

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

www.renesas-electoronics.com

HI SeriesOS
Application Note

16

A
pplication N

ote

Rev.3.00 2005.01

Renesas Microcomputer
Development Environment
System

Rev. 3.00 Jan. 12, 2005 Page ii of xx

Rev. 3.00 Jan. 12, 2005 Page iii of xx

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corp. product best suited to the customer's application; they do not convey any license
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corp. without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or
an authorized Renesas Technology Corp. product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising
from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means,
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

Rev. 3.00 Jan. 12, 2005 Page iv of xx

Preface

The HI series OS (operating system) is a machine-installed realtime multitasking OS
manufactured by Renesas Technology Corp. based on the µITRON specifications.

This application note is targeted towards the following engineers.

Targeted Engineers Requirements

Engineers who understand the ITRON
specifications

Must know the terms used in the ITRON
specifications

Engineers who understand the outline of the HI
series OS

Must understand the functions provided by the
HI-series OS

Engineers who plan to develop systems using
the HI series OS

Must have programming experience in
assembly language and C language and
understand written programs

This application note gives supplementary information about the development of applications
using the HI series OS and answers questions frequently asked by users of the HI series OS.

Application Note Structure:

This application note contains the following four sections:

Section Contents

Section 1
Functions of the HI series OS

Describes the functions and objects of the HI series OS and
answers related FAQs.

Section 2
Creation of application programs

Describes creation of application programs using the HI
series OS and answers related FAQs.

Section 3
Configuration

Describes configuration of the HI series OS and answers
related FAQs.

Section 4
Device-dependent specifications

Answers FAQs related to the device-dependent
specifications of the HI series OS.

Section 5
Debugging

Describes debugging of application programs using the HI
series OS and answers related FAQs.

For details of each OS in the HI series, refer also to the user's manual of the OS to fully understand
it.

Rev. 3.00 Jan. 12, 2005 Page v of xx

Related Manuals:

Please read also the following manuals related to this application note.

• User's manual of the HI series OS used

• Hardware manual and programming manual of the microcomputer used

• User's manual of the cross compiler used

• High-performance Embedded Workshop (HEW) User's Manual

Terms and Symbols Used in this Application Note

Term or Symbol Description

H’ and D’ “H’” is a prefix for a hexadecimal value and “D’” is for decimal.
A value without a prefix is a decimal value.

Copy-back A caching method used in the SH-4 series microcomputer. In
the SH-3 and SH3-DSP series microcomputers, the equivalent
method is called "write-back", but both are collectively called
"copy-back" in this application note.

Descriptions of Product Names

Product Name Description

HI7000/4 OS based on the µITRON4.0 specifications for the SH-1, SH-2, and
SH2-DSP series microcomputers manufactured by Renesas Technology
Corp.

HI7700/4 OS based on the µITRON4.0 specifications for the SH-3, SH3-DSP, and
SH4AL-DSP series microcomputers manufactured by Renesas
Technology Corp.

HI7750/4 OS based on the µITRON4.0 specifications for the SH-4 and SH-4A
series microcomputers manufactured by Renesas Technology Corp.

HI7000/4 series Collective name for HI7000/4, HI7700/4, and HI7750/4.

HI2000/3 OS based on the µITRON3.0 specifications for the H8S family
microcomputers manufactured by Renesas Technology Corp.

HI1000/4 OS based on the µITRON4.0 specifications for the H8SX family
microcomputers manufactured by Renesas Technology Corp.

HEW Abbreviation of High-performance Embedded Workshop, an integrated
system development environment manufactured by Renesas Technology
Corp.

Rev. 3.00 Jan. 12, 2005 Page vi of xx

µITRON Specifications Referred to in this Application Note

This application note uses the terms of the µITRON4.0 specifications. When using the OS based
on the µITRON3.0 specifications, note the following differences in terms.

Term Description

Service call A term used in the µITRON4.0 specifications. In the µITRON3.0
specifications, the equivalent is called a "system call", but both are
collectively called a "service call" in this application note.

Task context Name of a system state in the µITRON4.0 specifications. The name
depends on the version of the µITRON specifications (for example, it is
called task portion in the µITRON3.0 specifications), but all are
collectively called "task context" in this application note.

Non-task context Name of a system state in the µITRON4.0 specifications. The name
depends on the version of the µITRON specifications (for example, it is
called non-task portion or task-independent portion in the µITRON3.0
specifications), but all are collectively called "non-task context" in this
application note.

Interrupt mask bits Collective name for all interrupt mask bits in the status register (SR) of
the SuperH family microcomputers and in the condition code register
(CCR) and extended register (EXR) of the H8S family microcomputers
and H8SX family microcomputers.

Object Targets to be manipulated by service calls are collectively called
"objects"; these include tasks, semaphores, event flags, mailboxes,
message buffers, fixed-length memory pools, variable-length memory
pools, cyclic handlers, alarm handlers, and overrun handlers.

Cyclic handler An object in the µITRON4.0 specifications. In the µITRON3.0
specifications, the equivalent object is called a "cyclic start handler", but
both are collectively called a "cyclic handler" in this application note.

Initialization routine A term used in the µITRON4.0 specifications. In the µITRON3.0
specifications, the equivalent is called a "system initialization handler",
but both are collectively called an "initialization routine" in this application
note.

Rev. 3.00 Jan. 12, 2005 Page vii of xx

FAQ Description Format:

This application note answers FAQs in the following format:

Classification

Question

Answer

(Continued on next page)
Shows that the answer
continues on the next page.

Answer

Question

Applicable HI series OS

Classification of questions

Examples:
 System state
 Configuration operation
 Configurator
 Semaphore

Examples:
 HI7000/4
 HI7700/4
 HI7750/4
 HI2000/3
 HI1000/4

Rev. 3.00 Jan. 12, 2005 Page viii of xx

Rev. 3.00 Jan. 12, 2005 Page ix of xx

Contents

Section 1 Functions of the HI Series OS ...1
1.1 System State... 1

1.1.1 FAQs about System State ... 4
1.2 Objects ... 8

1.2.1 What Is an Object?.. 8
1.2.2 ID Assignment .. 8
1.2.3 FAQs about Objects.. 9

1.3 Service Call Parameter Check.. 13
1.3.1 Installation in HI7000/4 Series ... 14
1.3.2 Installation in HI2000/3 and HI1000/4 ... 15
1.3.3 FAQ about Service Call Parameter Check.. 21

1.4 Tasks .. 23
1.4.1 Tasks and Functions.. 23
1.4.2 Task Initiation ... 25
1.4.3 Task Stacks ... 26
1.4.4 CPU Allocation to Tasks .. 29
1.4.5 Polling... 35
1.4.6 FAQs about Tasks... 39

1.5 Interrupts.. 53
1.5.1 Processing before Handler Initiation after Interrupt Occurrence 53
1.5.2 Kernel Interrupt Mask Level... 56
1.5.3 Notes When Using an H8S or H8SX Family Microcomputer 57
1.5.4 Notes on Interrupt Handler Creation... 60
1.5.5 FAQs about Interrupts .. 61

1.6 Event Flags .. 76
1.6.1 Specification of Event Flag Clearing .. 76
1.6.2 FAQ about Event Flags... 79

1.7 Semaphore ... 82
1.7.1 Task Deadlock by Using Semaphore .. 82

1.8 Mutex... 84
1.8.1 Priority Inversion .. 84
1.8.2 Overview of Mutex Processing... 85

1.9 Mailbox.. 87
1.9.1 Overview of Mailbox Processing.. 87
1.9.2 Overview of Sending a Message Using Mailbox.. 88
1.9.3 Overview of Receiving a Message Using Mailbox... 91

Rev. 3.00 Jan. 12, 2005 Page x of xx

1.9.4 FAQ about Mailbox.. 93
1.10 Message Buffer .. 95

1.10.1 Overview of Message Buffer Processing.. 95
1.10.2 1.10.2 Overview of Sending a Message Using Message Buffer 96
1.10.3 Overview of Receiving a Message Using Message Buffer..................................... 99

1.11 Data Queue .. 101
1.11.1 Overview of Data Queue Processing .. 101
1.11.2 Overview of Sending a Message Using Data Queue .. 102
1.11.3 Overview of Receiving a Message Using Data Queue ... 105

1.12 Memory Pool ... 107
1.12.1 Fragmentation ... 107
1.12.2 FAQ about Memory Pool ... 109

1.13 Time Management ... 111
1.13.1 Concept of Time Management ... 111
1.13.2 Modification of Hardware Timer Cycle Unit ... 113
1.13.3 Cyclic Handler .. 117
1.13.4 Overview of Timer Management Processing.. 118

Section 2 Application Program Creation...121
2.1 Overview of Processing from Reset to Task Initiation .. 121
2.2 Overview of CPU Initialization Routine.. 122

2.2.1 FAQs about CPU Initialization Routine ... 138
2.3 Overview of Kernel Initialization Processing .. 144

2.3.1 Initialization Routine .. 144
2.3.2 Shifting to Multitask Environment ... 145
2.3.3 FAQ about Kernel Initialization Processing ... 146

2.4 Overview of System Idling Processing.. 148
2.4.1 System Idling Processing Using SLEEP Instruction .. 148
2.4.2 FAQs about System Idling Processing.. 151

2.5 Overview of System Termination Processing.. 154
2.5.1 Sample System Termination Processing... 155
2.5.2 FAQ about System Termination Processing... 158

2.6 Application Program Types ... 160
2.6.1 Task Creation Example... 161
2.6.2 Interrupt Handler Creation Example... 162
2.6.3 CPU Initialization Routine Creation Example.. 166
2.6.4 System Termination Processing Creation Example.. 169
2.6.5 System Idling Routine Creation Example... 170
2.6.6 Initialization Routine Creation Example... 171
2.6.7 Timer Interrupt Routine Creation Example .. 172

Rev. 3.00 Jan. 12, 2005 Page xi of xx

2.6.8 Task Exception Processing Routine Creation Example.. 173
2.6.9 Extended Service Call Routine Creation Example ... 173
2.6.10 CPU Exception Handler Creation Example.. 174
2.6.11 Time Event Handler Creation Example .. 174

2.7 Development Procedures for Application Programs.. 176

Section 3 Configuration ...179
3.1 Configuration Procedure Outline ... 179
3.2 Defining Kernel Environment.. 183

3.2.1 Definition by Configurator (HI7000/4 Series and HI1000/4) 183
3.2.2 FAQ about Configurator ... 225
3.2.3 Definition by Setup Table (HI2000/3) .. 227
3.2.4 FAQ about Setup Table .. 243

3.3 Stack Size Calculation ... 245
3.3.1 Stack Size Calculation from Stack Frame Size... 245
3.3.2 Stack Size Calculation by CallWalker .. 245

3.4 System Configuration Procedure ... 260
3.4.1 HI7000/4 ... 261
3.4.2 HI7700/4 ... 261
3.4.3 HI7750/4 ... 261
3.4.4 HI2000/3 ... 261
3.4.5 HI1000/4 ... 271
3.4.6 FAQs about System Configuration ... 282

Section 4 Device-Dependent Specifications..289
4.1 FAQs about Device-Dependent Specifications.. 289

4.1.1 Cache Enabling Setting... 290
4.1.2 Cache Usage ... 292
4.1.3 Restrictions on Write-Back Mode (1)... 295
4.1.4 Restrictions on Write-Back Mode (2)... 297
4.1.5 Cache Support... 299
4.1.6 X/Y Memory Usage.. 300
4.1.7 Support of MMU .. 301
4.1.8 Timer Driver ... 302
4.1.9 Control of Timer Used by OS... 304
4.1.10 CPU Initialization Routine Written in C Language .. 305
4.1.11 Location of Interrupt Entry/Exit Processing Routine.. 306
4.1.12 Initialization of External Memory... 307
4.1.13 Transition to Power-Down Mode ... 308

Rev. 3.00 Jan. 12, 2005 Page xii of xx

Section 5 Debugging ...311
5.1 Overview of Debugging... 311
5.2 HI7000/4 Series ... 312

5.2.1 Preparation for Debugging.. 312
5.2.2 System Going Down... 316
5.2.3 Types of System Down Causes .. 316

5.3 HI2000/3 .. 323
5.3.1 Preparation for Debugging.. 323
5.3.2 System Going Down... 325
5.3.3 Types of System Down Causes .. 326

5.4 HI1000/4 .. 332
5.4.1 Preparation for Debugging.. 332
5.4.2 System Going Down... 334
5.4.3 Types of System Down Causes .. 334

5.5 Determining System Down Location... 339
5.5.1 Determining the Location of a Program Module through Mapview..................... 339

5.6 Examples and Solutions of CPU Exception... 344
5.6.1 Failure in Hardware .. 346
5.6.2 Incorrect Configuration... 346
5.6.3 Error in Program Description ... 350

5.7 FAQs about Debugging ... 355
5.7.1 Saving a Program in ROM.. 356
5.7.2 System-Down When Memory Pool is Used ... 361

Rev. 3.00 Jan. 12, 2005 Page xiii of xx

Figures

Section 1 Functions of the HI Series OS
Figure 1.1 State of the HI Series OS System .. 2
Figure 1.2 System State and Interrupt Mask Bit Value .. 3
Figure 1.3 Sample Code for Context Check (HI7000/4 Series and HI1000/4)............................... 5
Figure 1.4 Sample Code for Context Check (HI2000/3) .. 6
Figure 1.5 Sample Code Using loc_cpu ... 7
Figure 1.6 Sample Setup Table (2655asup.src for H8S/2655) (1/2)... 10
Figure 1.6 Sample Setup Table (2655asup.src for H8S/2655) (2/2)... 11
Figure 1.7 Kernel Extension Function View .. 14
Figure 1.8 Library File Definition (1)... 16
Figure 1.9 Library File Definition (2)... 17
Figure 1.10 Library File Definition (3)... 18
Figure 1.11 Library File Definition (4)... 18
Figure 1.12 Library File Definition (5)... 19
Figure 1.13 Library File Definition (6)... 20
Figure 1.14 Differences between Tasks and Functions .. 24
Figure 1.15 Task State Transitions ... 25
Figure 1.16 Task State Transitions for Shared Stack Function... 28
Figure 1.17 Task Priority (1) .. 29
Figure 1.18 Task Priority (2) .. 30
Figure 1.19 Task Priority (3) .. 30
Figure 1.20 Priority Before a Service Call Is Issued to Other Tasks .. 31
Figure 1.21 Priority After a Service Call Is Issued to Other Tasks (1) ... 32
Figure 1.22 Priority After a Service Call Is Issued to Other Tasks (2) ... 32
Figure 1.23 Priority Before a Service Call Is Issued to Current Task... 33
Figure 1.24 Priority After a Service Call Is Issued to Current Task (1).. 33
Figure 1.25 Priority After a Service Call Is Issued to Current Task (2).. 34
Figure 1.26 Overview of General Event Wait Service Call Processing.. 35
Figure 1.27 Overview of Event Wait Service Call Processing with Timeout............................... 36
Figure 1.28 Overview of Event Wait Service Call Processing with Polling................................. 37
Figure 1.29 Task Creation Window.. 42
Figure 1.30 DSP Selection in Configurator .. 46
Figure 1.31 DSP Selection for Task Creation by Service Call (Sample Code) 47
Figure 1.32 FPU Selection in Configurator (TA_COP1).. 49
Figure 1.33 FPU Selection in Configurator (TA_COP2).. 50
Figure 1.34 FPU Selection in Configurator (TA_COP1 and TA_COP2)..................................... 51

Rev. 3.00 Jan. 12, 2005 Page xiv of xx

Figure 1.35 FPU Selection for Task Creation by Service Call (Sample Code) 52
Figure 1.36 Overview of Processing before Handler Initiation after Interrupt Occurrence (1) ... 53
Figure 1.37 Overview of Processing before Handler Initiation after Interrupt Occurrence (2) ... 54
Figure 1.38 Overview of Processing before Handler Initiation after Interrupt Occurrence (3) ... 55
Figure 1.39 Overview of Interrupt Mask by Kernel ... 56
Figure 1.40 Kernel Interrupt Mask Level and Interrupt Levels .. 57
Figure 1.41 Multiple Interrupts... 64
Figure 1.42 Overview of Processing before Interrupt Handler Initiation

after Interrupt Occurrence ... 65
Figure 1.43 Sample Code of Interrupt Handler .. 68
Figure 1.44 Example of #pragma interrupt Usage.. 74
Figure 1.45 Overview of Event Flag Processing without Clearing .. 76
Figure 1.46 Overview of Processing with Clearing (HI2000/3) ... 77
Figure 1.47 Overview of Processing with Clearing (HI7000/4 Series and HI1000/4) 78
Figure 1.48 Sample Code when a Task Sets the Event Flag... 80
Figure 1.49 Sample Code when an Interrupt Handler Sets the Event Flag................................... 81
Figure 1.50 Semaphore Usage Example... 82
Figure 1.51 Deadlock Example (Tasks Cannot Operate) ... 83
Figure 1.52 Overview of Priority Inversion.. 84
Figure 1.53 Overview of Mutex Processing ... 85
Figure 1.54 Overview of Mailbox Processing .. 87
Figure 1.55 Overview of Sending a Message Using Mailbox .. 88
Figure 1.56 Message Header Formats .. 89
Figure 1.57 Sample Code for Sending Message... 90
Figure 1.58 Overview of Receiving Message for Mailbox with Messages 91
Figure 1.59 Overview of Receiving Message for Mailbox with No Messages 92
Figure 1.60 Example of Checking that Message is Received... 94
Figure 1.61 Overview of Message Buffer Processing .. 95
Figure 1.62 Overview of Sending a Message for Message Buffer with Enough Free Space 97
Figure 1.63 Overview of Sending a Message for Message Buffer with Insufficient

Free Space ... 98
Figure 1.64 Overview of Receiving Message for Message Buffer with Messages 99
Figure 1.65 Overview of Receiving Message for Message Buffer with No Messages............... 100
Figure 1.66 Overview of Data Queue Processing... 101
Figure 1.67 Overview of Sending a Message for Data Queue with Enough Free Space............ 102
Figure 1.68 Overview of Sending a Message for Data Queue with Insufficient Free Space...... 103
Figure 1.69 Overview of Forcible Send Processing by Data Queue... 104
Figure 1.70 Overview of Receiving Message for Data Queue with Messages........................... 105
Figure 1.71 Overview of Receiving Message for Data Queue with No Messages 106
Figure 1.72 Overview of Fragmentation... 107

Rev. 3.00 Jan. 12, 2005 Page xv of xx

Figure 1.73 Overview of tslp_tsk(3) Processing... 111
Figure 1.74 Error in tslp_tsk(3) Processing .. 112
Figure 1.75 Configurator Window for Time Management Settings ... 114
Figure 1.76 Calculation of Time Tick Cycle .. 114
Figure 1.77 Header File for Timer Driver in Standard Sample Program (2655ause.src) 115
Figure 1.78 Overview of Cyclic Handler Initiation (HI7000/4 Series and HI1000/4)................ 117
Figure 1.79 Overview of Cyclic Handler Initiation (HI2000/3) ... 117
Figure 1.80 Overview of Timer Driver Processing (HI7000/4 Series) 118
Figure 1.81 Overview of Timer Driver Processing (HI2000/3 and HI1000/4)........................... 119

Section 2 Application Program Creation
Figure 2.1 Procedure after CPU Reset and Until Task Initiation.. 121
Figure 2.2 HI7000/4 CPU Initialization Routine: Assembly Language (SH7604) (1/2) 124
Figure 2.2 HI7000/4 CPU Initialization Routine: Assembly Language (SH7604) (2/2) 125
Figure 2.3 HI7000/4 CPU Initialization Routine: C Language (SH7604) 126
Figure 2.4 HI7700/4 CPU Initialization Routine: Assembly Language (SH7708) (1/3) 127
Figure 2.4 HI7700/4 CPU Initialization Routine: Assembly Language (SH7708) (2/3) 128
Figure 2.4 HI7700/4 CPU Initialization Routine: Assembly Language (SH7708) (3/3) 129
Figure 2.5 HI7700/4 CPU Initialization Routine: C Language (SH7708) 130
Figure 2.6 HI7750/4 CPU Initialization Routine: Assembly Language (SH7750) (1/3) 131
Figure 2.6 HI7750/4 CPU Initialization Routine: Assembly Language (SH7750) (2/3) 132
Figure 2.6 HI7750/4 CPU Initialization Routine: Assembly Language (SH7750) (3/3) 133
Figure 2.7 HI7750/4 CPU Initialization Routine: C Language (SH7750) 134
Figure 2.8 HI2000/3 CPU Initialization Routine (H8S/2655) (1/2).. 135
Figure 2.8 HI2000/3 CPU Initialization Routine (H8S/2655) (2/2).. 136
Figure 2.9 HI1000/4 CPU Initialization Routine (H8SX/1650) ... 137
Figure 2.10 Definition in CPU Initialization Routine... 140
Figure 2.11 INITSCT() Processing... 141
Figure 2.12 Sample Initialization Routine Code... 144
Figure 2.13 System Idling Processing Using SLEEP Instruction (HI7000/4 Series).................. 148
Figure 2.14 System Idling Processing Using SLEEP Instruction (HI2000/3) 149
Figure 2.15 System Idling Processing Using SLEEP Instruction (HI1000/4) 150
Figure 2.16 System Termination Processing (HI7000/4) ... 155
Figure 2.17 System Termination Processing (HI7700/4 and HI7750/4)..................................... 156
Figure 2.18 System Termination Processing (HI2000/3) ... 157
Figure 2.19 System Termination Processing (HI1000/4) ... 157
Figure 2.20 Sample Task Code... 162
Figure 2.21 Sample Interrupt Handler Code (HI7000/4 Series) ... 162
Figure 2.22 Sample of Interrupt Handler Code when Using IRL Interrupts

(HI7000/4 Series) .. 163

Rev. 3.00 Jan. 12, 2005 Page xvi of xx

Figure 2.23 Sample Direct Interrupt Handler Code (HI7000/4) ... 164
Figure 2.24 Sample Interrupt Handler Code (HI2000/3).. 166
Figure 2.25 Sample Modification of Assembly-Language CPU Initialization Routine

(HI2000/3) ... 167
Figure 2.26 Sample C-Language CPU Initialization Routine Code (HI2000/3) 167
Figure 2.27 Sample Modification of Assembly-Language CPU Initialization Routine

(HI1000/4) ... 168
Figure 2.28 Sample C-Language CPU Initialization Routine Code (HI1000/4) 168
Figure 2.29 Sample System Termination Processing Code (HI2000/3) 169
Figure 2.30 Sample System Idling Routine Code (HI2000/3).. 170
Figure 2.31 Sample Initialization Routine Code... 171
Figure 2.32 Sample Timer Interrupt Routine Code .. 172
Figure 2.33 Sample Task Exception Processing Routine Code.. 173
Figure 2.34 Sample Extended Service Call Routine Code ... 173
Figure 2.35 Sample CPU Exception Handler Code.. 174
Figure 2.36 Sample Cyclic Handler Code (HI7000/4 Series and HI1000/4).............................. 174
Figure 2.37 Sample Cyclic Handler Code (HI2000/3) ... 175
Figure 2.38 Sample Alarm Handler Code (Only in HI7000/4 Series) .. 175
Figure 2.39 Sample Overrun Handler Code (Only in HI7000/4 Series)..................................... 175
Figure 2.40 Dividing Functions in a Top-Down Manner ... 176
Figure 2.41 Merging Same Functions and Eliminating Functional Dependency 177
Figure 2.42 Example of ITRON Objects Assigned to Interfaces.. 178

Section 3 Configuration
Figure 3.1 Configuration Procedure Outline .. 179
Figure 3.2 Whole Linkage Outline ... 181
Figure 3.3 Separate Linkage Outline .. 182
Figure 3.4 Configurator Initiation... 185
Figure 3.5 Task View ... 187
Figure 3.6 Modification of Task Information ... 189
Figure 3.7 Definition of Stack Area.. 191
Figure 3.8 Modification of Static Stack Size .. 191
Figure 3.9 Registration of Task ID to Use Static Stack .. 192
Figure 3.10 Completion of Static Stack Information Definition... 193
Figure 3.11 Pop-up Menu... 194
Figure 3.12 [Creation of Task] Dialog Box.. 196
Figure 3.13 [Definition of Task Exception Processing Routine] Dialog Box 198
Figure 3.14 Configurator Initiation (HI7000/4).. 200
Figure 3.15 Configurator Initiation (HI7700/4 and HI7750/4)... 201
Figure 3.16 Configurator Initiation (HI1000/4).. 202

Rev. 3.00 Jan. 12, 2005 Page xvii of xx

Figure 3.17 Kernel Extension Function View (HI7000/4).. 204
Figure 3.18 Kernel Extension Function View (HI7700/4 and HI7750/4)................................... 205
Figure 3.19 Time Management Function View (HI7000/4, HI7700/4, and HI7750/4) 206
Figure 3.20 Time Management Function View (HI1000/4) ... 207
Figure 3.21 Debugging Function View (HI7000/4, HI7700/4, and HI7750/4) 209
Figure 3.22 Debugging Function View (HI1000/4).. 210
Figure 3.23 Service Calls Selection View (HI7000/4, HI7700/4, and HI7750/4) 211
Figure 3.24 Interrupt/CPU Exception Handler View (HI7000/4)... 212
Figure 3.25 Interrupt/CPU Exception Handler View (HI7700/4 and HI7750/4)........................ 213
Figure 3.26 Interrupt/CPU Exception Handler View (HI1000/4)... 214
Figure 3.27 Trap Exception Handler View (HI7700/4 and HI7750/4) 216
Figure 3.28 Prefetch Function View (HI7700/4 and HI7750/4) ... 217
Figure 3.29 Initialization Routine View ... 219
Figure 3.30 Task View (HI7000/4, HI7700/4, and HI7750/4).. 220
Figure 3.31 Task View (HI1000/4)... 221
Figure 3.32 Semaphore View ... 223
Figure 3.33 Constant Definition Field of Setup Table.. 228
Figure 3.34 Task Registration Field of Setup Table ... 230
Figure 3.35 Fixed-Length Memory Pool Registration Field of Setup Table 232
Figure 3.36 Variable-Length Memory Pool Registration Field of Setup Table.......................... 234
Figure 3.37 Cyclic Handler Registration Field of Setup Table... 236
Figure 3.38 System Call Trace Function Registration Field of Setup Table 237
Figure 3.39 Task Extended Information Registration Field of Setup Table 239
Figure 3.40 Event Flag Extended Information Registration Field of Setup Table...................... 239
Figure 3.41 Semaphore Extended Information Registration Field of Setup Table 240
Figure 3.42 Mailbox Extended Information Registration Field of Setup Table.......................... 240
Figure 3.43 Fixed-Length Memory Pool Extended Information Registration Field of

Setup Table.. 241
Figure 3.44 Variable-Length Memory Pool Extended Information Registration Field of

