORBit(11CCLO, 0Ox03);
CIrlIORBit(1ICICO, 0x40); /* 11CO interrupt enable */
SetlORBit(1ICICO, Lowest); /* Set 11CO interrupt Lowest */
return;
}
/*

** Abstract:
*x This function is responsible for start 11CO by master mode.

** Parameters:

**x enum TransferMode mode : select transfer mode

*x Send -> send data

*x Receive -> receive data

*x UCHAR adr : set address for select slave

*x UCHAR wait : set wait for need waiting when get start condition

** Returns:

*x MD_OK

*x MD_ERROR : BUS busy

*x MD_ARGERROR cannot get start condition

*/
MD_STATUS 11CO_MasterStart(enum TransferMode mode, UCHAR adr, UCHAR wait)

{
#if (FIX_APPLILET _1ICO_START == 1)
int wait2 = 1000; /* value used in waiting for stop condition */
#endif
/* BUS check */
__asm('di'™);
iTC 1ICFO & 0x40){
__asm(ei'); /* BUS busy */
return MD_ERROR;

61

IIC Communication with LCD Modules in V8

NEC

50ES Microcontrollers

}

/* START 11CO */
SetlORBit(11CCO, 0x18); /*
#if (FIX_APPLILET _11CO_START 1)
ifT C 1(1ICCO & 0x80)) {
/* not enabled, enable and
SetlORBit(11CCO, 0x80); /*
SetlORBit(11CCO, 0x01); /*
while (wait2--) ;
to be recognized */
if C '(1ICSO & 0x01)) { /7*
__asm("ei');
return MD_ERROR;

}
/* stop condition will gen
if set */
ifT (1ICIFO == 1) {
11ICIFO = O;
}
#else
SetlORBit(11CCO, 0x80); /*
#endif
SetlORBit(11CCO, 0x02); /*

__asm(ei');

/* wait */
while(wait--);

ifC T(1ICSO & 0x2)){
return MD_ERROR;
3

/*

SPIEO = WTIMO = 1 */

generate stop condition */

11ICEO0 = 1 */

SPTO = 1 to generate stop condition */
/* delay to wait for stop condition

check stop condition */

erate an interrupt if SPIEO = 1, clear

1ICEO0 = 1 */

generate start condition */

check start condition */

/* set transfer mode to address */

/* slave would be selected trans
iT(mode Send){
CIrIORBit(adr, 0x01);

/*

else if(mode Receive){

SetlORBit(adr, 0x01); /*
}
else{
return MD_ARGERROR;
}
i1icO_m_sta flag = 0;
11CO = adr; /*
return MD_OK;
}
/*

or receive from bit0O at address */

iT master is send mode, clear bit0O */

if master is receive mode, set bit0 */

send address */

62

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

AR L L o o
-
** Abstract:
*x This function is responsible for start 11CO by slave mode.
**
** Parameters:
*x UCHAR adr : set address for select slave
*x
** Returns:
*x MD_OK
*x MD_ARGERROR : bitO must be set O
**x
KK
-y
MD_STATUS 11CO_SlaveStart(UCHAR adr)
{
ifC adr & 1){
return MD_ARGERROR; /* bitO isn"t 0 */
¥
SetlORBit(11CCO, 0x98); /* start transfer */
SVAO = adr; /* set slave address */
iicO_s sta flag = 0;
return MD_OK;
¥
/*
K P P
-
** Abstract:
*x This function is responsible for stop 11CO.
**
** Parameters:
** None
**
** Returns:
*x None
**
AR L o o o o o
.
void 11CO_Stop(void)
CIrlIORBit(11CCO, 0x80); /* stop transfer */
return;
}
/ *
A L o o o
-

** Abstract:

63

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

*x This function is responsible for 1ICO data transfering by master mode.
** and call back function is provided as interface to high level user.

** Parameters:
x UCHAR txbuf : Address of transfer buffer.
*x UINT txnum The number of data to transmit(frame number).

** Returns:

*x MD_OK
*x MD_ERROR : cannot send address
*x
R
-y
MD_STATUS 11CO_MasterSendData(UCHAR* txbuf, UINT txnum)
{

if(1icO_m sta flag == 0){

return MD_ERROR; /* cannnot send address */
}

/* set parameter */
i1icO_m_send_size = txnum;
1icO_m_send_pbuf = txbuf;

11CO = *iicO_m_send_pbuf ++ ; /* start transfer */
iicO_m _send_size--;

return MD_OK;

** Abstract:
*x This function is responsible for 11CO data receiving by master mode.
** and call back function is provided as interface to high level user.

** Parameters:
x UCHAR rxbuf
*x USHORT rxnum

Address of receive buffer.
The number of data shuld be received.

** Returns:

*x MD_OK
*x MD_ERROR : cannot send address
*x
R
-y
MD_STATUS 11CO_MasterReceiveData(UCHAR* rxbuf, UINT rxnum)

if(1icO_m sta flag == 0){

return MD_ERROR; /* cannnot send address */
}

64

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

/* set parameter */
1icO_m_rev_size = rxnum;
iicO_m _rev_pbuf = rxbuf;

CIrIORBit(11CCO, 0x08); /* clear WTIMO */
SetlORBit(11CCO, 0x04); /* set ACKEO */
SetlORBit(11CCO, 0x20); /* start receive */
return MD_OK;

}

/*

** Abstract:
*x This function is responsible for 1ICO data transfering by slave mode.
** and call back function is provided as interface to high level user.

** Parameters:
** UCHAR* txbuf
**x USHORT txnum

Address of send buffer.
The number of data shuld be send.

** Returns:
o MD_OK
*x MD_ERROR : address incomplete

*/
MD_STATUS 11CO_SlaveSendData(UCHAR* txbuf, UINT txnum)
{
if(11c0_s sta flag == 0){
return MD_ERROR; /* address incomplete */
3
/* set parameter */
iicO_s send_size = txnum;
i1icO_s send pbuf = txbuf;
SetlORBit(11CCO, 0x08); /* start transfer */
11CO = *iicO_s _send pbuf ++ ; /* set first data */
iicO_s send_size--;
return MD_OK;
}
/*
AR L o o
e T
** Abstract:
** This function is responsible for 11CO data receiving by slave mode.

65

IIC Communication with LCD Modules in V850ES Microcontrollers

NEC

and call back function is provided as interface to high level user.

Parameters:

UCHAR* rxbuf
rxnum

USHORT

Returns:
MD_OK

MD_ERROR :

address incomplete

Address of receive buffer.
The number of data shuld be received.

