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H8/300L 
I2C™ EEPROM access thru Port Emulation (I2Ceeprom) 

Introduction 
This application note provides an overview of the I2C bus interface and the details of an application interfacing the SLP series 38024 
(I2C Master) to a two-wire Mircochip 24AA16 16K I2C Serial EEPROM (I2C Slave). 

 

 

Target Device  
H8/300L Super Low Power (SLP) series – H8/38024 
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1. I2C™ Interface Overview  
The I2C bus uses a two-wire interface consisting of a serial data line (SDA) and a serial clock line (SCL) to exchange information 
between devices connected to the bus. Each device on the bus has its own unique address and can operate as a transmitter or receiver 
(depending on its particular function).  
 
 
Devices are further characterized as Masters or Slaves. A Master is defined as a device that initiates, controls (generates all framing 
and clock signals), and terminates a transfer. A Slave is defined as any device addressed by a Master.  
 

(The general features of I2C is discussed in Application Note on SPI and I2C) 

 

The following will highlight 3 main topics: 
1. I2C control, 

2. Write operation, and 

3. Read operation. 
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1.1 I2C EEPROM Control  
 

1.1.1 START & STOP Condition 
Data transfers on the I2C bus are controlled (and framed) via two unique bus states generated by the Bus Master. When the bus is 
free, both lines are HIGH. These bus states are the START and STOP bit conditions.  

 

 
A START condition is defined as a High-to-Low level transition on SDA while the SCL line is High. A STOP condition is defined 
as a Low-to-High level transition on SDA while the SCL line is High. Data must always be valid (stable) on the SDA line while SCL 
is high. The SDA line is only allowed to change during the SCL Low period. One bit of data is transmitted for each SCL period. 
 

 
Following the START condition, the first 8-bit byte sent in a bus message is a 7-bit Slave address field along with a data direction or 
R/W bit. (This discussion is limited to the I2C 7-bit addressing mode.) The data direction bit (least significant bit) controls whether 
or not the Master transmits (0 = write) or receives (1 = read) data from the addressed Slave. 

 

The acknowledge bit is a low-level signal placed on the SDA line by the receiving device (Master or Slave) during the Master-
transmitted acknowledge clock pulse (ninth High SCL clock pulse of the byte transmission). If the receiver is unable to receive data 
(busy Slave receiver) or must signal the end of data condition (Master receiver), a non-acknowledge is sent (SDA High during the 
ninth High SCL clock pulse time).  
 
 
Following the START and Slave address transmission, data is exchanged between the Master and receiver as required. Upon 
exchange of the final byte and its acknowledge, the Master issues the STOP condition to end bus usage.  
 
 
The previous general overview of I2C bus operation provides the foundation necessary to proceed with a serial EEPROM interface (a 
working knowledge of the I2C 7-bit addressing mode).  
 
 
(Please refer to Application Note on SPI and I2C for I2C configuration in detail.) 
 
(See also the I2C Bus Specifications published by Phillips Corporation for complete details of all the various modes this bus 
supports.) 
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1.1.2 Device Addressing 
A control byte is the first byte received following the start condition from the master device. The control byte consists of four bit 
control code, for the 24AA16, this is set as 1010 binary for read and write operations.  

 

 

 

 

 

 

 

The next three bits of the control byte are the block select bits (B2, B1, B0). They are used by the master device to select which of 
the eight 256 word blocks of memory are to be accessed. These bits are in effect the three most significant bits of the word address.  

 

The last bit of the control byte defines the operation to be performed. When set to ‘1’, a READ operation is selected. When set to ‘0’, 
a write operation is selected. Following the START condition, the 24AA16 monitors the SDA bus checking the device type identifier 
being transmitted, upon 1010 code the slave device output an acknowledge signal on the SDA line. Depending on the state of the 
R/W bit, the 24AA16 will select a READ or WRITE operation. 

 

 

 

 

 

*Control byte is device dependent and may varies for different devices. Please refer to the device data sheet or I2C bus specification 
for detailed information before use. 

1.1.3 Bit Transfer and Data Validity 
The number of data bytes transferred between the START and STOP condition from transmitter to receiver is not limited, and 
determined by the master device. Each byte, which must be eight bits long, is transferred serially with the most significant bit first, 
and is followed by an acknowledge bit. 

