致尊敬的顾客

关于产品目录等资料中的旧公司名称

NEC电子公司与株式会社瑞萨科技于2010年4月1日进行业务整合（合并），整合后的
新公司暨“瑞萨电子公司”继承两家公司的所有业务。因此，本资料中虽还保留有旧公司
名称等标识，但是并不妨碍本资料的有效性，敬请谅解。

瑞萨电子公司网址：http://www.renesas.com

2010年4月1日
瑞萨电子公司

【发行】瑞萨电子公司（http://www.renesas.com）
【业务咨询】http://www.renesas.com/inquiry
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

 “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
M16C/Tiny 系列
定时器 A 操作（事件计数模式中的二相脉冲信号处理、4 倍频方式）

1. 要点
在定时器事件计数模式中处理二相脉冲信号中，可以选择如表 1 中所列的各种功能。在表 1 中用符号 “〇”表示本篇资料所选的项目，图 1 是定时器的工作时序图。本篇资料的参考例程是定时器 A4 选择事件计数模式中的二相脉冲信号处理、4 倍频方式的例子。

2. 说明
本篇资料适用于 M16C/26A、M16C/28、M16C/29 群单片机。

本篇资料中的参考例程也适用于 M16C 族产品中与 M16C/26A、M16C/28、M16C/29 群具有相同 SFR（特殊功能寄存器）定义的产品。

由于 M16C 系列产品中有些功能会有所改进，请参看用户手册。如果使用本篇资料中所列功能时，请仔细检查每一步操作。
3. 选定功能

表 1. 选定功能

<table>
<thead>
<tr>
<th>设定项目</th>
<th>设定内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>计数操作类型</td>
<td>重加载方式</td>
</tr>
<tr>
<td>Ｏ 自由运行方式</td>
<td></td>
</tr>
<tr>
<td>二相脉冲信号处理（注 1）</td>
<td>正常处理方式</td>
</tr>
<tr>
<td>Ｏ 4 倍频处理方式</td>
<td></td>
</tr>
</tbody>
</table>

注 1：只有定时器 A3 能选择二相脉冲信号的处理方式。定时器 A2 只能使用正常处理方式，而定时器 A4 只能使用 4 倍频处理方式。

4. 定时器 A 的操作

(1) 把计数开始标志位置为“1”，计数器对计数脉冲源的有效沿计数。
(2) 即使在发生下溢时，也不重新加载重加载寄存器的设定值，而是继续进行计数。同时，定时器 Ai 中断请求位置为“1”。
(3) 即使在发生上溢时，也不重新加载重加载寄存器的设定值，而是继续进行计数。同时，定时器 Ai 中断请求位置为“1”。

注意事项：
递增/递减计数的条件和有效沿如下表所示。

表 2. 递增/递减计数的条件和有效沿

<table>
<thead>
<tr>
<th></th>
<th>TAIOUT 引脚的输入信号</th>
<th>TAIN 引脚的输入信号</th>
</tr>
</thead>
<tbody>
<tr>
<td>递增计数</td>
<td>“H”电平</td>
<td>上升沿</td>
</tr>
<tr>
<td></td>
<td>“L”电平</td>
<td>下降沿</td>
</tr>
<tr>
<td></td>
<td>上升沿</td>
<td>“L”电平</td>
</tr>
<tr>
<td></td>
<td>下降沿</td>
<td>“H”电平</td>
</tr>
<tr>
<td>递减计数</td>
<td>“H”电平</td>
<td>下降沿</td>
</tr>
<tr>
<td></td>
<td>“L”电平</td>
<td>上升沿</td>
</tr>
<tr>
<td></td>
<td>上升沿</td>
<td>“H”电平</td>
</tr>
<tr>
<td></td>
<td>下降沿</td>
<td>“L”电平</td>
</tr>
</tbody>
</table>
选择事件计数模式的二相脉冲信号处理、4倍频方式的定时器时序图如下所示:

图 1. 选择事件计数模式的二相脉冲信号处理、4倍频方式的定时器工作时序图

5. 寄存器设置

为了能实现定义在“4. 定时器 A 的操作”的功能，下列寄存器必须按步骤进行设置。对于每个寄存器的具体结构请参考 M16C/26A 群、M16C/28 群、M16C/29 群的硬件手册。

选择事件计数模式的二相脉冲信号处理、4倍频方式定时器的寄存器设定如下所示:

(1) 设置定时器 Ai 模式寄存器

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

定时器 Ai 模式寄存器 TA3MR, TA4MR【地址 0399h, 039Ah】

- <TMOD1, TMOD0> 工作模式选择位
 - 01: 事件计数工作模式
- <MR0> 在使用二相脉冲信号处理功能时，必须置为“0”。
- <MR1> 在使用二相脉冲信号处理功能时，必须置为“0”。
- <MR2> 在使用二相脉冲信号处理功能时，必须置为“1”。
- <MR3> 在使用二相脉冲信号处理功能时，必须置为“0”。
- <TCK0> 计数操作类型选择位
 - 1: 自由运行方式
- <TCK1> 二相脉冲信号处理操作选择位（注1）
 - 1: 4 倍频处理操作

注1: TCK1位对于定时器A3模式寄存器有效；对于定时器A4模式寄存器，TCK1位可以设置为“0”或“1”
M16C/Tiny 系列
定时器 A 操作（事件计数模式中的二相脉冲信号处理、4 倍频方式）

(2) 设置二相脉冲信号处理选择位

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

递增/递减标志寄存器 UDF【地址 0384h】

<TA3P> 定时器 A3 二相脉冲信号处理选择位（注 2）
1 : 允许二相脉冲信号处理

<TA4P> 定时器 A4 二相脉冲信号处理选择位（注 2）
1 : 允许二相脉冲信号处理

注 2:
将 TAi_IN、TAi_OUT 相应的端口方向位清“0”（输入模式）。

(3) 设置触发选择寄存器

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

触发选择寄存器 TRGSR【地址 0383h】

<TA3TGH, TA3TGL> 定时器 A3 事件/触发选择位
00 : 选择 TA3_IN 作为输入（注 3）

<TA4TGH, TA4TGL> 定时器 A4 事件/触发选择位
00 : 选择 TA4_IN 作为输入（注 3）

注 3:
将相应的端口方向位清“0”（TAi_IN 引脚输入）。

(4) 设置定时器 Ai 寄存器

<table>
<thead>
<tr>
<th>b15</th>
<th>b14</th>
<th>b13</th>
<th>b12</th>
<th>b11</th>
<th>b10</th>
<th>b9</th>
<th>b8</th>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

定时器 A3 寄存器 TA3【地址 038Dh, 038Ch】
定时器 A4 寄存器 TA4【地址 038Fh, 038Eh】

必须设定为 0000h～FFFFh

(5) 设置定时器计数开始标志位

<table>
<thead>
<tr>
<th>b7</th>
<th>b6</th>
<th>b5</th>
<th>b4</th>
<th>b3</th>
<th>b2</th>
<th>b1</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

计数开始标志 TABSR【地址 0380h】

<TA3S> 定时器 A3 计数开始标志
1 : 开始计数

<TA4S> 定时器 A4 计数开始标志
1 : 开始计数
6. 参考例程

```c
#include "sfr29.h" // Special function register header file

#define PRODUCT_TYPE 0 // 28,29 group: 0 26A group: 1
#define PIN_TYPE 0   // 80 pin: 0   64 pin: 1 (28,29 group)
    // 48 pin: 0   42 pin: 1 (26A group)

void mcu_init(void);    // MCU initialize routine
void timerA4_init(void);  // Timer A4 initialize routine
void wait_10ms(void);   // Main clock oscillation stable wait routine

void main(void) {
    mcu_init();   // MCU initialize routine
    timerA4_init(); // Timer A4 initialize routine
    tabsr = 0x10;  // Setting count start flag
    asm("fset i"); // TimerA4 Starts counting
    while (1);
}
```
void mcu_init(void) {
 prcr = 0x03; // Protect register
 // <PRC0> : Protect bit 0 (Enable write to CM0, CM1, CM2,
 // ROCR, PLC0, PCLKR and CCLKR registers)
 // <PRC1> : Protect bit 1 (Enable write to PM0, PM1, PM2,
 // TB2SC, INVC0 and INVC1 registers)