*/

MD_STATUS 11CO_SlaveReceiveData(UCHAR* rxbuf, UINT rxnum)

{

if(C 1ic0_s sta flag == 0){

}

return MD_ERROR;

/* set parameter */

iicO_s rev_size

rxnum;

iicO_s rev_pbuf = rxbuf;

CIr1IORBit(11CCO, 0x08);
SetlORBit(11CCO, 0x04);

SetlORBit(11CCO, 0x20);

return MD_OK;

/* address incomplete */

/* clear WTIMO */
/* set ACKEO */

/* start receive */

Abstract:

11CO interrupt service routine

Parameter
None

Returns:
None

S:

*/

__interrupt void MD_INTIICO(void)

{

MD_STATUS
ifC 1ICSO & 0x80) {
11CO_MasterHandler();

}

else {

sta

sta

sta;

11CO_SlaveHandler();

66

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

** Abstract:
** The Application call at 11CO interrupt request ;

** Parameters:
*x None.

** Returns:

kel MD_OK
*x MD_ERROR : cannot get address
*x not slave mode

*x MD_SLAVE _RCV_END : all data received
** MD_SLAVE_SEND END : all data sended
*x MD_SPT : get stop condition

*/
MD_STATUS 11CO_SlaveHandler(void)
{
/* CONTROL for STOP CONDITION */
ifC 1ICSO & 0x01){ /* get stop condition?
*/
/* slave send end and get stop condition */
if(1icO_s_sta flag &&(1icO_s send_size == 0)){
return MD_SLAVE_SEND_END;
} else {
return MD_SPT;
}
}
/* CONTROL for GET ADDRESS */
if(11c0_s sta flag == 0){
if(I(1ICSO & 0x20)){ /* check EXCO -> external
code */
iT(IICSO & O0x10){ /* check COIO ->

address */
iicO_s sta flag = 1;

CALL_11CO_SlaveAddressMatch(); /* slave address
match */
}
else{
return MD_ERROR;
}
}
else{
return MD_ERROR;
}

67

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

}

/* SLAVE SEND CONTROL */
else 1f(1ICSO & 0x08){
iTC T(1ICSO & 0x04)){ /* check ACKDO -> acknowledge
*/
return MD_NACK;
}
11CO = *iicO_s_send_pbuf ++ ;
iicO_s send_size--;
}
/* SLAVE RECEIVE CONTROL */
else{
*iicO_s_rev_pbuf ++ = 11CO;
iicO_s rev_size--;

SetlORBit(11CCO, 0x20); /* WREL1 = 1 start
receive */
if(1icO_s_rev_size == 0){ /* check all data
received */
CIrlIORBit(11CCO, 0x04); /* clear ACKEO */
return MD_SLAVE _RCV_END;
}
}
return MD_OK;
}
/*

** Abstract:
** The Application call at 11CO interrupt request ;

** Parameters:
*x None.

** Returns:

**x MD_OK

*x MD_ERROR : cannot get ack after sended address
** not master mode

*x slave did not send ack

** MD_MASTER_RCV_END : all data received
*x MD_MASTER_SEND END : all data sended

*/
MD_STATUS 11CO_MasterHandler(void)
{
/* CONTROL for STOP CONDITION */
ifC 'C 1ICFO & 0x40)){ /* get stop condition ?
*/

CALL_11CO_MasterError(MD_SPT);
return MD_SPT;

68

NEC

[IC Communication with LCD Modules in V850ES Microcontrollers

}

/* CONTROL for SENDED ADDRESS */
if('iicO_m_sta flag){
iTC 11CSO & Ox4){
iicO_m _sta flag = 1;
CALL_11CO_MasterFindSlave();

/*
/*

else{
CALL_11CO_MasterError(MD_NACK);
return MD_NACK;
}
3
/* MASTER SEND CONTROL */
else 1IFf(I1ICSO & 0x8){

iTC I(1ICSO & 0x4)){
SetlORBit(11CCO, 0x01);

/* check
/*
condition */
CALL_11CO_MasterError(MD_NACK);
return MD_NACK;

}

if(Vi /*

/*

icO_m_send_size){
SetlORBit(11CCO, 0Ox01);
condition */
CALL_11CO_MasterSendEnd();
return MD_MASTER SEND END;
by
11CO = *iicO_m_send pbuf ++ ;
iicO_m_send _size--;

/*

}
/* MASTER RECEIVE CONTROL

*/
else {
iicO_m_rev_pbuf ++ = 11CO; /
iicO_m _rev_size--;
ifC 1icO_m _rev_size == 0){ /*
CIrIORBit(11CCO, 0x04); /*

SetlORBit(11CCO, 0x01); /*
condition */
CALL_11CO_MasterReceiveEnd();
return MD_MASTER_RCV_END;
}
SetlORBit(11CCO, 0x20); /*
}
return MD_OK;

5.1.8 Serial_user.c

/*

check ACK */
address complete */

ACK */
generate stop

sended finish */

generate stop

send data */

receive data */
receive finish */

ACK STOP */
generate stop

start receive */

AE AAA LA AAAAAALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA LA A AKX, X

32-Bit Single-Chip Microcontrollers

69

This device driver was created by Applilet for the V850ES/KX1+

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

** Copyright(C) NEC Electronics Corporation 2002-2004
** All rights reserved by NEC Electronics Corporation

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses
incurred

** by customers or third parties arising from the use of this file.

** Filename : serial _user.c
** Abstract : This file gives callback functions for serial module.
** APIlib: VB50ESKX1H.lib V1.33 [24 Sep 2004]

Device: uPD70F3318Y

*x
*x 7 -
Compiler: NEC/CA850
*x
AAEAEEAIEAIEAIAAEAAXAAXAAXAXAAIAAXAAXAAXAAXAAXAXAAIAAIAAIAIAXAAXAAXAATAITAIAAIAIAAIAXAAXAAAIAAIAAAXAdxAAhAiAihiXx
*/
/ *
FEE AE AT A AT A A A A A A A AT A AT AT A AT AT A A A AT AT A AT AT A ATEATATATAATAATAATXAIAEAATATXAIATAIATAITAIATAIATAIAIAIAIAAIThAITXAITAIdIdddkd*d
*x 3
Include files
FE AEITEAIEAIAAAAXAAXAXAAIAAXAAXAAXAAXAAXAXTAIAAXAIAAAXAAXAAXAIAAIAAIAAAIAXAAXAAAIAAIAAIxAIAAAAAAAAAhhdhki*i
*/
= 11 - 11
#include "macrodriver.h
= 1] - 1)
#include "serial.h

UCHAR *11CO_M_TX_ ADDRESS; /* write data buffer */

UCHAR *11CO_M_RX_ADDRESS, *11CO_M_RX_ORGADDRESS;