 

The state of the data line represents valid data when, after a START condition, the data line is stable for the duration of the HIGH 
period of the clock signal. 

 

The data on the line must be changed during the LOW period of the clock signal. There is one clock pulse per bit of data. 

 

1.1.4 Acknowledge 
Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The master device 
must generate an extra clock pulse which is associated with this acknowledge bit. 

For 24AA16, it does not generate any acknowledge bits if an internal programming cycle is in progress. 
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1.2 WRITE Operation 
Write operations are initiated when the R/W bit of the slave address is set to ‘0’. There are two type of write operation: byte write 
and page write. 

 

1.2.1 Byte Write 
Byte operations allow a random EEPROM address to be written. Byte write operations require transmission of the following: 
 

• START condition (Master) 
 

• EEPROM Device Address with R/W Bit = 0 (Master) 
 

• Acknowledge Bit (EEPROM) 
 

• *1Target EEPROM Word Address to be Written (Master) 
 

• Acknowledge Bit (EEPROM) 
 

• Data Byte to be Written (Master) 
 

• Acknowledge bit (EEPROM) 
 

• STOP Condition (Master) 
 
 

 

 

 

 

 
1.2.2 Page Write 
Page write operations are identical to the byte write operations described previously, except that instead of writing one data byte, 
*216 bytes may be sent between the EEPROM address and STOP bit transmission. During these page writes, the EEPROM 
automatically increments its internal address pointer between bytes. 

 

 

 

 

 

 

 
*1 The number of word address is device dependent. Please refer to respective device data sheet for detail. 

 
*2 The number of byte for page writes operation is device dependent. Please refer to respective device data sheet for verification. 
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1.3 READ Operation 
Three types of read operations are supported: Current Address, Random, and Sequential Read. Read operations begin just like write 
operations, except that the R/W bit is set to 1 for the device address byte. 

 

1.3.1 Current Address Read 
For the Current Address Read mode, no EEPROM byte address is written as the data transmitted by the addressed Slave to the 
Master is read from the location of the most recent access (incremented by one). This read transmission type sequence appears as: 

 
• START condition (Master) 

 
• EEPROM device address with R/W bit = 1 (Master) 

 
• Acknowledge bit (EEPROM) 

 
• Data byte to be read (EEPROM bytes sent from the addressed Slave’s most recent pointed-to memory location 

incremented by 1) 
 

• Non-acknowledge bit (Master) 
 

• STOP condition (Master) 
 

1.3.2 Random Read 
The Random Read mode is begun with a dummy byte write cycle (Master sends a START condition followed by the device address 
and *1target word address) followed by a Current Address Read mode cycle as described previously. 

 

 

 

 

 

 

 

1.3.3 Sequential Read 
The Sequential Read mode is initiated with a Random Read. Instead of the Master terminating the read after a single byte exchange 
(with a non-acknowledge), the Master responds with a valid acknowledge after each received data byte. This acknowledge instructs 
the Slave EEPROM to continue the read operation and transmit out the next data byte. Sequential reads continue until terminated by 
the Master via issuance of a non-acknowledge on the most recent byte read followed by the STOP condition  
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2. Hardware Design 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



H8/300L  
I2C™ EEPROM access thru Port Emulation (I2Ceeprom) 

AN0303012/Rev1.00 September 2003 Page 9 of 28 

PRELIMINARY

3. Function Overview 
Function in I2C.c: 

• void main(void) 

  

Functions in RW.c: 

• unsigned char SclIn (void) 

• unsigned char SdaIn (void) 

• void SclOut (unsigned char ) 

• void SdaOut (unsigned char) 

• void Delay(void) 

• void Delay2x(void) 

• unsigned char CheckBusState(void) 

• void SendStartBit(void) 

• void SendBit (unsigned char) 

• unsigned char GetBit (void) 

• unsigned char GetAck (void) 

• unsigned char SendByte(unsigned char) 

• unsigned char GetByte(void) 

• void SendStopBit(void) 

• unsigned char I2cWrite(unsigned char, unsigned char *,unsigned char, 
unsigned char ) 

• unsigned char I2cRead(unsigned char, unsigned char *,unsigned char, 
unsigned char ) 

• char CheckWriteReady(void) 

• unsigned char I2cCurrentRead(unsigned char , unsigned char *) 

 

void main(void) 

The main function demonstrates/tests the usage of the EEPROM control with I2C protocol. The function writes into the EEPROM 
using byte write and page write before reading it from the EEPROM using current address read, sequential read or random read. 