 pm0 = 0x00; // Processor mode register 0
 // Single-chip mode

 pm1 = 0x08; // Processor mode register 1
 // <PM10> : Flash data block access bit (0: Disable)
 // <PM17> : Wait bit (0: No wait state)

 wait_10ms(); // Waiting for main clock oscillation stable

 cm2 = 0x00; // System clock select Main clock or PLL clock

 cm1 = 0x20; // System clock control register 1
 // <CM11> : System clock select bit 1 (0: Main clock)
 // <CM15> : Xin-Xout drive capacity select bit (1: High)
 // <CM17-16> : Main clock division select bits (00: No
 // division mode)

 cm0 = 0x08; // System clock control register 0
 // <CM03> : Xcin-Xcout drive capacity select bit (1: High)
 // <CM06> : Main clock division select bit 0 (0: CM16 and
 // CM17 valid)
 // <CM07> : Main clock division select bit 0 (0: Main clock,
 // PLL clock, or on-chip oscillator clock)

 pclkr = 0x03; // Peripheral clock select register
 // <PCLK0>: Timer A/B clock select bit (1: f1)
 // <PCLK1>: SI/O clock select bit (1: f1SIO)

 prcr = 0x00; // Protects registers
 // Protect all registers

#if PRODUCT_TYPE // Product selection: 26A group
 ifsr2a = 1; // Interrupt request cause select register2 IFSR2A
 // <IFSR20> : Reserved bit (Must be set to "1")
#endif
 prcr = 0x04; // Protect register off
#if PIN_TYPE // Port setting
 pacr = 0x01; // 42pin type
#else
 pacr = 0x04; // 48pin type
#endif
#else // Product selection: 28,29 group
 ifsr2a = 0; // Interrupt request cause select register2 IFSR2A
 // <IFSR20> : Reserved bit (Must be set to "0")
#endif
 prcr = 0x04; // Protect register off
#if PIN_TYPE // Port setting
 pacr = 0x02; // 64pin type
#endif
#else
 pacr = 0x03; // 80pin type
#endif
prcr = 0x00; // Protect register on
#endif

/**/
/* Main Clock Oscillation Stable Wait 10ms Routine */
/**/
void wait_10ms(void) {
 ta0mr = 0x00; // Set Timer A0 mode register (Timer mode, count source: f1)
 ta0 = 20000-1; // Setting counter value (10msec @4MHz/2, f1)
 ta0ic = 0x00; // Clear interrupt request bit
 tabsr = 0x01; // Timer A0 start counting
 while (ir_ta0ic == 0){ }
 ir_ta0ic = 0; // Clear interrupt request bit
 tabsr = 0x00; // Timer A0 stops counting
}

/**/
/* Timer A4 Initialize Routine (2-Phase Pulse Signal */
/* Process in Event Counter Mode, Multiply-by-4 Mode) */
/**/
void timerA4_init(void) {
 ta4mr = 0xD1; // Timer A4 mode register
 // <TMOD1-0> : Operation mode select bit (01: Event counter
 // mode)
 // <MR0> : To use two-phase pulse signal processing, set this
 // bit to "0".
 // <MR1> : To use two-phase pulse signal processing, set this
 // bit to "0".
 // <MR2> : To use two-phase pulse signal processing, set this
 // bit to "1".
 // <MR3> : To use two-phase pulse signal processing, set this
 // bit to "0".
 // <TCK0> : Count operation type select bit (1: Free-run type)
 // <TCK1> : Two-phase pulse signal processing operation select
 // bit (1: Multiply-by-4 processing operation)
 udf = 0x80; // Up/down flag register
 // <TA4P> : Timer A4 two-phase pulse signal processing select
 // bit (1: two-phase pulse signal processing enabled)
 pd8_0 = 0; // Set the corresponding port direction register to "0" (TA4OUT)
 pd8_1 = 0; // Set the corresponding port direction register to "0" (TA4IN)
 trgsr = 0x00; // Trigger select register
 // <TA4TGH-L> : Timer A4 event/trigger select bit (00: Input on
 // TA4IN is selected)
如下所示，为使程序正常运行，需定义定时器 A4 的中断向量地址，使之指向中断服务程序。必须在启动文件 “sect30.inc” 的中断向量表中，定义定时器 A4 的中断程序地址 “_ta4_int”。
序号为 25 的软件中断（定时器 A4 中断）

```
.glb _ta4_int
.1word _ta4_int ; timer A4(for user)(vector 25)
```
7. 参考文献

