

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

AN0309001/Rev.1.00 September 2003 Page 1 of 37

PRELIMINARY

HEW
HEW Code Generation (CodeGen)

Introduction
This Application Note gives an in-depth explanation on various setting of the project generation.

The generated files and start up flow of the MCU are explained.

An example of porting a C code from SLP to TINY is also illustrated.

Target Device
All

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 2 of 37

PRELIMINARY

Contents

1. Overview ... 4

2. Invoking the HEW ... 5

3. Creating a Project ... 7
3.1 Creating a New Workspace .. 7
3.2 Selecting the Target CPU ... 9
3.3 Option Setting ... 10
3.3.1 Operation Mode (not applicable for this example) .. 11
3.3.2 Address Space (not applicable for this example) ... 11
3.3.3 Merit of Library .. 12
3.3.4 Stack Calculation .. 12
3.3.5 Change the number of parameter registers from 2(default) to 3 .. 12
3.3.6 Treat double as float ... 12
3.3.7 Pass struct parameter via register .. 12
3.3.8 Pass 4 byte parameter / return value via register ... 12
3.3.9 Use try, throw and catch of C++ ... 13
3.3.10 Enable/disable run time type information.. 13

3.4 Setting the Content of Files to be Generated ... 13
3.4.1 Use I/O Library (not applicable for this example).. 13
3.4.2 Use Heap Memory .. 14
3.4.3 Generate main() Function ... 14
3.4.4 I/O Register Definition Files .. 14
3.4.5 Generate Hardware Setup Function ... 15

3.5 Setting the Standard Library ... 16
3.6 Setting the Stack Area .. 17
3.7 Setting the Vector ... 19
3.8 Setting the Target System for Debugging... 20
3.9 Changing the File Name to be Created .. 20
3.10 Confirming Setting (Summary Dialog Box) ... 22

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 3 of 37

PRELIMINARY

4. Files Generated... 24
4.1 Project type: -Application .. 24
4.1.1 dbsct.c... 24
4.1.2 intprg.c .. 25
4.1.3 resetprg.c .. 25
4.1.4 sbrk.c... 25
4.1.5 <workspace name>.c.. 26
4.1.6 sbrk.h .. 26
4.1.7 stacksct.h .. 26

4.2 Project type: -Assembly Application ... 26
4.2.1 intprg.src ... 26
4.2.2 resetprg.src ... 26
4.2.3 stacksct.src ... 27
4.2.4 <workspace name>.src... 27
4.2.5 vecttbl.src .. 27
4.2.6 vect.inc .. 27

5. Start Up Flow .. 28

6. Porting from A Device to Another Device ... 29
6.1 Checking the Available Files... 29
6.2 Copying and Adding the Files ... 30
6.3 Understanding the Code ... 31
6.4 Modifying the Program.. 32

Revision Record.. 36

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 4 of 37

PRELIMINARY

1. Overview
High-performance Embedded Workshop (HEW2.2) from Renesas is a flexible code development and debugging environment for
applications targeted at Renesas microcontrollers. It provides an up-to-date “look and feel” with all of the features you would expect
from a modern development environment.

The main features are:

• A configurable build engine that allows you to set-up compiler, assembler and linker options via in easy to use interface.
• An integrated text editor with user customizable syntax coloring to improve code readability.
• A configurable environment to run your own tools.
• An integrated debugger which allows you to build and debug in the same application.

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 5 of 37

PRELIMINARY

2. Invoking the HEW
After the installation of the HEW, the installer creates a folder whose name “Renesas High-performance Embedded Workshop” in
the “Program” folder of the “Start” menu of the Windows®. In the “Renesas High-performance Embedded Workshop” folder,
shortcut of the HEW support files will be registered. The contents of the “Start” menu and its submenu maybe differ depending on
your installation.

Figure 1 Invoking the HEW from the “Start” Menu

If you click “High-performance Embedded Workshop 2” from the menu, the HEW will be invoked and the “Welcome!” dialog box
(Figure 2) will be displayed.