 

unsigned char SclIn (void) 

This function contains the coding for controlling whether the port pins, SclIn as an input or output 
pin. Clearing the bit to 0 makes the pin an input pin. It also checks whether the SCL port is low or 
high. 
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unsigned char SdaIn (void) 

This function contains the coding for controlling whether the port pins, SdaIn as an input or output 
pin. Clearing the bit to 0 makes the pin an input pin. It also checks the port status whether is in low 
or high. 
 

void SclOut (unsigned char ) 

Parameter: 
Status read from checking SCL signal level (unsigned char) 

This function contains the coding for controlling whether the port pins, SclOut as an input or output pin. Setting the bit to 1 makes 
the corresponding pin an output pin. 

 

void SdaOut (unsigned char) 

Parameter: 
Status read from checking SDA signal level (unsigned char) 

This function contains the coding for controlling whether the port pins, SdaOut as an input or output pin. Setting the bit to 1 makes 
the corresponding pin an output pin. 
 

void Delay(void) 

Provide an internal minimum delay time to bridge the undefined region of a falling edge of SCL to avoid unintended generation of 
unwanted signal. 

 

void Delay2x(void) 

Provide double delay time based on function void Delay(void). 

 

unsigned char CheckBusState(void) 

This function will determine whether the I2C bus is free (both SCL and SDA= HIGH) or in busy state. 

 

void SendStartBit(void) 

The function will send a START condition. 

 
void SendBit (unsigned char) 

Parameter: 
Data bit to be sent (unsigned char) 

Send out data in bit format. 

 

unsigned char GetBit (void) 

Receive data input in bit format.  
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unsigned char GetAck (void) 

Getting ACK is similar to GetBit, but this is critical operation since master must pull SDA high before it finds out whether there is a 
ACK (SDK is low) or not. 

 

unsigned char SendByte(unsigned char) 

Parameter: 
Data in byte to be sent (unsigned char) 

Function will send out a byte starting with most significant bit (MSB) first. 

 

unsigned char GetByte(void) 

Function will get a  byte of data starting with most significant bit (MSB). 

 

void SendStopBit(void) 

Send a STOP condition to terminate the operation. 

 

unsigned char I2cWrite(unsigned char, unsigned char *,unsigned char, unsigned 
char ) 

Parameter: 
Slave address (unsigned char), 
Address of buffer containing data (unsigned char*), 
Word address of data to be written(unsigned char), 
Length of data (unsigned char) 

The function will perform a WRITE operation applicable for both byte write and page write by : 

i) checking the bus state, 

ii) send a START condition, 

iii) send the control code/slave address, 

iv) send the word address to be written in, 

v) write the data into EEPROM based on the length of data to be written, and 

vi) a STOP condition. 
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unsigned char I2cRead(unsigned char, unsigned char *,unsigned char, unsigned 
char ) 

Parameter: 
Slave address (unsigned char), 
Address of buffer containing data (unsigned char*), 
Word address of data to be read from(unsigned char), 
Length of data (unsigned char) 

The function will perform a READ operation applicable for both random read and sequential read by : 

i) checking the bus state, 

ii) send a START condition, 

iii) send the dummy control code/slave address, 

iv) send the word address to be read from, 

v) pull up the SDA line, 

vi) a START bit, 

vii) send the control code/slave address, 

viii) read the data from EEPROM based on the length of data to be read, and 

ix) a STOP condition. 

 

char CheckWriteReady(void) 

For device from Microchip such as 24AA16, the device will not acknowledge during a write cycle, thus this function can be used to 
determine when the cycle is complete. If the cycle is complete, the device will return the ACK and the master can then proceed with 
the next read or write command. 