数据手册
- M16C/26A 群（M16C/26A、M16C/26T）硬件手册 Rev.1.00
- M16C/28 群硬件手册 Rev.1.01
- M16C/29 群硬件手册 Rev.1.00
（最新版本请从瑞萨科技网页上取得）

技术信息/技术更新
（最新信息请从瑞萨科技网页上取得）

公司主页和咨询窗口

瑞萨科技公司主页
http://www.cn.renesas.com

咨询
http://www.renesas.com/inquiry
修订记录

<table>
<thead>
<tr>
<th>Rev.</th>
<th>发行日</th>
<th>修订内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>2006.04.14</td>
<td>初版发行</td>
</tr>
</tbody>
</table>

RCC05B0009-0100/Rev.1.00 2006.04 Page 10 of 12
Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
注意

本文只是参考译文，前页所载英文具有正式效力。

请遵循安全第一进行电路设计

1. 虽然瑞萨科技尽力提高半导体产品的质量和可靠性，但是半导体产品也可能发生故障。半导体的故障可能导致人身伤害、火灾事故以及财产损害。在电路设计时，请充分考虑安全性能，采用合适的冗余设计。利用非易燃材料以及故障或事故防止等的安全设计方法。

关于利用本资料时的注意事项

1. 本资料是为了让用户根据用途选择合适的瑞萨科技产品的参考资料，不转让属于瑞萨科技或者第三者所有的知识产权和其它权利的许可。
2. 对于因使用本资料所记载的产品数据、图、表、程序、算法以及其它应用电路的例子而引起的损害或者对第三者的权力的侵犯，瑞萨科技不承担责任。
3. 本资料所记载的产品数据、图、表、程序、算法以及其它所有信息均为本资料发行时的信息。由于改进产品或者其它原因，本资料记载的信息可能变动，恕不另行通知。在购买本资料所记载的产品时，请预先向瑞萨科技或者授权的瑞萨科技产品经销商确认最新信息。
4. 本资料所记载的信息可能存在技术不准确或者印刷错误。因这些错误而引起的损害、责任问题或者其它损失，瑞萨科技不承担责任。
5. 同时也请通过各种方式注意瑞萨科技公布的信息，包括瑞萨科技半导体网站。
(http: //www.renesas.com)

4. 在使用本资料所记载部分或者全部数据、图、表、程序以及算法等信息时，在最终做出有关信息和产品是否适用的判断前，务必对作为整个系统的所有信息进行评价。由于本资料所记载的信息而引起的损害、责任问题或者其它损失，瑞萨科技不承担责任。
5. 瑞萨科技的半导体产品不是在可能和人命相关的环境下使用的设备或者系统而设计和制造的产品。在研讨将本资料所记载的产品用于运输、交通车辆、医疗、航空宇宙用、原子能控制、海底中继器的设备或者系统等特殊用途时，请与瑞萨科技或者授权的瑞萨科技产品经销商联系。
6. 未经瑞萨科技的书面许可，不得翻印或者复制全部或者部分资料的内容。
7. 本资料所记载的日本出口管理限制。必须在得到日本政府的有关部门许可后才能出口，并且不准进口到批准目的地国家以外的国家。
8. 如果需要了解本资料所记载的信息或者产品的详细，请与瑞萨科技联系。