UCHAR *11CO_S_TX_ ADDRESS; /* write data buffer */

UCHAR *11CO_S RX_ADDRESS, *11CO_S RX_ ORGADDRESS; /* read data
buffer */

/* added flags set by callback routines for use by upper level routine */
MD_STATUS Ul _MasterError;

MD_STATUS Ul_MasterSendEnd;

MD_STATUS Ul_MasterReceiveEnd;

MD_STATUS Ul_MasterFindSlave;

/*

*x

** Abstract:
*x Master Error,
*x callback function open for users operation

** Parameters:
**x MD_STATUS flag

** Returns:
el None

*/
void CALL_I11CO_MasterError(MD_STATUS flag)

70

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

{
/* user operation */
Ul_MasterError = flag;
return;
3
/*
AR L L o
*x
** Abstract:
** Master recevice finish,
*x callback function open for users operation
**x
** Parameters:
*x None
**
** Returns:
holel None
*x
K P
*/
void CALL_I11CO_MasterReceiveEnd(void)
{
/* user operation */
Ul_MasterReceiveEnd = MD_OK;
return;
¥
/*
K P P
**
** Abstract:
holal Master send finish,
*x callback function open for users operation
**
** Parameters:
** None
**x
** Returns:
*x None
**
AR L o o o o o
*/
void CALL_11CO_MasterSendEnd(void)
{
/* user operation */
Ul _MasterSendEnd = MD_OK;
return;
}
/*
A L o o o
**
** Abstract:
** 11CO slave address match

71

IIC Communication with LCD Modules in V850ES Microcontrollers

NEC

*x callback function for users operation

** Parameters:
kel None

** Returns:

olal None
**
A L o o
*/
void CALL_I11CO_SlaveAddressMatch(void)
{
/* user operation */
}
/*

** Abstract:
*x Master find the slave address
*x callback function open for users operation

** Parameters:
el None

** Returns:

olal None

**

A L o o o
*/

void CALL_I11CO_MasterFindSlave(void)

{

/* user operation */
Ul _MasterFindSlave = MD_OK;

** Abstract:
** Combines 11CO_MasterStart(Send, (sadr), 10)

**x and 11CO_MasterSendData(UCHAR* txbuf, UINT txnum)
*x

** Parameters:

*x UCHAR sadr : set address for select slave

x UCHAR txbuf : transfer buffer pointer

**x UINT t>xnum : buffer size

** Returns:

*x MD_OK

*x MD_ERROR

*x MD_ARGERROR

** MD_NACK - timeout on slave address

72

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

MD_STATUS 11C0O_MasterStartAndSend(UCHAR sadr, UCHAR* txbuf, UINT txnum)

{
MD_STATUS status;
int i,j;

/* set up for first operation */
Ul _MasterError = MD_OK;
Ul_MasterSendEnd = MD_ERROR;
Ul_MasterFindSlave = MD_ERROR;

/* wait for bus not busy */
i = 10000;
do { i--; } while ((i > 0) & (IICFO & 0x40));
it (==0) {
return MD_ERROR;
}

/* Start, data write */
status = 11CO_MasterStart(Send, sadr, 10);
if (status '= MD_OK) {
return status;
}

i = 10000;
do {
i--;
} while ((Ul_MasterFindSlave == MD_ERROR) && (Ul_MasterError == MD_OK)
&& (i >0));

if (i ==0) {
return MD_NACK;
}

if (Ul _MasterError '= MD _OK) {
return Ul_MasterError;

}
/* got slave address ok here */
status = 11CO_MasterSendData(txbuf, txnum); /* send data bytes */

if (status '= MD_0OK) {

return status;
}
i = 10000;

do {

i--;

} while ((Ul _MasterError == MD_OK) && (Ul_MasterSendEnd == MD_ERROR)

&& (1 > 0));

if (i ==0) {
return MD_NACK;

73

IIC Communication with LCD Modules in V850ES Microcontrollers

NEC

MD

it (Ul _MasterError '= MD _0OK) {
return Ul_MasterError;

}
it (Ul_MasterSendEnd != MD_OK) {
return Ul_MasterSendEnd;

Combines 11CO_MasterStart(Send, (sadr), 10)
and 11CO_MasterReceiveData(UCHAR* rxbuf, UINT rxnum)

Parameters:
UCHAR sadr : set address for select slave

UCHAR* rxbuf : receive buffer pointer

UINT rxnum : number of bytes to receive

Returns:

MD_OK
MD_ERROR
MD_ARGERROR

MD_NACK - timeout on slave address

{
MD_STATUS status;
int i,j;

/* set up for first operation */
Ul _MasterError = MD_OK;

Ul _MasterReceiveEnd = MD_ERROR;
Ul_MasterFindSlave = MD_ERROR;

/* wait for bus not busy */

1 = 10000;

do { i--; } while ((i > 0) & (1ICFO & 0x40));

if (i ==0) {
return MD_ERROR;
s

/* Start, data read */

74

}
11CO_Stop(); /* done with communication, stop */
return MD_OK; /* no error */

Abstract:

 STATUS 11CO_MasterStartAndReceive(UCHAR sadr, UCHAR* rxbuf, UINT rxnum)

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

status = 11CO_MasterStart(Receive, sadr, 10);
if (status !'= MD_OK) {

return status;
}

i = 10000;
do {
i--;
} while ((Ul _MasterFindSlave == MD_ERROR) && (Ul _MasterError == MD_OK)
&& (i >0));

if (i ==0) {
return MD_NACK;
s

if (Ul_MasterError !'= MD_OK) {
return Ul_MasterError;
}

/* got slave address ok here */
status = 11CO_MasterReceiveData(rxbuf, rxnum); /* send data bytes */
if (status !'= MD_OK) {
return status;
}

i = 10000;
do {
--;
} while ((UI_MasterError == MD_OK) && (Ul _MasterReceiveEnd ==
MD_ERROR) && (i > 0));

if (i ==0) {
return MD_NACK;

}
if (Ul _MasterError '= MD _OK) {
return Ul_MasterError;

}
ifT (Ul_MasterReceiveEnd = MD_OK) {
return Ul_MasterReceiveEnd;

}
11CO_Stop(); /* done with communication, stop */
return MD_OK; /* no error */
}
5.1.9 Timer_user.c
/*

R o R e R AR R R R R R R R R R R R AR R R R R R R R e R S SR R R R R R AR AR R AR R R R R R R R R R R X

*x

** This device driver was created by Applilet for the V850ES/KJ1+,
V850ES/KG1+,
** VB850ES/KF1+ and V850ES/KEl+ 32-Bit Single-Chip Microcontrollers

**x

** Copyright(C) NEC Electronics Corporation 2002-2004

75

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

** All rights reserved by NEC Electronics Corporation

** This program should be used on your own responsibility.
** NEC Electronics Corporation assumes no responsibility for any losses
** incurred by customers or third parties arising from the use of this file.