Alternatively, you can open the project promptly without the “Welcome!” dialog box if you change the setting via “Tools-
>Options”. For details of this setting, refer to chapter 6, “Customizing the environment”, of the High-performance Embedded
Workshop 2 User’s Manual.

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 6 of 37

PRELIMINARY

Figure 2 Welcome! Dialog Box

If you use the HEW for the first time or if you want to work on a new project, select the “Create a new project workspace” radio
button and click “OK”.

If you want to work on an existing project, select the “Open a recent project workspace” or “Browse to another project workspace”
radio button and click “OK”.

If you want to cancel the HEW, click “Cancel”.

If you want to control the component in the HEW, click on “Administration…”, which will invoked via “Tool->Administration…”.
For details of this setting, refer to chapter 5, “Tool Administration”, of the High-performance Embedded Workshop 2 User’s
Manual.

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 7 of 37

PRELIMINARY

3. Creating a Project

3.1 Creating a New Workspace
When you have selected the “Create a new project workspace” radio button and clicked “OK” on the “Welcome!” dialog box, the
“New Project Workspace” dialog box (Figure 3), which is used to create a new workspace and project, will be launched. You will
specify a workspace name (When a new workspace is created, the project name is the same as the default), a CPU family, a project
type, and so on, on this dialog box.

Enter the name of your workspace, “Tutorial”, for example, in the “Workspace Name” field, and the “Project Name” field will show
“tutorial” and the “Directory” field will show “C:\Hew2\Tutorial”.

If you want to change the project name, enter a new project name manually in the “Project Name” field.

If you want to change the directory used for the new workspace, click the “Browse…” button and specify a directory, or enter a
directory path manually in the [Directory] field.

Figure 3 New Project Workspace Dialog Box

Select the CPU family from the drop-down list of “CPU family” combo box. If you are not sure the CPU family of the
microcontroller, you can search from our website at “http://www.renesas.com/eng/products/mpumcu/index.html” or contact our sale
representative for clarification.

The “Tool chain” combo box is depending on the installed toolchain which you selected earlier. HEW will automatically select the
relevant tool chain based on the CPU family such as SLP, H8, TINY, SH etc.

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 8 of 37

PRELIMINARY

Table 1 Item of “Project type”

 “Project type:” Description Type of Files Generated *
Application This project is used to create a program that

includes the initial routine files written in C/C++
language.

“dbsct.c”
“intprg.c”
“resetprg.c”
“sbrk.c”
“<Workspace name>.c”
“sbrk.h”
“stacksct.h”

Assembly
Application

This project is used to create a program that
includes the initial routine files written in assembly
language.

“vecttbl.src”
“intprg.src”
“resetprg.src”
“<Workspace name>.src”
“stacksct.src”
“vect.inc”

Empty Application This project is used to set up the tool chain. No file is to be generated
Library This project is used to create a library file. No file is to be generated
*Please refer to 3.0 File Generated for detail function of each file.

Note For this example, we selected Application as the “Project type” before proceed.

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 9 of 37

PRELIMINARY

3.2 Selecting the Target CPU
When you click “OK” on the “New Project Workspace” dialog box, the project generator will be invoked. Start by selecting the CPU
that you will be using. CPU types shown in the “CPU Type:” list are classified into the CPU series shown in the “CPU Series:” list.

The selected items in the “CPU Series:” list box and the “CPU Type:” list box specify the files to be generated. Select the CPU type
of the program to be developed. If the CPU type which you want to select is not displayed in the “CPU Type:” list, select a CPU type
with similar hardware specifications or select “Other”.

Clicking “Next>” moves to the next display. Clicking “<Back” moves to the previous display or the previous dialog box. Clicking
“Finish” opens the “Summary” dialog box. Clicking “Cancel” returns the display to the “New Project Workspace” dialog box.
“<Back”, “Next>”, “Finish”, and “Cancel” are common buttons of all the wizard dialog boxes.

Figure 4 Selecting the Target CPU (Step 1)

Note: For this example, we selected SLP (Super Low Power) as CPU Series and 3802 as CPU Type before proceed.