Setup Table.. 241
Figure 3.45 Cyclic Handler Extended Information Registration Field of Setup Table............... 242
Figure 3.46 HEW Startup ... 246
Figure 3.47 Menu Selection.. 247
Figure 3.48 HEW Option Selection.. 248
Figure 3.49 HEW Option Settings.. 249
Figure 3.50 CallWalker Startup .. 250
Figure 3.51 File Reading .. 251
Figure 3.52 Read File Selection.. 252
Figure 3.53 Stack Size Display Example by CallWalker ... 254
Figure 3.54 Overview of Sample Task Processing ... 255

Rev. 3.00 Jan. 12, 2005 Page xviii of xx

Figure 3.55 System Configuration Procedure... 260
Figure 3.56 HEW Startup ... 262
Figure 3.57 Project Selection from Pop-up Menu .. 264
Figure 3.58 File Addition Menu ... 265
Figure 3.59 Additional File Selection... 266
Figure 3.60 OptLinker Selection Menu .. 267
Figure 3.61 Section Information Addition.. 268
Figure 3.62 Additional Section Information Input ... 269
Figure 3.63 Added Section Information Confirmation... 269
Figure 3.64 Build Execution... 270
Figure 3.65 HEW Startup ... 272
Figure 3.66 Project Selection from Pop-up Menu .. 273
Figure 3.67 File Addition Menu ... 274
Figure 3.68 Additional File Selection... 275
Figure 3.69 H8S, H8/300 Standard Toolchain Selection Menu ... 276
Figure 3.70 Section Setting Menu .. 277
Figure 3.71 Section Information Addition.. 278
Figure 3.72 Additional Section Information Input ... 279
Figure 3.73 Added Section Information Confirmation... 279
Figure 3.74 Build Execution... 280

Section 4 Device-Dependent Specifications
Figure 4.1 CPU Initialization Routine When Using Cache (SH7708).. 290
Figure 4.2 Coding Example for Disabling Cache (HI7700/4) .. 292
Figure 4.3 Coding Example for Enabling Cache (HI7700/4) ... 293
Figure 4.4 Coding Example for Disabling Cache (HI7750/4) .. 294
Figure 4.5 Coding Example for Enabling Cache (HI7750/4) ... 294
Figure 4.6 Overview of Write-Back Mode... 296
Figure 4.7 Configuration of Variable-Length Memory Blocks .. 297
Figure 4.8 Example of Storing Variable-Length Memory Block Contents in Cache 298
Figure 4.9 7751_tmrdef.h File .. 304
Figure 4.10 Errors in System Time in Standby Mode .. 308

Section 5 Debugging
Figure 5.1 Procedure for Debugging Abnormal State in the System.. 311
Figure 5.2 System Down Routine Calling Interface (HI7000/4 Series) 312
Figure 5.3 Debugging Code Example (HI7000/4 Series) ... 313
Figure 5.4 Example of Setting a Breakpoint (HI7000/4).. 314
Figure 5.5 Example of Setting a Breakpoint (HI7700/4, HI7750/4)... 315
Figure 5.6 System Down Information Parameter Format (HI7000/4 Series) 316

Rev. 3.00 Jan. 12, 2005 Page xix of xx

Figure 5.7 Examples of System Down Information 1 and 2... 318
Figure 5.8 Example of System Down Routine Calling Interface (HI2000/3)............................. 323
Figure 5.9 Debugging Code Example (HI2000/3).. 323
Figure 5.10 Example of Setting a Breakpoint (HI2000/3).. 324
Figure 5.11 System Down Information Parameter Format (HI2000/3) 325
Figure 5.12 Example of System Down Routine Modification (HI2000/3)................................. 330
Figure 5.13 Example of System Down Routine Calling Interface (HI2000/3)........................... 330
Figure 5.14 Debugging Code Example (HI2000/3).. 331
Figure 5.15 Example of System Down Routine Calling Interface (HI1000/4)........................... 332
Figure 5.16 Debugging Code Example (HI1000/4).. 333
Figure 5.17 Example of Setting a Breakpoint (HI1000/4).. 333
Figure 5.18 System Down Information Parameter Format (HI1000/4) 334
Figure 5.19 List Output Setting for Optimizing Linkage Editor... 340
Figure 5.20 Initiated Mapview Window... 341
Figure 5.21 Window for Reading a File ... 342
Figure 5.22 Window for Listing Symbols .. 343
Figure 5.23 Window for Specifying CPU Options ... 347
Figure 5.24 Mapping List in a Map File ... 348
Figure 5.25 Example of Task Operation and Stack Allocation... 349
Figure 5.26 Bad Coding Example for Sending a Message ... 350
Figure 5.27 Bad Coding Example Causing System-Down... 352
Figure 5.28 Window for Specifying Output of Compiler Information Messages....................... 353
Figure 5.29 Example of a Function Call through an Illegal Pointer Variable............................. 354
Figure 5.30 Example of CPU Initialization Routine (HI7000/4 Series) 357
Figure 5.31 Example of Section Initialization Processing (HI7000/4 Series) 358
Figure 5.32 Example of CPU Initialization Routine (HI2000/3) .. 359
Figure 5.33 Example of a Call to Section Initialization Processing (HI2000/3)......................... 359
Figure 5.34 Example of CPU Initialization Routine (HI1000/4) .. 360
Figure 5.35 Example of a Call to Section Initialization Processing (HI1000/4)......................... 360
Figure 5.36 Configuration of Variable-Length Memory Blocks .. 361

Rev. 3.00 Jan. 12, 2005 Page xx of xx

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 1 of 362

 REJ05B0364-0300

Section 1 Functions of the HI Series OS

1.1 System State

The state of the HI series OS system is classified into one of the following two contexts.

Table 1.1 System State

Name System State

Task context (including task portion) State or context in which a task is being executed.

Non-task context (including non-task
portion or task-independent portion)

State or context in which an interrupt handler, an interrupt
service routine, or a time event handler, which is not a
task, is being executed.

When issuing a service call, note the system state. When specialized service calls are provided for
the task context and non-task context, respectively, check the system state and issue an appropriate
service call.

Table 1.2 Difference in Service Calls Due to System State

Context Service Call Description

Task context xxx_yyy* Wait state can be entered.

Non-task context ixxx_yyy* Wait state cannot be entered.

Note: * Some service calls use the same name for the task context and non-task context (such
as sns_yyy). For details on service calls, refer to the user's manual of the HI series OS
used.

The system state can be checked according to the value of the interrupt mask bits (IMASK value).

The state of the HI series OS system is also classified in a different way as follows.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 2 of 362

REJ05B0364-0300

Table 1.3 Dispatch-Disabled State and CPU-Locked State

Name System State

Dispatch-disabled state Task context state in which an interrupt
can be accepted but dispatch processing
is not performed (task switching is not
generated).

Dispatch-disabled/
dispatch enabled state

Dispatch-enabled state The dispatch-disabled state is canceled.

CPU-locked state No interrupt is accepted or no dispatch
processing is performed.

CPU-locked/
CPU-unlocked state

CPU-unlocked state The CPU-locked state is canceled.

These states cannot be determined through the value of the interrupt mask bits (IMASK value).
They may be recognized as the task context even when the interrupt mask bit value (IMASK
value) is not 0. See figure 1.1 for the state of the HI series OS system.

System state

Non-task context

Interrupt handler execution
(including time event handler execution)

Kernel execution

CPU-locked state*

Task execution

Dispatch-disabled state

CPU-locked state

Note: * Not supported in the HI2000/3.

Task context

Figure 1.1 State of the HI Series OS System

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 3 of 362

 REJ05B0364-0300

Non-task context

System state

Interrupt handler
execution

[IMASK ≠ 0]
ena_dsp

dis_dsp

loc_cpu

loc_cpu

unl_cpu

unl_cpu

*1

*2

*3

iloc_cpu iunl_cpu

Notes: 1. In the HI2000/3, the task execution state is entered when unl_cpu is issued.
 The dispatch-disabled state is not entered.
 2. The interrupt handler execution state includes timer handler execution and initialization
 handler execution states.
 3. This state is not supported in the HI2000/3.

Task context

CPU-locked
state

[IMASK ≠ 0]

CPU-locked
state

[IMASK ≠ 0]

Dispatch-
disabled state
[IMASK = 0]

Task execution
[IMASK = 0]

Figure 1.2 System State and Interrupt Mask Bit Value

For the relationship between the application program and the system state, refer to section 2.6,
Application Program Types.

Table 1.4 shows the priority of processing among tasks, the dispatcher (during kernel execution),
and interrupt handlers.

Table 1.4 Priority of Processing

Priority Processing

Interrupt handler, time event handler, CPU exception handler, etc.

Dispatcher (part of processing performed by the HI series OS)

High

Low Task

• The interrupt handler takes priority over the dispatcher.

• The priority of a time event handler (including the cyclic handler, alarm handler, and overrun
handler) is equal to or lower than the priority of the timer interrupt handler which performs
time management processing, and is higher than that of the dispatcher.

• The CPU exception handler takes priority over both the dispatcher and the processing that
generated the CPU exception.

• The task has a lower priority than the dispatcher.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 4 of 362

REJ05B0364-0300

1.1.1 FAQs about System State

This section answers questions about system state which are frequently asked by users of the HI
series OS.

FAQ Contents:

(1) Common Subroutine in Task Context or Non-Task Context ... 5

(2) Using the CPU Exclusively.. 7

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 5 of 362

 REJ05B0364-0300

(1) Common Subroutine in Task Context or Non-Task Context

Classification: System state

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

Please explain how to distinguish the system state, between the task context
and non-task context, in which a common subroutine is called?

Answer HI7000/4 HI7700/4 HI7750/4 HI1000/4

The system state in which a service call is issued can be checked by the sns_ctx
service call (referring to the context). When TRUE (= 0) is passed as return
parameter "BOOL state", the subroutine calling state is the non-task context.
When FALSE (≠ 0) is returned, the state is the task context. Figure 1.3 shows a sample program
for checking the context.

 #include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

void Common_Sub_Routine(VP_INT exinf)
{

BOLL state;

 (description omitted)

 state = sns_ctx();
 if(state == TURE){ /* Call from non-task context */
 (processing description omitted)
 }
 else{ /* Call from task context */
 (processing description omitted)
 }

}

Figure 1.3 Sample Code for Context Check (HI7000/4 Series and HI1000/4)

(Continued on next page)

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 6 of 362

REJ05B0364-0300

(Continued from previous page)

Answer HI2000/3

The system state in which a subroutine is called can be checked by the ref_ims
system call (referring to the interrupt mask level). When 0 is passed as return
parameter "UINT imask", the subroutine calling state is the task portion.
When the return value is not 0, the state is the non-task portion. Figure 1.4 shows a sample
program for checking the context.

 #include "hi2000.h"

void Common_Sub_Routine(INT stacd)
{

ER ercd;
UINT imask;

 (description omitted)

 ercd = ref_ims(&imask);
 if(imask != 0){
 /* Processing when a subroutine is called from a non-task context */
 /* or from CPU-locked state */
 }
 else{
 /* Processing when a subroutine is called from a task context */
 }

}

Figure 1.4 Sample Code for Context Check (HI2000/3)

When a ref_ims system call is issued in the CPU-locked state during task portion execution, the
value passed through return parameter UINT imask is not 0 and the non-task context is
recognized.

Since the non-task context and CPU-locked state cannot be distinguished in the HI2000/3 even
when the ref_ims system call is used, the application must prepare a means for distinguishing
them (for example, using a specialized parameter in common subroutines).

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 7 of 362

 REJ05B0364-0300

(2) Using the CPU Exclusively

Classification: System state

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

What is the best way to disable all tasks (including the kernel) during execution of a specific task?

Answer

The loc_cpu service call should be used.

After loc_cpu is executed, interrupts or task switching below the kernel interrupt mask level are
disabled. Note the kernel interrupt mask level setting because interrupts equal to or higher than the
kernel interrupt mask level are accepted.

After required processing to exclusively use the CPU is completed, be sure to cancel the CPU-
locked state by the unl_cpu service call.

 #include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

#pragma noregsave(task)

void task(VP_INT exinf)
{

BOLL state;

 (description omitted)

 loc_cpu(); /* Enters the CPU-locked state */
 /* Starts processing in the CPU-locked state */

 (processing description omitted)

 /* Terminates processing in the CPU-locked state */
 unl_cpu(); /* Cancels the CPU-locked state */

 (description omitted)

}

Figure 1.5 Sample Code Using loc_cpu

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 8 of 362

REJ05B0364-0300

1.2 Objects

1.2.1 What Is an Object?

The targets of manipulation by service calls, such as tasks, are collectively called objects.

Multiple objects can be created for each object type, and these are identified by ID numbers.

1.2.2 ID Assignment

An ID number is assigned for each object when the object is created through the following
methods.

Table 1.5 ID Assignment for Objects

HI Series OS ID Assignment Method

Assignment by the configurator HI7000/4 series

Assignment by a service call

HI2000/3 Assignment by a setup table

HI1000/4 Assignment by the configurator

Because the HI2000/3 and HI1000/4 do not provide the dynamic assignment method (assignment
by a service call), the IDs must be assigned by a setup table or configurator in advance.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 9 of 362

 REJ05B0364-0300

1.2.3 FAQs about Objects

This section answers questions about objects which are frequently asked by users of the HI series
OS.

FAQ Contents:

(1) Registered Task and Task ID ...10

(2) Static Definition by Configurator...12

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 10 of 362

REJ05B0364-0300

(1) Registered Task and Task ID

Classification: Object

Question HI2000/3

Are IDs automatically assigned to tasks in the order of task registration starting from ID 1, or can
any ID (value) be assigned to a task in a special method?

Answer

IDs starting from 1 are automatically assigned to tasks in the order of task registration.

Because the HI2000/3 does not provide the dynamic task creation function, tasks must be defined
in advance. Figure 1.6 shows a sample setup table.

 ;%%
;%%% TASK define section %%%
;%%
;---------- Usage --
; TASK_TOP_LABEL ;: COMMENT
;--
 .import _TASKA ;: TASK.C
 .import _TASKB ;: TASK.C
;

Declares the start addresses of the tasks to
be used as external reference symbols.
(Add or modify these as necessary.)

Figure 1.6 Sample Setup Table (2655asup.src for H8S/2655) (1/2)

(Continued on next page)

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 11 of 362

 REJ05B0364-0300

(Continued from previous page)

Answer

 ;------ Usage ---
; .res.b SIZE + TSKSTKSIZ ; [RANGE] ;: COMMENT
;TSK?_SP_LABEL: .equ $;: COMMENT
;---
TSKSTKSIZ: .equ 50+(10*2)+(6*1)+6+8; [50...] ;: Task minimum stack size
 .section h2sstack, stack, align = 2
 .res.b (36) + TSKSTKSIZ ; [50...] ;: tskid1 stack area
TSK1_SP: .equ $
 .res.b 8
 .res.b (36) + TSKSTKSIZ ; [50...] ;: tskid2 stack area
TSK2_SP: .equ $
 .res.b 8
 .res.b (32) + TSKSTKSIZ ; [50...] ;: tskid3 stack area
TSK3_SP: .equ $
 .res.b 8
 .res.b (32) + TSKSTKSIZ ; [50...] ;: tskid4 stack area
TSK4_SP: .equ $
 .res.b 8
;
 .section h2ssetup, code, align = 2
_HI_H8S: .res.b 10 ;: System Area
;------ Usage ---
;LABEL .data.b IMOD, ITSKPRI ;: COMMENT
; .data.l ITSKADR, ITSKSP ;: COMMENT
;---
NOEXS: .assign 0 ;: initial mode = NO EXIST
RDY: .assign 1 ;: initial mode = READY
DMT: .assign (-1) ;: initial mode = DORMANT
TDTLEN: .assign 10; <- Not Change ! ;: TDT Length
 .section h2ssetup, code, align = 2
_HI_TDT: .equ $-TDTLEN ;: Task define table
TDT_TOP: .equ $;:
tdt_id1: .data.b DMT, 1 ;: init. mode, init. priority
 .data.l _TASKA, TSK1_SP ;: top address, stack pointer
tdt_id2: .data.b DMT, 2 ;: init. mode, init. priority
 .data.l _TASKB, TSK2_SP ;: top addressnter
tdt_id3: .data.b NOEXS, 3 ;: init. mode, init. priority
 .data.l 0, TSK3_SP ;: top address, stack pointer
tdt_id4: .data.b NOEXS, 4 ;: init. mode, init. priority
 .data.l 0, TSK4_SP ;: top address, stack pointer
tdt_id5: .data.b NOEXS, 5 ;: init. mode, init. priority
 .data.l 0, TSK4_SP ;: top address, stack pointer
TDT_BTM:
TSKCNT: .equ (TDT_BTM-TDT_TOP) / TDTLEN
 ;:[0...255] ;: Task definition count
;

<Task stack area definition>
Line 1: Defines the stack size to be used.
Line 2: Defines the stack label
 (task stack bottom)
Line 3: Defines the shared stack

management area.
 (this can be omitted when the

shared stack is not used)

<Task definition>
Format:
 LABEL : .data.b IMOD, ITSKPRI
 .data.l ITSKADR, ITSKSP
(1) LABEL
 A label can be specified (this can be omitted).
(2) IMOD (task initial state)
 Defines a task and initial state after initiation.
 a) NOEXS (= 0): Not registered
 b) RDY (= 1): Task is ready after initiation
 c) DMT (= -1): Task is in dormant state after

initiation.
(3) ITSKPRI (initial priority of task)
 Defines the initial priority of the task.
(4) ITSKADR (initial start address of task)
 Defines the start address of the task.

 * The start address defined by the external
reference symbol must be specified here.

(5) ITSKSP (initial stack pointer of task)
 Defines the stack pointer (bottom address)

when the task is initiated.
 * The stack label defined in the task stack area

definition section must be specified here.

Figure 1.6 Sample Setup Table (2655asup.src for H8S/2655) (2/2)

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 12 of 362

REJ05B0364-0300

(2) Static Definition by Configurator

Classification: Object

Question HI7000/4 HI7700/4 HI7750/4

The configurator has views (setting items) for defining (creating) tasks or event flags.

Should these items be defined (specified) only when objects are statically created?

Should they not be defined (specified) when objects are dynamically created (through cre_tsk,
etc.) in the code?

Answer

Definition in each object creation view is not always necessary.

It is not necessary when objects are dynamically created in the code (program). When an object is
created by defining it in the creation view for that object, it does not need to be created in the code
(program), and the object can be used immediately after the system is started.

Note that the maximum object ID (maximum number of objects to be used) must always be
defined for each object type (such as the task or event flag) through the configurator. If these
definitions are omitted, objects may not be created dynamically in the code (program) in some
cases.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 13 of 362

 REJ05B0364-0300

1.3 Service Call Parameter Check

In the HI series OS, the context or parameters to be checked when a service call is issued are
classified into the following two types.

• Dynamic parameters: Parameters which change dynamically during system operation

 Whether objects such as tasks or semaphores are used,

 Context when a service call is issued,

 Status of the target task, etc.

• Static parameters

 Maximum value for the specified ID, etc.

Table 1.6 shows differences in operation depending on whether the parameter check function is
enabled.

Table 1.6 Differences Depending on the Parameter Check Function

Parameter Check
Function Check Targets Advantages Disadvantages

Not installed

(parameter check
function is disabled)

Dynamic parameters • Fast processing

• Small program size

If the system goes out of
control because of an
error in a service call
parameter, it is difficult
to determine the error.

Installed

(parameter check
function is enabled)

• Static parameters

• Dynamic

parameters

Easy debugging • Slow processing

• Large program size

For installation (enabling) of the parameter check function in the HI series OS, refer to the
appropriate section for each OS in this application note.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 14 of 362

REJ05B0364-0300

1.3.1 Installation in HI7000/4 Series

In the HI7000/4 series, the parameter check function is installed by settings in the Kernel
Extension Function view of the configurator.

Figure 1.7 Kernel Extension Function View

Select the [Install the Parameter Check Function [CFG_PARCHK](C)] check box for [Parameter
Check Function] in the kernel extended function view to install the parameter check function (this
check box is selected at default in the configurator).

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 15 of 362

 REJ05B0364-0300

1.3.2 Installation in HI2000/3 and HI1000/4

In the HI2000/3 and HI1000/4, the parameter check function is installed by selecting the library
files including the parameter check function when the system is configured.

Specify the library files including the parameter check function in the HEW project file during
configuration to install the parameter check function. (The library files with this function are
selected by default in the HEW project file provided as standard.)

The following describes an example of a library file definition procedure when using the H8S,
H8/300 Series C/C++ Compiler Package V6.0.00 in the H8S/2655 advanced mode of HI2000/3
V1.10r1.

In the active HEW workspace, select [H8S, H8/300 Standard Toolchain...] from [Options] in the
header menu.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 16 of 362

REJ05B0364-0300

Figure 1.8 Library File Definition (1)

Select the [Link/Library] tag in the [H8S, H8/300 Standard Toolchain] dialog box to see the
current settings. Figure 1.9 shows the displayed current settings.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 17 of 362

 REJ05B0364-0300

Figure 1.9 Library File Definition (2)

The default kernel library file includes the parameter check function. This example shows the
procedure for switching from the default library file to a library file that does not include the
parameter check function.

Select the current library file and click the [Insert...] button.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 18 of 362

REJ05B0364-0300

Figure 1.10 Library File Definition (3)

Specify [Relative to:] and [File path:] and click the [OK] button.

Figure 1.11 Library File Definition (4)

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 19 of 362

 REJ05B0364-0300

Figure 1.12 Library File Definition (5)

Select the default library file in the [H8S, H8/300 Standard Toolchain] dialog box, and click the
[Remove] button.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 20 of 362

REJ05B0364-0300

Figure 1.13 Library File Definition (6)

Click the [OK] button in the [H8S, H8/300 Standard Toolchain] dialog box to reflect the new
settings in the HEW workspace. This completes switching of the kernel library.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 21 of 362

 REJ05B0364-0300

1.3.3 FAQ about Service Call Parameter Check

This section answers a question about service call parameter check which is frequently asked by
users of the HI series OS.

FAQ Contents:

(1) Parameter Check Enabled/Disabled ...22

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 22 of 362

REJ05B0364-0300

(1) Parameter Check Enabled/Disabled

Classification: Service call parameter check

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

The functional libraries provided by the OS are classified into those with the parameter check
function and those without the function.

What purpose should they be used for?

Answer

The libraries with the parameter check function are provided by the OS to be used for debugging.
They check errors in coding (parameter correctness) of the user-created application programs.

When the libraries with the parameter check function are used, the overhead of the parameter
check function increases the processing time and the amount of processing code in comparison
with usual service calls.

After the debugging step is completed, we recommend that the libraries without the parameter
check function be used to generate load modules to be included in the final product.

Note: Dynamic parameters are always checked even when the parameter check function is not
installed.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 23 of 362

 REJ05B0364-0300

1.4 Tasks

1.4.1 Tasks and Functions

Table 1.7 shows the differences between tasks and functions.

Table 1.7 Differences between Tasks and Functions

Item Task Function

No difference in program description Program description

A task may be configured with one function (or a group of functions) in
some cases.

Initiation The OS determines the task to
initiate according to the priority and
specified initiation order.

The main function initiates each
function.

Management OS Function

Interface OS functionality (such as service
calls)

Parameters

Dependency and
coupling

Tasks are loosely coupled and
independent

Functions are tightly coupled and
dependent on each other

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 24 of 362

REJ05B0364-0300

void main()
{
 (description omitted)

 event(x);

 (description omitted)

 communicate();

 (description omitted)
}

main function
void event(int x)
{
 (description omitted)

 if(a == x)
 out = portx;

 (description omitted)
}

Key manipulation function

void communicate()
{
 (description omitted)

 sub_xxx();

 (description omitted)
}

Communication control function

The functions called by the main
function are executed in the order of
calls.

void event(int x)
{
 (description omitted)

 if(a == x)
 out = portx;

 (description omitted)
}

Key manipulation task

void communicate()
{
 (description omitted)

 sub_xxx();

 (description omitted)

}

Communication control task

void calculate()
{
 (description omitted)

 a = b + c ;

 (description omitted)

}

Calculation task

OS
The OS determines the order of task execution according to the external events, and allocates
the CPU to the task in the determined order.

Figure 1.14 Differences between Tasks and Functions

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 25 of 362

 REJ05B0364-0300

1.4.2 Task Initiation

Figure 1.15 shows the procedure to initiate a task.

Forcible termination

Forcible
termination

Resumption

Wait release Wait condition

CPU allocation

Waiting for
CPU allocation

Resumption Suspension

Exit

Exit and deletion

Wait release

Deletion

Note: * Not supported by HI2000/3 or HI1000/4.

Creation

Suspension

Initiation

WAITING

WAITING-SUSPENDED

SUSPENDED

DORMANT

NON-EXISTENT

READY RUNNING

**

*

Figure 1.15 Task State Transitions

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 26 of 362

REJ05B0364-0300

Task State Description

NON-EXISTENT
(does not exist in the system)

The task has not been registered in the kernel.

 ↓ cre_tsk()*, acre_tsk()*, etc.

DORMANT
(inactive)

The task has been registered in the kernel, but has not yet been
initiated.

 ↓ sta_tsk(), act_tsk(), etc.

READY
(executable)

The task is ready to be executed and is waiting for CPU resource
allocation.

RUNNING
(executing)

The CPU is allocated to the task and the task is being executed.

Note: * Not supported by the HI2000/3 or HI1000/4.

1.4.3 Task Stacks

Table 1.8 shows the stacks used by tasks.

Table 1.8 Task Stacks Available in HI Series OS

Stack HI7000/4 Series HI2000/3 HI1000/4

Dynamic stack Available Not available Not available

Static stack Available Available Available

(Shared stack) (Available) (Available) (Available)

For details on the stack allocation and shared stack function, refer to the user's manual of the HI
series OS used.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 27 of 362

 REJ05B0364-0300

(1) Types of Task Stack

Table 1.9 shows the types of task stack.

Table 1.9 Types of Task Stack

Stack Type Description

Dynamic stack This type of stack area is allocated in the space managed by the OS for the
required size, and a stack is actually assigned for a task when the task is
initiated.

Static stack This type of stack area is allocated for each task, and a stack is actually
assigned for a task when the task is initiated.

(2) Shared Stack Function

Multiple tasks that use static stacks can share one stack area. This shared stack function reduces
the task stack size.

Table 1.10 shows the required memory used by dynamic stacks, static stacks, and shared stacks.

Table 1.10 Stack Types and Required Memory

Stack Type Required Memory

Dynamic stack The total size (Σ) of all task stacks does not need to be allocated.

Static stack
(shared stack function)

• The total size (Σ) of all task stacks must be allocated.

• When the shared stack function is used, multiple tasks can share one

task stack, which reduces the required memory size.

Figure 1.16 shows the task state transitions for the shared stack function.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 28 of 362

REJ05B0364-0300

*

Note: * Not supported by the HI2000/3 or HI1000/4.