** Filename : timer_user.c

** Abstract : This file implements a device driver for the timer interrupt
service routine

** API1lib: VB50ESKX1H.lib V1.33 [24 Sep 2004]

**

Device: uPD70F3318Y

*x

** Compiler: NEC/CA850

*x

R e e e e e e o e S S S e S S b e o e e e e e e e e e e e b e e e e e e e e e e e e
*/

/*
AAEAEAIAITAIAAIAAAAAAAAITAXITAXITAIAAAAXAAAAAXITAXITAXAAXAAXAAAAAXATAITAXAAXAAXAAXAAAATAIAAIAAXAAAXIAXAXAAK
**Include files

R e e b S e b e o o S S S e S S b S o o e o e e e e e e e e o e e e e e e e e e e e e e
*/

#include "macrodriver.h"

#include "timer.h"

#pragma interrupt INTTMOOO MD_INTTMOOO

/*
FTEAEEIEAEAITAEAITEAAXITEITAXTEAEAXTEAAXTEAAXTEAAXTEAAXAEXAAXAXAAXAAXAAAXIAAXTXAAITXAAXTXAIATXALTXAIAXAXAXAXTXAddhidhkkx

**MacroDefine
R e o o B S S R S R R S e S e R e R S R R R R e R e R S S R S e R e R e R e S S R R e e R e R e R R S S S e e

*/

/* counter for millisecond timer */
volatile unsigned int milliseconds;

** Abstract:
*x TMOO INTTMOOO Interrupt service routine

** Parameters:
kel None

** Returns:
el None

__interrupt void MD_INTTMO00(void)
{

/* count down millisecond timer */

76

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

it (milliseconds > 0)
milliseconds--;

}

/* set the millisecond timer */
void SetMsecTimer(int time)

{
}

/* check the millisecond timer */
BOOL CheckMsecTimer(void)

milliseconds = time;

{ it (milliseconds > 0)
return MD_FALSE;
return MD_TRUE;
}
5.1.10 850.dir
#*

#**

*

#**

#** This device driver was created by Applilet for the V850ES/KX1+
#** 32-Bit Single-Chip Microcontrollers

#**

#** Copyright(C) NEC Electronics Corporation 2002-2004

#** All rights reserved by NEC Electronics Corporation

#**

#** This program should be used on your own responsibility.

#** NEC Electronics Corporation assumes no responsibility for any losses
incurred

#** by customers or third parties arising from the use of this file.
#**

#** Filename : 850.dir

#** Abstract : This is the link File for CA850

#** APILlib: V850ESKX1H.lib V1.33 [24 Sep 2004]

#**

#**

*

#*

#CONST = ILOAD ?R VOx400{

.const = $PROGBITS ?A .const;
¥

changed above to add SCONST at 0x400, followed by CONST, then TEXT, with
OPT first at Ox7a

OPT = ILOAD ?R VOx7a{
.opt = $PROGBITS ?A .opt;
¥
SCONST = ILOAD ?R VOx400{
.sconst = $PROGBITS ?A .sconst;
¥

77

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

CONST - ILOAD 7R {
.const = $PROGBITS ?A .const;

¥

TEXT - ILOAD ?RX {
-pro_epi_runtime = $PROGBITS ?AX;

-text = $PROGBITS ?AX;
,DATA : TLOAD ?RW VOx3ffe000 {
-data = $PROGBITS ?AW;

-sdata = $PROGBITS ?AWG;

.sbss = $NOBITS ?2AWG ;

.bss = $NOBITS ?AW;
¥
STACK : TLOAD ?RW VOx3ffee00{

.stack = $PROGBITS ?2AW .stack;
¥

__tp_TEXT @ %TP_SYMBOL{TEXT};
__gp_DATA @ %GP_SYMBOL{DATA} & _tp_ TEXT{DATA};
~_ep_DATA @ %EP_SYMBOL;

5.2 Files Common to Serial Communication Demonstration Programs

Macrodriver.h
/ *
R R S o B e R S R S R R R R R e R S R R R R R R R e R e R e S S R R e e R e R e R e R R R S e R e R e S e S e S e e S

**

** This device driver was created by Applilet for the V850ES/KJ1+,
VB50ES/KG1+,
** VB850ES/KF1+ and V850ES/KEl+ 32-Bit Single-Chip Microcontrollers

** Copyright(C) NEC Electronics Corporation 2002-2004
** All rights reserved by NEC Electronics Corporation

** This program should be used on your own responsibility.
** NEC Electronics Corporation assumes no responsibility for any losses
** incurred by customers or third parties arising from the use of this file.

** Filename : macrodriver.h
** API1lib: VB50ESKX1H.lib V1.33 [24 Sep 2004]

Device: uPD70F3318Y

*x
** Compiler: NEC/CA850
**

AEEEAEAAEAEAA A AKX A AXA A AKX KA AL A AKX A AKX XXX AAXAAAXAAAXAAXAXAAXAXAALAXAALAAALAXAALAAAXAAAXAAAXAXAAXAAXAAdx

*/
#ifndef _MDSTATUS_
#define _MDSTATUS_

78

NEC

[IC Communication with LCD Modules in V850ES Microcontrollers

#pragma ioreg
compiler*/

/* data type defintion */

typedef unsigned int
typedef unsigned short
typedef unsigned char
typedef unsigned char
#define MD_ON 1
#define MD_OFF

#define MD_TRUE 1
#define MD_FALSE 0

#define MD_STATUS

#define MD_STATUSBASE
/*status list definition*/
#define MD_OK

#define MD_RESET

#define MD_SENDCOMPLETE
#define MD_ADDRESSMATCH
#define MD_OVF

overflow*/

#define MD_DMA END
#define MD_DMA CONTINUE
continue*/

#define MD_SPT

#define MD_NACK

#define MD_SLAVE_SEND END
end*/

#define MD_SLAVE_RCV_END
end*/

#define MD_MASTER_SEND END
end*/

#define MD_MASTER_RCV_END
receive end*/

/*error list definition*/
#define MD_ERRORBASE
#define MD_ERROR

#define MD_RESOURCEERROR
available*/

#define MD_PARITYERROR
n=0,1,2*/

#define MD_OVERRUNERROR
n=0,1,2*/

#define MD_FRAMEERROR
n=0,1,2*/

#define MD_ARGERROR
error*/

#define MD_TIMINGERROR
operation error*/

/*enable use the register directly in ca850

UINT;
USHORT;
UCHAR;
BOOL ;

unsigned short
0x0

MD_STATUSBASE+0x0 /*register setting OK*/

MD_STATUSBASE+0x1 /*reset input*/
MD_STATUSBASE+0x2 /*send data complete*/
MD_STATUSBASE+0x3 /*11C slave address match*/