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 10 of 37

PRELIMINARY

3.3 Option Setting
There are two ways to approach “Option Setting” dialog box that are shown below.

1. When creating a new project:

Clicking the “Next>” button on the Step 1 screen opens the dialog box shown in Figure 5.

On this screen, you can specify the options common to all project files in Step 2. The specifiable items depend on the CPU selected
in Step 1.

Figure 5 Option Setting (Step 2)

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 11 of 37

PRELIMINARY

2. After a project had been built:

Above similar changes can be made even a project had been built. Under Menu Bar Section, click on [Options->Hitachi H8
Tiny/SLP Toolchain->CPU], as shown below in Figure 6.

Note: Above Toolchain type is dependent on the type of CPU Series being chosen.

Figure 6 Option Setting (After a project been built)

3.3.1 Operation Mode (not applicable for this example)
Operation Mode specifies the operating mode of the object to be created. This option is will only be available depending on the
specify CPU series and highly dependant on Address Space (see below). For example, the H8S CPU family with 2357F CPU Type
with a 16M Address Space, can only operates in the Advanced mode while Tiny series can only operate in the Normal mode. On the
other hand, H8/300H series can operate in either Normal (16 bit addressing) or Advanced mode with 20 or 24 bit addressing.

The HEW project generator will only allow options to be used that are correct for the device chosen.

3.3.2 Address Space (not applicable for this example)
Address Space specifies the address space of the object to be created. This option is also device dependant. The HEW project
generator will only allow options to be used that are correct for the device chosen.

Please refer to relevant “C/C++ Compiler Assembler Optimizing Linkage Editor User’s Manual” for the list of possible address
space.

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 12 of 37

PRELIMINARY

3.3.3 Merit of Library
The Merit of Library specifies whether the priority of the standard library is speed or code size. One built for small code size, or one
built for speed of execution. This can be selected using the drop down list.

If Code Size has been chosen, compiler will reduce code size (number of bytes) and improved code efficiency.

If Speed had been chosen, the time to execute the whole program or function will be minimized. However, this might increase the
size of the code.

3.3.4 Stack Calculation
The Stack Calculation affects the way that changes to the value of the stack pointer are calculated by specifying the range of the
stack address.
[Small] 1-byte calculation of the stack address.
[Medium] 2-byte calculation of the stack address.
[Large] 4-byte calculation of the stack address.

Small Stack Calculation means that only the lowest byte of the stack pointer is used when adding or subtracting to the value of the
stack pointer, this limits the total stack size to H’FE bytes and means that the stack section must start and end on H’100 page
boundaries. This reduces the size and speed of instructions used to alter the value of the stack pointer. Because of the limits on the
stack size with Small Stack calculations it is not suitable for advanced mode projects or H8/300 / H8/300L projects. This is because
the stack will be inadequate for the library required. This setting is only suitable for H8S and H8/300H Normal Mode projects.

Medium Stack Calculation uses only the lowest word of the stack pointer when adding or subtracting to the value of the stack pointer.
The gives a total possible stack size of 64k, which is much more than is required for standard H8 applications. The stack section
must reside completely within a 64k page of RAM. This setting is the optimum setting for the vast majority of projects.

Large Stack Calculation uses the full four bytes of the stack pointer when adding or subtracting to the value of the stack pointer. This
will cause the compiler to operate at all times and places no restrictions on stack size or location in relation to memory page
boundaries.

3.3.5 Change the number of parameter registers from 2 (default) to 3
The default for the HEW is to use two registers to pass parameters between functions. This however can be changed to three
registers.

If this option is activated, it will change the calling convention used for one function to call another. The user needs to be aware of
this when writing assembler functions that are called by, or can call, C functions. As these options are altered the Required C
Runtime Library files to be used will change to meet the chosen settings. The usual setting here is to use three registers to pass
parameters as this will reduce stack usage and make the code smaller and faster.

3.3.6 Treat double as float
This option forces the compiler to treat all variables declared as type double, as if they were type float. Floats only take up 4 bytes
instead of 8 bytes; they do not have the same precision though.