*

*

RUNNINGREADY

WAITING

WAITING-SUSPENDED

SUSPENDED

NON-EXISTENT

Initiation

Resumption

Wait release Wait condition

CPU allocation

Waiting for
CPU allocation

Resumption Suspension

Resumption Suspension

Suspension

Exit

Exit and deletion

Wait release

Creation Deletion

Stack allocation

Stack allocation

When the shared task is
monopolized by a task

Forcible termination
Forcible
termination

Forcible termination

WAITING-SUSPENDED
Shared stack double-wait state

WAITING
Shared stack wait state

DORMANT

Figure 1.16 Task State Transitions for Shared Stack Function

Note: Tasks that use dynamic stacks cannot use the shared stack function.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 29 of 362

 REJ05B0364-0300

1.4.4 CPU Allocation to Tasks

The CPU resource is allocated to tasks according to the priority levels defined for tasks. For the
task priority, a smaller value indicates a higher priority level, and a larger value indicates a lower
priority level.

The priority among tasks is determined by the priority level of each task. This section describes
task priority control as illustrated in the accompanying figures.

Priority

High

Low

First-Come-First-Served (FCFS) orderFirst Last

Priority level

Priority level 1

Priority level 2

Priority level 3

Task A

Task B

Task E

Task C Task D

Figure 1.17 Task Priority (1)

Figure 1.18 shows the priority after task A releases the right of execution by issuing a task
terminating or deleting service call or by entering the event wait state because of a service call.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 30 of 362

REJ05B0364-0300

Priority

High

Low

FCFS orderFirst Last

Priority level

Priority level 1

Priority level 2

Priority level 3

Task B

Task E

Task C Task D

Figure 1.18 Task Priority (2)

After task B releases the right of execution by entering the event wait state because of a service
call, task C enters the READY state. Figure 1.19 shows the priority after task B exits from the
WAITING state.

Priority

High

Low

FCFS orderFirst Last

Priority level

Priority level 1

Priority level 2

Priority level 3

Task C

Task E

Task D Task B

Figure 1.19 Task Priority (3)

Note: A task is scheduled to be executed last for the same priority level (placed at the end of the
queue for the same priority level) on a First-Come-First-Served (FCFS) basis.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 31 of 362

 REJ05B0364-0300

If a higher-priority task becomes ready while a lower-priority task is being executed, the lower-
priority task execution is suspended (moves from the RUNNING state to the READY state) and
the higher-priority task is executed first.

In the µITRON specifications, suspending a lower-priority task in favor of a higher-priority task is
called preempting.

The following describes the priority change when a task issues a service call to other tasks with
different priority levels or when a service call is issued to the current task.

(1) Service Call to Other Tasks

The following describes task execution control when a task issues service calls.

The initial state before a service call is issued is assumed to be as follows.

Priority

High

Low

FCFS orderFirst Last

Priority level

Priority level 1

Priority level 2

Priority level 3

Current task

Task 2

Task 1

Figure 1.20 Priority Before a Service Call Is Issued to Other Tasks

The task which issues a service call is called the current task. Figure 1.21 shows the state after the
current task issues an initiating service call (sta_tsk or act_tsk) to task A of the same priority level
as the current task and to task B of a lower priority level than the current task, and tasks A and B
enter the READY state.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 32 of 362

REJ05B0364-0300

Priority

High

Low

FCFS orderFirst Last

Priority level

Priority level 1

Priority level 2

Priority level 3

Current task

Task 2

Task 1 Task A

Task B

Figure 1.21 Priority After a Service Call Is Issued to Other Tasks (1)

Figure 1.22 shows the state after the current task issues an initiating service call to task C of higher
priority than the current task and task C enters the READY state.

Priority

High

Low

FCFS orderFirst Last

Priority level

Priority level 1

Priority level 2

Priority level 3

Task C

Current task

Task 2

Task 1 Task A

Task B

Figure 1.22 Priority After a Service Call Is Issued to Other Tasks (2)

As shown, the priority of the current task is changed by a service call to task C of higher priority
than the current task, and the current task is immediately preempted when the service call is
issued.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 33 of 362

 REJ05B0364-0300

(2) Service Call to Current Task

The following describes the priority control when a service call is issued to the current task.

The initial state before a service call is issued is assumed to be as follows.

Priority

High

Low

FCFS orderFirst Last

Priority level

Priority level 1

Priority level 2

Priority level 3

Current task

Task 2

Task 1

Figure 1.23 Priority Before a Service Call Is Issued to Current Task

Figure 1.24 shows the state after the priority level of the current task is modified to be higher
(modified from priority level 2 to 1).

Priority

High

Low

FCFS orderFirst Last

Priority level

Priority level 1

Priority level 2

Priority level 3

Current task

Task 1

Task 2

Figure 1.24 Priority After a Service Call Is Issued to Current Task (1)

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 34 of 362

REJ05B0364-0300

Figure 1.25 shows the state after the priority level of the current task is modified back to its
original level (modified from priority level 1 to 2).

Priority

High

Low

FCFS orderFirst Last

Priority level

Priority level 1

Priority level 2

Priority level 3

Task 1

Task 2

Current task

Figure 1.25 Priority After a Service Call Is Issued to Current Task (2)

In this case, the processing after the priority change depends on whether there is a task of the same
priority level as the current task as shown below.

Table 1.11 Differences in Processing after Priority Change

Same-Priority Task Current Task Processing
Current Task
Execution

When a same-priority task
exists

The current task is placed at the end of the same-
priority queue according to the scheduling rule (FCFS
basis).

Preempted

When no same-priority
task exists

The current task is placed at the beginning of the
same-priority queue.

Execution is
continued

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 35 of 362

 REJ05B0364-0300

1.4.5 Polling

Service calls for waiting for events on objects are classified into three types: general wait, wait
with timeout, and wait with polling. This section describes the differences in processing of these
service calls (using an event flag in this example).

Figure 1.26 gives an overview of wai_flg service call processing as an example of general event
wait service calls.

The requested event
has already occurred.

(1)

Event
flag

Kernel
Task

wai_flg

(2)

wai_flg

Receives the event and
continues processing.

(3)

wai_flg

Waits for the event.

WAITING
state

(4)

wai_flg

Event
flag

Kernel
Task

Event
flag

Kernel
Task

Event
flag

Kernel
Task

Receives the event and
resumes processing.

The requested event
has not occurred.

The requested event
occurrence is reported.

Figure 1.26 Overview of General Event Wait Service Call Processing

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 36 of 362

REJ05B0364-0300

(1) The task issues a wai_flg service call for an event flag.

(2) When the specified event has already occurred, the return code shows normal termination
(E_OK) and the task processing continues.

(3) When the specified event has not occurred, the task processing is suspended and the task enters
the WAITING state until the event occurrence is reported.

(4) When the specified event is reported by a set_flg service call from a task or an interrupt
handler, the return code shows normal termination (E_OK) and the task processing resumes.

Figure 1.27 gives an overview of twai_flg service call processing as an example of an event wait
service call with timeout.

twai_flg

twai_flgtwai_flg

twai_flg twai_flg

The requested event
has already occurred.

(1)

Event
flag

Kernel
Task

(2)

Receives the event and
continues processing.

(3)

Waits for the event.

WAITING
state

(4)

Event
flag

Kernel
Task

Event
flag

Kernel
Task

Event
flag

Kernel
Task

Receives the event and
resumes processing.

The requested event
has not occurred.

The requested event
occurrence is reported.

(5)

Event
flag

Kernel
Task

Resumes processing
after timeout.

The specified time has
passed without requested
event occurring.

Figure 1.27 Overview of Event Wait Service Call Processing with Timeout

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 37 of 362

 REJ05B0364-0300

(1) The task issues a twai_flg service call for an event flag.

(2) When the specified event has already occurred, the return code shows normal termination
(E_OK) and the task processing continues.

(3) When the specified event has not occurred, the task processing is suspended and the task enters
the WAITING state for the specified time until the event occurrence is reported.

(4) When the specified event is reported by a set_flg service call from a task or an interrupt
handler, the return code shows normal termination (E_OK) and the task processing resumes.

(5) When the specified event is not reported within the specified time, the return code shows time
out (E_TMOUT) and the task processing resumes.

Figure 1.28 gives an overview of pol_flg service call processing as an example of an event wait
service call with polling.

pol_flg

pol_flg pol_flg

The requested event
has already occurred.

(1)

Event
flag

Kernel
Task

(2)

Receives the event and
continues processing.

(3)

Continues processing without
receiving an event because
the event has not occurred.

Event
flag

Kernel
Task

Event
flag

Kernel
Task

The requested event
has not occurred.

Figure 1.28 Overview of Event Wait Service Call Processing with Polling

(1) The task issues a pol_flg service call for an event flag.

(2) When the specified event has already occurred, the return code shows normal termination
(E_OK) and the task processing continues.

(3) When the specified event has not occurred, the return code shows polling failed (E_TMOUT)
and the task processing continues.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 38 of 362

REJ05B0364-0300

Table 1.12 shows the differences among general event wait, wait with timeout, and wait with
polling.

Table 1.12 Differences Among General Event Wait, Wait With Timeout, and Wait With
Polling

Wait Service Call WAITING State Wait Time

General wait Entered Not specified

Wait with timeout Entered Specified

Wait with polling Not entered Not specified

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 39 of 362

 REJ05B0364-0300

1.4.6 FAQs about Tasks

This section answers questions about tasks which are frequently asked by users of the HI series
OS.

FAQ Contents:

(1) Initialization and Task Initiation ..40

(2) Defining and Initiating Tasks in a Configuration File..41

(3) Initiating Tasks...43

(4) Stack for Initial Start Task ...44

(5) Managing Tasks for the DSP Coprocessor...45

(6) Managing Tasks for the FPU Coprocessor...48

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 40 of 362

REJ05B0364-0300

(1) Initialization and Task Initiation

Classification: Task and task initiation

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

Please explain in detail the relationship between the main() function and tasks.

Answer

The µITRON specifications have no concept of the main() function (the system start function).
The system using the µITRON specifications determines which task to initiate according to the
task priority defined in the system and the order of task initiation requests.

System initialization or task initiation can be specified in the main() function. In this case, the
main() function must be defined as the initial start task or the system initialization routine. Each
task is initiated by a service call issued in the main() function.

Refer also to section 1.4.1, Tasks and Functions in this application note.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 41 of 362

 REJ05B0364-0300

(2) Defining and Initiating Tasks in a Configuration File

Classification: Task and task initiation

Question HI7000/4 HI7700/4 HI7750/4 HI1000/4

What should be done to execute Main_Task() after defining it in the create and initiate mode in the
task list through the configurator?

Answer

No other definition related to task creation and initiation is necessary through the configurator.

Specify [Start Task after Creation (TA_ACT)] for the attribute of the initial start task in the
window displayed after "Create" (or "Modify") is selected in the task list in the task view of the
configurator. The kernel initialization processing makes the task enter the READY state.

(Continued on next page)

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 42 of 362

REJ05B0364-0300

(Continued from previous page)

Answer

Figure 1.29 Task Creation Window

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 43 of 362

 REJ05B0364-0300

(3) Initiating Tasks

Classification: Task and task initiation

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

If all tasks are set to the DORMANT state, how should they be initiated?

Answer HI7000/4 HI7700/4 HI7750/4 HI1000/4

When all tasks are defined in the DORMANT state, they can be initiated
as follows:

1. Define an initialization routine and initiate tasks through service calls.

2. Define an interrupt handler or a time event handler (cyclic handler or alarm handler) and
initiate tasks through service calls.

We recommend that tasks be defined with [Start Task after Creation (TA_ACT)] specified for
general usage.

Answer HI2000/3

When all tasks are defined in the DORMANT state, they can be initiated
as follows:

1. Define a system initialization handler and initiate tasks through service calls.

2. Define an interrupt handler or a cyclic handler and initiate tasks through service calls.

We recommend that the task initial state should be defined as [READY state after initiation
(RDY)] instead of [DORMANT state after initiation (DMT)] in the setup table for general usage.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 44 of 362

REJ05B0364-0300

(4) Stack for Initial Start Task

Classification: Task and task initiation

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

Which stack area does the task initiated immediately after initialization use?

Answer

The initial start task uses the task stack assigned at creation. The kernel assigns an actual stack to
the task according to the task creation information.

The following section areas are used as the task stack areas.

• HI7000/4 series

 Static stack: B_histstk

 Dynamic stack: B_hidystk

• HI2000/3

 Static stack: h2sstack (dynamic stack is not supported)

• HI1000/4

 Static stack: B_histack (dynamic stack is not supported)

For the static stack, an area in the above section area is assigned during task initiation processing
for the size defined at creation.

For the dynamic stack, the kernel allocates an area in the above section area for the specified size,
and actual stack area is assigned for a task when the task is initiated.

The section areas for the stacks can be determined by the user. For the allocation of the stack
section areas, refer to the following.

 HI Series OS Reference

 HI7000/4 series Section describing "Changing Linkage Address" in the
appropriate configuration guide.

 HI2000/3 Section 3.4.4 in this application note

 HI1000/4 Section 3.4.5 in this application note

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 45 of 362

 REJ05B0364-0300

(5) Managing Tasks for the DSP Coprocessor

Classification: Task and task initiation

Question HI7000/4 HI7700/4

What should be kept in mind when using the DSP unit in the HI series OS?

Answer

When a task uses DSP functions, TA_COP0 should be specified for the task attribute parameter
when the task is created. The task with TA_COP0 specified saves and restores the DSP registers in
the same way as for the general registers.

To specify TA_COP0 for the task registered through the configurator, specify the [Uses DSP
(TA_COP0)] check box under [Attribute] in the Creation of Task window.

(Continued on next page)

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 46 of 362

REJ05B0364-0300

(Continued from previous page)

Answer

Figure 1.30 DSP Selection in Configurator

(Continued on next page)

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 47 of 362

 REJ05B0364-0300

(Continued from previous page)

Answer

To create a task by a service call during system operation, specify TA_COP0 as the task attribute
parameter in the cre_tsk service call.

 #include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

#pragma noregsave(MainTask)

void MainTask(VP_INT stacd)
{
 ER ercd;
 T_CTSK pk_ctsk;

 (processing description omitted)

 pk_ctsk.tskatr = (TA_HLNG | TA_COP0) /* Task attribute = high-level language description,
 DSP coprocessor used */
 pk_ctsk.exinf = 0; /* Extended information = 0 */
 pk_ctsk.task = (FP)task_A; /* Task initiation address */
 pk_ctsk.itskpri = 1; /* Priority at task initiation */
 pk_ctsk.stksz = 264; /* Task stack size */
 pk_ctsk.stk = (VP)sp_taskA; /* Start address of task stack area */

 ercd=cre_tsk(TASK_A, &pk_ctsk); /* Create task A */
 ercd=sta_tsk(TASK_A, (VP_INT)0x00000001); /* Initiate task A (initiation code = 0x1) */

 (processing description omitted)

}

Figure 1.31 DSP Selection for Task Creation by Service Call (Sample Code)

For details on the task attribute parameter during task creation, refer to the HI7000/4 Series User's
Manual.

When a non-task program (such as an interrupt handler or time event handler) uses DSP functions,
each program must save and restore the DSP registers. For details, refer to the HI7000/4 Series
User's Manual.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 48 of 362

REJ05B0364-0300

(6) Managing Tasks for the FPU Coprocessor

Classification: Task and task initiation

Question HI7750/4

What should be kept in mind when using the FPU functions in the HI series OS?

Answer

When using FPU functions, specify TA_COP1 or TA_COP2 for the task attribute parameter when
creating a task. Table 1.13 shows each parameter meaning.

Table 1.13 TA_COP1 and TA_COP2 Meaning

 Task Attribute Meaning

 TA_COP1 The task uses FPU register bank 0

 TA_COP2 The task uses FPU register bank 1

The task with TA_COP1 or TA_COP2 specified saves and restores the FPU registers in the same
way as for the general registers. Table 1.14 shows which of the TA_COP1 and TA_COP2
attributes should be specified.

Table 1.14 TA_COP1 and TA_COP2 Specifications

 Case Attribute Specification Remarks

 Matrix operation is
necessary

[TA_COP1|TA_COP2] Both FPU register banks are
used

 Floating-point operation
is necessary

[TA_COP1]* Only one FPU register bank
is used for general floating-
point operation

 No floating-point
operation is necessary

None

Note: * TA_COP2 is not recommended because if it is specified, FR in FPSCR must be set to 1
in the beginning of the task and task exception processing routine.

The following describes how to specify the attribute.

(Continued on next page)

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 49 of 362

 REJ05B0364-0300

(Continued from previous page)

Answer

When the task registered in the configurator uses FPU bank 0, specify the [Uses FPU (Bank 0)
(TA_COP1)] check box under [Attribute] in the Creation of Task window.

Figure 1.32 FPU Selection in Configurator (TA_COP1)

(Continued on next page)

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 50 of 362

REJ05B0364-0300

(Continued from previous page)

Answer

When the task registered in the configurator uses FPU bank 1, specify the [Use FPU (Bank 1)
(TA_COP2)] check box under [Attribute] in the Creation of Task window.

Figure 1.33 FPU Selection in Configurator (TA_COP2)

(Continued on next page)

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 51 of 362

 REJ05B0364-0300

(Continued from previous page)

Answer

When the task registered in the configurator uses both FPU banks 0 and 1, specify the [Use FPU
(Bank 0) (TA_COP1)] and [Use FPU (Bank 1) (TA_COP2)] check boxes for [Attribute] in the
Creation of Task window.

Figure 1.34 FPU Selection in Configurator (TA_COP1 and TA_COP2)

(Continued on next page)

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 52 of 362

REJ05B0364-0300

(Continued from previous page)

Answer

To create a task by a service call during system operation, specify TA_COP1 or TA_COP2 as the
task attribute parameter in the cre_tsk service call.

 #include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

#pragma noregsave(MainTask)

void MainTask(VP_INT stacd)
{
 ER ercd;
 T_CTSK pk_ctsk;

 (processing discription omitted)

 pk_ctsk.tskatr = (TA_HLNG | TA_COP1) /* Task attribute = high-level language description,
 FPU coprocessor bank 0 used */ ← (1)
// pk_ctsk.tskatr = (TA_HLNG | TA_COP2) /* Task attribute = high-level language description,
 FPU coprocessor bank 1 used */ ← (2)
// pk_ctsk.tskatr = (TA_HLNG | TA_COP1 | TA_COP2) /*Task attribute = high-level language description,
 FPU coprocessor banks 0 and 1 used */ ← (3)
 pk_ctsk.exinf = 0; /* Extended infomation = 0 */
 pk_ctsk.task = (FP)task_A; /* Task initiation address */
 pk_ctsk.itskpri = 1; /* Priority at task initiation */
 pk_ctsk.stksz = 264; /* Task stack size */
 pk_ctsk.stk = (VP)sp_taskA; /* Start address of task stack area */

 ercd=cre_tsk(TASK_A, &pk_ctsk); /* Create task A */
 ercd=sta_tsk(TASK_A,(VP_INT)0x00000001); /* Initiate task A (initiation code = 0x1) */

 (processing discription omitted)

}

Figure 1.35 FPU Selection for Task Creation by Service Call (Sample Code)

(1) Task attribute specification when the FPU functions are used in bank 0.

(2) Task attribute specification when the FPU functions are used in bank 1.

(3) Task attribute specification when the FPU functions are used in banks 0 and 1.

For details on the task attribute parameter during task creation, refer to the HI7000/4 Series User's
Manual.

When a non-task program (such as an interrupt handler or time event handler) uses FPU functions,
each program must save and restore the FPU registers. For details, refer to the HI7000/4 Series
User's Manual.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 53 of 362

 REJ05B0364-0300

1.5 Interrupts

1.5.1 Processing before Handler Initiation after Interrupt Occurrence

This section gives an overview of the processing for an interrupt generated during task execution.

(1) H8S and H8SX Family Microcomputers

Figure 1.36 gives an overview of the processing before an interrupt handler is initiated after an
interrupt occurs.

Task

Interrupt

(1)

PC

SR
ER7(SP)→

Vector table

(2)

Interrupt handler

Interrupt handler

Interrupt handler

Interrupt handler

Interrupt handler

(3)

(4)

Microcomputer processing
Application
processing

Figure 1.36 Overview of Processing before Handler Initiation
after Interrupt Occurrence (1)

1. The microcomputer detects an interrupt generated during task (or interrupt handler) execution.

2. The microcomputer saves the SR and PC register information in the current stack.

3. The microcomputer analyzes the interrupt source and obtains the address of the corresponding
interrupt handler registered in the vector table.

4. The interrupt handler registered in the vector table is initiated.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 54 of 362

REJ05B0364-0300

(2) SH-1, SH-2, and SH2-DSP Series Microcomputers

Figure 1.37 gives an overview of the processing before an interrupt handler is initiated after an
interrupt occurs.

Interrupt

PC

SR
R15(SP)→

(5)

Kernel
processing

Task

(1)
Vector table

(2)

Interrupt
handler

Interrupt handler

Interrupt entrance
and exit processing

Interrupt entrance
and exit processing

Interrupt entrance
and exit processing

Interrupt entrance
and exit processing

Interrupt
handler(3)

(4)

Microcomputer processing
Application
processing

Figure 1.37 Overview of Processing before Handler Initiation
after Interrupt Occurrence (2)

1. The microcomputer detects an interrupt generated during task (or interrupt handler) execution.

2. The microcomputer saves the SR and PC register information in the current stack.

3. The microcomputer analyzes the interrupt source and obtains the address of the corresponding
interrupt handler registered in the vector table.

4. When the address registered in the vector table points to the interrupt entrance and exit
processing, the interrupt entrance and exit processing provided by the kernel is performed, and
then the interrupt handler is initiated.
Note: The interrupt handler initiated through the interrupt service routine (kernel) is the usual
interrupt handler.

5. When the address registered in the vector table points to an interrupt handler, the interrupt
handler is directly initiated without involving kernel management.
Note: The interrupt handler directly initiated without involving the interrupt service routine
(kernel) is called a direct interrupt handler.

Note: The direct interrupt handler is only supported by the HI7000/4.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 55 of 362

 REJ05B0364-0300

The interrupt entrance and exit processing is called the interrupt service routine.

(3) SH-3, SH3-DSP, and SH-4 Series Microcomputers

Figure 1.38 gives an overview of the processing before an interrupt handler is initiated after an
interrupt occurs.

Interrupt

PC

SR
R15(SP)→

VBR+H'600 →

Kernel processing

Task

(1)

Vector table

(2)

Interrupt
handler

Interrupt handler

Interrupt handler

Interrupt handler

Interrupt handler

Interrupt entrance
and exit processing

(3)

(4)

Microcomputer
processing

Application
processing

Figure 1.38 Overview of Processing before Handler Initiation
after Interrupt Occurrence (3)

1. The microcomputer detects an interrupt generated during task (or interrupt handler) execution
and modifies the PC value to a specified address (VBR value + H'600).
Note: In the HI series OS, the interrupt entrance and exit processing (interrupt service routine)
is located at this address (VBR value + H'600) in advance.

2. The microcomputer saves the SR and PC register information in the current stack.

3. The microcomputer analyzes the interrupt source and obtains the address of the corresponding
interrupt handler registered in the vector table.

4. The interrupt handler is initiated.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 56 of 362

REJ05B0364-0300

1.5.2 Kernel Interrupt Mask Level

The kernel has a critical section where execution is performed with interrupts masked to prevent
conflict occurring in kernel internal information.

• Acceptance of an interrupt generated during execution of the critical section in the kernel is
delayed until execution of the critical section finishes.

• The critical section is processed at the kernel interrupt mask level.

Task

Interrupt

Interrupt

Interrupts generated during task
execution are immediately accepted.

Kernel

Interrupt

Accepts interrupts. Interrupt

Prohibits interrupts.

Critical section

Interrupts generated during critical section
execution are delayed.

Figure 1.39 Overview of Interrupt Mask by Kernel

Note: Interrupts with interrupt levels higher than the kernel interrupt mask level are accepted
immediately even during execution of the critical section.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 57 of 362

 REJ05B0364-0300

Kernel

Interrupt

Interrupt

Kernel interrupt mask level

Interrupts with interrupt levels lower
than kernel interrupt mask level

Interrupts with interrupt levels higher
 than kernel interrupt mask level

Interrupts lower than kernel
interrupt mask level are delayed
during critical section execution.

Interrupts higher than the kernel
interrupt mask level are accepted
even during critical section
execution.

Figure 1.40 Kernel Interrupt Mask Level and Interrupt Levels

Notes on Interrupt Handlers with Higher Levels than Kernel Interrupt Mask Level:

• Service calls cannot be issued by interrupt handlers with interrupt levels higher than the kernel
interrupt mask level. If called, normal system operation cannot be guaranteed.

• Execute the RTE instruction to return from an interrupt handler with an interrupt level higher
than the kernel interrupt mask level.

1.5.3 Notes When Using an H8S or H8SX Family Microcomputer

When using an H8S or H8SX family microcomputer, note that the acceptable interrupts depend on
the combination of the interrupt control mode and the mask level value. The HI series OS can be
used in the four interrupt control modes of the H8S family microcomputers and in the two
interrupt control modes of the H8SX family microcomputers.

The following tables show the relationship between the interrupt mask levels in each interrupt
control mode and the acceptable interrupts (either 0 or 1 can be specified for the shaded sections in
the tables).

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 58 of 362

REJ05B0364-0300

Table 1.15 Interrupt Mask Levels in Interrupt Control Mode 0

CCR Value EXR Value Interrupt Mask
Level (imask) I UI I2 I1 I0 Acceptable Interrupts

1 1 Only NMI

0 0 All

Table 1.16 Interrupt Mask Levels in Interrupt Control Mode 1

CCR Value EXR Value Interrupt Mask
Level (imask) I UI I2 I1 I0 Acceptable Interrupts

3 1 1 Only NMI

2 1 0 Control level 1

1 0 1 All

0 0 0 All

Table 1.17 Interrupt Mask Levels in Interrupt Control Mode 2

CCR Value EXR Value Interrupt Mask
Level (imask) I UI I2 I1 I0 Acceptable Interrupts

7 1 1 1 Only NMI

6 1 1 0 Priority level 7

5 1 0 1 Priority levels 6 to 7

4 1 0 0 Priority levels 5 to 7

3 0 1 1 Priority levels 4 to 7

2 0 1 0 Priority levels 3 to 7

1 0 0 1 Priority levels 2 to 7

0 0 0 0 All

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 59 of 362

 REJ05B0364-0300

Table 1.18 Interrupt Mask Levels in Interrupt Control Mode 3

CCR Value EXR Value Interrupt Mask
Level (imask) I UI I2 I1 I0 Acceptable Interrupts

8 1 1 1 1 1 Only NMI

7 1 0 Control level 1

6 0 0 1 1 0 Priority level 7 at control
levels 0 and 1

5 0 0 1 0 1 Priority levels 6 to 7 at
control levels 0 and 1

4 0 0 1 0 0 Priority levels 5 to 7 at
control levels 0 and 1

3 0 0 0 1 1 Priority levels 4 to 7 at
control levels 0 and 1

2 0 0 0 1 0 Priority levels 3 to 7 at
control levels 0 and 1

1 0 0 0 0 1 Priority levels 2 to 7 at
control levels 0 and 1

0 0 0 0 0 0 All

Note: If level 7 is used as the kernel interrupt mask level in interrupt control mode 3, service
calls cannot be issued by an interrupt handler of control level 1.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 60 of 362

REJ05B0364-0300

1.5.4 Notes on Interrupt Handler Creation

Note the following when creating interrupt handlers.