MD_STATUSBASE+0x4 /*timer count

MD_STATUSBASE+0x5 /*DMA transfer end*/
MD_STATUSBASE+0x6 /*DMA transfer

MD_STATUSBASE+0x7 /*11C stop*/
MD_STATUSBASE+0x8 /*11C no ACK*/
MD_STATUSBASE+0x9 /*11C slave send
MD_STATUSBASE+0x0 /*11IC slave receive
MD_STATUSBASE+0x11 /*11C master send

MD_STATUSBASE+0x12 /*11C master

0x80

MD_ERRORBASE+0x0 /*error*/

MD_ERRORBASE+0x1 /*no resource

MD_ERRORBASE+0x2 /*UARTn parity error
MD_ERRORBASE+0x3 /*UARTn overrun error
MD_ERRORBASE+0x4 /*UARTn frame error
MD_ERRORBASE+0x5 /*Error agrument input

MD_ERRORBASE+0x6 /*Error timing

79

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

#define MD_SETPROHIBITED MD_ERRORBASE+0x7 /*setting
prohibited*/

#define MD_ODDBUF MD_ERRORBASE+0x8 /*in 16bit transfer
mode,buffer size should be even*/

#define MD_DATAEXISTS MD_ERRORBASE+0x9 /*Data to be

transferred next exists in TXBn register*/

/* macro fucntion definiton */
#define LockInt() { _ asm(“stsr 5,r10"); _ asm(“push r10"™); _ asm('di'); }
#define UnlockInt() { _ asm("pop ri10™); _ asm('ldsr rl10,5"); }

/*main clock and subclock as clock source*/

enum ClockMode { MainClock, SubClock };

void Clock_Init(void);

/*clear 10 register bit and set 10 register bit */
#define CIr10ORBit(Reg, CIrBitMap) Reg &= ~ClrBitMap
#define SetlORBit(Reg, SetBitMap) Reg |= SetBitMap

enum INTLevel{Highest,Levell,Level2,Level3,Level4,Level5,Level6,Lowest};
enum TrigEdge { None, RisingEdge,FallingEdge, BothEdge };

#define SYSTEMCLOCK 20000000
#define SUBCLOCK 32768
#define MAINCLOCK 5000000
#endif

521 Crte.s

This device driver was created by Applilet for the V850ES/KX1+
32-Bit Single-Chip Microcontrollers

Copyright(C) NEC Electronics Corporation 2002-2004
All rights reserved by NEC Electronics Corporation

This program should be used on your own responsibility.

NEC Electronics Corporation assumes no responsibility for any losses
ncurred

by customers or third parties arising from the use of this file.

Filename : crte.s

Abstract : start file for CA850
AP1lib: VB850ESKX1H.lib V1.33 [24 Sep 2004]

text section | |

HFHRIFHIFHFHFHF = FHFHHFHHFR

80

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

| library |
H -+ +
| : |
| : |
—t————————— + argc
| 0 |
l-------————- | argv
data section | #.L16 |
l-----——-———— | -L16
| 0x0,0x0,0x0,0x0 |
H# -+ +
| |
sdata section | |
| |
gp-> —t-————m + __ssbss
| |
sbss section | |
| |
Fom + _ stack __esbss __Shss
| stack area |
bss section | |
] 0x200 bytes |
Sp-> —t-———m e + _ stack + STACKSIZE __ebss
#
He
special symbols
=
.extern __ _tp TEXT, 4
.extern __gp_DATA, 4
.extern __ep DATA, 4
.extern __ssbss, 4
.extern _ esbss, 4
.extern _ sbss, 4
.extern _ ebss, 4
H e
C program main function
e
-extern _Systemlnit
-extern _main
-extern _Clock_Init
H e
for argv
-

81

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

.data
.size __argc, 4
-align 4
__argc:
-word O
.size __argv, 4
__argv:
-word #.L16
.L16:
-byte 0O
-byte 0
.byte 0
.byte 0
e e —————————————————————————
dummy data declaration for creating sbss section
H e
.sbss
- Icomm ___sbss _dummy, 0, O
e
system stack
e
.set STACKSIZE, 0x200
-bss
- Icomm __stack, STACKSIZE, 4
He
RESET handler
=
.section "RESET", text
jr __start
=
start up
pointers: tp - text pointer
gp - global pointer
sp - stack pointer
ep - element pointer
exit status is set to rl0
5

82

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

-align 4
-globl __start
-globl _ exit
-globl __startend
.extern ___ PROLOG_TABLE

__start:
mov # tp TEXT, tp -- set tp register
mov # gp_DATA, gp -- set gp register offset
add tp, gp -— set gp register
mov # stack+STACKSIZE, sp -- set sp register
mov #__ep_DATA, ep -- set ep register

-option warning

mov 1, ril —-— on-chip debug mode
setl 5, PMCO[rO]

setl 5, PO[rO]

st.b rll, PRCMD[rO]

st.b rll1, OCDM[rO]

nop

nop

nop

nop

nop

mov Ox1, ril

st.b rl11, VSWC[rO] --mainclock over 16.6MHz

Jjarl _Clock _Init, Ip —-— call Clock_Init function
mov # ssbss, ri3 -- clear sbss section

mov # esbss, ril2
cmp ri2, ri3

jnl -L11
-L12:
st.w rO0, [ri3]
add 4, rl3
cmp ri2, ri3
Jjl -L12
-L11:
mov # sbss, ril3 -- clear bss section
mov # ebss, rl2
cmp ri2, ri3
jnl -L14
-L15:
st.w rO0, [ri3]
add 4, ri3
cmp ri2, ri3
jl -L15
-L14:
mov #_ _ PROLOG_TABLE, r12 -- for prologue/epilogue runtime
Idsr ri2, 20 -— set CTBP (CALLT base pointer)

83

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

-— IRAM clean up --

mov Ox3FFfd800, ri1o0 -- IRAM start address

mov Ox3FFFO00, rill -- IRAM end address
_clear_loop: -— IRAM clean up

st.w r0, OxO[r10]

add 4, rio0

cmp rll,ri10
Jjnz _clear_loop

Id.w $_argc, r6 -- set argc
movea $__argv, gp, r7 -- set argv
Jjarl _Systemlnit, Ip -- call Systemlnit function
Jarl _main,lIp -— call main function
__exit:
halt -— end of program

5.2.2 System.inc

——/*

AE AA A A A A AAALAAAAAAAAAAXAAAAAAAXAAAAAAAAAAAAAAAAAA A LA XA ddhx

**x

--** This device driver was created by Applilet for the V850ES/FE2,
VB850ES/FF2,V850ES/FG2
--** and V850ES/FJ2 32-Bit Single-Chip Microcontrollers

—-—** Copyright(C) NEC Electronics Corporation 2002-2004
-—** All rights reserved by NEC Electronics Corporation

--** This program should be used on your own responsibility.