 

unsigned char I2cCurrentRead(unsigned char , unsigned char *) 

Parameter: 
Slave address (unsigned char), 
Address of buffer containing data (unsigned char*), 

The function will perform a READ operation applicable for both random read and sequential read by : 

i) checking the bus state, 

ii) send a START condition, 

iii) send the control code/slave address, 

iv) read a byte data from EEPROM, and 

v) a STOP condition. 
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4. Program Analysis 

4.1 Byte Write 
The following figure shows the operation of byte write: - 

 

 

 

 

 

 

 

 

 

 

 

 

 

The average time for writing a byte is *16.0ms. 

 

 

4.2 Page Write 
The following figure shows the operation of page write: - 

 

 

 

 

 

 

 

 

 

 

The average time for writing a page of 16kbyte is *89.5ms. 
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4.3 Current Read 
The following figure shows the operation of current read: - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The average time for reading a byte using current read operation is *11.2ms. 

 

 

4.4 Random Read 
The following figure shows the operation of random read: - 

 

 

 

 

 

 

 

 

 

 

 

 

 

The average time for reading a byte of data using random read operation is *22.3ms. 
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4.5 Sequential Read 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The average time for reading a page of 16kbytes using sequential read operation is *97.8ms. 

 
 

*Note: 

All the average times given were measured using a: - 

i) 10MHz clock, and 

ii) ½ system clock divider. 
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5. Sample Code 
/***********************************************************************/ 
/*                                                                     */ 
/*  FILE        :I2C.c                                                 */ 
/*  DATE        :Fri, Dec 27, 2002                                     */ 
/*  DESCRIPTION :Main Program                                          */ 
/*  CPU TYPE    :H8/38024F                                             */ 
/*                                                                     */ 
/*  This file is generated by Hitachi Project Generator (Ver.2.1).     */ 
/*                                                                     */ 
/***********************************************************************/ 
                   
#include "iodefine.h" 
#include "I2C.h" 
#include <stdio.h> 
 
#define NODE_ADDR       0xa0 
 
unsigned int i; 
  
unsigned char buf[16]={0xaa, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 
                       0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff  };    
  
void main(void) 
{ 
  byte_write(); 
   
  for (i=0;i<1000;i++);                //delay approximately 500ms 
   
  page_write(); 
      
  current_address_read(); 
 
  random_or_sequential_read(); 
} 
 
void byte_write(void) 
{ 
  //byte write 
  i = I2cWrite(NODE_ADDR, buf, 1, 0x00); 
     if (CheckWriteReady() ==1) 
  i = I2cWrite(NODE_ADDR, buf, 2, 0x02); 
     if (CheckWriteReady() ==1) 
  i = I2cWrite(NODE_ADDR, buf, 1, 0x04); 
} 
 
void page_write(void) 
{ 
  //page write 
  i = I2cWrite(NODE_ADDR, buf, 16, 0x00); 
} 
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void current_address_read(void) 
{ 
  //current address read 
  i = I2cCurrentRead(NODE_ADDR, buf); 
} 
 
void random_or_sequential_read(void) 
{ 
  //random / sequential read 
  i = I2cRead(NODE_ADDR, buf,16, 0x00); 
} 

 

 

/***********************************************************************/ 
/*                                                                     */ 
/*  FILE        :RW.c                                                  */ 
/*  DATE        :Fri, Dec 27, 2002                                     */ 
/*  DESCRIPTION :Function Program                                      */ 
/*  CPU TYPE    :H8/38024F                                             */ 
/*                                                                     */ 
/*  This file is generated by Hitachi Project Generator (Ver.2.1).     */ 
/*                                                                     */ 
/***********************************************************************/ 
 
 
 
#include "i2c.h" 
#include "iodefine.h" 
 
char CheckWriteReady(void); 
 