Table 1.19 Notes on Interrupt Handler Creation

Item Note

A long execution time degrades the system throughput. Interrupt handler
execution (processing)
time

The execution time strongly affects the system response.

Interrupt handlers with interrupt levels higher than the kernel interrupt
mask level cannot issue service calls.

Service calls from
interrupt handler*1

The NMI interrupt handler cannot issue service calls.

Return from interrupt
handler*2

Issue the ret_int service call*3 to return from an interrupt handler with an
interrupt level equal to or lower than the kernel interrupt mask level. Use
the RTE instruction to return from an interrupt handler with an interrupt
level higher than the kernel interrupt mask level.

Notes: 1. If an ext_tsk (exd_tsk) service call is issued, execution is shifted to the system
termination routine.

 2. If a method other than the ret_int service call is used, correct system operation cannot
be guaranteed.

 3. The HI7000/4 series does not support the ret_int service call; therefore, it is not
necessary in the HI7000/4 series.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 61 of 362

 REJ05B0364-0300

1.5.5 FAQs about Interrupts

This section answers questions about interrupts which are frequently asked by users of the HI
series OS.

FAQ Contents:

(1) Modifying Interrupt Mask..62

(2) Multiple Interrupts ...63

(3) Processing before Initiating Interrupt Handler ...65

(4) Terminating Interrupt Handler ...67

(5) Interrupt Handlers that Are Not Managed by the OS...70

(6) Restrictions on Direct Interrupt Handler Usage ...71

(7) Sample Definition File Information ...72

(8) Task Switching from Interrupt Handler ...74

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 62 of 362

REJ05B0364-0300

(1) Modifying Interrupt Mask

Classification: Interrupt

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

Is the use of set_imask() to modify the interrupt mask level prohibited?

Answer

set_imask() does not process the internal OS information. Accordingly, if a service call of the OS
is issued after set_imask() is called, correct operation cannot be guaranteed.

The OS recognizes the system state according to the interrupt mask information. The OS not only
distinguishes between the task context and the non-task context but also manages the dispatch-
disabled state and CPU-locked state in the task context, and the CPU-locked state in the non-task
context. Service calls are used for processing of the internal information under the OS control in
addition to interrupt mask processing.

For this reason, we recommend that the service call provided by the OS should be used to modify
the interrupt mask level.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 63 of 362

 REJ05B0364-0300

(2) Multiple Interrupts

Classification: Interrupt

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

Does the number of interrupts that occur during system operation affect system performance?

Answer

The number of interrupts used does affect system performance. Specifically, though, the levels of
interrupts, when there are multiple interrupts, rather than the total number of interrupts has the
greatest effect on system performance.

For example, if an interrupt occurs whose level is higher than the target interrupt function
(hereafter called the interrupt handler), the higher-level interrupt handler is processed first and the
target interrupt handler is suspended until the higher-level interrupt handler processing ends. The
order of processing is determined by the interrupt levels rather than the order of occurrence, and in
this way the interrupt levels affect system operation.

If all interrupt handlers used in the system are set to the same level, the interrupt handler for
emergency use may not be initiated immediately (interrupt acceptance may be delayed) in some
cases.

Accordingly, the interrupt levels or processing priority of the interrupt handlers used in the system
must be carefully considered.

(Continued on next page)

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 64 of 362

REJ05B0364-0300

(Continued from previous page)

Answer

Interrupt
handler D

Interrupt
handler A

Interrupt
handler B

Interrupt
handler C

Same Interrupt level

Other interrupts are
delayed during interrupt
handler B execution.

Interrupt
handler D

Interrupt
handler A

Interrupt
handler B

Interrupt
handler C

Interrupt level 1

Interrupt level 4

Interrupt level 3

Interrupt level 2

High

Low

END

A higher-level interrupt generated during lower-level
interrupt handler execution is accepted.

END

END

END

Multiple interrupts

Task
Dispatch

processing

<All interrupt handlers used in the system have the same interrupt level>

<Interrupt handlers used in the system have various interrupt levels>

Figure 1.41 Multiple Interrupts

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 65 of 362

 REJ05B0364-0300

(3) Processing before Initiating Interrupt Handler

Classification: Interrupt

Question HI7700/4 HI7750/4

It takes an extremely long time before an interrupt handler is initiated after an interrupt occurs.

Please explain the processing before interrupt handler execution after an interrupt occurrence.

Answer

Figure 1.42 gives an overview of the processing before the interrupt handler is initiated after an
interrupt occurs.

 Task

Interrupt

Prepares for interrupt
handler initiation

Saves register information

Interrupt masked
(blocked state)

Interrupt
handler

Initiates interrupt handler

Analyzes interrupt source

Interrupt entrance
and exit processing

Figure 1.42 Overview of Processing before Interrupt Handler Initiation after Interrupt
Occurrence

(Continued on next page)

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 66 of 362

REJ05B0364-0300

(Continued from previous page)

Answer

If it takes an extremely long time before an interrupt handler is initiated after an interrupt occurs,
the following possible causes should be checked.

• A higher-level interrupt occurs when the interrupt handler is initiated.

• A higher-level interrupt occurs immediately before the interrupt handler is initiated.

• When the interrupt handler is initiated, interrupts for the current processing are masked with a
higher-level than the interrupt level of the interrupt handler.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 67 of 362

 REJ05B0364-0300

(4) Terminating Interrupt Handler

Classification: Interrupt

Question HI2000/3 HI1000/4

Should any interrupt handler whose level is not higher than the kernel interrupt mask level be
terminated by ret_int even when it issues no service call?

Answer

After interrupt handler processing, the ret_int service call should be used for the following
purposes.

• To recognize the interrupt nesting

• To recognize the task switching

By using ret_int for the above purposes, correct return processing will be done.

If the RTE instruction is used, execution returns to the interrupt generating function, and task
switching due to a service call by the interrupt handler or the timeout task due to the timer handler
cannot be recognized. This will result in a contradiction in the system status. To avoid such a
contradiction, the HI series OS provides the ret_int service call.

When the system uses the timeout function, interrupt handlers whose interrupt levels are lower
than the timer driver interrupt level must be terminated by ret_int regardless of whether they issue
service calls to recognize the timeout task due to the timer handler and avoid any contradiction in
the system status.

When the system does not use the timeout function, the termination of interrupt handlers depends
on whether the handlers issue service calls.

When the system does not use the timeout function and if all interrupt handlers in the system do
not issue service calls affecting task switching, they can be terminated by the RTE instruction
regardless of the interrupt nesting levels.

(Continued on next page)

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 68 of 362

REJ05B0364-0300

(Continued from previous page)

Answer

When the system does not use the timeout function, and if some interrupt handlers issue service
calls affecting task switching but interrupts are never nested, the interrupt handlers must be
terminated in the following ways.

• The interrupt handlers that issue service calls affecting task switching must be terminated by
ret_int.

• The interrupt handlers that do not issue service calls affecting task switching must be
terminated by the RTE instruction.

If interrupts are nested, the interrupt handlers must be terminated in the following ways.

• The interrupt handlers whose interrupt levels are not higher than any interrupt handlers that
issue service calls affecting task switching must be terminated by ret_int regardless of whether
they issue service calls affecting task switching (because whether task switching is required
must be recognized).

• The interrupt handlers that do not issue service calls affecting task switching and whose
interrupt levels are higher than any interrupt handlers that issue service calls affecting task
switching must be terminated by the RTE instruction.

Figure 1.43 shows a sample code of an interrupt handler.

 #include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

extern VP int_stk001;

static const VP p_stk = (VP) & int_stk001;

#pragma interrupt (Inhhdr (sp = p_stk, sy = $ret_int))

void Inhhdr (void){

 /* Interrupt handler processing */
}

← (1)
← (2)
← (3)
← (4)

Figure 1.43 Sample Code of Interrupt Handler

(Continued on next page)

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 69 of 362

 REJ05B0364-0300

(Continued from previous page)

Answer

(1) Specify the allocated interrupt stack.

(2) Define the initial value of the stack pointer as a const type value.

(3) Declare the interrupt handler as an interrupt function by #pragma interrupt.

 Specify stack switching (sp=p_stk)

 Specify interrupt function end (sy=$ret_int)

(4) Describe the interrupt handler as a void type function.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 70 of 362

REJ05B0364-0300

(5) Interrupt Handlers that Are Not Managed by the OS

Classification: Interrupt

Question HI7000/4 HI7700/4 HI7750/4

To process a specific interrupt handler prior to any other processing, an interrupt should be made
without involving OS management. How can this be done?

Answer

Interrupt handlers higher than the kernel interrupt mask level are processed outside of the kernel
management and are suitable when a specific interrupt handler should be processed without
involving OS management. Note, however, that such interrupt handlers cannot issue any service
call.

In another way, the HI7000/4 provides the direct interrupt handler function, which initiates
interrupt handlers without involving kernel operation. The direct interrupt handlers are also
processed outside of the kernel management and cannot issue any service call, but this function is
suitable for top-priority processing of a specific interrupt handler without involving OS
management.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 71 of 362

 REJ05B0364-0300

(6) Restrictions on Direct Interrupt Handler Usage

Classification: Interrupt

Question HI7000/4

Are there any restrictions on direct interrupt handler usage?

Answer

Note the following restrictions when using direct interrupt handlers.

• No service call can be issued from direct interrupt handlers.

• Direct interrupt handlers must be defined through the configurator.
(Dynamic creation is not available for direct interrupt handlers.)

• The stack must be switched to that for interrupt handlers.

• TRAPA #25 must be used to return from a direct interrupt handler.

For details, also refer to the user's manual of the OS used.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 72 of 362

REJ05B0364-0300

(7) Sample Definition File Information

Classification: Interrupt

Question HI2000/3 HI1000/4

Our system has the following configuration:

[Interrupt mode: 2]

NMI: Not used
Interrupt level 7: Not used
Interrupt level 6: Kernel and cyclic handler (TPU0)
Interrupt level 5: Timer interrupts (TPU1, 2, 3, 4, and 5)
Interrupt level 4: External interrupts (IRQ0, 10, and 15)
Interrupt level 3: External interrupts (IRQ1 and 11)
Interrupt level 2: External interrupts (IRQ4 and 5)
Interrupt level 1: DMAC (DMTEND0A)
Interrupt level 0: Not used

If interrupts can be nested at the maximum level, please answer the following questions.

1. What level is the nesting of interrupts which are equal to or lower than the kernel interrupt
mask level?

2. What level is the nesting of interrupts which are higher than the kernel interrupt mask level
(including NMI)?

3. What level is the nesting of interrupts which are equal to or lower than the kernel interrupt
mask level and higher than the timer interrupt level?

4. What level is the nesting of interrupts which are equal to or lower than the kernel interrupt
mask level and higher than the TPU0 interrupt level?

5. What level is the nesting of interrupts which are equal to or lower than the kernel interrupt
mask level and higher than the IRQ0 interrupt level?

(Continued on next page)

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 73 of 362

 REJ05B0364-0300

(Continued from previous page)

Answer

A1:
Interrupts equal to or lower than the kernel interrupt mask level will be nested when a level-1
interrupt occurs during task execution or when a level-2 interrupt handler is executed during level-
1 interrupt handler processing. As the kernel interrupt mask level is 6, interrupts equal to or lower
than level 6 will be nested unconditionally. Therefore, the nesting level for interrupts equal to or
lower than the kernel interrupt mask level is 6.

A2:
As no interrupt is defined as higher than the kernel interrupt mask level, the nesting level for
interrupts higher than the kernel interrupt mask level (including NMI) is 0.

A3:
The cyclic handler (TPU0) satisfies the condition for interrupts equal to or lower than the kernel
interrupt mask level (level 6 in this case) and higher than the timer interrupt level (level 5 in this
case). Therefore, the nesting level is 1.

A4:
There is no interrupt handler defined as being equal to or lower than the kernel interrupt mask
level (level 6 in this case) and higher than the TPU0 interrupt level (level 6 in this case).
Therefore, the nesting level is 0.

A5:
The timer interrupts (TPU1, 2, 3, 4, and 5) and cyclic handler (TPU0) satisfy the condition for
interrupts equal to or lower than the kernel interrupt mask level (level 6 in this case) and higher
than the IRQ0 interrupt level (level 4 in this case). Therefore, the nesting level is 2.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 74 of 362

REJ05B0364-0300

(8) Task Switching from Interrupt Handler

Classification: Interrupt

Question HI2000/3 HI1000/4

After irot_rdq(0) is executed in an interrupt handler, task switching does not immediately occur.
Why is this?

Answer

Task switching occurs when the dispatcher is initiated after the interrupt handler processing is
completed. However, the dispatcher may not be initiated for the following reasons. Check the
description of the interrupt handler that issues irot_rdq(0) and the system status when an interrupt
occurs.

1. Descriptions in the interrupt handler

For the HI2000/3, the interrupt handler is written by using an assembly directive of the cross
compiler as follows.

 #pragma interrupt (parameter1 (sp = parameter2, sy = parameter3))

1. parameter1: Start address of the interrupt handler
2. parameter2: Bottom address of the stack area for the interrupt handler
3. parameter3: Interrupt handler termination processing

Figure 1.44 Example of #pragma interrupt Usage

 parameter3 should be specified as follows according to the combination of the interrupt level
of the interrupt handler and the kernel interrupt mask level.

(1) No service call can be issued by an interrupt handler whose interrupt level is higher than
the kernel interrupt mask level. Because such an interrupt handler must be terminated by
the RTE instruction, parameter3 should not be specified (written).

(Continued on next page)

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 75 of 362

 REJ05B0364-0300

(Continued from previous page)

Answer

(2) An interrupt handler whose interrupt level is equal to or lower than the kernel interrupt
mask level must issue the ret_int service call during interrupt handler termination
processing. Therefore, parameter3 should be specified as sy = $ret_int.

If termination processing is not specified for an interrupt handler equal to or lower than the kernel
interrupt mask level, task scheduling will not occur after interrupt handling.

2. System state when the interrupt handler processing ends

Task scheduling may not occur depending on the system state when the interrupt cause is
generated as follows.

(1) If the system is in the dispatch-disabled state when the interrupt cause is generated, which
means that task switching is disabled, the task being executed when the interrupt occurs
continues processing after the interrupt handler processing ends.

(2) Even if the system is in the task RUNNING state, if the interrupt mask level is set to a
value other than 0 by the chg_ims service call issued by the task being executed at that
time, the task being executed when the interrupt occurs continues processing after the
interrupt handler processing ends.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 76 of 362

REJ05B0364-0300

1.6 Event Flags

1.6.1 Specification of Event Flag Clearing

The specification of event flag clearing (TA_CLR attribute setting) differs among the HI series OS
specifications as follows.

Table 1.20 Differences in Specification of Event Flag Clearing

HI Series OS Specification of Event Flag Clearing

HI2000/3 Specified for each task as a parameter (the fourth parameter) when a
service call is issued

HI7000/4 and HI1000/4 Specified for each event flag when an event flag is created

Figure 1.45 gives an overview of the event flag processing when event flag clearing is not
specified.

(2)

(1)
Event flag

<bit pattern>
00000000

Task A
<wait pattern>

00000010
<wait mode>

OR wait

Task B
<wait pattern>

00000100
<wait mode>

OR wait

Task C
<wait pattern>

00000101
<wait mode>

OR wait

Task A
<wait pattern>

00000010
<wait mode>

OR wait

Task B
<wait pattern>

00000100
<wait mode>

OR wait

Task C
<wait pattern>

00000101
<wait mode>

OR wait
or interrupt handler

Task X
<set pattern>

00000100

(3)
Task A

<wait pattern>
00000010

<wait mode>
OR wait

Event flag
<bit pattern>

00000100

Event flag
<bit pattern>

00000100

Figure 1.45 Overview of Event Flag Processing without Clearing

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 77 of 362

 REJ05B0364-0300

1. Tasks A, B, and C wait for an event flag.

2. Task X (or an interrupt handler) reports an event (sets a bit pattern) for the event flag.

3. The event flag clears the WAITING state of the tasks whose condition is satisfied (tasks B and
C).

(1) Specification of TA_CLR Attribute in HI2000/3

Figure 1.46 gives an overview of the event flag processing in the HI2000/3 when event flag
clearing is specified.

(2)
Task A

<wait pattern>
00000010

<wait mode>
OR wait

<clear setting>
Specified

or interrupt handler

Task X
<set pattern>

00000100

Task B
<wait pattern>

00000100
<wait mode>

OR wait
<clear setting>

Specified

Task C
<wait pattern>

00000101
<wait mode>

OR wait
<clear setting>
Not specified

(3)
Task A

<wait pattern>
00000010

<wait mode>
OR wait

<clear setting>
Specified

Task C
<wait pattern>

00000101
<wait mode>

OR wait
<clear setting>
Not specified

(1)
Event flag

<bit pattern>
00000000

Task A
<wait pattern>

00000010
<wait mode>

OR wait
<clear setting>

Specified

Task B
<wait pattern>

00000100
<wait mode>

OR wait
<clear setting>

Specified

Task C
<wait pattern>

00000101
<wait mode>

OR wait
<clear setting>
Not specified

Event flag
<bit pattern>

00000100

Event flag
<bit pattern>

00000000

Figure 1.46 Overview of Processing with Clearing (HI2000/3)

1. Tasks A, B, and C wait for an event flag.

2. Task X (or an interrupt handler) reports an event (sets a bit pattern) for the event flag.

3. The event flag clears the WAITING state of the task whose condition is satisfied (task B) and
immediately clears the bit pattern of the event flag.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 78 of 362

REJ05B0364-0300

When the TA_CLR attribute is specified, all bits in the bit pattern for the event flag are cleared
when one waiting task is released from the WAITING state, and no more tasks are released from
the WAITING state. The bit pattern before clearing is returned as the event flag bit pattern
information at WAITING state clearing.

(2) Specification of TA_CLR Attribute in HI7000/4 Series and HI1000/4

Figure 1.47 gives an overview of the event flag processing in the HI7000/4 series and HI1000/4
when event flag clearing is specified.

(2)

(1)
Event flag

<bit pattern>
00000000

<clear setting>
Specified

Task A
<wait pattern>

00000010
<wait mode>

OR wait

Task B
<wait pattern>

00000100
<wait mode>

OR wait

Task C
<wait pattern>

00000101
<wait mode>

OR wait

Task A
<wait pattern>

00000010
<wait mode>

OR wait

Task B
<wait pattern>

00000100
<wait mode>

OR wait

Task C
<wait pattern>

00000101
<wait mode>

OR wait
or interrupt handler

Task X
<set pattern>

00000100

(3)
Task A

<wait pattern>
00000010

<wait mode>
OR wait

Event flag
<bit pattern>

00000100
<clear setting>

Specified

Event flag
<bit pattern>

00000000
<clear setting>

Specified

Task C
<wait pattern>

00000101
<wait mode>

OR wait

Figure 1.47 Overview of Processing with Clearing (HI7000/4 Series and HI1000/4)

1. Tasks A, B, and C wait for an event flag.

2. Task X (or an interrupt handler) reports an event (sets a bit pattern) for the event flag.

3. The event flag clears the WAITING state of the task whose condition is satisfied (task B) and
immediately clears the bit pattern of the event flag.

The HI7000/4 series and HI1000/4 differ from the HI2000/3 in that event flag clearing is specified
for the event flag itself.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 79 of 362

 REJ05B0364-0300

1.6.2 FAQ about Event Flags

This section answers a question about event flags which is frequently asked by users of the HI
series OS.

FAQ Contents:

(1) Clearing Event Flags..80

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 80 of 362

REJ05B0364-0300

(1) Clearing Event Flags

Classification: Event flag

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

Is there any way to clear an event flag after multiple tasks waiting for the same flag pattern are
made ready?

Answer

A flag pattern can be cleared after multiple tasks waiting for the same flag pattern are released
from the WAITING state. The following describes how to clear the flag in two cases: when setting
the flag through a task and when setting it through an interrupt handler.

1. Setting the Flag through a Task

Specify a higher priority level to the task that sets the event flag pattern than the tasks waiting
for the event flag. After the service call processing is completed, execution returns to the task
that sets the flag pattern. Perform the flag pattern clearing processing after the setting
processing. Figure 1.48 shows a sample code.

 #include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

#pragma noregsave(EventFlag_Set_Task)

void EventFlag_Set_Task(VP_INT exinf)
{

 ER ercd;

 (processing description omitted)

 ercd = set_flg((ID)flgid, (FLGPTN)setptn); /* Sets event flag */
 if(ercd != E_OK){
 /* Error processing */
 }else{
 ercd = clr_flg((ID)flgid, (FLGPTN)clrptn); /* Clears event flag pattern */
 if(ercd != E_OK){
 /* Error processing */
 }
 }
 (processing description omitted)
}

Figure 1.48 Sample Code when a Task Sets the Event Flag

(Continued on next page)

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 81 of 362

 REJ05B0364-0300

(Continued from previous page)

Answer

2. Setting the Flag through an Interrupt Handler

As the interrupt handler processing takes priority over the task and dispatcher processing, an
event flag can be cleared after multiple tasks waiting for the flag pattern are released from the
WAITING state by successively setting and clearing the event flag. Figure 1.49 shows a
sample code.

 #include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

void EventFlag_Set_Interrupt(void)
{

ER ercd;

 (processing description omitted)

 ercd = iset_flg((ID)flgid, (FLGPTN)setptn); /* Sets event flag */
 if(ercd != E_OK){
 /* Error processing */
 }else{
 ercd = iclr_flg((ID)flgid, (FLGPTN)clrptn); /* Clears event flag pattern */
 if(ercd != E_OK){
 /* Error processing */
 }
 }
 (processing description omitted)
}

Figure 1.49 Sample Code when an Interrupt Handler Sets the Event Flag

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 82 of 362

REJ05B0364-0300

1.7 Semaphore

1.7.1 Task Deadlock by Using Semaphore

A semaphore is used to manage resources that require exclusive control (such resources include
software resources such as shared memory or non-reentrant functions in addition to hardware
resources).

Figure 1.50 shows an example of semaphore usage.

Task

Kernel

Semaphore

wai_sem Processing using resource sig_sem

Time

(1) (2) (3)

: Indicates a resource.

Figure 1.50 Semaphore Usage Example

1. A task obtains the semaphore.

2. Processing is performed by using the obtained resource.

3. The task releases the resource after completing the processing.

To use a resource that requires exclusive control, first obtain the semaphore, and then perform
processing by using the resource. After completing the processing, release the semaphore.

The kernel does not provide a function to automatically release the obtained resource when the
task completes processing; the task must always release the obtained semaphore when completing
its processing.

Figure 1.51 shows an example of deadlock (tasks cannot operate).

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 83 of 362

 REJ05B0364-0300

Task 1

Kernel

Semaphore 1

wai_sem(1)

Interrupt

Task 2
Task

priority

High

Low

Semaphore 2

(1)

wai_sem(2)
(3)

wai_sem(1)

wai_sem(2)

(4)

(5)

Time

(2)

Figure 1.51 Deadlock Example (Tasks Cannot Operate)

1. Task 1 obtains semaphore 1.

2. An interrupt occurs, and the interrupt handler processing switches tasks (from task 1 to task 2).

3. Task 2 obtains semaphore 2.

4. Task 2 requests semaphore 1 but cannot obtain it because the resource (semaphore) has been
obtained by task 1. Task 2 enters the WAITING state for release of the resource and tasks are
switched (from task 2 to task 1).

5. Task 1 requests semaphore 2 but cannot obtain it because the resource (semaphore) has been
obtained by task 2. Task 1 enters the WAITING state for release of the resource.

As a result, tasks 1 and 2 both wait for a semaphore which has been obtained by the other, and
they will never be released from the WAITING state. This state is called deadlock.

Such deadlock cases cannot be avoided within the OS, and must be examined and solved during
the design steps of the application (user system).

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 84 of 362

REJ05B0364-0300

1.8 Mutex

1.8.1 Priority Inversion

Figure 1.52 gives an overview of priority inversion.

Task 3

Kernel

Semaphore 1

wai_sem(1)

Task 2Task
priority

High

Low

(1)

wai_sem(1)
(3)

wai_flg(1)

sig_sem(1)
(6)

Time

Task 1

Interrupt

(2)

(5)

Interrupt

(4)

Priority inversion

Figure 1.52 Overview of Priority Inversion

1. Task 3 obtains semaphore 1 and continues processing.

2. An interrupt occurs and the interrupt handler processing switches tasks (from task 3 to task 1).

3. Task 1 requests semaphore 1 but cannot obtain it because the resource (semaphore) has been
obtained by task 3. Task 1 enters the WAITING state for release of the resource, and tasks are
switched (from task 1 to task 3).

4. An interrupt occurs and the interrupt handler processing switches tasks (from task 3 to task 2).

5. Task 2 issues an event wait request and tasks are switched (from task 2 to task 3).

6. Task 3 completes the processing that uses the resource, and releases semaphore 1. At this time,
task 1, which has been waiting for release of the resource, obtains semaphore 1 and resumes
processing.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 85 of 362

 REJ05B0364-0300

Higher-priority task 1 should be executed instead of task 2, but it cannot be executed because the
resource (semaphore) needed for task 1 processing has been obtained by lower-priority task 3.
Such a problem where a higher-priority task is kept pending because of the lower-priority task
processing is called priority inversion.

1.8.2 Overview of Mutex Processing

Figure 1.53 gives an overview of mutex processing.

Task 3

Kernel

Mutex 1

loc_mtx(1)

Task 2Task
priority

High

Low

(1)

unl_mtx(1)
(4)

Time

Task 1

Interrupt

(2)

Interrupt

(3)

Task 3

Task 3

loc_mtx(1)
(5)

Task 1

Figure 1.53 Overview of Mutex Processing

1. Task 3 obtains mutex 1 and continues processing. (At this time, the priority of task 3 is raised
from 3 to 1 (ceiling priority).)

2. An interrupt occurs and the interrupt handler processing wakes up task 1. However, task
switching does not occur because task 3 has the highest priority (task 3 is held at priority 1 and
continues processing).

3. An interrupt occurs and the interrupt handler processing wakes up task 2. However, task
switching does not occur because task 3 has the highest priority (task 3 is held at priority 1 and
continues processing).

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 86 of 362

REJ05B0364-0300

4. Task 3 completes the processing that uses the resource, and releases mutex 1. (At this time, the
priority of task 3 is restored from 1 to 3, and control is switched to task 1.)

5. Task 1 obtains mutex 1 and continues processing. (At this time, the priority of task 1 is raised
from 1 to 1 (ceiling priority).)

The task that obtains a mutex (locks a mutex) is executed by being automatically raised to the
ceiling priority specified for the mutex, and can continue processing without entering the
WAITING state even when task 1 or 2 becomes ready.

When task 3 releases the mutex (unlocks the mutex), it is modified back to the previous priority
and tasks 1 and 2 are executed in that order.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 87 of 362

 REJ05B0364-0300

1.9 Mailbox

1.9.1 Overview of Mailbox Processing

Table 1.21 summarizes the advantages and disadvantages of using mailboxes.