-—** NEC Electronics Corporation assumes no responsibility for any losses
incurred

-—** by customers or third parties arising from the use of this file.

--** Filename : system.inc

-—** Abstract : This file implements a device driver for the SYSTEM module
--** APIlib: V850ESKX1H.lib V1.33 [24 Sep 2004]

-- Device: uPD70F3318Y

-— Compiler: NEC/CA850

R R R e R S e R R R R AR R R AR R AR AR R AR AR R R AR R R R R R R R R R AR R AR R R R R R R R AR AR R ARAE R R R R R R R R R R

4

.set CG_Mainosc, 0x5

.set CG_SECURITYO, OxTf
.set CG_SECURITY1, Oxff
.set CG_SECURITY2, Oxff
.set CG_SECURITYS3, Oxff
.set CG_SECURITY4, OxfFf
.set CG_SECURITY5, OxTf
.set CG_SECURITY®6, Oxff

84

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

.set CG_SECURITY7, OxFf
.set CG_SECURITYS, OxFf
-.set CG_SECURITY9, Oxff

5.2.3 System.s
——/*

FAEAEEIAEEAIAEITEAIEAEAXIEAAXTEAAXXAAXTEAAXTEAAXATEAAXAEAAXTEXAAXTEXAXAXAXAXAAAXAXAAXAXAAXAXAAIATXAAITXAITXAAITXAAAXAXThAddhidk

-— This device driver was created by Applilet for the V850ES/KF1+,
VB50ES/KG1+,
-— VB50ES/KJ1+ 32-Bit Single-Chip Microcontrollers

-— Copyright(C) NEC Electronics Corporation 2002-2004
-— All rights reserved by NEC Electronics Corporation

-— This program should be used on your own responsibility.

-— NEC Electronics Corporation assumes no responsibility for any losses
incurred

-— by customers or third parties arising from the use of this file.

-— Filename : system.s
-— Abstract : This file implements a device driver for the SYSTEM module
-- APIlLib: V850ESKX1H.lib V1.33 [24 Sep 2004]

-— Compiler: NEC/CA850

AE AA A AAAAAALAAAAAAALAAAXAAAAAAAXAAAAAAAAAAAAAAAAAA A LA AAAdhX

——*/
-include "system.inc"
.section "OPTION_BYTES", text
-byte O --Set to option byte (Ring-0SC cannot be
stopped)
-byte
-byte
-byte
-byte
-byte

[cNoNoNeNe]

.section "SECURITY_ID", text

-byte CG_SECURITYO -- Security ID head
-byte CG_SECURITY1

-byte CG_SECURITY2

-byte CG_SECURITY3

-byte CG_SECURITY4

-byte CG_SECURITY5

-byte CG_SECURITY6

-byte CG_SECURITY7

-byte CG_SECURITY8

-byte CG_SECURITY9 -- Security ID tail

-text

85

IIC Communication with LCD Modules in V850ES Microcontrollers

NEC

-globl _Clock_Init
-align 4
——/*
e R
-
--** Abstract:
--** Init the Clock Generator and Watchdog timer
K%
--** Parameters:
--** None
__ %%
--** Returns:
--** None
%%
B~
-y
_Clock_Init:
add -8, sp
st.w rl1, O[sp]
st.w rl2, 4[sp]
-- disable interrupt
stsr 5, rlil
ori 0x80, ri11, rii1
ldsr rl1, 5
clrl 0, SYS[rO] -- reset SYS register
mov rO, ril
Id.b PCC[r0], ri2
andi Oxf8, ri12, ri2
or riz2, rii
st.b rl11, PRCMD[rO]
st.b rl1ll, PCC[rO]
nop
nop
nop
nop
nop
-- PLL start
setl 0, PLLCTL[rO]
-- PLL work
.if 1 —- fix bad code generated by Applilet

-- need to set rll to some value before starting this loop!

.endif
__CG L

-- Lock 200 us

movea 0x800, rO, rii
OO0P4:

nop

nop

nop

86

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

addi -1, rl11, rii
cmp rO, ril

bnz CG_LOOP4
setl 1, PLLCTL[rO]
-- enable interrupt
stsr 5, rilil

andi Ox7f, ri1l, riil
ldsr ril1, 5

—-- pop

Id.w Ofsp], ri1
Id.w 4[sp], ri2

add 8, sp
-—-disable watchdog timer 2
mov Ox1f, ril

st.b rl11, WDTM2[rO]

Jmp [Ip]

524 System_user.c
/*
R e S e e o S R S S R e R L e R R A A R AR A R A A e S e R A A R R R A R R AR R R AR A R S e R S R S R R

**x

** This device driver was created by Applilet for the V850ES/FE2,
VB50ES/FF2,V850ES/FG2
** and VB50ES/FJ2 32-Bit Single-Chip Microcontrollers

** Copyright(C) NEC Electronics Corporation 2002-2004
** All rights reserved by NEC Electronics Corporation

** This program should be used on your own responsibility.

** NEC Electronics Corporation assumes no responsibility for any losses
incurred

** by customers or third parties arising from the use of this file.

*x

** Filename : system user.c

** Abstract : This file implements a device driver for the SYSTEM interrupt
service routine

** APllib: VB50ESKX1H.lib V1.33 [24 Sep 2004]

*x

**

** Compiler: NEC/CA850

**

KA A A AR A A A A A A A AR A A A A A A A AR A AR A A A A AR A AR A A A A A AR AR A A A A AAAAAA A AAAAAAAARALAAAAAAAAA A K
*/

/*

I o e e

** Include files
E I S 2 o S e R S R R e R e R e B e R e R S S R S R e R e R e R S R R S e S e R e R e S R R R e e B e R e R e S S S e e

*/
#include "macrodriver.h"
/*

FEE AEAEEAAETAA A AA KA AA A AA A AL A AL A AKX A AKX A AKX AAXAAAXAAAXAAAXAALAXAALAAAXAAAXAAAXAAAXAAAXAAAXA LX)

87

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

*x 3
MacroDefine
A AEIEAIAIAAAAXAAXAATAXAAIAAXAAXAAXAAXAAAIAAIAAIAIAAIAXAAXAAAITAIAAIAIAIAIAAAXAAXAAAIAAIAAdXAIAdAiAihiXx

*/

5.2.5 Timer.h
/*
R R e S e e e e S S e o S b e e e e e e e e e e e e b e e e S e e e e e e b e

*x

** This device driver was created by Applilet for the V850ES/KJ1+,
VB850ES/KG1+,

** VB850ES/KF1l+ and V850ES/KEl+ 32-Bit Single-Chip Microcontrollers
*x

** Copyright(C) NEC Electronics Corporation 2002-2004

** All rights reserved by NEC Electronics Corporation

** This program should be used on your own responsibility.
** NEC Electronics Corporation assumes no responsibility for any losses
** incurred by customers or third parties arising from the use of this file.