 
/* Check SCL signal level */ 
unsigned char SclIn (void)  
{ 
    SCL_IO_REG &= SCL_IO_RESET_BIT;         //It is Input 

if(SCL_DATA_REG & SCL_DATA_SET_BIT)     //check Port status 
{  

      return(HIGH); 
    }  
    else  
    { 
      return(LOW); 
    }     
} 
 
/* Check SDA signal level */ 
unsigned char SdaIn (void)  
{ 
    SDA_IO_REG &= SDA_IO_RESET_BIT;         //It is Input 
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if(SDA_DATA_REG & SDA_DATA_SET_BIT)     //check Port status 
{  

       return(HIGH); 
    }  
    else  
    { 
      return(LOW); 
    }     
} 
 
/* Drive SCL bus */   
void SclOut (unsigned char status)  
{ 

if (status == LOW)  
{      

 SCL_DATA_REG = 0;               //Drive Port LOW 
 SCL_IO_REG |= SCL_IO_SET_BIT;   //Port is output 
         
    }  
 else  
 { 

SCL_DATA_REG = 1;             //Port is Input & using external pull-up 
                              //resistor to go high 

  SCL_IO_REG |= SCL_IO_SET_BIT; //Port is output 
      } 
} 
 
/* Drive SDA bus */ 
void SdaOut (unsigned char status)  
{ 
    if (status == LOW)  
 {  
   SDA_DATA_REG = 0;               //Drive Port LOW 
        SDA_IO_REG |= SDA_IO_SET_BIT;   //Port is output 
 }  
 else  
 {  
        SDA_DATA_REG = 1;             //Port is Input & using external pull-up 
                                      //resistor to go high      
   SDA_IO_REG |= SDA_IO_SET_BIT; //Port is output 
 } 
} 
 
void Delay(void)                      //Delay approximately 10ms 
{ 
    unsigned char i; 
 
    i=0; 
    while(i<20)  
    { 
        i++; 
    } 
}  
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void Delay2x(void)                   //Delay approximately 20ms 
{ 
    Delay(); 
    Delay(); 
} 
 
/* All codes below here are independent with hardware, such as microprocessor, 
I/O port */ 
unsigned char CheckBusState(void)  
{ 
    if ((SclIn() == HIGH) && (SdaIn() == HIGH))  
    { 
      return(TRUE); 
    }  
    else  
    { 
      return(FALSE); 
    } 
} 
 
/* It is nice to send out data at the middle of clock low */ 
void SendBit (unsigned char data_byte)  
{ 
    SclOut(LOW); 
    Delay();    
    if (data_byte != 0)  
    { 
      SdaOut(HIGH); 
    }  
    else  
    { 
      SdaOut(LOW); 
    } 
 
    Delay();    
    SclOut(HIGH); 
    while (SclIn() != HIGH) {}  //wait for slow device to release clock 
    Delay2x();   
} 
 
void SendStartBit(void)  
{ 
    Delay();    

SdaOut(LOW); 
 

    Delay2x();            
Delay2x();  
           

    SclOut(LOW); 
    Delay();    
} 
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/* It is nice to sample data input at the middle of clock high */ 
unsigned char GetBit (void)  
{ 
    unsigned char temp; 
 
    SclOut(LOW); 

temp = SdaIn(); 
Delay2x();  
  

    SclOut(HIGH);        
    while (SclIn() != HIGH) {}  //wait for slow device to release clock 

Delay();   
  

    temp = SdaIn(); 
Delay();  
   

    return(temp);     
} 
 
/* Getting ACK is similar to GetBit, but it is a little tricky since master 
must pull SDA high 
before it find out whether there is ACK (SDA is low) or not */ 
unsigned char GetAck (void)  
{ 
    unsigned char temp; 
  
    SclOut(LOW); 

Delay(); 
    

    SdaOut(HIGH); 
    temp = SdaIn(); 

Delay();  
   

    SclOut(HIGH);        
    while (SclIn() != HIGH) {}  //wait for slow device to release clock 

Delay();  
        

    temp = SdaIn(); 
Delay(); 
 

    return(temp); 
} 
 
/* Note master need get ACK after sending out every byte */ 
unsigned char SendByte(unsigned char data_byte)  
{ 
    unsigned char i; 
    unsigned char mask; 
     
    mask = 0x80;        //send out MSB first 
    for (i=0; i<8; i++)  
 { 
        SendBit(data_byte & mask); 
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        mask /= 2; 
      } 
  
    return(GetAck()); 
} 
 
unsigned char GetByte(void)  
{ 
    unsigned char temp1, temp2; 
    unsigned char i,mask;  
 
    mask = 0x80; 
    temp2 = 0; 
    for (i=0; i<8; i++)  
    { 
        temp1 = GetBit() * mask; 
        temp2 += temp1; 
        mask /= 2; 
    } 
 
    return(temp2); 
} 
 
void SendStopBit(void)  
{ 
    SclOut(LOW); 