Table 1.21 Advantages and Disadvantages of Using Mailboxes

Advantages Disadvantages

• Small overhead because only the message storing

address is transferred.

• No limitation on the message amount because the

messages are managed by using a link list.

• A large amount of message can be sent.

Shared memory (or a shared address
space) must be prepared.

Figure 1.54 gives an overview of mailbox processing.

Task

(1)

Message
(Data)

snd_mbx

Mailbox

Shared memory area

Task

(4)

rcv_mbx

(2)

(3)

Figure 1.54 Overview of Mailbox Processing

1. Allocate a memory area where a message is to be stored, and write a message in that area.

2. Issue a snd_mbx service call to send the message address to the mailbox.

3. Issue a rcv_mbx service call to receive the message address from the mailbox.

4. Read the information in the area indicated by the received message address.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 88 of 362

REJ05B0364-0300

1.9.2 Overview of Sending a Message Using Mailbox

Figure 1.55 gives an overview of sending a message using a mailbox.

Task

snd_mbx

Mailbox

Task

snd_mbx

Mailbox

Continues task processing.

Figure 1.55 Overview of Sending a Message Using Mailbox

At the head of each message, a kernel management area must be allocated to manage the link list.
This area is called a message header.

As the managing method, the FIFO (first-in first-out) method or message priority method can be
selected. Accordingly, the message header format to be sent differs depending on the mailbox
message managing method.

Figure 1.56 shows the message header formats for these two methods.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 89 of 362

 REJ05B0364-0300

Message header for FIFO method Message header for message priority method

#include "itron.h"
#include "kernel.h"

#define MBX (ID) 0x0001

typedef struct {
 T_MSG t_msg; ← (1)
 B msgcont[20]; ← (2)
} USER_MSG;

USER_MSG msg_A;

msg_A
Kernel

management area

User message
area

Kernel
management area

User message
area

← (1)

← (2)

msg_A

← (3)

← (4)

Message priority
management area

#include "itron.h"
#include "kernel.h"

#define MBX (ID) 0x0001

typedef struct {
 T_MSG_PRI t_msg; ← (3)
 B msgcont[20]; ← (4)
} USER_MSG;

USER_MSG msg_A;

Figure 1.56 Message Header Formats

As the HI series OS cannot distinguish between these message header formats, note the
combinations of the mailbox attribute and message header shown below.

Table 1.22 Combinations of Mailbox Attribute and Message Header

Message Header Message Managing
Method FIFO Message Priority

FIFO Handled correctly. No effect on processing but memory
space is wasted.

Message priority First 4 bytes of the user message
area is handled as the priority area.*

Handled correctly.

Note: * Some messages may not be sent (an error may occur) because of the information in
the first 4 bytes of the user message area in some cases.

In addition, the following notes must be observed when sending message data.

Notes when sending message data

(1) Do not modify the kernel management area after sending the message data.

(2) When sending message data for the first time, send it with the kernel management area cleared
to 0. Figure 1.57 shows a sample code for sending message.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 90 of 362

REJ05B0364-0300

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

#pragma noregsave (Task)

typedef struct user_msg{
 T_MSG t_msg;
 B data[10];
} USER_MSG;

// typedef struct user_primsg{
// T_MSG_PRI t_pri_msg;
// B data[10];
// } USER_PRIMSG;

void Task(VP_INT exinf)
{

ER ercd;
USER_MSG *message;

 (description omitted)

 ercd = get_mpf((ID)mpfid, (VP)message);
 if(ercd != E_OK){
 /* Error processing */
 }

 /* User message storing processing */

 message->t_msg.msghead = 0;
// message->t_pri_msg.msghead = 0;

 ercd = snd_mbx((ID)mbxid, (T_MSG *)message);
 if(ercd != E_OK){
 /* Error processing */
 }

 (description omitted)

 ext_tsk();
}

← (1)

← (2)

← (3)

← (4)
← (5)

← (6)

Figure 1.57 Sample Code for Sending Message

1. Declares a user message (message header for FIFO management).

2. Declares a user message (message header for message priority management).

3. Allocates a memory area for the message.

4. Clears the kernel management area in the message to 0 (for FIFO management).

5. Clears the kernel management area in the message to 0 (for message priority management).

6. Sends the message.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 91 of 362

 REJ05B0364-0300

1.9.3 Overview of Receiving a Message Using Mailbox

The following gives an overview of receiving a message using a mailbox.

Task A

rcv_mbx

Task A

rcv_mbx

(1)

(2)

(3)

(2)

(3)

(1)

Continues task processing

Figure 1.58 Overview of Receiving Message for Mailbox with Messages

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 92 of 362

REJ05B0364-0300

Task

rcv_mbx

Task

rcv_mbx

Suspends processing
and enters WAITING
state for a message.

Figure 1.59 Overview of Receiving Message for Mailbox with No Messages

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 93 of 362

 REJ05B0364-0300

1.9.4 FAQ about Mailbox

This section answers a question about mailbox which is frequently asked by users of the HI series
OS.

FAQ Contents:

(1) Sequential Transfer to Mailbox..94

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 94 of 362

REJ05B0364-0300

(1) Sequential Transfer to Mailbox

Classification: Mailbox

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

Is it possible to send the same message sequentially to a mailbox?

Answer

The same message must not be sequentially sent to a mailbox. If attempted while the sent message
has not yet been received, the message management information(link list) of the mailbox will be
damaged.

The same message can be sent again only after confirming that the previously sent message has
been received by the target task. Figure 1.60 shows this procedure.

 Sending
task

snd_mbx Mailbox 1

rcv_mbx
Creates a message to send

Mailbox 2

rcv_mbx

Same message
can be sent
sequentially.

Processing using received message

Receiving
task

snd_mbx

..............

Figure 1.60 Example of Checking that Message is Received

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 95 of 362

 REJ05B0364-0300

1.10 Message Buffer

1.10.1 Overview of Message Buffer Processing

Table 1.23 summarizes the advantages and disadvantages of using message buffers.

Table 1.23 Advantages and Disadvantages of Using Message Buffers

Advantages Disadvantages

No shared memory (nor shared address space)
is required

Large overhead because a message itself is sent.

Figure 1.61 gives an overview of message buffer processing.

Task

(1)

snd_mbf

Message buffer

Task

(4)

(2)
rcv_mbf

(3)

Figure 1.61 Overview of Message Buffer Processing

1. Allocate a memory area where a message is to be stored, and write a message in that area.

2. Issue a snd_mbf service call to send the message to the message buffer.

3. Issue a rcv_mbf service call to receive the message from the message buffer.

4. Read the received information.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 96 of 362

REJ05B0364-0300

In the HI series OS, a message buffer with buffer size = 0 can be created. Note the following in
this case.

• No message can be stored in a message buffer with buffer size = 0, and the receiving task
completely synchronizes with the sending task.

• A message is copied from the sending task to the receiving task at one time, which can reduce
the copying steps through the message buffer.

1.10.2 Overview of Sending a Message Using Message Buffer

The message buffer processing differs depending on the sufficiency of free space in the message
buffer as follows.

Table 1.24 Message Sending Processing Depending on Free Space in Message Buffer

Free Space Found in Message Buffer Insufficient Free Space in Message Buffer

A sent message is stored in the message buffer
and the sending task continues processing.

The sending task is placed in the WAITING state
for message sending until sufficient space to
store the sent message is created in the
message buffer.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 97 of 362

 REJ05B0364-0300

Figure 1.62 gives an overview of sending a message when the message buffer has sufficient free
space.

Task

snd_mbf

Message buffer

Free space

Message buffer

Free space

Task

snd_mbf

Continues task processing.

Figure 1.62 Overview of Sending a Message for Message Buffer with Enough Free Space

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 98 of 362

REJ05B0364-0300

Figure 1.63 gives an overview of sending a message when the message buffer does not have
sufficient free space.

Task

snd_mbf
When the message buffer
does not have sufficient
free space.

Enters WAITING state for
free space in the buffer
(waiting for message

sending).

Message buffer

Free space

Task

snd_mbf

Message buffer

When the message buffer
does not have sufficient
free space.

Free space

Figure 1.63 Overview of Sending a Message for Message Buffer with Insufficient Free
Space

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 99 of 362

 REJ05B0364-0300

1.10.3 Overview of Receiving a Message Using Message Buffer

The following gives an overview of receiving a message using a message buffer.

Task

rcv_mbf

Task

rcv_mbf

Continues processing

(1)

Message buffer

Free space

(1)

(2)

(3)

(4)

Message buffer

Free space

(2)

(3)

(4)

Figure 1.64 Overview of Receiving Message for Message Buffer with Messages

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 100 of 362

REJ05B0364-0300

Message buffer

Free space

Task

rcv_mbf

Task

rcv_mbf

Message buffer

Free space

Enters WAITING state for
a message

(waiting for message
receiving).

Figure 1.65 Overview of Receiving Message for Message Buffer with No Messages

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 101 of 362

 REJ05B0364-0300

1.11 Data Queue

1.11.1 Overview of Data Queue Processing

Table 1.25 summarizes the advantages and disadvantages of using data queues.

Table 1.25 Advantages and Disadvantages of Using Data Queues

Advantages Disadvantages

• No shared memory (nor shared address

space) is required

• A message itself is copied, but its size is

fixed at 4 bytes (the overhead is small).

A large amount of message cannot be sent
because the message size is fixed.

Figure 1.66 gives an overview of data queue processing.

Task

snd_dtq

Data queue

Task

(2)
rcv_dtq

(3)

(1)

(4)

Figure 1.66 Overview of Data Queue Processing

1. Allocate a memory area where a message is to be stored, and write a message in that area.

2. Issue a snd_dtq service call to send the message to the data queue.

3. Issue a rcv_dtq service call to receive the message from the data queue.

4. Read the received information.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 102 of 362

REJ05B0364-0300

1.11.2 Overview of Sending a Message Using Data Queue

The data queue processing differs depending on the sufficiency of free space in the data queue as
follows.

Table 1.26 Message Sending Processing Depending on Free Space in Data Queue

Free Space Found in Data Queue Insufficient Free Space in Data Queue

A sent message is stored in the data queue and
the sending task continues processing.

The sending task is placed in the WAITING state
for message sending until sufficient space to
store the sent message is created in the data
queue.

Figure 1.67 gives an overview of sending message when the data queue has free space.

Task

snd_dtq

Continues task processing

Free space

Free space

Free space

Read

Write

Data queue

Task

snd_dtq

Read

Write

Data queue

Free space

Free space

Figure 1.67 Overview of Sending a Message for Data Queue with Enough Free Space

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 103 of 362

 REJ05B0364-0300

Figure 1.68 gives an overview of sending message when the data queue does not have sufficient
free space.

Task

snd_dtq
ReadWrite

Data queue

ReadWrite

Data queue

Task

snd_dtq

Enters WAITING state for
free space in the queue

(waiting for message
sending).

Figure 1.68 Overview of Sending a Message for Data Queue with Insufficient Free Space

The data queue has the forcible send function.

The forcible send function overwrites the oldest data in the data queue with the sent data when the
data queue area does not have sufficient free space to store the sent message data. Note that the
overwritten data is managed as the latest data, and thus is read last.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 104 of 362

REJ05B0364-0300

Figure 1.69 gives an overview of the forcible send processing.

Task

fsnd_dtq

Continues task processing

Task

fsnd_dtq

Data queue

ReadWrite

Data queue

ReadWrite

Figure 1.69 Overview of Forcible Send Processing by Data Queue

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 105 of 362

 REJ05B0364-0300

1.11.3 Overview of Receiving a Message Using Data Queue

The following gives an overview of receiving a message using a data queue.

Task

rcv_dtq

Continues processing
Read

Write

Data queue

Task

rcv_dtq
Read

Write

Data queue

Free space

Free space

Free space

Free space

Free space

Free space

Free space

Figure 1.70 Overview of Receiving Message for Data Queue with Messages

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 106 of 362

REJ05B0364-0300

Task

rcv_dtq

ReadWrite

Data queue

Free space

Free space

Free space

Free space

Free space

Task

rcv_dtq

Enters WAITING state for
a message

(waiting for message
receiving).

ReadWrite

Data queue

Free space

Free space

Free space

Free space

Free space

Figure 1.71 Overview of Receiving Message for Data Queue with No Messages

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 107 of 362

 REJ05B0364-0300

1.12 Memory Pool

1.12.1 Fragmentation

Fragmentation means that the used area in memory is divided into small non-contiguous pieces.
Figure 1.72 gives an overview of fragmentation.

Kernel

get_mpl(200)

Interrupt

Task
priority

High

Low
(1)

(3)

Time

Variable-length memory pool

get_mpl(100)

rel_mpl(200)

Task 3

(4)

(6)
get_mpl(500)

Task 2

Task 1

(2)

Interrupt

(5)

<Total size>
600 bytes

<Used area>
0 byte

<Total free
area>

600 bytes
<Available

area>
600 bytes

<Free area>
400 bytes

<Used area>
200 bytes

<Total free area>
400 bytes

<Available area>
400 bytes

<Free area>
300 bytes

<Used area>
200 bytes

<Used area>
100 bytes

<Total free area>
300 bytes

<Available area>
300 bytes

<Free area>
300 bytes

<Used area>
100 bytes

<Total free area>
500 bytes

<Available area>
300 bytes

<Free area>
200 bytes

<Free area>
300 bytes

<Used area>
100 bytes

<Total free area>
500 bytes

<Available area>
300 bytes

<Free area>
200 bytes

Figure 1.72 Overview of Fragmentation

1. Task 1 requests and obtains a 200-byte area.

2. An interrupt occurs and the interrupt handler switches tasks (from task 1 to task 2).

3. Task 2 requests and obtains a 100-byte area. (The processing using the obtained memory area
switches tasks (from task 2 to task 1).)

4. Task 1 returns the previously obtained 200-byte area.

5. An interrupt occurs and the interrupt handler switches tasks (from task 1 to task 3).

6. Task 3 requests a 500-byte area, but enters the WAITING state for a free area because the
maximum contiguous free area is 300 bytes even though the total free area is 500 bytes.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 108 of 362

REJ05B0364-0300

Such a condition, as shown above, is called fragmentation.

The HI series OS does not provide garbage collection, which solves fragmentation problems.

Fragmentation of the memory pool area must be solved through an application (user system).

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 109 of 362

 REJ05B0364-0300

1.12.2 FAQ about Memory Pool

This section answers a question about memory pool which is frequently asked by users of the HI
series OS.

FAQ Contents:

(1) Use of malloc() function ..110

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 110 of 362

REJ05B0364-0300

(1) Use of malloc() function

Classification: Memory pool

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

Is it possible to use the malloc() function in the system using the µITRON-based OS?

Answer

The malloc() function cannot be used in the system using the µITRON-based OS.

The OS cannot recognize the area allocated by the malloc() function.

If the area allocated by the malloc() function overlaps the area allocated by the memory pool
functions, data may be damaged.

Accordingly, when the system must manage memory, use the memory pool functions provided by
the OS.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 111 of 362

 REJ05B0364-0300

1.13 Time Management

1.13.1 Concept of Time Management

Table 1.27 shows the meaning of parameter tmout used in the time management function.

Table 1.27 Meaning of Parameter tmout

HI Series OS tmout Meaning

HI7000/4 series and HI1000/4 tmout value (ms)

HI2000/3 tmout value × hardware timer cycle time

Figure 1.73 shows an example of processing when tslp_tsk(3) is executed with the hardware timer
cycle specified as 1 ms (CFG_TICNUME = 1 and CFG_TICDENO = 1).

: Service call issued

: Timeout

Time

HI7000/4 series and
HI1000/4

HI2000/3

Figure 1.73 Overview of tslp_tsk(3) Processing

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 112 of 362

REJ05B0364-0300

Table 1.28 describes the error between the tmout value and the obtained timeout period shown in
the above figure.

Table 1.28 Error when Issuing tslp_tsk(3)

HI Series OS tmout Value Error

HI7000/4 series
and HI1000/4

tmout value = 3

Wait time is 3 ms

Period after the service call is issued to register
the task under the timer control and until the
next time tick is supplied (X)

HI2000/3 tmout value = 3

Third hardware timer cycle

Period after a hardware timer cycle is started
and until the service call is issued to register the
task under the timer control (Y)

See figure 1.74 for errors (X) and (Y).

: Service call issued

: Timeout

Time

Error (X)

Error (Y)

HI7000/4 series and
HI1000/4

HI2000/3

Figure 1.74 Error in tslp_tsk(3) Processing

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 113 of 362

 REJ05B0364-0300

The error affects the hardware timer cycle time. Table 1.29 shows the relationship between the
hardware timer cycle time and the error.

Table 1.29 Hardware Timer Cycle Time and Error

Hardware Timer
Cycle Time Advantages Disadvantages

When a shorter time is
specified

The error in time management is
reduced.

As the hardware timer cycle
processing is increased, the time that
can be assigned to task processing is
reduced.

When a longer time is
specified

As the hardware timer cycle
processing is reduced, the time that
can be assigned to task processing
is increased.

The error in time management is
increased.

1.13.2 Modification of Hardware Timer Cycle Unit

This section describes how to modify the hardware timer cycle unit by using the following means.

• HI7000/4 series and HI1000/4: Configurator

• HI2000/3: Header file for timer driver

(1) HI7000/4 Series and HI1000/4

The hardware timer cycle time (time of the time tick supplying cycle, hereinafter called the time
tick cycle time) is set as 1 ms at default and can be modified through the configurator.

Figure 1.75 shows the configurator window for time management settings.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 114 of 362

REJ05B0364-0300

Figure 1.75 Configurator Window for Time Management Settings

As shown in the window, the time tick cycle is expressed by CFG_TICNUME (the numerator of
the time tick cycle) and CFG_TICDENO (the denominator of the time tick cycle) in the following
expression.

Time tick cycle = 1 ×
TIC_NUME (numerator of time tick cycle)

TIC_DENO (denominator of time tick cycle)

Figure 1.76 Calculation of Time Tick Cycle

This setting controls the time tick cycle (1 ms at default) so that it can be longer or shorter. In the
default settings, the 1-ms time tick cycle base is defined as divided into 1/1, that is, the parameters
are specified as CFG_TICNUME = 1 and CFG_TICDENO = 1. The default time tick cycle is used
for time management of the whole system.

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 115 of 362

 REJ05B0364-0300

CFG_TICNUME and CFG_TICDENO can be set to the following values.

• CFG_TICNUME (numerator of the time tick cycle): 1 to 65,535

• CFG_TICDENO (denominator of the time tick cycle): 1 to 100

Accordingly, the 1-ms time tick cycle can be modified into a minimum of 0.01 ms (10 µs:
CFG_TICNUME = 1 and CFG_TICDENO = 100, that is, 1/100) and a maximum of 65,535 ms
(65 s: CFG_TICNUME = 65,535 and CFG_TICDENO = 1, that is, 65,535/1).

(2) HI2000/3

The hardware timer cycle time is set as 1 ms in the standard sample program and can be modified
in the definition in the header file for the timer driver.

Figure 1.77 shows the header file for the timer driver in the standard sample program.

;***
;* specifications ; *
;* name = _HIPRG_TIMINI : H8S/2655 TPU0 initialize handler ; *
;* function = ; *
;* notes = ; *
;* date = 99/02/22 ; *
;* author = Hitachi, Ltd. ; *
;* attribute = public ; *
;* class = system ; *
;* linkage = ; *
;* input = ccr(B): interrupt disable ; *
;* = exr(B): interrupt disable ; *
;* output = all register unchanged ; *
;* end of specifications ; *
;***

 (description omitted)

;###### setting data ###################;:
;
TGRA_DATA: .assign h'30d3; d'12500-1;: (10000us (p/16))-1: 10ms = 10000us, p = 20MHz

Hardware timer cycle time

Figure 1.77 Header File for Timer Driver in Standard Sample Program (2655ause.src)

An example of the hardware timer cycle time calculation is shown below.

Reference: Calculation of Hardware Timer Cycle Time

This example describes how to obtain the 10-ms hardware timer cycle time when the H8S/2655
(whose operating frequency is 20 MHz) is used in the HI2000/3.

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 116 of 362

REJ05B0364-0300

The hardware timer cycle time (T) is determined by the counter clock cycle time (t) and counter
value (n) as follows.

T = {t × (n + 1)}

Value t is determined by the counter clock (φ/1, φ/4, φ/16, or φ/64) selected in the timer control
register (TCR).

When the CPU clock (φ) is 20 MHz, value t becomes as follows.

• Counter clock = φ/1: t = 50 ns

• Counter clock = φ/4: t = 200 ns

• Counter clock = φ/16: t = 800 ns

• Counter clock = φ/64: t = 3.2 µs

Value n is determined by setting a value from 0x0000 to 0xFFFF in output compare match A
(TGRA). Accordingly, when the CPU clock (φ) is 20 MHz, value T falls within the following
ranges.

• Counter clock = φ/1: T = 50 ns to 3.27 ms

• Counter clock = φ/4: T = 200 ns to 13.1 ms

• Counter clock = φ/16: T = 800 ns to 52.4 ms

• Counter clock = φ/64: T = 3.2 µs to 209.7 ms

[Calculation of 10-ms cycle]

Output compare match A (TGRA) = Timer cycle time (s) × n – 1

In the above formula, timer cycle time (s) = 10 × 10–3 to specify a 10-ms timer cycle time. When
the CPU clock (φ) is 20 MHz and φ/16 is selected as the counter clock, value n is obtained as
follows.

n = 20 × 106 ÷ 16

Accordingly, output compare match (TGRA) becomes as follows:

Output compare match A (TGRA) = Timer cycle time (s) × n – 1
 = (10 × 10–3) × (20 × 106 ÷ 16) – 1
 = 12,499 (0x30D3)

To obtain a 10-ms timer cycle time (s) when using 20-MHz CPU clock (φ), the value set to output
compare match A (TGRA) should be 12,499 (0x30D3).

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 117 of 362

 REJ05B0364-0300

1.13.3 Cyclic Handler

(1) HI7000/4 Series and HI1000/4

Figure 1.78 shows an example of cyclic handler initiation when the initiation phase is 2 ms, the
initiation cycle is 3 ms, and the hardware timer cycle is set to 1 ms (CFG_TICNUME = 1 and
CFG_TICDENO = 1).

: Created

: Executed

Time

Without TA_PHS
attribute

With TA_PHS
attribute

: Initiated

Initiation phase

Initiation phase

Initiation cycle

Initiation cycle Initiation cycle Initiation cycle

Figure 1.78 Overview of Cyclic Handler Initiation (HI7000/4 Series and HI1000/4)

(2) HI2000/3

Figure 1.79 shows an example of cyclic handler initiation when the cyclic initiation interval is 3
ms and the hardware timer cycle is set to 1 ms.

: Created

: Executed

: Initiated

Time

Without TCY_INI
attribute

With TCY_INI
attribute

Cyclic initiation interval

Figure 1.79 Overview of Cyclic Handler Initiation (HI2000/3)

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 118 of 362

REJ05B0364-0300

1.13.4 Overview of Timer Management Processing

The following gives an overview of timer management processing.

Timer driver

Update system clock

Any task to
generate timeout?

Any cyclic handler
to initiate?

Perform processing for
timeout task

Yes

Repeat the processing for all tasks
generating timeout at the same time.

Processing end

Repeat the processing for all cyclic
handlers initiated at the same time.

Any alarm handler
to initiate?

Repeat the processing for all alarm
handlers initiated at the same time.

No

Yes

No

Yes

No

Yes

No

Processor time for
tasks exceeded?

Repeat the processing for all tasks whose
specified processor time is exceeded.

Initiate alarm handler

Initiate overrun handler

Initiate cyclic handler

Figure 1.80 Overview of Timer Driver Processing (HI7000/4 Series)

Section 1 Functions of the HI Series OS

 Rev. 3.00 Jan. 12, 2005 Page 119 of 362

 REJ05B0364-0300

Yes

Timer driver

Update system clock

Any cyclic handler
to initiate?

Initiate cyclic handler

No

Yes

No

Repeat the processing for all tasks
generating timeout at the same time.

Processing end

Repeat the processing for all cyclic
handlers initiated at the same time.

Any task to
generate timeout?

Perform processing for
timeout task

Figure 1.81 Overview of Timer Driver Processing (HI2000/3 and HI1000/4)

The following items also affect the time for timer driver processing.

• Number of alarm handlers to be initiated at the same time (only for HI7000/4 series)

• Number of cyclic handlers to be initiated at the same time

• Number of tasks to generate timeout at the same time

• Number of tasks to initiate overrun handler at the same time (only for HI7000/4 series)

If the number of tasks to generate timeout or the number of handlers (cyclic handlers and alarm
handlers) to be initiated at the same time becomes large, the corresponding service processing
should be repeated more times, which will result in increased timer driver processing time. If the
timer driver processing time is increased, the following problems will arise.

• Degradation in response to other interrupts

• Delay in system time

Section 1 Functions of the HI Series OS

Rev. 3.00 Jan. 12, 2005 Page 120 of 362

REJ05B0364-0300

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 121 of 362

 REJ05B0364-0300

Section 2 Application Program Creation

2.1 Overview of Processing from Reset to Task Initiation

Figure 2.1 gives an overview of the processing after a CPU reset (including a power-on reset) and
until task initiation in the HI series OS.

Including a power-on reset
and a manual reset

Interrupt

CPU initialization
routine

Initialize the device and
hardware.
Initialize the bus state
controller.
Initialize the external
memory.

Create the CPU initialization
routine in the application to
suit with the system hardware.

System termination processing

Initialize the software necessary
for system initiation.

Register objects.
Initialize resources.
Initialize hardware (e.g. memory
area initialization).

Create the initialization routine in
the application to suit with the
system.

Timer initialization
routine

Initialize timer
device.

END

Kernel initialization processing

Move to the multitask environment.
(Dispatch processing)

Initiate initialization routine.

Specify the stack for kernel initialization
processing.

Initialize kernel management areas.
(Create each control block (CB).)

Create the initially defined objects.

Error generated
in creation?

Defined?
Initiate kernel initialization processing.

Yes

Yes

No

No

Figure 2.1 Procedure after CPU Reset and Until Task Initiation

When a CPU reset signal is input, the CPU initialization routine defined at the reset vector is
initiated.

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 122 of 362

REJ05B0364-0300

2.2 Overview of CPU Initialization Routine

The CPU initialization routine carries out the processing needed for the entire software, including
the kernel, to operate. To be more specific, the CPU initialization routine includes the following
processing.

• Sets up the bus state controller (BSC) to enable external memory (such as SDRAM or SRAM).

• Specifies the stack pointer for the CPU initialization routine.

• Initializes the sections.

The CPU initialization routine carries out the initialization necessary for the microcomputer and
hardware used, and thus the CPU initialization routine must be created in the application in
accordance with the microcomputer and hardware.

The CPU initialization routine cannot be written entirely in C language; part of it must be written
in assembly language.

A C program accesses the stack (memory). If the stack area is accessed before the necessary
settings are completed, a CPU exception may occur (a CPU exception causes abnormal system
termination (system down)). Accordingly, the CPU initialization routine must be written in
assembly language until the stack settings are completed.