3.3.7 Pass struct parameter via register
This option will force the compiler to pass structure parameters using registers if possible. The standard method for passing
structures is by making a copy of the structure on the stack. Structures will only be passed via a register if they are 4 bytes in size or
less and so can fit in a register.

3.3.8 Pass 4 byte parameter / return value via register
This option will force the compiler to pass variables of 4 bytes in size using two 16 bit registers (e.g. R0 and R1) instead of passing
them via the stack.

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 13 of 37

PRELIMINARY

3.3.9 Use try, throw and catch of C++
The Use try, throw and catch of C++ option enable C++ exception processing. Enabling this option may reduce the code
performance; the default setting is to disable C++ exception processing.

3.3.10 Enable/disable run time type information
The Enable/disable run time type information option enables or disables use of Run Time Type Information for dynamic_cast and
typeid. This option is not selected by default and should not be selected for code to be compiled for a library or other relocatable
module.

3.4 Setting the Content of Files to be Generated
Click the “Next>” button on the Step-2 screen to display the screen shown in Figure 6.

On this screen, specify information that is necessary to generate files.

Figure 7 Setting the Content of Files to be Generated (Step 3)

3.4.1 Use I/O Library (not applicable for this example)
If Use I/O Library is checked, the standard I/O library can be used. Specify the number of I/O streams to be used simultaneously in
the Number of I/O Streams box.

This library is generally for file operation related such as printf, scanf etc.

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 14 of 37

PRELIMINARY

3.4.2 Use Heap Memory
This is used by functions such as malloc and calloc.

If Use Heap Memory is checked, the function sbrk() for heap area management will be generated. Specify the number of bytes of the
heap area in the Heap Size: edit box.

User is advised to uncheck this function.

3.4.3 Generate main() Function
The Generate main() Function option will create a skeleton main function, in a C or C++ source file with the same name as the
project. You can also select None from the drop-down list to disable the creation of the main function.

3.4.4 I/O Register Definition Files
The I/O Register Definition Files option will create a header file with definitions for the I/O registers of the on chip peripherals.
These can be used in the users code when accessing these registers. This file will be named <iodefine.h> with the content which
dependant on device selected.

It is a good idea to generate an iodefine.h header file and take some time to look through it. The <iodefine.h> file uses structures for
each peripheral, some of the registers can be accessed using bit fields, so that only the bit or bits required need be considered in the C
code, rather that a read modify write of the whole register. This may present opportunities to improve your code, but will involve
more modifications to existing projects.

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 15 of 37

PRELIMINARY

3.4.5 Generate Hardware Setup Function
Then select whether or not to generate a sample code for the program that makes initial settings of the I/O registers from the
Generate Hardware Setup Function drop-down list.

The Generate Hardware Setup Function option can be used to generate a skeleton for a Hardware setup function, in a C /C++ source
file or Assembly source file, to be run as part of the power up sequence for the device. If selected a setup file is generated which
includes inactive code (it is all surrounded by comments) to access every register listed in the <iodefine.h> header file.

Figure 8 Hardware Setup

Notes: If you want to use an existing main function, uncheck [Generate main() Function]; add the file of the function
after generating the project. If the name of the function differs from main, change the caller of the function in
resetprg.c.

For the contents of such sample files as a vector table definition file or I/O register definition file that will be
generated by the project generator, check the description in the hardware manual for the target CPU.

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 16 of 37

PRELIMINARY

3.5 Setting the Standard Library
The screen shown in Figure 9 is displayed when the “Next>” button is clicked in the Step-3 screen. This screen is used to set details
of compilation by the C/C++ compiler.

Figure 9 Setting the Standard Library (Step 4)

These settings will set up which modules will be included in the run time library. The HEW compiler includes a library builder
utility but pre-built library files are not supplied.

The standard C library modules, which will be used in the project, must be selected to be built by the library generator here. This
selection can be altered once the project has been started.

The runtime library module and new library module are not selectable. These modules are selected by default and cannot be
unchecked.

Click on “Enable all” to select all standard library functions.

Click on “Disable all” if you do not want to select all standard library functions. For this, only the minimum required functions,
runtime and new, are selected.

These header files can also be edited in the C file at later stage.