Delay(); 
 

    SdaOut(LOW); 
Delay(); 
 

    SclOut(HIGH);                                  
Delay2x(); 
 

    SdaOut(HIGH); 
} 
 
 
unsigned char I2cWrite(unsigned char slave_addr, unsigned char *buf_ptr, 
unsigned char length,unsigned char word_addr) { 
    unsigned int i;  
    
    if( CheckBusState() != TRUE)  
    { 
     return(BUS_BUSY); 
    } 
 
    SendStartBit(); 
 
    if (SendByte((slave_addr) & 0xfe) != LOW) //Send address and write command 
    { 
     return(NO_RESPONSE); 
    } 
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    if (SendByte(word_addr) != LOW)             //Send low word address  
    { 
  return(NO_RESPONSE); 
    }  
  
    
   for(i=0; i<length; i++)  
   {         
        if(SendByte(*buf_ptr++) != LOW)  
      { 
            return(ERR_RESPONSE); 
     } 
   }  
 
    SendStopBit(); 
 
    return(OP_DONE); 
} 
 
unsigned char I2cRead(unsigned char slave_addr, unsigned char *buf_ptr, 
unsigned char length,unsigned char word_addr)  
{ 
    unsigned char i=0,j=0; 
    unsigned char DataBuffer[500]; 
    unsigned char LastData; 
 
    if( CheckBusState() != TRUE)  
 { 
        return(BUS_BUSY); 
      } 
 
    SendStartBit(); 
 
    if (SendByte((slave_addr) & 0xfe) != LOW)  //Send address and read command 
 { 
        return(NO_RESPONSE); 
      } 
 
 if (SendByte(word_addr) != LOW)          //Send high word address 
 {  
   return(NO_RESPONSE); 
      }  
 
    SendStopBit();                             //Pull-up SDA line 
    SendStartBit(); 
 
    if (SendByte((slave_addr) | 0x01) != LOW)  //Send address and read command 
 { 
        return(NO_RESPONSE); 
      } 
 
    for(i=0; i<length-1; i++)  
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{ 
      DataBuffer[i]= GetByte(); 
   SendBit(LOW);                   //ack it low 
      } 
 
    DataBuffer[i]= GetByte();               //get last data and ack high 
     
    SendBit(HIGH); 
    SendStopBit(); 
     
    return(OP_DONE); 
} 
 
/*Since Microchip devices such as 24AA16 will not acknowledge during a write 
cycle, this can be used to determined when the cycle is complete. So that the 
master can proceed with next operation*/ 
char CheckWriteReady(void) 
{ 
 unsigned int i=0; 
 
 while(i<4) 
 { 
     SendStartBit(); 
 
     if (SendByte((0xa0) | 0x00) == LOW) 
     { 
      SendStopBit(); 
      return (1); 
      } 
 
        SendStopBit(); 
   i++; 
      } 
} 
 
unsigned char I2cCurrentRead(unsigned char slave_addr, unsigned char *buf_ptr)  
{ 
    unsigned char i=0,j=0; 
    unsigned char DataBuffer[500]; 
    unsigned char LastData; 
 
 SendStartBit(); 
 
    if (SendByte((slave_addr) | 0x01) != LOW)  //Send address and read command 
 { 
        return(NO_RESPONSE); 
      } 
 

*buf_ptr = GetByte();                      //get last data and ack high 
 

    SendBit(HIGH); 
SendStopBit(); 
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    return(OP_DONE); 
} 

 

 

/***********************************************************************/ 
/*                                                                     */ 
/*  FILE        :i2c.h                                            */ 
/*  DATE        :Fri, Dec 27, 2002                                     */ 
/*  DESCRIPTION :Definition of constant and functions                  */ 
/*  CPU TYPE    :H8/38024F                                             */ 
/*                                                                     */ 
/*  This file is generated by Hitachi Project Generator (Ver.2.1).     */ 
/*                                                                     */ 
/***********************************************************************/ 
 