** Filename : timer.h
** Abstract : This file implements a device driver for the timer module
** API1lib: VB50ESKX1H.lib V1.33 [24 Sep 2004]

Device: uPD70F3318Y

**
** Compiler: NEC/CA850

R o e R e e e S R e S S R e e A e R R A R R AR A R A R S e R A A R R A R AR R R A A R S e R S R AR

*/

#ifndef MDTIMER_
#define _MDTIMER_

*
i* KAEEAAAAAA AT AT AA AR A A A A AT A A AR A A AR R A A AAA AR AR AT A AAAA AR R A AAAARAAAARTRAAAAAAAARALAAAAAAAX
**MacroDefine
R R e e e e e o e S S o o S b b e o e o e o e b e e e e e e e e o e e e e e b e e e e e e e e
*/
#define TM_TMPO_CLOCK 0x0
#define TM_TMPO_INTERVALVALUE 0x00
#define TM_TMPO_INTERVALVALUE2 0x00
#define TM_TMPO_ONESHOTOUTPUTCYCLE 0x00
#define TM_TMPO_ONESHOTOUTPUTDELAY 0x00
#define TM_TMPO_EXTTRIGGERCYCLE 0x00
#define TM_TMPO_EXTTRIGGERDELAY 0x00
#define TM_TMPO_PWMCYCLE 0x00
#define TM_TMPO_PWMWIDTH 0x00
#define TM_TMPO_CCROCOMPARE 0x00
#define TM_TMPO_CCR1COMPARE 0x00
#define TMOO_Clock 0x0
#define TMOO_INTERVALVALUE 0x270F
#define TMOO_SQUAREWIDTH 0x270f
#define TMOO_PPGCYCLE 0x270F

88

NEC

[IC Communication with LCD Modules in V850ES Microcontrollers

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

TMOO_PPGWIDTH 0x00

TMOO_ONESHOTCYCLE 0x270F

TMOO_ONEPULSEDELAY
TMO1_Clock 0Ox0

TMO1_ INTERVALVALUE
TMO1_SQUAREWIDTH 0x00
TMO1_PPGCYCLE 0x00
TMO1_PPGWIDTH 0x00
TMO1_ONESHOTCYCLE 0x00
TMO1_ONEPULSEDELAY
TMO2_Clock 0x0
TMO2_INTERVALVALUE
TMO2_SQUAREWIDTH 0x00
TMO2_PPGCYCLE 0x00
TMO2_PPGWIDTH 0x00
TMO2_ONESHOTCYCLE 0x00
TMO2_ONEPULSEDELAY
TMO3_Clock 0x0
TMO3_INTERVALVALUE
TMO3_SQUAREWIDTH 0x00
TMO3_PPGCYCLE 0x00
TMO3_PPGWIDTH 0x00
TMO3_ONESHOTCYCLE 0x00
TMO3_ONEPULSEDELAY
TMO4_Clock 0x0
TMO4__INTERVALVALUE
TMO4_SQUAREWIDTH 0x00
TMO4_PPGCYCLE 0x00
TMO4_PPGWIDTH 0x00
TMO4_ONESHOTCYCLE 0x00
TMO4_ONEPULSEDELAY
TMO5_Clock 0x0

TMO5_ INTERVALVALUE
TMO5_SQUAREWIDTH 0x00
TMO5_PPGCYCLE 0x00
TMO5_PPGWIDTH 0x00
TMO5_ONESHOTCYCLE 0x00
TMO5_ONEPULSEDELAY
TM50 _Clock 0x5
TM50_INTERVALVALUE
TM50_SQUAREWIDTH Oxle
TM50_PWMACT IVEVALUE
TM51_Clock 0x5
TM51_INTERVALVALUE
TM51_SQUAREWIDTH Oxle
TM51_PWMACTIVEVALUE
TMHO_Clock 0x3
TMHO_INTERVALVALUE
TMHO_SQUAREWIDTH Ox7c
TMHO_PWMCYCLE 0x7c
TMHO_PWMDELAY 0x3d
TMHO_CARRIERDELAY Ox7c
TMHO_CARRIERWIDTH 0x3d
TMH1_Clock 0x3
TMH1_INTERVALVALUE

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

0x00

Ox1le

Oxle

Ox1le

Oxle

0x7c

Ox7c

89

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

#define TMH1_SQUAREWIDTH Ox7c
#define TMH1_PWMCYCLE Ox7c
#define TMH1_PWMDELAY 0x3d
#define TMH1_CARRIERDELAY Ox7c
#define TMH1_CARRIERWIDTH 0x3d

/*timer00 to 05,50,51,H0,H1 configurator initiation*/
void TMOO_Init(void);

/*timer00 to 05 free running start,50,51,HO,H1 timer start*/
void TMOO_Start(void);

/*timer00 to 05,50,51,H0,H1 timer stop*/

void TMOO_Stop(void);

MD_STATUS TMOO_ChangeTimerCondition(USHORT* array_reg,USHORT array_num);
__interrupt void MD_INTTMO00(void);

/* added functions in timer_user.c for millisecond timer */
void SetMsecTimer(int time); /* set the timer */
BOOL CheckMsecTimer(void); /* check the timer */

#endif

5.2.6 Timer.c
/*
R e e o e e e e e S S S b o e o o e e e b e e e e e e e e

*x

** This device driver was created by Applilet for the V850ES/KJ1+,
VB850ES/KG1+,
** VB850ES/KF1+ and V850ES/KEl+ 32-Bit Single-Chip Microcontrollers

** Copyright(C) NEC Electronics Corporation 2002-2004
** All rights reserved by NEC Electronics Corporation

** This program should be used on your own responsibility.
** NEC Electronics Corporation assumes no responsibility for any losses
** incurred by customers or third parties arising from the use of this file.