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 17 of 37

PRELIMINARY

3.6 Setting the Stack Area
The screen shown in Figure 8 is displayed when the “Next>” button is clicked in the Step-4 screen.

This screen is used to specify the stack area.

The initial value of the stack area differs depending on “CPU Type:” selected in the Step-1 screen. To change the stack size after a
project has been created, select the “Project -> Edit Project Configuration” menu item of the HEW window.

Figure 10 Setting the Stack Area (Step 5)

The stack area is defined in stacksct.h that is generated by the HEW. If stacksct.h has been edited in an editor, its modification after
you have selected the “Project -> Edit Project Configuration” menu item of the HEW will not be available. Thus, it is best to set the
stack up as required at this stage, although these settings can be altered once the project has been created.

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 18 of 37

PRELIMINARY

Figure 11 Edit Project Configuration

Note: The naming difference between Start Stack Address and Initial Stack Pointer Address in referring to stack
address as below.

Figure 12 Naming Different Between Start Stack Address & Initial Stack Pointer Address

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 19 of 37

PRELIMINARY

3.7 Setting the Vector
Clicking the “Next>” button in the Step-5 screen displays the screen shown in Figure 13.

In this screen, a vector is specified.

If “Vector Definition Files” is checked, the HEW creates a vector table definition file. They cover both the reset vectors and the
interrupt vectors.

The “Handler” column of “Vector Handlers:” displays the handler program name, and the “Vector” column displays the vector
description.

To change the handler program, click the name of the handler program to be changed, and enter a new name.

If the handler name in the “Vector Handlers:” list is changed, the HEW does not create the reset program (resetprg.c).

Figure 13 Setting the Vector (Step 6)

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 20 of 37

PRELIMINARY

3.8 Setting the Target System for Debugging
When the “Next>” button is clicked in the Step-6 screen, the screen shown in Figure 14 is displayed. This screen is used to specify
the target system for debugging. Select (check) the target for debugging from the list under “Targets:”. Selection of no target or of
multiple targets is allowed.

Figure 14 Setting the Target System for Debugging (Step 7)

If you change “Target type:”, you can specify the other target system for debugging.

3.9 Changing the File Name to be Created
When the “Next>” button is clicked in the Step-7 screen, the screen shown in Figure 15 is displayed.

The screen displays a list of files created by HEW according to the previous settings. The [File
Name] column in the list shows a file name, “Extension” shows an extension, and “Description” shows the description of a file. The
file name can be changed. To change a file name, select it by clicking it and change it to a new file name.

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 21 of 37

PRELIMINARY

Click the “Finish” button without changing the settings. When the button is clicked, the “Summary” dialog box will be displayed.

Figure 15 Changing the File Name to be Created (Step 9)

Note: A file with an extension “h” or “inc” (shown in the [Extension] column) is an include file. If you change the file
name of an include file, the file name at the include directive have to be modified.

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 22 of 37

PRELIMINARY

3.10 Confirming Setting (Summary Dialog Box)
When the “Finish” button is clicked, the screen shown in Figure 16 is displayed which shows a list of generated files on the
“Summary” dialog box.

Confirm the contents of the dialog box and click “OK”.

When “Generate Readme.txt as a summary file in the project directory” checkbox is checked, the project information displayed on
the “Summary” dialog box will be stored in the project directory under the text file name "Readme.txt".

Figure 16 Confirming Setting (Summary Dialog Box)

When the “OK” button is clicked in the Summary Dialog Box, HEW will open a project generated by the project generator (Figure
17).

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 23 of 37

PRELIMINARY

The project generated by the project generator includes minimum option for the C/C++ compiler, the assembler, the inter-module
optimiser and the object converter. Thus, the project can be built.