//bit patterns for EEPROM access instructions 
#define READSR 0xA0 /* (bit reversed 05) */ 
#define SETWEL 0x60 /* (bit reversed 06) */ 
#define WRITE 0x40  /* (bit reversed 02) */ 
#define READ 0xC0   /* (bit reversed 03) */ 
 
/* Set as 1010 binary for read and write operation (device dependent)*/ 
#define NODE_ADDR       0xa0   
 
/* Misc */ 
#define HIGH    1 
#define LOW     0 
 
#if !defined(TRUE) 
#define TRUE    1 
#endif 
 
#if !defined(FALSE) 
#define FALSE   0 
#endif 
 
#define OP_DONE         0x00 
#define BUS_BUSY        0x01 
#define NO_RESPONSE     0x02 
#define ERR_RESPONSE    0x04 
  
// SDA and SCL port def. 
  
/* control SDA port as input or output */ 
#define SDA_IO_REG              P_IO.PCR7.BYTE 
#define SDA_IO_SET_BIT          0x01    //output  
#define SDA_IO_RESET_BIT        0xfe    //input 
 
/* check SDA port low or high */ 
#define SDA_DATA_REG            P_IO.PDR7.BYTE 
#define SDA_DATA_SET_BIT        0x01 
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#define SDA_DATA_RESET_BIT      0xfe 
 
/* control SCL port as input or output */ 
#define SCL_IO_REG              P_IO.PCR8.BYTE 
#define SCL_IO_SET_BIT          0x01    //output 
#define SCL_IO_RESET_BIT        0xfe    //input 
 
/* check SCL port low or high */ 
#define SCL_DATA_REG            P_IO.PDR8.BYTE 
#define SCL_DATA_SET_BIT        0x01 
#define SCL_DATA_RESET_BIT      0xfe 
 
//I2C modules 
void byte_write(void); 
void page_write(void); 
void current_address_read(void); 
void random_or_sequential_read(void); 
void startbit(void); 
void stopbit(void); 
void sendbit(unsigned char ); 
void controlbyte(unsigned char ); 
void ReadBuffer(void); 
extern char checkwrirdy(); 
unsigned char getACK(void); 
unsigned char getbit(unsigned char); 
unsigned char I2cWrite(unsigned char slave_addr, unsigned char *buf_ptr, 
unsigned char length,unsigned char word_addr); 
unsigned char I2cRead(unsigned char slave_addr, unsigned char *buf_ptr, 
unsigned char length,unsigned char word_addr); 
unsigned char I2cCurrentRead(unsigned char slave_addr, unsigned char 
*buf_ptr); 
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1. These materials are intended as a reference to assist our customers in the selection of the Renesas 
Technology Corporation product best suited to the customer's application; they do not convey any 
license under any intellectual property rights, or any other rights, belonging to Renesas Technology 
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any 
third-party's rights, originating in the use of any product data, diagrams, charts, programs, 
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and 
algorithms represents information on products at the time of publication of these materials, and are 
subject to change by Renesas Technology Corporation without notice due to product improvements 
or other reasons.  It is therefore recommended that customers contact Renesas Technology 
Corporation or an authorized Renesas Technology Corporation product distributor for the latest 
product information before purchasing a product listed herein. 
The information described here may contain technical inaccuracies or typographical errors. 
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss 
rising from these inaccuracies or errors. 
Please also pay attention to information published by Renesas Technology Corporation by various 
means, including the Renesas Technology Corporation Semiconductor home page 
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, 
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total 
system before making a final decision on the applicability of the information and products.  Renesas 
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting 
from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a 
device or system that is used under circumstances in which human life is potentially at stake.  
Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation 
product distributor when considering the use of a product contained herein for any specific 
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, 
or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce 
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must 
be exported under a license from the Japanese government and cannot be imported into a country 
other than the approved destination. 
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the 
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the 
products contained therein.

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products 
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble 
with semiconductors may lead to personal injury, fire or property damage. 
Remember to give due consideration to safety when making your circuit designs, with appropriate 
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or 
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs! 

Notes regarding these materials
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