To our customers,

Old Company Name in Catalogs and Other Documents

On April 1\(^{\text{st}}\), 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1\(^{\text{st}}\), 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implants, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
1. Abstract

This document describes an application example for discriminating between a cold start and warm start using the RAM. When determining a warm start, discriminate the reset source using the Reset Source Determine Register.

2. Introduction

The application example described in this document applies to the following microcomputers (MCUs):

• MCUs: M16C/5LD Group
 M16C/56D Group

This application note can be used with other M16C Family MCUs which have the same special function registers (SFRs) as the above groups. Check the manual for any modifications to functions. Careful evaluation is recommended before using the program described in this application note.
3. Resets

Table 3.1 lists the Reset Types, Figure 3.1 shows the Reset Source Determine Register, and Table 3.2 shows the Bit Values in the RSTFR Register after Reset.

Table 3.1 Reset Types

<table>
<thead>
<tr>
<th>Reset Name</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware reset</td>
<td>A low-level signal is applied to the RESET pin.</td>
</tr>
<tr>
<td>Power-on reset</td>
<td>The rise in voltage on VCC</td>
</tr>
<tr>
<td>Voltage monitor 0 reset</td>
<td>The drop in voltage on VCC (reference voltage: Vdet0)</td>
</tr>
<tr>
<td>Voltage monitor 2 reset</td>
<td>The drop in voltage on VCC (reference voltage: Vdet2)</td>
</tr>
<tr>
<td>Oscillation stop detection reset</td>
<td>A stop in the main clock oscillator is detected.</td>
</tr>
<tr>
<td>Watchdog timer reset</td>
<td>The watchdog timer underflows.</td>
</tr>
<tr>
<td>Software reset</td>
<td>Setting the PM03 bit in the PM0 register to 1.</td>
</tr>
</tbody>
</table>

Figure 3.1 Reset Source Determine Register

Reserve bit

If necessary, set to 0. The read value is undefined.

HWR Hardware reset detection flag

0: Not detected
1: Detected

SWR Software reset detection flag

0: Not detected
1: Detected

WDR Watchdog timer reset detect flag

0: Not detected
1: Detected

LVD2R Voltage monitor 2 reset detection flag

0: Not detected
1: Detected

OSDR Oscillation stop detection reset detection flag

0: Not detected
1: Detected

Reserved bit

If necessary, set to 0. The read value is undefined.
Table 3.2 Bit Values in the RSTFR Register after Reset

<table>
<thead>
<tr>
<th>Reset</th>
<th>RSTFR Register Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OSDR</td>
</tr>
<tr>
<td>Hardware reset</td>
<td>Not changed</td>
</tr>
<tr>
<td>Power-on reset</td>
<td>0</td>
</tr>
<tr>
<td>Voltage monitor 0 reset</td>
<td>0</td>
</tr>
<tr>
<td>Voltage monitor 2 reset</td>
<td>0</td>
</tr>
<tr>
<td>Oscillation stop detection reset</td>
<td>1</td>
</tr>
<tr>
<td>Watchdog timer reset</td>
<td>0</td>
</tr>
<tr>
<td>Software reset</td>
<td>0</td>
</tr>
</tbody>
</table>
4. Application Example

After reset, read the 256-byte cold start/warm start decision data (hereafter referred to as decision data) assigned to the RAM area. If the read decision data is undefined, it denotes the cold start (power source is turned ON) condition. If the decision data is written, it denotes the warm start condition.

Set the test_bss section and assign variables to be used. In the test_bss section, RAM is cleared only when in the cold start condition.

In this sample program, the test_bss section is assigned to the 000400h address.

Figure 4.1 shows the Application Example of Section Assignment.
4.1 Application Example Operation

Read the decision data and clear the RAM in the test_bss section when in the cold start condition. Then, the number of times to reset and the value in the RSTFR register are output to the port. Figure 4.2 shows the Main Program Flowchart.

Figure 4.2 Main Program Flowchart

```
main

prc2 ← 1
Set PACR register

mcu_init()
CPU initial setting

peripheral_init()
Peripheral function initial setting

i ← 0
Initialize the number of times to determine.

Read 256 bytes ?

Yes

Equal to decision data ?

Yes (warm_start[i] ≠ i)

i ← i + 1

ram_clear()
Clear RAM

reset_times ++
The number of times to reset + 1.

RESET_TIMES_OUTPUT ← reset_times
Output the number of times to reset to the port.

RSTFR_OUTPUT ← rstfr
Output the reset source determine register value to the port.

i ← 0
Initialize the number of times to write.

Wrote 256 bytes ?

No

Wait until reset is generated.

Yes

warm_start[i] ← i
Write the decision data.

i ← i + 1

No (warm_start[i] = i)
i ← i + 1
```

Note:
1. The PRC2 bit becomes 0 (write disabled) by writing to an SFR area after the PRC2 bit is set to 1 (write enabled) by a program. Set registers protected by the PRC2 bit, using the next instruction after the PRC2 bit is set to 1. Do not generate any interrupts or DMA transfers between these two instructions.
4.2 Section Setting

When declaring variables without assigning a value to them, a compiler usually assigns them to the bss_NO and bss_NE sections, and clears the sections to 0.