Figure 17 Sub-windows of HEW

For more detail on how to change the state of the HEW and how to use each window such as the editor window, please refer to the
“High-performance Embedded Workshop 2 User’s Manual”

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 24 of 37

PRELIMINARY

4. Files Generated
The following table shows the generated files (with default setting) when using the project generator:

Table 2 Files Generated

“Project type:” Type of Files Generated *
Application “dbsct.c”

“intprg.c”
“resetprg.c”
“sbrk.c”
“<Workspace name>.c”
“sbrk.h”
“stacksct.h”

Assembly Application “intprg.src”
“resetprg.src”
“stacksct.src”
“<Workspace name>.src”
“vecttbl.src”
 “vect.inc”

Empty Application No file is to be generated
Library No file is to be generated

4.1 Project type: -Application
4.1.1 dbsct.c
This file contains the memory map setting for the application. The program will set the starting and end address of ROM and RAM.
Besides, it also set the initialize data in ROM (D), initialize data in RAM (R) and also global variable/variable (B).

For more detail about the memory map setting and information, please refer to the respective device Hardware Manual.

Figure 18 Memory Map

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 25 of 37

PRELIMINARY

4.1.2 intprg.c
This program contains the entire interrupt vector and interrupt program for the device. In this file, user can write in the interrupt
routine for the particular interrupt.

The library file <machine.h> is used to include intrinsic function definitions, e.g. set_vbr. This library header can be removed if none
of the intrinsic function will be used.

For example, user can modify or add in the routine for IRQ0 (vector =4) as below.

__interrupt(vect=4) void INT_IRQ0(void)
{
 unsigned short delay;
 sound_buzzer(1);
 for (delay = 0 ; delay < 5000 ; delay++);
 sound_buzzer(0);
 clear_irq0_n();
}

For more detail information about the interrupt, please refer to the chapter on “Exception Handling” in respective device Hardware
Manual.

4.1.3 resetprg.c
This module contains the reset program for the application. The number of exception event is device dependant. For example, for
SLP H8/38024, it only has Power On Reset program. For SH3 7727, it has 2 Exception Event, Power On Reset and Manual Reset.

The library file <machine.h> is used to include intrinsic function definitions, e.g. set_vbr. It also can be used in language extensions
for embedded systems. This library header can be removed if none of the intrinsic function will be used.

A reset is the highest-priority exception. The internal state of the CPU and the registers of the on-chip peripheral modules are
initialized. The reason for the Reset Exception Handling is vary and depend on device.

The few most common reasons are:

• The CPU internal state and the registers of on-chip peripheral modules are initialized.
• The PC is loaded from the reset exception handling vector address, after which the program starts executing from the

address indicated in PC.
• When system power is turned on or off.

After the Reset Exception Handling, the application will jump to main() function and execute it.

Besides main(), this module also contains a few pre define function such as Hardware Setup, SIM I/O etc. User can remove the
comment on these functions whenever they are not in use.

For more detail information about the interrupt and intrinsic function, please refer to the chapter on “Exception Handling” in the
Hardware Manual of respective device.

4.1.4 sbrk.c
This module contains the heap area-setting program. This is used by functions such as malloc and calloc.

The heap segment provides more stable storage of data for a program; memory allocated in the heap remains in existence for the
duration of a program. Therefore, global variables (storage class external), and static variables are allocated on the heap. The
memory allocated in the heap area, if initialized to zero at program start, remains zero until the program makes use of it. Thus, the
heap area need not contain garbage.

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 26 of 37

PRELIMINARY

4.1.5 <workspace name>.c
This module contains the skeleton of main program for the user to edit.

4.1.6 sbrk.h
This file contains the header file of sbrk file. It defines the heap size according to setting by the user in Step 3 during project
generation.

4.1.7 stacksct.h
This file contains the setting of stack area. User should not modify this line.

Select the “Project -> Edit Project Configuration” menu item of the HEW window to change the stack section setting and initial
stack value (first instruction)(Figure 11).

Figure 19 Initial Stack Pointer

4.2 Project type: -Assembly Application
4.2.1 intprg.src
This file contains the entire interrupt program for the application. The content is similar to intprg.c. Besides the different in the
language been used, which is assembly language instead of C/C++, intprg.src does not contain the interrupt vector table.

For detail, please refer to 3.1.2 intprg.c

4.2.2 resetprg.src
This file contains the reset program for the application. The content is the same as resetprg.c but only different in the language been
used, which is assembly language instead of C/C++.