The HI series OS provides sample files of the CPU initialization routine. Refer to it and create the
CPU initialization routine in accordance with the hardware and microcomputer used.

Table 2.1 summarizes the sample CPU initialization routine.

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 123 of 362

 REJ05B0364-0300

Table 2.1 Overview of CPU Initialization Routine Processing

 CPU Initialization Routine

HI Series OS Assembly-Language Descriptions C-Language Descriptions

HI7000/4 series • BSC settings to enable external memory

(such as SDRAM or SRAM)

• Settings of stack pointer

• Initialization of sections

• Enabling of cache

HI2000/3 • Settings of stack pointer

• Settings of interrupt control mode

• Settings of peripheral modules

See note below.

HI1000/4 • Settings of stack pointer

• BSC settings to enable external memory

(such as SDRAM or SRAM)

• Settings of interrupt control mode

• Settings of peripheral modules

See note below.

Note The HI2000/3 and HI1000/4 do not provide a C-language sample file of the CPU
initialization routine. Create the routine be referring to section 2.6.3, CPU Initialization
Routine Creation Example.

The following shows the sample CPU initialization routine provided by each HI series OS.

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 124 of 362

REJ05B0364-0300

;**;
;* HI7000/4 CPU initialize routine ;*;
;* Copyright (c) Hitachi, Ltd. 2000. ;*;
;* Licensed Material of Hitachi, Ltd. ;*;
;* HI7000/4(HS0700ITI41SR) V1.0 ;*;
;**;
;**;
;* FILE = 7604_cpuasm.src ; ;*;
;* CPU type = SH7604 ;*;
;**;
 .program _hi_cpuasm
 .heading "hi_cpuasm : CPU initialize routine"
 .export _hi_cpuasm
 .import _hi_cpuini
 .section P_hicpuasm, code, align = 4
;
;**;
;* BSC address ;*;
;**;
BSC_BASE .assign h'ffffffe0 ; BSC base address
BCR1 .assign h'ffffffe0-BSC_BASE ; BCR1 address offset
BCR2 .assign h'ffffffe4-BSC_BASE ; BCR2 address offset
WCR .assign h'ffffffe8-BSC_BASE ; WCR address offset
MCR .assign h'ffffffec-BSC_BASE ; MCR address offset
RTCSR .assign h'fffffff0-BSC_BASE ; RTCSR address offset
RTCNT .assign h'fffffff4-BSC_BASE ; RTCNT address offset
RTCOR .assign h'fffffff8-BSC_BASE ; RTCOR address offset
;
MD_REG_BASE .assign h'ffff8000 ; mode register base address of SDRAM
;
CMF_BIT .assign h'0080 ; CMF bit in RTCSR
;
;**;
;* BSC initial data ;*;
;* After reset, you must initialize BSC for memory (stack) access at first. ;*;
;* Please modify these definition in order to your hardware. ;*;
;**;
BCR1_DATA .assign h'a55a0000 + h'03f0 ; BCR1 initial data
BCR2_DATA .assign h'a55a0000 + h'00fc ; BCR2 initial data
WCR_DATA .assign h'a55a0000 + h'aaff ; WCR initial data
MCR_DATA .assign h'a55a0000 + h'0000 ; MCR initial data
RTCSR_DATA .assign h'a55a0000 + h'0000 ; RTCSR initial data
RTCNT_DATA .assign h'a55a0000 + h'0000 ; RTCNT initial data
RTCOR_DATA .assign h'a55a0000 + h'0000 ; RTCOR initial data
;
STP_REFRESH .assign h'a55a0000 ; RTCSR initial data (stop count-up)
;
MODE_DATA .assign h'0000 ; data of SDRAM mode register
MODE_ADDRESS .assign MD_REG_BASE+MODE_DATA ; address to set MODE_DATA
IDLE_TIME .assign 566 ; loop counter for idle-time
REFRESH_CNT .assign h'8 ; counter for dummy refresh
;

Defines data for initialization processing.
Modify the values or add data as necessary.

Figure 2.2 HI7000/4 CPU Initialization Routine: Assembly Language (SH7604) (1/2)

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 125 of 362

 REJ05B0364-0300

;**;
;* NAME = _hi_cpuasm ;*;
;* FUNCTION = CPU initialize routine ;
;**_hi_c
puasm:
;***** Initialize BSC
; mov.l #BSC_BASE, r0 ; set BCR base address to gbr
; ldc r0, gbr
;
; mov.l #BCR1_DATA, r0 ; initialize BCR1
; mov.l r0, @(BCR1, gbr)
;
; mov.l #BCR2_DATA, r0 ; initialize BCR2
; mov.l r0, @(BCR2, gbr)
;
; mov.l #WCR_DATA, r0 ; initialize WCR
; mov.l r0, @(WCR, gbr)
;
; mov.l #MCR_DATA, r0 ; initialize MCR
; mov.l r0, @(MCR, gbr)
;
; mov.l @(RTCSR, gbr), r0 ; dummy read for CMF off
; mov.l #STP_REFRESH, r0 ; stop refresh
; mov.l r0, @(RTCSR, gbr)
;
; mov.l #RTCNT_DATA, r0 ; initialize RTCNT
; mov.l r0, @(RTCNT, gbr)
;
; mov.l #RTCOR_DATA, r0 ; initialize RTCOR
; mov.l r0, @(RTCOR, gbr)
;
;*** Initialize SDRAM
;
; mov.l #IDLE_TIME, r0 ; loop for idle-time
;hi_cpuasm010:
; add #-1, r0
; cmp/eq #0, r0
; bf hi_cpuasm010
;
; mov.w #MODE_DATA, r0 ; set mode register
; mov.l #MODE_ADDRESS, r1
; mov.w r0, @r1
;
; mov.l #RTCSR_DATA, r0 ; initialize RTCSR
; mov.l r0, @(RTCSR, gbr)
;
; mov #0, r1 ; loop for dummy refresh
; mov.w #REFRESH_CNT, r2
;hi_cpuasm020:
; mov.l @(RTCSR, gbr), r0
; tst #CMF_BIT, r0 ; check CMF bit
; bt hi_cpuasm020
;
; add #1, r1 ; loop counter up
; cmp/eq r1, r2 ; if end dummy refresh
; bt hi_cpuasm030 ; then goto hi_cpuasm030
; mov.l #RTCSR_DATA, r0 ; clear CMF bit
; bra hi_cpuasm020
; mov.l r0, @(RTCSR, gbr)
;
;hi_cpuasm030:
;
 mov.l #_hi_cpuini, r0 ; get hi_cpuini address
 jmp @r0 ; jump to hi_cpuini()
 nop ; never return to this point
;
 .pool
 .end

Initializes the bus state controller.
Remove comment characters (;) as necessary.

Initializes external memory (SDRAM).
Remove comment characters (;) as necessary.

After completing the CPU initialization
processing written in assembly language,
branches to the initialization processing
written in C language.

Figure 2.2 HI7000/4 CPU Initialization Routine: Assembly Language (SH7604) (2/2)

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 126 of 362

REJ05B0364-0300

/**/
/* HI7000/4 CPU initialize routine */
/* Copyright (c) Hitachi, Ltd. 2000. */
/* Licensed Material of Hitachi, Ltd. */
/* HI7000/4(HS0700ITI41SR) V1.0 */
/**/
/**/
/* FILE = 7604_cpuini.c ; */
/* CPU type = SH7604 */
/**/
#include <machine.h>
#include "itron.h"
#include "kernel.h"

/* extern void _INITSCT(void); */ /* section-initialize routine */

#pragma section _hicpuini
#pragma noregsave(hi_cpuini)

void hi_cpuini(void)
{

/*** Initialize Hardware Environment ***/

/*** Initialize Software Environment ***/

/* _INITSCT(); */ /* Call section-initialize routine */

 vsta_knl(); /* Start kernel */
}

Calls the kernel initialization processing.
After completing the CPU initialization
processing, be sure to call the kernel initialization
processing.

Calls the section expanding processing.
Remove comment characters (/* and */) as
necessary.

Figure 2.3 HI7000/4 CPU Initialization Routine: C Language (SH7604)

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 127 of 362

 REJ05B0364-0300

;**;
;* HI7700/4 CPU initialize routine ;*;
;* Copyright (c) 2000 (2003) Renesas Technology Corp. ;*;
;* and Renesas Solutions Corp. All Rights Reserved. ;*;
;* HI7700/4 (HS0770ITI41SR) V1.0 ;*;
;**;
;**;
;* FILE = 7708_cpuasm.src ; ;*;
;* CPU type = SH7708 ;*;
;**;
 .program _hi_cpuasm
 .export _hi_cpuasm
 .import _hi_cpuini
 .import __kernel_pon_sp
 .import __kernel_man_sp
 .section P_hicpuasm, code, align = 4
;
;**;
;* EXPEVT address, data ;*;
;**
CCN_BASE .assign h'ffffffd0 ; INTC(exception) base address
EXPEVT .assign h'ffffffd4-CCN_BASE ; EXPEVT address offset
;
PON_CODE .assign h'000 ; power-on reset exception code
;
;**;
;* BSC address ;*;
;**;
BSC_BASE .assign h'ffffff60 ; BSC base address
BCR1 .assign h'ffffff60-BSC_BASE ; BCR1 address offset
BCR2 .assign h'ffffff62-BSC_BASE ; BCR2 address offset
WCR1 .assign h'ffffff64-BSC_BASE ; WCR1 address offset
WCR2 .assign h'ffffff66-BSC_BASE ; WCR2 address offset
MCR .assign h'ffffff68-BSC_BASE ; MCR address offset
DCR .assign h'ffffff6a-BSC_BASE ; DCR address offset
PCR .assign h'ffffff6c-BSC_BASE ; PCR address offset
RTCSR .assign h'ffffff6e-BSC_BASE ; RTCSR address offset
RTCNT .assign h'ffffff70-BSC_BASE ; RTCNT address offset
RTCOR .assign h'ffffff72-BSC_BASE ; RTCOR address offset
RFCR .assign h'ffffff74-BSC_BASE ; RFCR address offset
SDMR_CS2 .assign h'ffffd000 ; SDMR (CS2) base address
SDMR_CS3 .assign h'ffffe000 ; SDMR (CS3) base address
CMF_BIT .assign h'0080 ; CMF bit in RTCSR
;
;**;
;* BSC initial data ;*;
;**;
;* After reset, you must initialize BSC for memory (stack) access at first. ;*;
;* Please modify these definition in order to your hardware. ;*;
;**;
BCR1_DATA .assign h'0000 ; BCR1 initial data
BCR2_DATA .assign h'3ffc ; BCR2 initial data
WCR1_DATA .assign h'3fff ; WCR1 initial data
WCR2_DATA .assign h'ffff ; WCR2 initial data
MCR_DATA .assign h'0000 ; MCR initial data
DCR_DATA .assign h'0000 ; DCR initial data
PCR_DATA .assign h'0000 ; PCR initial data
RTCSR_DATA .assign h'a500 + h'00 ; RTCSR initial data
RTCNT_DATA .assign h'a500 + h'00 ; RTCNT initial data
RTCOR_DATA .assign h'a500 + h'00 ; RTCOR initial data
RFCR_DATA .assign h'a400 + h'000 ; RFCR initial data
STP_REFRESH .assign h'a500 ; RTCSR initial data(stop count-up)
SDMR2_DATA .assign h'0230 ; SDMR_CS2 initial data
SDMR3_DATA .assign h'0230 ; SDMR_CS3 initial data
IDLE_TIME .assign h'566 ; loop counter for idle-time
REFRESH_CNT .assign h'8 ; counter for dummy refresh
;

Defines data for initialization processing.
Modify the values or add data as necessary.

Figure 2.4 HI7700/4 CPU Initialization Routine: Assembly Language (SH7708) (1/3)

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 128 of 362

REJ05B0364-0300

;**;
;* NAME = _hi_cpuasm ;*;
;* FUNCTION = CPU initialize routine ;*;
;**;
_hi_cpuasm:
;***** Initialize BSC
; mov.l #BSC_BASE, r0 ; set BCR base address to gbr
; ldc r0, gbr
;
; mov.w #BCR1_DATA, r0 ; Initialize BCR1
; mov.w r0, @(BCR1, gbr)
;
; mov.w #BCR2_DATA, r0 ; Initialize BCR2
; mov.w r0, @(BCR2, gbr)
;
; mov.w #WCR1_DATA, r0 ; Initialize WCR1
; mov.w r0, @(WCR1, gbr)
;
; mov.w #WCR2_DATA, r0 ; Initialize WCR2
; mov.w r0, @(WCR2, gbr)
;
; mov.w #MCR_DATA, r0 ; Initialize MCR
; mov.w r0, @(MCR, gbr)
;
; mov.w #DCR_DATA, r0 ; Initialize DCR
; mov.w r0, @(DCR, gbr)
;
; mov.w #PCR_DATA, r0 ; Initialize PCR
; mov.w r0, @(PCR, gbr)
;
; mov.w #STP_REFRESH, r0 ; stop refresh
; mov.w r0, @(RTCSR, gbr)
;
; mov.w #RTCNT_DATA, r0 ; Initialize RTCNT
; mov.w r0, @(RTCNT, gbr)
;
; mov.w #RTCOR_DATA, r0 ; Initialize RTCOR
; mov.w r0, @(RTCOR, gbr)
;
; mov.w #RFCR_DATA, r0 ; Initialize RFCR
; mov.w r0, @(RFCR, gbr)
;

Initializes the bus state controller.
Remove comment characters (;) as necessary.

Figure 2.4 HI7700/4 CPU Initialization Routine: Assembly Language (SH7708) (2/3)

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 129 of 362

 REJ05B0364-0300

;*** Initialize SDRAM
;
; mov.l #IDLE_TIME, r0 ; loop for idle-time
;hicpuasm010:
; add #-1, r0
; cmp/eq #0, r0
; bf hicpuasm010
;
; mov.l #SDMR_CS2, r0 ; Initialize SDMR(CS2)
; mov.l #SDMR2_DATA*4, r2
; mov.b r1, @(r0, r2) ; write dummy data(r1)
;
; mov.l #SDMR_CS3, r0 ; Initialize SDMR(CS3)
; mov.l #SDMR3_DATA*4, r2
; mov.b r1, @(r0, r2) ; write dummy data(r1)
;
; mov.w #RTCSR_DATA, r0 ; Initialize RTCSR
; mov.w r0, @(RTCSR, gbr)
;
; mov.w #REFRESH_CNT, r2
;hi_cpuasm020:
; mov.w @(RFCR,gbr), r0 ; read RFCR
; cmp/ge r2, r0 ; if end dummy refresh
; bf hi_cpuasm020 ; else goto hi_cpuasm020
;
;hi_cpuasm030:
;
;***** Initialize sp and jump to hi_cpuini() written by C-language
 mov.l #CCN_BASE, r2 ; get CCN base address
 mov.l #PON_CODE, r3 ; get exception code to power-on
 mov.l @(EXPEVT, r2), r0 ; get exception code
 cmp/eq r3, r0 ; if exception != power-on
 bf hi_cpuasm050 ; then hi_cpuasm050
;
 mov.l #__kernel_pon_sp, r2 ; get stack address
;
hi_cpuasm040:
 mov r2, r15 ; set SP
;
 mov.l #_hi_cpuini, r0 ; get hi_cpuini address
 jmp @r0 ; jump to hi_cpuini()
 nop ; never return to this point
;
hi_cpuasm050:
 mov.l #__kernel_man_sp, r2 ; get stack address
 bra hi_cpuasm040
 nop
;
 .pool
;
 .end

Initializes external memory (SDRAM).
Remove comment characters (;) as
necessary.

After completing the CPU initialization
processing written in assembly language,
branches to the initialization processing
written in C language.

Figure 2.4 HI7700/4 CPU Initialization Routine: Assembly Language (SH7708) (3/3)

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 130 of 362

REJ05B0364-0300

Calls the kernel initialization processing.
After completing the CPU initialization
processing, be sure to call the kernel initialization
processing.

/**/
/* HI7700/4 CPU initialize routine */
/* Copyright (c) 2000(2003) Renesas Technology Corp. */
/* and Renesas Solutions Corp. All Rights Reserved. */
/* HI7700/4(HS0770ITI41SR) V1.0A */
/**/
/**/
/* FILE = 7708_cpuini.c ; */
/* CPU type = SH7708 */
/**/
#include <machine.h>
#include "itron.h"
#include "kernel.h"

/**/
/* environment data */
/**/
#define IOBASE 0xfffffe80 /* I/O base address = 0xfffffe80 */
#define CCR (0xffffffec - IOBASE) /* CCN CCR address offset */

#define CACHE_ON 0x00000001 /* CACHE enable data */
#define CACHE_OFF 0x00000000 /* CACHE disable data */

/* extern void _INITSCT(void); */ /* section-initialize routine */

#pragma section _hicpuini
/**/
/* NAME = hi_cpuini */
/* FUNCTION = CPU initialize routine */
/**/
#pragma noregsave(hi_cpuini)

void hi_cpuini(void)
{

/*** Initialize Hardware Environment ***/
 set_gbr((VP)IOBASE); /* set I/O base address to GBR */
 gbr_write_long(CCR, CACHE_OFF); /* CACHE disable */

/*** Initialize Software Environment ***/

/* _INITSCT(); */ /* Call section-initialize routine */

 vsta_knl(); /* Start kernel */
}

Calls the section expanding processing.
Remove comment characters (/* and */) as
necessary.

Figure 2.5 HI7700/4 CPU Initialization Routine: C Language (SH7708)

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 131 of 362

 REJ05B0364-0300

;**;
;* HI7750/4 CPU initialize routine ;*;
;* Copyright (c) 2000(2003) Renesas Technology Corp. ;*;
;* and Renesas Solutions Corp. All Rights Reserved. ;*;
;* HI7750/4(HS0775ITI41SR) V1.0 ;*;
;**;
;**;
;* FILE = 7750_cpuasm.src ; ;*;
;* CPU type = SH7750 ;*;
;**;
 .program _hi_cpuasm
 .heading "hi_cpuasm : CPU initialize routine"
 .export _hi_cpuasm
 .import _hi_cpuini
 .import __kernel_pon_sp
 .import __kernel_man_sp
 .section P_hicpuasm, code, align = 4
;
;**;
;* EXPEVT address, data ;*;
;**
CCN_BASE .assign h'ff000020 ; CCN base address
EXPEVT .assign h'ff000024-CCN_BASE ; EXPEVT address offset
;
PON_CODE .assign h'000 ; power-on reset exception code
;
;**;
;* BSC address ;*;
;**;
BSC_BASE .assign h'ff800000 ; BSC base address
BCR1 .assign h'ff800000-BSC_BASE ; BCR1 address offset
BCR2 .assign h'ff800004-BSC_BASE ; BCR2 address offset
WCR1 .assign h'ff800008-BSC_BASE ; WCR1 address offset
WCR2 .assign h'ff80000c-BSC_BASE ; WCR2 address offset
WCR3 .assign h'ff800010-BSC_BASE ; WCR3 address offset
MCR .assign h'ff800014-BSC_BASE ; MCR address offset
PCR .assign h'ff800018-BSC_BASE ; PCR address offset
RTCSR .assign h'ff80001c-BSC_BASE ; RTCSR address offset
RTCNT .assign h'ff800020-BSC_BASE ; RTCNT address offset
RTCOR .assign h'ff800024-BSC_BASE ; RTCOR address offset
RFCR .assign h'ff800028-BSC_BASE ; RFCR address offset
SDMR2 .assign h'ff900000 ; SDMR2 address
SDMR3 .assign h'ff940000 ; SDMR3 address
CMF_BIT .assign h'0080 ; CMF bit in RTCSR
;
;**;
;* BSC initial data ;*;
;* After reset, you must initialize BSC for memory(stack) access at first. ;*;
;* Please modify these definition in order to your hardware. ;*;
;**;
BCR1_DATA .assign h'00000000 ; BCR1 initial data
BCR2_DATA .assign h'3ffc ; BCR2 initial data
WCR1_DATA .assign h'77777777 ; WCR1 initial data
WCR2_DATA .assign h'fffeefff ; WCR2 initial data
WCR3_DATA .assign h'07777777 ; WCR3 initial data
MCR_DATA .assign h'00000000 ; MCR initial data
PCR_DATA .assign h'0000 ; PCR initial data
RTCSR_DATA .assign h'a500 + h'00 ; RTCSR initial data
RTCNT_DATA .assign h'a500 + h'00 ; RTCNT initial data
RTCOR_DATA .assign h'a500 + h'00 ; RTCOR initial data
RFCR_DATA .assign h'a400 + h'000 ; RFCR initial data
STP_REFRESH .assign h'a500 ; RTCSR initial data(stop count-up)
SDMR2_DATA .assign h'0230 ; SDMR2 initial data
SDMR3_DATA .assign h'0230 ; SDMR3 initial data
IDLE_TIME .assign h'1000 ; loop counter for idle-time
REFRESH_CNT .assign h'8 ; counter for dummy refresh
;

Defines data for initialization processing.
Modify the values or add data as necessary.

Figure 2.6 HI7750/4 CPU Initialization Routine: Assembly Language (SH7750) (1/3)

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 132 of 362

REJ05B0364-0300

;**;
;* NAME = _hi_cpuasm ;*;
;* FUNCTION = CPU initialize routine ; ;*;
;**;
_hi_cpuasm:
;***** Initialize BSC
; mov.l #BSC_BASE, r0 ; set BSC base address to gbr
; ldc r0, gbr
;
; mov.l #BCR1_DATA, r0 ; Initialize BCR1
; mov.l r0, @(BCR1, gbr)
;
; mov.w #BCR2_DATA, r0 ; Initialize BCR2
; mov.w r0, @(BCR2, gbr)
;
; mov.l #WCR1_DATA, r0 ; Initialize WCR1
; mov.l r0, @(WCR1, gbr)
;
; mov.l #WCR2_DATA, r0 ; Initialize WCR2
; mov.l r0, @(WCR2, gbr)
;
; mov.l #WCR3_DATA, r0 ; Initialize WCR3
; mov.l r0, @(WCR3, gbr)
;
; mov.l #MCR_DATA, r0 ; Initialize MCR
; mov.l r0, @(MCR, gbr)
;
; mov.w #PCR_DATA, r0 ; Initialize PCR
; mov.w r0, @(PCR, gbr)
;
; mov.w #STP_REFRESH, r0 ; stop refresh
; mov.w r0, @(RTCSR, gbr)
;
; mov.w #RTCNT_DATA, r0 ; Initialize RTCNT
; mov.w r0, @(RTCNT, gbr)
;
; mov.w #RTCOR_DATA, r0 ; Initialize RTCOR
; mov.w r0, @(RTCOR, gbr)
;
; mov.w #RFCR_DATA, r0 ; Initialize RFCR
; mov.w r0, @(RFCR, gbr)
;

Initializes the bus state controller.
Remove comment characters (;) as necessary.

Figure 2.6 HI7750/4 CPU Initialization Routine: Assembly Language (SH7750) (2/3)

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 133 of 362

 REJ05B0364-0300

;*** Initialize SDRAM
;
; mov.l #IDLE_TIME, r0 ; loop for idle-time
;hicpuasm010:
; add #-1, r0
; cmp/eq #0, r0
; bf hicpuasm010
;
; mov.l #SDMR2, r0 ; Initialize SDMR(CS2)
; mov.l #SDMR2_DATA*4, r2
; mov.b r1, @(r0, r2) ; write dummy data(r1)
;
; mov.l #SDMR3, r0 ; Initialize SDMR(CS3)
; mov.l #SDMR3_DATA*4, r2
; mov.b r1, @(r0, r2) ; write dummy data(r1)
;
; mov.w #RTCSR_DATA, r0 ; Initialize RTCSR
; mov.w r0, @(RTCSR, gbr)
;
; mov.w #REFRESH_CNT, r2
;hi_cpuasm020:
; mov.w @(RFCR, gbr), r0 ; read RFCR
; cmp/ge r2, r0 ; if end dummy refresh
; bf hi_cpuasm020 ; else goto hi_cpuasm020
;
;hi_cpuasm030:
;
;***** Initialize sp and jump to hi_cpuini() written by C-language
 mov.l #CCN_BASE, r2 ; get CCN base address
 mov.l #PON_CODE, r3 ; get exception code to power-on
 mov.l @(EXPEVT, r2), r0 ; get exception code
 cmp/eq r3, r0 ; if exception != power-on
 bf hi_cpuasm050 ; then hi_cpuasm050
;
 mov.l #__kernel_pon_sp, r2 ; get stack address
;
hi_cpuasm040:
 mov r2, r15 ; set SP
;
 mov.l #_hi_cpuini, r0 ; get hi_cpuini address
 jmp @r0 ; jump to hi_cpuini()
 nop ; never return to this point
;
hi_cpuasm050:
 mov.l #__kernel_man_sp, r2 ; get stack address
 bra hi_cpuasm040
 nop
;
 .pool
;
 .end

Initializes external memory (SDRAM).
Remove comment characters (;) as necessary.

After completing the CPU initialization
processing written in assembly language,
branches to the initialization processing
written in C language.

Figure 2.6 HI7750/4 CPU Initialization Routine: Assembly Language (SH7750) (3/3)

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 134 of 362

REJ05B0364-0300

Calls the kernel initialization processing.
After completing the CPU initialization
processing, be sure to call the kernel initialization
processing.

/**/
/* HI7750/4 CPU initialize routine */
/* Copyright (c) 2000(2003) Renesas Technology Corp. */
/* and Renesas Solutions Corp. All Rights Reserved. */
/* HI7750/4(HS0775ITI41SR) V1.0A */
/**/
/**/
/* FILE = 7750_cpuini.c ; */
/* CPU type = SH7750 */
/**/
#include <machine.h>
#include "itron.h"
#include "kernel.h"

#define CCR_DATA 0x0000090d /* CACHE enable data */

/* extern void _INITSCT(void); */ /* section-initialize routine */

#pragma section _hicpuini
#pragma noregsave(hi_cpuini)

void hi_cpuini(void)
{

/*** Initialize Hardware Environment ***/
/* vini_cac((UW)CCR_DATA); */ /* CACHE enable */

/*** Initialize Software Environment ***/

/* _INITSCT(); */ /* Call section-initialize routine */

 vsta_knl(); /* Start kernel */
}

Calls the section expanding processing.
Remove comment characters (/* and */) as
necessary.