In this sample program, assign the variables for use to the test_bss section made by user.

This section describes the program section setting. Refer to the C Compiler User’s Manual for details of the section.

As shown in Figure 4.3, the Section Name is comprised of the section base name followed by an attribute.

Section base name_attribute

Figure 4.3 Section Name

<table>
<thead>
<tr>
<th>Section Base Name</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>Store data with initial values.</td>
</tr>
<tr>
<td>bss</td>
<td>Store data without initial values.</td>
</tr>
<tr>
<td>rom</td>
<td>Store data specified by character strings, #pragma ROM and const modifiers.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Meaning</th>
<th>Corresponding Section Base Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Section to hold the initial value in data</td>
<td>data</td>
</tr>
<tr>
<td>N/F/S</td>
<td>N near attribute</td>
<td>data, bss, rom</td>
</tr>
<tr>
<td></td>
<td>F far attribute</td>
<td>data, bss</td>
</tr>
<tr>
<td></td>
<td>S SBDATA attribute</td>
<td></td>
</tr>
<tr>
<td>E/O</td>
<td>E Even-sized data</td>
<td>data, bss, rom</td>
</tr>
<tr>
<td></td>
<td>O Odd-sized data</td>
<td></td>
</tr>
</tbody>
</table>

RAM is cleared using the start-up program as follows:

- Initialize the data near area.
 - bss_NE, bss_NO, bss_SE, bss_SO sections are cleared to 0.
 - Also, the initial values in the ROM areas (data_NEI, data NOI, data_SEI, data_SOI) are transferred to RAM (data_NE, data_NO, data_SE, data_SO).

- Initialize the data far area.
 - bss_FE and bss_FO sections are cleared to 0.
 - Also, the initial values in the ROM areas (data_FEI, data_FOI) are transferred to RAM (data_FE, data_FO).
4.3 Section Setting in HEW

This section describes the method for setting sections in HEW. In the section, “C source startup Application” must be selected when creating a work space.

The test_bss section is already set in this sample program.

(1) Display the Map window. Select MAP from the View pull-down menu.

(2) Select “Map Section Information” from the type of maps. Use the same procedure to select “Map Symbol Information”.

![Map window](image-url)
(3) Click the “Edit Mode” button to edit the section name.
(4) Click the “Add Section Group” button to add “test_bss_NO”.
(5) Use the same procedure to add "test_bss_NE".
(6) Click the "Edit Mode" button to verify the changed linker section information.
(7) test_bss_NE and test_bss_NO sections are assigned.
The variables without initial values described after the #pragma SECTION declaration are assigned to the test_bss section.

Figure 4.5 shows an Example of Section Assignment by Variable Declaration Area.

```c
#pragma SECTION bss test_bss
unsigned char reset_times;
unsigned char warm_start[256];
```

Figure 4.4 Assigning the Variable and Array to the test_bss Section

The variables without initial values described after the #pragma SECTION declaration are assigned to the test_bss section.

Figure 4.5 shows an Example of Section Assignment by Variable Declaration Area.

```c
int i;
#pragma SECTION bss test_bss
⇒ Assigned to the bss section.
```

```c
int j;
#pragma SECTION bss test_bss ⇒ Variable without initial values not described after this (variable assigned to bss section) is assigned to the test_bss section.
```

```c
int k=10;
⇒ Assigned to the test_bss section.
```

```c
⇒ Variables with initial values are assigned to the data section.
```
(9) When executing the build, the variable `reset_times` and array `warm_start [256]` are, respectively assigned to the `test_bss_NO` section and the `test_bss_NE` section.
5. Sample Program

A sample program can be downloaded from the Renesas Technology website. To download, click “Application Notes” in the left-hand side menu of the M16C Family page. This sample program is created by using the following versions of the tools.

HEW version: 4.06
NC30 version: 5.45.00

6. Reference Documents

Hardware Manual
M16C/5LD Group, M16C/56D Group Hardware Manual
The latest version can be downloaded from the Renesas Technology website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Technology website.

C Compiler User’s Manual
C compiler package V.5.45 for M16C Series and R8C Family.
The latest information can be downloaded from the Renesas Technology website.
REVISION HISTORY

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Dec. 29, 2009</td>
<td>– First Edition issued</td>
</tr>
</tbody>
</table>

All trademarks and registered trademarks are the property of their respective owners
Notes regarding these materials

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guarantees regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the use set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life

 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

© 2009. Renesas Technology Corp., All rights reserved. Printed in Japan.