For detail, please refer to 3.1.3 resetprg.c

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 27 of 37

PRELIMINARY

4.2.3 stacksct.src
This file contains the setting of stack area. User should not modify the stack size. The content is similar to stacksct.h. The only
different is this file also contain Reset stack pointer.

4.2.4 <workspace name>.src
This module contains the skeleton of main program for the user to edit.

4.2.5 vecttbl.src
This module contains the initialization of the vector table.

For more detail information about the interrupt, please refer to the chapter on “Exception Handling” in the Hardware Manual of
respective device.

4.2.6 vect.inc
This module contains the definition of vector table for the application.

For more detail information about the interrupt, please refer to the chapter on “Exception Handling” in respective device Hardware
Manual.

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 28 of 37

PRELIMINARY

5. Start Up Flow
The resetprg.c file prepares the MCU before the actual execution of the application.

A. Initialize the Stack

B. Mask the interrupt

C. Initialize the variable by copying all physical data in the ROM space to the RAM space. For example, a global variable of
int count =25 is declared. Variable count had an unknown data in RAM when power up. The INITSTC.c routine will copy
the initial data “25” from the ROM space (D are) to the RAM space (R area).

D. Initialize all the necessary I/O function if it’s enable in Step 3.

E. Setup all peripherals (hardwareSetup.c).

F. Clear internal mask.

G. Jump to main routine where by the actual application begin.

Figure 20 Start Up Flow

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 29 of 37

PRELIMINARY

6. Porting from A Device to Another Device
HEW provides a flexible code development and debugging environment for applications targeted at Renesas microcontrollers. Thus,
it is easy to port a program from one device to another device. In the following example, we quoted the sample program from
Interfacing to E2PROM with I2C Emulation (Port) to demonstrate the simplicity of porting the program from SLP H8/38024
(Workspace name: I2C) to Tiny 3644 (Workspace name: 3644).

For full detail and explanation on how the program works, please refer to Application Note Interfacing to E2PROM with I2C
Emulation (Port).

6.1 Checking the Available Files
In this step, we will need to check and confirm which files were generated by the HEW. For those files generated by the HEW, user
need to check whether any modification been made.

Please refer to 3.0 Files Generated for detail.

Figure 21 Files in I2C Workspace Figure 22 Initial Files in 3644 Workspace

In this example, as the project generator will create all necessary setting for the new device; we realized that most of the files were
auto generated except “rw.c” and “i2c.h”.

Note: Users are advice to generate the project target to the new device (3644) and port the code from other project

into the new project.

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 30 of 37

PRELIMINARY

6.2 Copying and Adding the Files
Copy the content of “rw.c” and “i2c.h” file from I2C Workspace to 3644 workspace. Save both files according to its original name.
Then add the files into 3644 workspace.

Not to forget “i2c.c” which contains the main program also been edited.

Figure 23 Files in 3644 Workspace After Added “rw.c” & “i2c.h”

Note: If you try to compile or build the application in 3644 workspace, error message will be prompted out. This is
because further modification is needed before its error free.

For more information on modifying the project, please refer to “Chapter 3 Modifying the Project” in “High-
performance Embedded Workshop 2 Tutorial” manual.

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 31 of 37

PRELIMINARY

6.3 Understanding the Code
After understanding the code, you will need to locate the critical code line, which is device dependant such as IO pin configuration
and specific register configuration.

For example, Figure 24 below shows the definition of Tiny 3644 pin configuration in “i2c.h” file (I2C workspace). There is no
specific register configuration been used in this example.

Figure 24 “i2c.h” file of I2C Workspace (SLP H8/38024)

From the earlier explanation, we understand that most of the generated files are generic across all kind of device except
<iodefine.h>(contains the entire pins definition), which is device dependant.

Thus, when porting this program to 3644 device, these definitions need to be modified.