Figure 2.7 HI7750/4 CPU Initialization Routine: C Language (SH7750)

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 135 of 362

 REJ05B0364-0300

;***
;*** ***
;*** HI2000/3 Version (uITRON V3.0) ***
;*** HI2000/3 user/system application file ***
;*** ***
;*** Copyright (c) Hitachi, Ltd. 1998. ***
;*** Licensed Material of Hitachi, Ltd. ***
;*** ***
;***
 .program _2655acpu
 .heading "### 2655acpu.src : H8S/2655 initialize module ###"
;
 .section h2susr_ram, data, align = 2
 .res.b 18
CPUINI_SP: .equ $
;
 .section h2suser, code, align = 2
;
 .export _H_2S_CPUINI
 .import _H_2S_INIT
;
 .aifdef DX
 .import _HI_DEAMON_INI
 .aendi
;
;***
;* specifications ; *
;* name = _H_2S_CPUINI : H8S/2655 initialize module ; *
;* function = ; *
;* notes = ; *
;* date = 99/02/22 ; *
;* author = Hitachi, Ltd. ; *
;* attribute = public ; *
;* class = system ; *
;* linkage = ; *
;* input = none ; *
;* output = none ; *
;* end of specifications ; *
;***
;
 .radix d ;:xxxxx -> d'xxxxx
;
;###### interrupt register address #####;:
SYSCR: .assign h'00ffff39 ;:system control register
MSTPCRH: .assign h'00ffff3c ;:module stop control register H
MSTPCRL: .assign h'00ffff3d ;:module stop control register L
;
;###### system control register #######;:SYSCR
RAME: .assign b'00000001 ;:RAM enable
NMIEG: .assign b'00001000 ;:NMI edge select
INTM0: .assign b'00010000 ;:interrupt mode 0
INTM1: .assign b'00100000 ;:interrupt mode 1
MACS: .assign b'10000000 ;:MAC register saturation
;
;### module stop control register H ####;:MSTPCRH
A_D: .assign b'11111101 ;:A/D module select
D_A: .assign b'11111011 ;:D/A module select
PPG: .assign b'11110111 ;:PPG module select
TMR: .assign b'11101111 ;:TMR module select
TPU: .assign b'11011111 ;:TPU module select
DTC: .assign b'10111111 ;:DTC module select
DMAC: .assign b'01111111 ;:DMAC module select
;
;### module stop control register L ####;:MSTPCRL
SCI0: .assign b'11011111 ;:SCI0 module select
SCI1: .assign b'10111111 ;:SCI1 module select
SCI2: .assign b'01111111 ;:SCI2 module select
;

Defines data for initialization processing.
Modify the values or add data as necessary.

Figure 2.8 HI2000/3 CPU Initialization Routine (H8S/2655) (1/2)

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 136 of 362

REJ05B0364-0300

Calls the kernel initialization processing.
After completing the CPU initialization
processing, be sure to call the kernel initialization
processing.

_H_2S_CPUINI:
 mov.l #CPUINI_SP:32, sp ;:get CPUINI_SP
 mov.b @SYSCR:32, r0L ;:get SYSCR
 and.b #low~(INTM0 | INTM1):8, r0L ;:clear interrupt mode bit
 or.b #low (INTM0 | INTM1):8, r0L ;:set interrupt mode = 3
 mov.b r0L, @SYSCR:32 ;:set SYSCR
;
;
 mov.b @MSTPCRH:32, r0L ;:get MSTPCRH
 and.b #low TPU:8, r0L ;:set TPU bit off
 mov.b r0L, @MSTPCRH:32 ;:set MSTPCRH
;
 .aifdef DX
 jsr @_HI_DEAMON_INI ;:call to init deamon code
 .aendi
;
 jmp @_H_2S_INIT ;:goto HI2000/3 initialize module
;

Add the following processing as necessary.
• Initialization of the bus state controller
• Initialization of external memory (SDRAM)

Figure 2.8 HI2000/3 CPU Initialization Routine (H8S/2655) (2/2)

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 137 of 362

 REJ05B0364-0300

;***
;* *
;* HI1000/4 Version (uITRON V4.0) *
;* HI1000/4 user/system application file *
;* *
;* Copyright (C) 1998, 2003 Renesas Technology Corp. All right reserved *
;* *
;***
 .program _1650cpu
 .heading "### 1650cpu.src : H8SX/1650 initialize module ###"
;
 .section P_hicpuini, code, align = 2
;
 .export _KERNEL_H_CPUINI
 .import _KERNEL_HI_OS_SP
 .import _vsta_knl
;
;***
;* specifications ; *
;* name = 1650cpu.src : H8SX/1650 initialize module ; *
;* function = CPU Initialize routine ; *
;* notes = ; *
;* input = none ; *
;* output = none ; *
;* end of specifications ; *
;***
;
 .radix d ;:xxxxx -> d'xxxxx
;
;############# register address ############;:
INTCR: .assign h'00FFFF32 ;;interrupt control register
MSTPCRA: .assign h'00FFFDC8 ;:module stop control register A
ABWCR: .assign h'00FFFD84 ;:bus width control register
ASTCR: .assign h'00FFFD86 ;:access state control register
WTCRA: .assign h'00FFFD88 ;:wait control register A
WTCRB: .assign h'00FFFD8A ;:wait control register B
;
;######### interrupt control register ##########;:INTCR
INTM0: .assign b'00010000 ;:interrupt mode bit0
INTM1: .assign b'00100000 ;:interrupt mode bit1
;
;####### module stop control register A #######;:MSTPCRA
MSTPA0: .assign h'FFFE ;:TPU ch 5 - 0
VBR_ADR: .assign 0 ;:VBR address
;
_KERNEL_H_CPUINI:
 mov.l #_KERNEL_HI_OS_SP:32, sp ;:SP <- OS stack
 mov.l #VBR_ADR, er0 ;:
 ldc.l er0, vbr ;:set VBR address
 mov.l #h'ffffff00, er0 ;:initial SBR
 ldc.l er0, sbr ;:initial SBR
;
; mov.w #h'00ff, @ABWCR:32 ;:set ABWCR
; mov.w #h'0000, @ASTCR:32 ;:set ASTCR
; mov.w #h'0000, @WTCRA:32 ;:set WTCRA
; mov.w #h'0000, @WTCRB:32 ;:set WTCRB
;
 mov.b #INTM1, r0L ;:set interrupt mode 2
 mov.b r0L, @INTCR:32 ;:set INTCR
;
 mov.w @MSTPCRA:32, r0 ;:get MSTPCRA
 and.w #MSTPA0:16, r0 ;:set TPU bit off
 mov.w r0, @MSTPCRA:32 ;:set MSTPCRA
;
 jmp @_vsta_knl ;:goto vsta_knl
;

Defines data for initialization processing.
Modify the values or add data as necessary.

Add the following processing as necessary.
• Initialization of the bus state controller
• Initialization of external memory (SDRAM)

Calls the kernel initialization processing.
After completing the CPU initialization
processing, be sure to call the kernel initialization
processing.

Figure 2.9 HI1000/4 CPU Initialization Routine (H8SX/1650)

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 138 of 362

REJ05B0364-0300

2.2.1 FAQs about CPU Initialization Routine

This section answers questions about CPU initialization routine which are frequently asked by
users of the HI series OS.

FAQ Contents:

(1) Transferring Programs ... 139

(2) Defining Initial Stack Pointer .. 142

(3) Hang-up after Initialization.. 143

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 139 of 362

 REJ05B0364-0300

(1) Transferring Programs

Classification: CPU initialization routine

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

Please explain how to transfer all sections from ROM to RAM by using the ROM support function
(ROM to RAM mappedsections in the Optlinker).

Answer

To transfer P_xxx sections (code sections) from ROM to RAM and execute them in RAM, the
section initialization processing must be done in the CPU initialization routine, that is, the P_xxx
section contents must be copied to the R sections.

B_xxx sections should be placed in RAM; they do not need to be placed in ROM first and then
transferred to RAM.

When the ROM support function is used, they are transferred to RAM and execution can be
started with the kernel initialization by simply issuing vsta_knl in the CPU initialization routine.

For details on program transfer, refer to the following descriptions in the compiler application
notes.

• Application note for SuperH RISC engine Family C/C++ Compiler Package

Q&A: Transfer to RAM and Execution of a Program

• Application note for H8S, H8/300 Series C/C++ Compiler Package

Q&A: How to Run Programs in RAM

The following shows an example of program transfer in the SH7770.

(Continued on next page)

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 140 of 362

REJ05B0364-0300

(Continued from previous page)

Answer

 /***/
/* HI7750/4 CPU initialize routine */
/* Copyright (c) 2000(2003) Renesas Technology Corp. */
/* and Renesas Solutions Corp. All Rights Reserved. */
/* HI7750/4(HS0775ITI41SR) V1.1.00 */
/***/
/***/
/* FILE = 7770_cpuini.c ; */
/* CPU type = SH7770 */
/***/
#include <machine.h>
#include "itron.h"
#include "kernel.h"

/* extern void _INITSCT(void); */ /* section-initialize routine */

#pragma section _hicpuini
#pragma noregsave(hi_cpuini)

void hi_cpuini(void)
{
/* ER ercd; */

/*** Initialize Hardware Environment ***/
/* ercd = vini_cac((ATR)(TCAC_IC_ENABLE | TCAC_OC_ENABLE | TCAC_P1_CB)); */

/*** Initialize Software Environment ***/

/* _INITSCT(); */ /* Call section-initialize routine */

 vsta_knl(); /* Start kernel */
}

Remove comment characters (/* and */) to call
the section initialization processing.

Figure 2.10 Definition in CPU Initialization Routine

(Continued on next page)

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 141 of 362

 REJ05B0364-0300

(Continued from previous page)

Answer

 /**/
/* HI7750/4 section initialize routine */
/* Copyright (c) 2000(2003) Renesas Technology Corp. */
/* and Renesas Solutions Corp. All Rights Reserved. */
/* HI7750/4(HS0775ITI41SR) V1.1.00 */
/**/
/**/
/* FILE = 7770_initsct.c ; */
/**/
#include <machine.h>
#include "itron.h"

extern int *B_BGN, *B_END, *D_BGN, *D_END, *D_ROM;
extern void _INITSCT(void);

#pragma section _hicpuini
/**/
/* NAME = _INITSCT ; */
/* FUNCTION = Section Initialize routine ; */
/**/
void _INITSCT(void)
{
 register int *p, *q;
 for(p = B_BGN; p<B_END; p++) /* 0 clear B-section */
 *p = 0;
 for(p = D_BGN, q = D_ROM; p<D_END; p++, q++) /* Copy D-section -> R-section */
 *p = *q;
}

Figure 2.11 INITSCT() Processing

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 142 of 362

REJ05B0364-0300

(2) Defining Initial Stack Pointer

Classification: CPU initialization routine

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

Is the stack pointer defined in the project file used for system creation a temporary stack pointer
used until the kernel starts execution?

Answer

This stack pointer is used until the kernel starts execution, that is, it is used by the CPU
initialization routine.

The specified stack area must be set as accessible when the CPU initialization routine is initiated.
Before the stack pointer is specified by the CPU initialization routine, the stack area must be
enabled (necessary settings must be made in the bus state controller (BSC) to enable external
memory such as SDRAM or SRAM).

In kernel initialization processing initiated after the CPU initialization routine is completed, the
stack pointer is switched to point to the kernel stack allocated through the configurator.

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 143 of 362

 REJ05B0364-0300

(3) Hang-up after Initialization

Classification: CPU initialization routine

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

Is it possible that execution will hang up during CPU initialization?

Answer

After the CPU initialization routine processing, the kernel initialization processing is called, but
after the kernel initialization processing, execution does not return to the CPU initialization
routine.

Control is passed to the initial start task after the kernel initialization processing.

Therefore, if execution hangs up without control being passed to the initial start task, any of the
following may be the cause; check the system for each possibility.

• The stack area used during kernel initialization is insufficient, and another area is overwritten
and damaged.

• The RAM area used during kernel initialization cannot be accessed.

• The target board generates an illegal interrupt or an undefined exception.

• Initially defined information is incorrect, and an error occurs in kernel initialization.

For an overview of the processing after the CPU initialization routine is initiated, refer to section
2.1, Overview of Processing from Reset to Task Initiation in this application note.

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 144 of 362

REJ05B0364-0300

2.3 Overview of Kernel Initialization Processing

The kernel initialization processing includes the following.

• Switching to the kernel stack pointer

• Creating and initializing the kernel management areas (management tables)

• Creating and initializing the initially defined objects

• Calling the system initialization routine

The kernel initialization processing creates and initializes the necessary information for kernel
operation.

2.3.1 Initialization Routine

The initialization routine can be created as a C-language function.

Figure 2.12 shows a sample of the initialization routine code.

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

void inirtn(VP_INT exinf)
{

 /* Initialization routine processing */

}

Includes standard header files.

Figure 2.12 Sample Initialization Routine Code

The initialization routine must be created in accordance with the application programs.

Refer to the provided sample initialization routine (timer initialization routine) and create the
routine in accordance with the application programs used.

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 145 of 362

 REJ05B0364-0300

2.3.2 Shifting to Multitask Environment

After kernel initialization processing is completed, the dispatcher is initiated. The dispatcher
schedules tasks as follows.

• When tasks are READY

The dispatcher assigns the CPU to the task which has the highest priority among the READY
tasks (the task which has the highest priority level and which received an initiation request first
among the tasks having the same priority level).

• When no tasks are READY

The dispatcher passes control to system idling processing, which causes the system to enter the
idle state (SUSPENDED state) until a task enters the READY state (initiated).

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 146 of 362

REJ05B0364-0300

2.3.3 FAQ about Kernel Initialization Processing

This section answers a question about kernel initialization processing which is frequently asked by
users of the HI series OS.

FAQ Contents:

(1) Initializing Kernel Work Area ... 147

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 147 of 362

 REJ05B0364-0300

(1) Initializing Kernel Work Area

Classification: Kernel initialization processing

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

Should the kernel work area be initialized (cleared to 0) in the CPU initialization routine?

Answer

The kernel work area does not need to be initialized in the CPU initialization routine.

For the kernel work area (B_hiwrk section area), the kernel initialization processing creates and
initializes the necessary information for kernel operation.

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 148 of 362

REJ05B0364-0300

2.4 Overview of System Idling Processing

When no task should be executed (no task is READY), the kernel enters the system idle state (to
be more specific, interrupt masks are canceled and an infinite loop is entered).

2.4.1 System Idling Processing Using SLEEP Instruction

(1) HI7000/4 Series

To use the power-down mode of the microcomputer in the system idling processing, create a task
of the lowest priority level; in that task, make the necessary settings and execute the SLEEP
instruction.

Figure 2.13 shows a sample code.

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

#pragma inline_asm(sleep)
static void sleep(void)
{
 sleep
}

#pragma noregsave(IdleTask)

void IdleTask(VP_INT exinf)
{

 while(1){
 /* Make necessary settings in SBYCR. */
 sleep();
 }

}

Includes standard header files.

Uses #pragma inline_asm to execute a
SLEEP instruction.

Specifies #pragma noregsave because the
registers do not need to be saved when a
task is initiated.

Figure 2.13 System Idling Processing Using SLEEP Instruction (HI7000/4 Series)

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 149 of 362

 REJ05B0364-0300

(2) HI2000/3

Figure 2.14 shows the system idling processing provided as a sample file.

;***
;* specifications ; *
;* name = _H_SYSTEM_IDLE : HI2000/3 SYSTEM IDLING DEFINE ; *
;* function = ; *
;* notes = ; *
;* date = 99/02/22 ; *
;* author = Hitachi, Ltd. ; *
;* attribute = public ; *
;* class = system ; *
;* linkage = ; *
;* input = ; *
;* output = ; *
;* end of specifications ; *
;***
_H_SYSTEM_IDLE:
; bra $;:forever loop
;
 sleep ;:sleep define
 bra _H_SYSTEM_IDLE:8 ;:branch _H_SYSTEM_IDLE
;

Figure 2.14 System Idling Processing Using SLEEP Instruction (HI2000/3)

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 150 of 362

REJ05B0364-0300

(3) HI1000/4

Figure 2.15 shows the system idling processing provided as a sample file.

;***
;* *
;* HI1000/4 Version (uITRON V4.0) *
;* HI1000/4 kernel idle routine *
;* *
;* Copyright (C) 1998, 2003 Renesas Technology Corp. All right reserved *
;* *
;***
 .program _1650idle
 .heading "### 1650idle.src : kernel idle routine ###"
 .section P_hiidle, code, align = 2
;
 .export _KERNEL_H_SYSTEM_IDLE
;
;***
; *specifications ; *
; *name = _KERNEL_H_SYSTEM_IDLE : HI1000/4 kernel idle routine *
; *function = ; *
; *notes = ; *
; *input = ; *
; *output = ; *
; *end of specifications ; *
;***
_KERNEL_H_SYSTEM_IDLE:
; bra $;:forever loop
;
 sleep ;:sleep define
 bra _KERNEL_H_SYSTEM_IDLE:8 ;:branch _KERNEL_H_SYSTEM_IDLE
;
;***************************************;
 .end; of 1650idle.src

Figure 2.15 System Idling Processing Using SLEEP Instruction (HI1000/4)

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 151 of 362

 REJ05B0364-0300

2.4.2 FAQs about System Idling Processing

This section answers questions about system idling processing which are frequently asked by users
of the HI series OS.

FAQ Contents:

(1) Return from Idle State..152

(2) SLEEP Instruction Execution in the Idle State ..153

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 152 of 362

REJ05B0364-0300

(1) Return from Idle State

Classification: System idling processing

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

The kernel remains in the idle state after slp_tsk is executed. What could cause this?

Answer

This may be caused by any of the following.

• The task that issued slp_tsk cannot be made READY.

 There is no task to wake up the task that issued slp_tsk.

 The task to wake up the task that issued slp_tsk is not initiated.

 The interrupt handler to wake up the task that issued slp_tsk is not initiated.

• There is no other task that should be executed than the task that issued slp_tsk.

The kernel enters the system idle state when no task is in the READY state.

Create a task or interrupt handler to wake up the task that issued slp_tsk. This will cause execution
to return from the system idle state.

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 153 of 362

 REJ05B0364-0300

(2) SLEEP Instruction Execution in the Idle State

Classification: System idling processing

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

When the kernel detects the system idle state, it enters the sleep state by executing the SLEEP
instruction. Please explain in detail this OS processing.

Answer

The kernel simply executes a SLEEP instruction.

The kernel does not control SBYCR. It must be controlled through the application when a SLEEP
instruction is executed.

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 154 of 362

REJ05B0364-0300

2.5 Overview of System Termination Processing

If an abnormal state is found in the system, the system termination processing is initiated. The
following is a list of the causes of system termination (system down).

• The system termination processing is forcibly called from an application program

• An error or conflict is found in the initially-defined object information

• An error is detected within the kernel

• An undefined interrupt or exception is detected

The system termination processing must be prepared as an application program by the user. Refer
to the provided sample file and create the program in accordance with the application programs.

Various items of error information are passed to the system termination processing. At debugging,
the error information passed through parameters when an abnormal state is found in the system
can be checked by specifying breakpoints through the emulator or the ICE; this is useful for
system error analysis.

For details on the parameters passed to the system termination processing, refer to the user's
manual of the HI series OS used or section 5, Debugging, in this application note.

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 155 of 362

 REJ05B0364-0300

2.5.1 Sample System Termination Processing

(1) HI7000/4

Figure 2.16 shows the system termination processing provided as a sample file.

/**/
/* HI7000/4 System down routine */
/* Copyright (c) Hitachi, Ltd. 2000. */
/* Licensed Material of Hitachi, Ltd. */
/* HI7000/4(HS0700ITI41SR) V1.0 */
/**/
/**/
/* FILE = 7604_sysdwn.c ; */
/**/
#include <machine.h>
#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

#pragma section _hisysdwn
/* #pragma interrupt (_kernel_sysdwn) */
/**/
/* NAME = _kernel_sysdwn ; */
/* FUNCTION = System down routine ; */
/**/
void _kernel_sysdwn(type, ercd, inf1, inf2)
W type; /*system down type */
 /* type >= 1 : system down of user program */
 /* type == 0 : initial information error */
 /* type == -1 : context error of ext_tsk */
 /* type == -2 : context error of exd_tsk */
 /* type == -16: undefined interrupt / exception */
ER ercd; /* error code */
 /* type >= 0 : error code of user program */
 /* type == 0 : error code of initial information */
 /* type == -1 : error code of ext_tsk */
 /* type == -2 : error code of exd_tsk */
 /* type == -16: interrupt vector number */
VW inf1; /* information-1 */
 /* type >= 0 : information of user program */
 /* type == 0 : indicator of initial information error */
 /* type == -1 : address of ext_tsk call */
 /* type == -2 : address of exd_tsk call */
 /* type == -16: address of interrupt occurrence */
VW inf2; /* information-2 */
 /* type >= 0 : information of user program */
 /* type == 0 : number of error initial information */
 /* type == -16: SR of interrupt occurrence */
{
 set_imask(SR_IMS15); /* mask all interrupt */
 while(TRUE); /* endless loop */
}

Figure 2.16 System Termination Processing (HI7000/4)

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 156 of 362

REJ05B0364-0300

(2) HI7700/4 and HI7750/4

Figure 2.17 shows the system termination processing provided as a sample file.

/**/
/* HI7700/4 System down routine */
/* Copyright (c) 2000(2003) Renesas Technology Corp. */
/* and Renesas Solutions Corp. All Rights Reserved. */
/* HI7700/4(HS0770ITI41SR) V1.0 */
/**/
/**/
/* FILE = 7708_sysdwn.c ; */
/**/
#include <machine.h>
#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

/**/
/* environment data */
/**/
#define MD_BIT 0x40000000 /* SR.MD bit */

#pragma section _hisysdwn
/*#pragma interrupt(_kernel_sysdwn) */
/**/
/* NAME = _kernel_sysdwn ; */
/* FUNCTION = System down routine ; */
/**/
void _kernel_sysdwn(type, ercd, inf1, inf2)
W type; /* system down type */
 /* type >= 1 : system down of user program */
 /* type == 0 : initial information error */
 /* type == -1 : context error of ext_tsk */
 /* type == -2 : context error of exd_tsk */
 /* type == -16: undefined interrupt/exception */
ER ercd; /* error code */
 /* type >= 0 : error code of user program */
 /* type == 0 : error code of initial information */
 /* type == -1 : error code of ext_tsk */
 /* type == -2 : error code of exd_tsk */
 /* type == -16: interrupt vector number */
VW inf1; /* information-1 */
 /* type >= 0 : information of user program */
 /* type == 0 : indicator of initial information error */
 /* type == -1 : address of ext_tsk call */
 /* type == -2 : address of exd_tsk call */
 /* type == -16: address of interrupt occurrence */
VW inf2; /* information-2 */
 /* type >= 0 : information of user program */
 /* type == 0 : number of error initial information */
 /* type == -16: SR of interrupt occurrence */
{
 set_cr(MD_BIT | (SR_IMS15 << 4)); /* mask all interrupt */
 while(TRUE); /* endless loop */
}

Figure 2.17 System Termination Processing (HI7700/4 and HI7750/4)

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 157 of 362

 REJ05B0364-0300

(3) HI2000/3

Figure 2.18 shows the system termination processing provided as a sample file.

;***
;* specifications ; *
;* name = _HIPRG_ABNOML : abnormal quit handler ; *
;* function = ; *
;* notes = ; *
;* date = 99/02/22 ; *
;* author = Hitachi, Ltd. ; *
;* attribute = public ; *
;* class = system ; *
;* linkage = ; *
;* input = ; *
;* output = ; *
;* end of specifications ; *
;***
_HIPRG_ABNOML:
 orc #HIDEF_IMASK_CCR:8, ccr ;:interrupt mask for CCR register
 orc #HIDEF_IMASK_EXR:8, exr ;:interrupt mask for EXR register
 bra $;:forever loop
;

Figure 2.18 System Termination Processing (HI2000/3)

(4) HI1000/4

Figure 2.19 shows the system termination processing provided as a sample file.

;**;
;* NAME = vsys_dwn ;*;
;* FILE = vsys_dwn.src ;*;
;* FUNC = System down routine ;*;
;* NOTE = ;*;
;* INPU = none : ;*;
;* OUTP = none : ;*;
;**;
;
 .section P_hisysdwn, code, align = 2
;
 .export _vsys_dwn
 .export _ivsys_dwn
_vsys_dwn:
_ivsys_dwn:
 bra _vsys_dwn:8
 rts
;
 .end; of vsys_dwn.src

Figure 2.19 System Termination Processing (HI1000/4)

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 158 of 362

REJ05B0364-0300

2.5.2 FAQ about System Termination Processing

This section answers a question about system termination processing which is frequently asked by
users of the HI series OS.

FAQ Contents:

(1) System-Down Causes .. 159

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 159 of 362

 REJ05B0364-0300

(1) System-Down Causes

Classification: System termination processing

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

The system goes down after initialization processing. Please explain how to determine the cause of
this.

Answer

The following is a list of the causes of system down.

• The system termination processing is forcibly called from an application program

• An error or conflict is found in the initially-defined object information

• An error is detected within the kernel

• An undefined interrupt or exception is detected

Set a breakpoint to the beginning of the system termination processing to obtain parameters at
system-down to analyze the cause of this.

For details on the parameters passed to the system termination processing, refer to the user's
manual of the HI series OS used or section 5, Debugging, in this application note.

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 160 of 362

REJ05B0364-0300

2.6 Application Program Types

Table 2.2 application programs are necessary to develop a system by using the HI series OS.

Table 2.2 Application Program Types and Necessity

Type Necessity Remarks

Task Always

Interrupt handler Always

CPU initialization routine Always

System termination processing routine Always

System idling processing routine Always

Initialization routine Optional

Timer interrupt routine
(including timer initialization routine)

*1

Task exception processing routine Optional *2

Extended service call routine Optional *3

CPU exception handler Optional *2

Cyclic handler Optional

Alarm hander Optional *2

Overrun handler Optional *2

Always: Must always be prepared.
Optional: Must be prepared when necessary.

Notes: 1. Not necessary when the system does not use the time management function.

 2. Supported by the HI7000/4 series; not supported by the HI2000/3 or HI1000/4.
 3. Supported by the HI7000/4 and HI1000/4 series; not supported by the HI2000/3.

Table 2.3 shows the relationships among these application programs, the system state, and the
service call types that can be issued.

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 161 of 362

 REJ05B0364-0300

Table 2.3 Application Programs and System State

Application Program System State
Service Call Type that Can be
Issued

Task Task context Service calls for task context

Interrupt handler Non-task context Service calls for non-task context

Initialization routine Non-task context Service calls for non-task context

Task exception processing routine Task context Service calls for task context

Extended service call routine Issuing context*1 Issuing context*1

CPU exception handler *2 *3

Cyclic handler Non-task context Service calls for non-task context

Alarm hander Non-task context Service calls for non-task context

Overrun handler Non-task context Service calls for non-task context

Notes: 1. The context when the service call is issued is inherited.

 2. The issuing context in the HI7000/4 series and the non-task context in the HI1000/4.
The CPU exception handler is not supported by the HI2000/3.

 3. For details on the service calls that can be issued, refer to the user's manual for the HI
series OS.

2.6.1 Task Creation Example

A task should be created as a C-language function. Read the following notes before terminating a
task.

Table 2.4 Service Call for Task Termination and Notes

HI Series OS Service Call Notes

HI7000/4 series ext_tsk() or exd_tsk()
service call

The task terminating service call can be omitted (the
ext_tsk() service call is assumed when omitted).

HI2000/3 ext_tsk() system call The task terminating service call must not be omitted
(a task must always be terminated by an ext_tsk()
system call). When execution is returned from the
task to its caller, correct system operation cannot be
guaranteed.