** Filename : timer.c
** Abstract : This file implements a device driver for the timer module
** API1lib: V850ESKX1H.lib V1.33 [24 Sep 2004]

Device: uPD70F3318Y

** Compiler: NEC/CA850

**

R S R e e e S R e S S R e R A R AR R A R R AR A R R A R AR R R AR A R R R R R A R R AR R AR SR S e R S SR S S
*/

/*

AE AA A AT AA A AAAAAALAAAAAAALAAAAAAAAAAAAAAAAAAAAA AL AAdAAAdX

** Include files

90

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

FEE AEAITEAITEAEAAEAAAAAAAATAXITAITAAAAAEAAAATAXITAXITAAAAAXAAAXITAITAXAAIAAXAAXAATAAAITAIAIAIAIAAAXAAXAATAAAXK
*/

#include "macrodriver.h"

#include "timer.h"

/*
FE AEAITEAITEAEAAAAAAAAAAITAXITAXATAAAAAAAAAAXITAXITAAAXAAAAAXITAXITAXAAXAAXAAXAATAAAITAIAIAIAIAIAAXAAAATAAAXKX
**MacroDefine
E R I o 2 o 2 S R R R R R R e R e R S D R R R R e R e R e S R R R e R e S e S S R R e R e R e R S R e e e S e S
*/
/*
R L L o o
*x
** Abstract:
*x Initiate TMOO, select founction and input parameter
*x count clock selection, INT init
*x
** Parameters:
*x None
*x
** Returns:
kel None
*x
K L L o o
*/
void TMOO_Init(void)
{
TMCOO = 0xO; /* stop TMOO */
CIr10RBit(PRMOO, 0x3);
CIrlIORBit(SELCNT1, 0Ox1);
SELCNT1 |= (TMOO_Clocké&0x4)>>2; /* internal count clock */
PRMOO |=(TMOO_Clock&0x3);
/* INTTMOOO setting */
TMOICOO = Lowest;
SetlORBit(TMOICO0O, 0x40);
/* TMOO interval */
CIr10RBit(CRCO0, 0x01);
CROOO = TMOO_INTERVALVALUE;
CR0O01 = OxFfff;
3
/ *
KK
*x

** Abstract:
**x start the TMOO counter

*x

** Parameters:
el None

*x

** Returns:

*x None

*x

*x

91

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

*/

void TMOO_Start(void)
TMCOO = 0xOc; /* interval timer start */
CIrlIORBit(TMOICOO, 0x40); /* enable INTTMO00 */

}

/*

*x

** Abstract:

** stop the TMOO counter and clear the count register

**

** Parameters:

kel None

**

** Returns:

holal None

**x

KK

*/

void TMOO_Stop(void)
TMCOO = 0x0; /* stop TMOO */
SetlORBit(TMOICO0, 0x40); /* disable INTTMOOO */

}

/ *

**x

** Abstract:
*x Change TMOO condition.

**

** Parameters:

holal USHORT™*: array_reg

** USHORT : array_num

** Returns:

*x MD_OK

*x MD_ERROR

*x

KK P
*/

MD_STATUS TMOO_ChangeTimerCondition(USHORT* array_reg,USHORT array_ num)

switch (array_num){

case 2:
CROO1=*(array_reg + 1);
case 1:
CROOO=*(array_reg + 0);
break;
default:
return MD_ERROR;
}

92

NEC [IC Communication with LCD Modules in V850ES Microcontrollers

return MD_OK;

93

IIC Communication with LCD Modules in V850ES Microcontrollers NEC

These commodities, technology or software, must be exported from the U.S. in accordance with the export administration

regulations. Diversion contrary to U.S. law prohibited.

The information in this document is current as of December 2006. The information is subject to change without notice. For
actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date
specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC
sales representative for availability and additional information.

No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC
Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.

NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third
parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of
such NEC Electronics products. No license, express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Electronics or others.

Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in
semiconductor product operation and application examples. The incorporation of these circuits, software and information in the
design of customer's equipment shall be done under the full responsibility of customer. NEC Electronics no responsibility for any
losses incurred by customers or third parties arising from the use of these circuits, software and information.

While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property
or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety
measures in their design, such as redundancy, fire-containment and anti-failure features.

NEC Electronics products are classified into the following three quality grades: “Standard”, “Special” and “Specific”.

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated “quality
assurance program” for a specific application. The recommended applications of NEC Electronics product depend on its quality
grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular
application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual
equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-
crime systems, safety equipment and medical equipment (not specifically designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems
and medical equipment for life support, etc.

The quality grade of NEC Electronics products is “Standard” unless otherwise expressly specified in NEC Electronics data
sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they
must contact NEC Electronics sales representative in advance to determine NEC Electronics 's willingness to support a given
application.

(Notes)
(1) " NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned
subsidiaries.

(2) " NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

94

	INTRODUCTION
	IIC COMMUNICATION
	IIC COMMUNICATION WITH AN LCD MODULE
	IIC0 Communication in V850ES Microcontrollers
	Configuring the IIC0 Peripheral for IIC Communication
	Communication in Master Mode
	Program Description and Specification
	Matrix Orbital LCD Module
	Program Flowcharts
	Program Startup and Initialization
	Main(): Main Program for IIC Communication to the LCD Modul
	IIC0_Init(): Initialize IIC0 Peripheral
	LCD_Init(): Initialize LCD Module
	LCD_ClearDisplay(): Clear Screen on LCD Module
	LCD_AutoTransmitKeyPressesOff(): Set LCD Module To Buffer Ke
	LCD_PutStr(col, row, *str): Display String on LCD at Specifi
	IIC0_MasterStartAndSend(sadr, *txbuf, txnum): Start Master,
	IIC0_MasterStart(mode, adr, wait): Start Master Read or Writ
	IIC0_MasterSendData(*txbuf, txnum): Master Send Data To IIC
	MD_INTIIC0(): Interrupt Service Routine for INTIIC0 Interrup
	IIC0_Stop(): Stop IIC0 Operation
	LCD_KeyPoll(*pkey): Poll LCD Module For Keypad Input
	IIC0_MasterStartAndReceive(sadr, *rxbuf, rxnum): Start Maste
	IIC0_MasterReceiveData(*rxbuf, rxnum): Master Receive Data F

	Applilet Reference Driver
	Configuring Applilet for Clock Initialization
	Configuring Applilet for Operation with the IIC0 Peripheral
	Configuring Applilet for Timer 00 (TM00)
	Generating Code With Applilet
	Applilet-Generated Files
	Applilet-Generated Files for IIC0 Operation
	Serial.h
	Serial.c
	Serial_user.c Source File

	Files for LCD Module Routines
	Lcd_mo.h Header File
	Lcd_mo.c Source File

	Demonstration Platform
	Resources
	Demonstration of Program

	Hardware Block Diagram
	Software Modules

	DEVELOPMENT TOOLS
	SOFTWARE LISTINGS
	Files for IIC To LCD Module Demonstration Program
	Main.c
	Lcd_mo.h
	Lcd_mo.c
	Inttab.s
	Systeminit.c
	Serial.h
	Serial.c
	Serial_user.c
	Timer_user.c
	850.dir

	Files Common to Serial Communication Demonstration Programs
	Crte.s
	System.inc
	System.s
	System_user.c
	Timer.h
	Timer.c