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 32 of 37

PRELIMINARY

6.4 Modifying the Program
Before modifying the code, we need to compare the <iodefine.h> file for both devices.

Figure 25 I/O address Definition of I2C Workspace (SLP H8/38024)

Figure 26 I/O address Definition of 3644 Workspace (Tiny 3644)

From the <iodefine.h> file, we can see that both devices have general IO port. However, the defined name for both IO port are
different (Figure 25 & Figure 26). Thus, after porting the code to 3644, we need to modify “P_IO.PDR7.BYTE” to
“IO.PDR7.BYTE”. Same modification also needs to be done on other similar definitions.

Besides the above comparison, we also realized that the bit definitions of PDR7 and PDR8 for both devices are the same. Thus,
modification is not needed (Figure 27 & Figure 28).

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 33 of 37

PRELIMINARY

Figure 27 PDR7 & PDR8 Definition of I2C Workspace (SLP H8/38024)

Figure 28 PDR7 & PDR8 Definition of 3644 Workspace (Tiny 3644)

The same comparison is carried out for PCR7 and PCR8. There is a different in definition for both devices (Figure 29 & Figure 30).
Thus, modification is needed for PCR7 and PCR8. We need to change “P_IO.PCR8.BYTE” to “IO.PCR8” in 3644 workspace.

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 34 of 37

PRELIMINARY

Figure 29 PCR7 & PCR8 Definition of I2C Workspace (SLP H8/38024)

Figure 30 PCR7 & PCR8 Definition of 3644 Workspace (Tiny 3644)

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 35 of 37

PRELIMINARY

After modification, “i2c.h” file in 3644 workspace as shown in Figure 31.

Figure 31 “i2c.h” file of 3644 Workspace (Tiny 3644) after modification

Compile and build the workspace and Tiny 3644 is ready to interface with E2PROM using I2C Emulation (Port).

The above example is to demonstrate the wonders of C portability. It is a basic example of how to deal with the C files.

However, in a more complex and microcontroller with different features and architecture, the porting will be much tougher,

Considerations such as:-

1. Memory space, example small RAM size
2. Peripheral channels such as 2 serial ports but only one is available peripheral usage, timer etc,
3. Different compiler with different directive, and
4. others

are important before doing the porting.

REFERENCE
1. Application Note “The HEW Project Generator For The Hitachi H8 v4 compiler” (Issue: APP20011101-01), Hitachi Micro
Systems Europe Ltd, 16.11.2001.

2. “SuperH RISC Engine Hitachi Embedded Workshop 2.0 Tutorial (Hitachi Toolchain)”, Hitachi Ltd, 16.10.2001.

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 36 of 37

PRELIMINARY

Revision Record
Description

Rev.

Date Page Summary

1.00 September.03 — First edition issued

HEW
HEW Code Generation (CodeGen)

AN0309001/Rev.1.00 September 2003 Page 37 of 37

PRELIMINARY

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation
product distributor when considering the use of a product contained herein for any specific
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear,
or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

	Overview
	Invoking the HEW
	Creating a Project
	Creating a New Workspace
	Selecting the Target CPU
	Option Setting
	Operation Mode (not applicable for this example)
	Address Space (not applicable for this example)
	Merit of Library
	Stack Calculation
	Change the number of parameter registers from 2 (default) to
	Treat double as float
	Pass struct parameter via register
	Pass 4 byte parameter / return value via register
	Use try, throw and catch of C++
	Enable/disable run time type information

	Setting the Content of Files to be Generated
	Use I/O Library (not applicable for this example)
	Use Heap Memory
	Generate main() Function
	I/O Register Definition Files
	Generate Hardware Setup Function

	Setting the Standard Library
	Setting the Stack Area
	Setting the Vector
	Setting the Target System for Debugging
	Changing the File Name to be Created
	Confirming Setting (Summary Dialog Box)

	Files Generated
	Project type: -Application
	dbsct.c
	intprg.c
	resetprg.c
	sbrk.c
	<workspace name>.c
	sbrk.h
	stacksct.h

	Project type: -Assembly Application
	intprg.src
	resetprg.src
	stacksct.src
	<workspace name>.src
	vecttbl.src
	vect.inc

	Start Up Flow
	Porting from A Device to Another Device
	Checking the Available Files
	Copying and Adding the Files
	Understanding the Code
	Modifying the Program