HI1000/4 ext_tsk() service call The task terminating service call can be omitted (the
ext_tsk() service call is assumed when omitted).

For the value of each context register when a task is initiated, refer to the user's manual for the HI
series OS used.

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 162 of 362

REJ05B0364-0300

Figure 2.20 shows a sample of the code for a task.

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

#pragma noregsave(Task)

void Task(VP_INT exinf)
{

 /* Task processing */

 ext_tsk();
/* exd_tsk(); */

}

Includes standard header files.

When the task is initiated by an act_tsk() service call,
the exinf value defined at task registration is passed
through a parameter.
When the task is initiated by a sta_tsk() service call,
the stacd value specified by the service call is
passed through a parameter.

Specifies #pragma noregsave because the
registers do not need to be saved when the
task is initiated.

Defines termination of task processing.

Figure 2.20 Sample Task Code

Note: For the standard header files that should be included, refer to the user's manual for the HI
series OS used.

2.6.2 Interrupt Handler Creation Example

The following shows a sample of the interrupt handler code for each HI series OS.

(1) Sample Interrupt Handler Code for HI7000/4 Series

Figure 2.21 shows a sample of an interrupt handler code.

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

void Inh(void)
{

 /* Interrupt handler processing */

}

Includes standard header files.

Writes an interrupt handler as a void-type
function.

Figure 2.21 Sample Interrupt Handler Code (HI7000/4 Series)

Notes: 1. For the standard header files that should be included, refer to the user's manual of the
HI series OS used.

 2. When using a coprocessor, all of its registers must be saved and restored in the
interrupt handler.

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 163 of 362

 REJ05B0364-0300

By using IRL interrupts, two interrupt sources of different levels can be assigned to one vector
table. When using IRL interrupts, write the interrupt handler as shown in the following example.

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

#define I_HILEVEL 15

void vec071_handler14(void)
{
 /* IRL14 interrupt processing */
}

void vec071_handler15(void)
{
 /* IRL15 interrupt processing */
}

void vec071(void)
{

 if((get_imask()) == I_HILEVEL)
 vec071_handler15();
 else
 vec071_handler14();

}

Includes standard header files.

Defines the higher level.

Writes the interrupt processing for each level.

Writes the interrupt handler to be registered
for an interrupt source as a void-type function.

Figure 2.22 Sample of Interrupt Handler Code when Using IRL Interrupts (HI7000/4
Series)

Note the following when using the direct interrupt handler in the HI7000/4.

• The interrupt handler is initiated without involving kernel management when an interrupt
occurs.

• The direct interrupt handler cannot issue service calls.

Figure 2.23 shows a sample of a direct interrupt handler code.

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 164 of 362

REJ05B0364-0300

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

#define stksz 512
VW stk[stksz / sizeof(VW)];
static const VP p_stk = (VP) & stk[stksz / sizeof(VW)];

#pragma interrupt(DirectInh(sp = p_stk, tn = 25))
/* #pragma interrupt(high(sp = p_stk)) */
/* #pragma interrupt(nmi()) */

void DirectInh(void)
{

 /* Interrupt handler processing */

}

Includes standard header files.

Defines the stack size for the
interrupt handler.

Allocates the stack area for the
interrupt handler.

Defines the stack pointer for the
interrupt handler.

*
Declares the interrupt handler
as an interrupt function by using
#pragma interrupt.

Writes the interrupt handler as a
void-type function.

Figure 2.23 Sample Direct Interrupt Handler Code (HI7000/4)

Note: * Specify the following in #pragma interrupt.

 • Stack switch setting (sp=)

 Stacks must not be switched in the NMI interrupt handler.

 • Trap return setting (tn = 25)

 Specify tn = 25 for the interrupt handler that is lower than the kernel interrupt
mask level. The interrupt handler (including NMI) that is higher than the kernel
interrupt mask level must be terminated by the RTE instruction, and the trap return
setting must not be made.

The direct interrupt handler is not supported by the HI7700/4 or HI7750/4.

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 165 of 362

 REJ05B0364-0300

(2) Sample Interrupt Handler Code for HI2000/3 and HI1000/4

The interrupt handler must save and restore the register values when an interrupt occurs. Create
the interrupt handler through the following procedure.

Table 2.5 Interrupt Handler Creation Procedure

Processing Description

Saving registers used in the
interrupt handler

• Saves stack pointer.

The stack pointer must be modified to point to the stack area
dedicated to the interrupt handler (this processing can be
omitted when the interrupt handler does not use a stack).

• Saves register contents.

Interrupt processing Processing performed in the interrupt handler

Restoring registers used in the
interrupt handler

• Restores register contents.

The stack pointer must be modified (this processing can be
omitted when the interrupt handler does not use a stack).

Terminating the interrupt
handler

Calls the ret_int routine when the interrupt level is lower than the
kernel interrupt mask level or executes the RTE instruction when
the interrupt level is higher than the kernel interrupt mask level.

The interrupt handler should be created by using the interrupt function creation directive (#pragma
interrupt) of the C compiler. Figure 2.24 shows a sample of an interrupt handler code.

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 166 of 362

REJ05B0364-0300

#include "hi2000.h"

#define stksz 512
VW stk[stksz / sizeof(VW)];
static const VP p_stk = (VP) & stk[stksz / sizeof(VW)];

#pragma interrupt(inthdr(sp = p_stk, tn = 25))
/* #pragma interrupt(high(sp = p_stk)) */
/* #pragma interrupt(nmi()) */

void inthdr(void)
{

 /* Interrupt handler processing */

}

*2

*1

Includes standard header files.

Allocates the stack area for the
interrupt handler.

Defines the stack pointer for the
interrupt handler.

Defines the stack size for the
interrupt handler.

Declares the interrupt handler
as an interrupt function by
using #pragma interrupt.

Writes the interrupt handler as a
void-type function.

Figure 2.24 Sample Interrupt Handler Code (HI2000/3)

Notes: 1. For the standard header files that should be included, refer to the user's manual of the
HI series OS used.

 2. Stack switching and interrupt function termination must be specified in #pragma
interrupt. For details, refer to the user's manual of the HI series OS used.

2.6.3 CPU Initialization Routine Creation Example

The HI2000/3 and HI1000/4 provide sample files written in assembly language. To use a CPU
initialization routine written in C language, a call for the C-language CPU initialization routine
should be added to the assembly-language CPU initialization routine.

The following shows sample modifications of the CPU initialization routine written in assembly
language and samples of the CPU initialization routine code written in C language for the
HI2000/3 and HI1000/4, respectively.

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 167 of 362

 REJ05B0364-0300

(1) HI2000/3

_H_2S_CPUINI:
 mov.l #CPUINI_SP:32, sp ;:get CPUINI_SP
 mov.b @SYSCR:32, r0L ;:get SYSCR
 and.b #low~(INTM0|INTM1):8, r0L ;:clear interrupt mode bit
 or.b #low (INTM0|INTM1):8, r0L ;:set interrupt mode = 3
 mov.b r0L, @SYSCR:32 ;:set SYSCR
;
 mov.b @MSTPCRH:32, r0L ;:get MSTPCRH
 and.b #low TPU:8, r0L ;:set TPU bit off
 mov.b r0L, @MSTPCRH:32 ;:set MSTPCRH
;
 .aifdef DX
 jsr @_HI_DEAMON_INI ;:call to init deamon code
 .aendi
;
 bsr @_h_cpuini_c ;:call to C-language initialize routine
;
 jmp @_H_2S_INIT ;:goto HI2000/3 initialize module
;

Note: This example assumes the h_cpuini_c is the name of the C-language CPU initialization routine.

Calls the C-language CPU initialization routine.
After the assembly-language CPU initialization
routine is completed, call the C-language CPU
initialization routine.

Figure 2.25 Sample Modification of Assembly-Language CPU Initialization Routine
(HI2000/3)

void h_cpuini_c(void)
{

/*** Initialize Hardware Environment ***/

/*** Initialize Software Environment ***/

// _INITSCT(); /* Call section-initialize routine */

}

Figure 2.26 Sample C-Language CPU Initialization Routine Code (HI2000/3)

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 168 of 362

REJ05B0364-0300

(2) HI1000/4

_KERNEL_H_CPUINI:
 mov.l #_KERNEL_HI_OS_SP:32, sp ;:SP <- OS stack
 mov.l #VBR_ADR, er0 ;:
 ldc.l er0, vbr ;:set VBR address
 mov.l #h'ffffff00, er0 ;:initial SBR
 ldc.l er0, sbr ;:initial SBR
;
; mov.w #h'00ff, @ABWCR:32 ;:set ABWCR
; mov.w #h'0000, @ASTCR:32 ;:set ASTCR
; mov.w #h'0000, @WTCRA:32 ;:set WTCRA
; mov.w #h'0000, @WTCRB:32 ;:set WTCRB
;
 mov.b #INTM1, r0L ;:set interrupt mode 2
 mov.b r0L, @INTCR:32 ;:set INTCR
;
 mov.w @MSTPCRA:32, r0 ;:get MSTPCRA
 and.w #MSTPA0:16, r0 ;:set TPU bit off
 mov.w r0, @MSTPCRA:32 ;:set MSTPCRA
;
 jmp @_h_cpuini ;:goto _h_cpuini
;

Calls the C-language CPU initialization routine.
After the assembly-language CPU initialization routine is
completed, call the C-language CPU initialization routine.

Note: This example assumes that h_cpuini is the name of the C-language CPU initialization routine.

Figure 2.27 Sample Modification of Assembly-Language CPU Initialization Routine
(HI1000/4)

void h_cpuini(void)
{

/*** Initialize Hardware Environment ***/

/*** Initialize Software Environment ***/

// _INITSCT(); /* Call section-initialize routine */

 vsta_knl(); /* Start kernel */
}

Calls the kernel initialization processing.
Be sure to call the kernel initialization processing
after the CPU initialization processing is
completed.

Figure 2.28 Sample C-Language CPU Initialization Routine Code (HI1000/4)

Refer also to section 2.2, Overview of CPU Initialization Routine.

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 169 of 362

 REJ05B0364-0300

2.6.4 System Termination Processing Creation Example

The HI2000/3 and HI1000/4 provide sample files written in assembly language. To write the
system termination processing in C language, refer to the following sample code.

#include "hi2000.h"

void HIPRG_ABNOML(void)
{

 set_imask_ccr(0xC0); /* All interrupts masked */
 set_imask_exr(0x07); /* All interrupts masked */
 while(1); /* endless loop */

}

Writes the system termination processing as
a void-type function.

Includes standard header files.
*1

*2

Figure 2.29 Sample System Termination Processing Code (HI2000/3)

Notes: 1. For the standard header files that should be included, refer to the user's manual of the
HI series OS used.

 2. The function must be named HIPRG_ABNOML in the HI2000/3 or vsys_dwn in the
HI1000/4 because the kernel refers to the function by these respective names.

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 170 of 362

REJ05B0364-0300

2.6.5 System Idling Routine Creation Example

The HI2000/3 and HI1000/4 provide sample files written in assembly language. To write the
system idling routine in C language, refer to the following sample code.

#include "hi2000.h"

void HIPRG_IDLE(void)
{

 set_imask_ccr(0x00); /* All interrupt masks canceled */
 set_imask_exr(0x00); /* All interrupt masks canceled */
 while(1); /* endless loop */

}

Writes the system idling routine as a void-type
function.

Includes standard header files.
*1

*2

Figure 2.30 Sample System Idling Routine Code (HI2000/3)

Notes: 1. For the standard header files that should be included, refer to the user's manual of the
HI series OS used.

 2. The function must be named HIPRG_IDLE in the HI2000/3 or
KERNEL_H_SYSTEM_IDLE in the HI1000/4 because the kernel refers to the
function by these respective names.

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 171 of 362

 REJ05B0364-0300

2.6.6 Initialization Routine Creation Example

The HI2000/3 and HI1000/4 provide sample files written in assembly language. To write the
initialization routine in C language, refer to the following sample code.

#include "hi2000.h"

void inirtn(VP_INT exinf)
{

 /* Initialization routine processing */

}

Includes standard header files.
*1

*2

Figure 2.31 Sample Initialization Routine Code

Notes: 1. For the standard header files that should be included, refer to the user's manual of the
HI series OS used.

 2. In the HI2000/3, the extended information (exinf) is not passed to the initialization
routine; do not create a code for receiving this information (the HI2000/3 does not
provide a parameter for this information).

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 172 of 362

REJ05B0364-0300

2.6.7 Timer Interrupt Routine Creation Example

Figure 2.32 shows a sample of a timer interrupt routine code.

#include "itron.h"
#include "kernel.h"

void _kernel_tmrint(void)
{

 /* Timer interrupt routine processing */

}

Writes the timer interrupt routine as a void-type
function.

Includes standard header files.
*1

*2

Figure 2.32 Sample Timer Interrupt Routine Code

Notes: 1. For the standard header files that should be included, refer to the user's manual of the
HI series OS used.

 2. The function must be named as follows because the kernel refers to the function by
these respective names.

HI Series OS Function Name

HI7000/4 series _kernel_tmrint

HI2000/3 Any user-defined name

HI1000/4 _KERNEL_H_TIM

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 173 of 362

 REJ05B0364-0300

2.6.8 Task Exception Processing Routine Creation Example

The task exception processing routine is only supported by the HI7000/4 series OS. Figure 2.33
shows a sample of a task exception processing routine code.

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

#pragma noregsave(Texrtn)

void Texrtn(TEXPTN texptn, VP_INT exinf)
{

 /* Task exception processing routine processing */

}

Specifies #pragma noregsave because the task
exception processing routine does not need to
save register contents when a task is initiated.

Includes standard header files.

Writes the timer interrupt routine as a void-type
function.
The exception source and extended
information are passed through parameters.

Figure 2.33 Sample Task Exception Processing Routine Code

2.6.9 Extended Service Call Routine Creation Example

The extended service call routine is only supported by the HI7000/4 series OS. Figure 2.34 shows
a sample of a task exception processing routine code.

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

ER_UINT Svcrtn(VP_INT par1, VP_INT par2)
{

 /* Extended service call routine processing */

 return E_OK;

}

Includes standard header files.

The parameter values specified by cal_svc are
passed to the extended service call routine.
Specify the same number of parameters as
those specified by cal_svc.

Sends a return value to the caller.

Figure 2.34 Sample Extended Service Call Routine Code

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 174 of 362

REJ05B0364-0300

2.6.10 CPU Exception Handler Creation Example

The CPU exception handler is supported by the HI7000/4 series and HI1000/4. Figure 2.35 shows
a sample of the CPU exception handler code.

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

void cpuexphdr(void)
{

 /* CPU exception handler processing */

}

Includes standard header files.

Writes the CPU exception handler as a
void-type function in the same way as the
interrupt handler.

Figure 2.35 Sample CPU Exception Handler Code

2.6.11 Time Event Handler Creation Example

(1) Cyclic Handler Example

(a) Sample cyclic handler code for the HI7000/4 series and HI1000/4

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

void cychdr(VP_INT exinf)
{

 /* Cyclic handler processing */

}

Includes standard header files.

Writes the cyclic handler as a void-type function
in the same way as the general interrupt handler.
The exinf value defined at creation is returned
through a parameter.

Figure 2.36 Sample Cyclic Handler Code (HI7000/4 Series and HI1000/4)

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 175 of 362

 REJ05B0364-0300

(b) Sample cyclic handler code for the HI2000/3

#include "hi2000.h"

void cychdr(void)

#pragma asm
 stm.l (er0-er1), @-sp ;: Saves er0 and er1 in the stack.
 bsr cychdr_main ;: Calls the main processing.
 ldm.l @sp+, (er0-er1) ;: Restores er0 and er1.
 rts
#pragma endasm

void cychdr_main(void)
{
 /* Cyclic handler processing */
}

Writes the cyclic handler as a void-type function.

Includes standard header files.

Figure 2.37 Sample Cyclic Handler Code (HI2000/3)

(2) Alarm Handler Example (Supported Only in the HI7000/4 Series)

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

void almhdr(VP_INT exinf)
{

 /* Alarm handler processing */

}

Includes standard header files.

Writes the alarm handler as a void-type function in
the same way as the general interrupt handler.
The exinf value defined at creation is returned
through a parameter.

Figure 2.38 Sample Alarm Handler Code (Only in HI7000/4 Series)

(3) Overrun Handler Example (Supported Only in the HI7000/4 Series)

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

void ovrhdr(ID tskid, VP_INT exinf)
{

 /* Overrun handler processing */

}

Includes standard header files.

Writes the overrun handler as a void-type function in the
same way as the general interrupt handler.
The tskid value of the task that caused initiation of the
overrun handler and the exinf value defined at creation
are returned through parameters.

Figure 2.39 Sample Overrun Handler Code (Only in HI7000/4 Series)

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 176 of 362

REJ05B0364-0300

2.7 Development Procedures for Application Programs

A system using the HI series OS can be developed though either of two approaches:

(1) The system is newly developed

(2) Programs of an existing system are used

In approach (1), the programs listed in section 2.5, Application Program Types are created, and
integrated into the final form of the system.

As this approach newly creates every application program, optimum programs to embed the HI
series OS can be developed.

(1) Dividing the functions in a top-down manner

The functions must be divided as far as possible. This step determines the functions that can be
simultaneously processed in parallel. The divided functions are defined as tasks or interrupt
handlers.

Function B Function C

⋅ ⋅

Application system

Divide functions in a
top-down manner

Processing 1 Processing 3Processing 2

Function A

Figure 2.40 Dividing Functions in a Top-Down Manner

Section 2 Application Program Creation

 Rev. 3.00 Jan. 12, 2005 Page 177 of 362

 REJ05B0364-0300

(2) Combining tasks (functions) for the same processing after divided

The action to combine the tasks for the same processing is called a task merge (no task merge
is needed for interrupt handlers, because a handler is defined for each interrupt source). This
step defines the tasks for which functional dependency is eliminated.

Merge the same processing tasks and eliminate functional dependency

Processing 2

Processing 4

Processing y

Processing x

Processing 1

Processing 3

Application system

Input Output

Function B Function C

Application system

Divide functions in a
top-down manner

Processing 1 Processing 3Processing 2

Function A

⋅ ⋅

Figure 2.41 Merging Same Functions and Eliminating Functional Dependency

 After this step, objects of the HI series OS are assigned to the interfaces (synchronization and
communication) between multiple tasks or between a task and an interrupt handler.

Section 2 Application Program Creation

Rev. 3.00 Jan. 12, 2005 Page 178 of 362

REJ05B0364-0300

Assign objects to interfaces

Application system

Input Output

Interrupt
handler x

Interrupt
handler y

Task 1

Task 2

Task 3

Task 4

Semaphore

Event flag

Mailbox

Processing 2

Processing 4

Processing y

Processing x

Processing 1

Processing 3

Application system

Input Output

Figure 2.42 Example of ITRON Objects Assigned to Interfaces

These steps embed the HI series OS into the existing product's application programs that do not
include RTOS.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 179 of 362

 REJ05B0364-0300

Section 3 Configuration

3.1 Configuration Procedure Outline

The procedure for configuring a system using the HI series OS is described below.

Kernel function
library file

Application
programs

Kernel information
definition file

HEW
(High-performance

Embedded Workshop)
Load module

Register in HEW project file

Workspace provided by HI series OS
Already registered when the file is opened
Note: Can be modified as required.

Build

Figure 3.1 Configuration Procedure Outline

System configuration is to create, by means of the HEW, a load module from the user-created
application programs, kernel information definition file (setup table or configuration file), and
kernel function library file provided by the HI series OS.

For details of the user-created application programs, refer to section 2.6, Application Program
Types.

For details of the kernel information definition file (setup table or configuration file), refer to
section 3.2, Defining Kernel Environment.

For details of the kernel function library file provided by the HI series OS, refer to the user's
manual of the HI series OS used.

For details of the HEW, refer to the online help of the compiler package used or the user's manual.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 180 of 362

REJ05B0364-0300

A system can be configured in the following two modes.

Table 3.1 System Configuration Modes

Configuration Mode Overview Supporting OS

Whole linkage*1 The kernel, configuration file, and
application programs are linked into a
single load module (called a "whole load
module").

HI7000/4 series,
HI2000/3, and HI1000/4

Separate linkage*2 The code portion and data portion of the
kernel are linked into separate load
modules.

 The code portion of the kernel is called the "kernel load
module", and the linkage unit for the kernel load module is
called the "kernel side".

 The data portion of the kernel is called the "kernel environment
load module", and the linkage unit for the kernel environment
load module is called the "kernel environment side".

HI7000/4 series

Notes: 1. The application programs can be included in the whole load module or can be linked
into another load module (called the "application load module").

 2. The application programs can be included in the kernel load module or kernel
environment load module, or can be linked into another application load module.

The outlines of whole linkage and separate linkage are shown in figures 3.2 and 3.3, respectively.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 181 of 362

 REJ05B0364-0300

Kernel function
library file

Application
programs

Kernel information
definition file

HEW
(High-performance

Embedded Workshop)

HEW
(High-performance

Embedded Workshop)
Whole-linkage
load module

Application
load module

Figure 3.2 Whole Linkage Outline

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 182 of 362

REJ05B0364-0300

Load module on
kernel side

Load module on
kernel

environment side

Information
definition file on

kernel side

Information
definition file on

kernel
environment side

*2

*1

Notes: 1. The application programs specified to be on the kernel side in the configurator are necessary.
 2. The application programs specified to be on the kernel environment side in the configurator are necessary.

Kernel function
library file

Application
programs

Kernel
information

definition file

HEW
(High-performance

Embedded Workshop)

HEW
(High-performance

Embedded Workshop)

HEW
(High-performance

Embedded Workshop)

Application
load module

Figure 3.3 Separate Linkage Outline

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 183 of 362

 REJ05B0364-0300

The advantages and disadvantages of separate linkage, compared to whole linkage, are listed
below.

Advantages:

• Since a load module can be created with only the kernel, the load module does not need to be
re-created every time an application file or kernel environment file is changed.

• Even after the kernel load module is saved in ROM, the kernel environment load module can
be re-created by changing configuration parameters, such as the maximum task ID
(CFG_MAXTSKID) without updating the kernel load module.

Disadvantages:

• Since the kernel references the kernel environment file information during operation, the
address where to locate the kernel environment file information needs be determined in
advance and this address has to be defined at linkage.

• The above address cannot be changed unless the kernel load module is re-linked.

3.2 Defining Kernel Environment

The kernel environment can be defined by two methods: setup table and configurator.

• HI7000/4 series and HI1000/4: Kernel environment is defined by the configurator

• HI2000/3: Kernel environment is defined by the setup table

Each definition method is described in the following sections.

3.2.1 Definition by Configurator (HI7000/4 Series and HI1000/4)

Table 3.2 lists the files output from the configurator (kernel environment definition files; hereafter
referred to as the configuration files).

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 184 of 362

REJ05B0364-0300

Table 3.2 Files Output from Configurator (HI7000/4 Series)

No. File Name Contents Remarks

1 kernel_def_main.h Kernel function definition, such as
embedded service calls

2 kernel_def_inidata.def Object initial definition data on the
kernel load module side

3 kernel_def_vct.inc Vector information (written in assembly
language)

HI7000/4 only

4 kernel_cfg_main.h Kernel environment information
definition, such as maximum task ID

5 kernel_cfg_inidata.def Object initial definition data on the
kernel environment load module side

6 kernel_id.h Automatic ID assignment result
corresponding to kernel_cfg_inidata.def

7 kernel_macro.h Header file defining kernel configuration
macro

Table 3.3 Files Output from Configurator (HI1000/4)

No. File Name Contents Remarks

1 kernel_setup.src Setup file

kernel_id.h Header file with automatic ID assignment
result

For C language 2

kernel_id.inc Header file with automatic ID assignment
result

For assembly language

kernel_macro.h Header file defining kernel configuration
constants

For C language 3

kernel_macro.inc Header file defining kernel configuration
constants

For assembly language

4 kernel_sysini.src File defining system initialization routine

5 kernel_vector.src File defining vector table creation
information

For details of the above files, refer to the HI7000/4 Series User's Manual or the HI1000/4 User's
Manual for the HI series OS used.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 185 of 362

 REJ05B0364-0300

(1) Overview of configurator operations

This section describes the construction and operations of the configurator with HI7000/4 as an
example.

(a) Configurator window

The initiation window of the configurator is shown in figure 3.4.

Figure 3.4 Configurator Initiation

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 186 of 362

REJ05B0364-0300

The configurator construction is as follows:

• Left side of window: Configuration information view list window

• Right side of window: Configuration information input window

The initiation window of the configurator is different for each HI series OS. For details,
refer to the online help of the configurator.

(b) Saving configurator information

After necessary definitions by the configurator are completed, save the registered contents
and create configuration files. [Save] and [Generate] in the configurator header menu
function as shown in table 3.4.

Table 3.4 [Save] and [Generate] Contents of Configurator

Button Contents

[Save]

Creates a file with extension hcf in the sample folder which
saves the definitions made by the configurator.

[Generate]

Creates the configuration files based on the definitions made by
the configurator.

After definitions are modified by the configurator, be sure to perform the following:

 Update the definitions by using [Save].

 Make the configuration files reflect the modifications by using [Generate].

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 187 of 362

 REJ05B0364-0300

(c) Operating configurator definitions

How to operate the definitions is described below using “Task” in the configuration
information view list window as an example.

Figure 3.5 Task View

The Task View is a window for inputting various information and creating/deleting tasks.
The contents displayed in the configuration information input window in the Task View are
listed in table 3.5.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 188 of 362

REJ05B0364-0300

Table 3.5 Contents of Configuration Information Input Window in Task View

No.
Configuration Information
Input Window Contents

1 Task Information*1 The current definitions of the following items are displayed.

• Maximum task ID

• Maximum task priority

• Maximum task ID using static stack
• Dynamic stack area size

2 List of Static Stacks*2 The current definitions of the following items relevant to
static stacks are displayed.

• Stack area name

• Stack area size

• Task ID using stack area

3 List of Tasks*2 The current definitions of the following items relevant to
tasks are displayed.

• Linkage with kernel library enabled/disabled

• Task ID/task name

• Status after creation
• Task start address

• Initial task priority

• Stack size/area
• Description language

• Coprocessor attribute

• Extended information
• Task exception processing routine definitions

 Start address of task exception processing routine

 Coprocessor attribute of task exception processing

routine

 Description language of task exception processing

routine

Notes: 1. To modify the task information, click the [Modify] button to open the [Modification of
Task Information] dialog box.

 2. To modify [List of Static Stacks] or [List of Tasks], open the pop-up menu (displayed by
right-clicking).

[Task Information] in the Task View is modified as shown below.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 189 of 362

 REJ05B0364-0300

Figure 3.6 Modification of Task Information

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 190 of 362

REJ05B0364-0300

Table 3.6 Contents of Task Information Modification

No. Item Displayed Contents

1 Max. Task ID Maximum value of tasks registered in the system

Setting methods:

• Select [Automatically sets the Max. ID of Task].

The setting of the [Max. ID] box is ignored and the
minimum value is automatically calculated in answer to

the tasks created by the configurator.

• Select from the pull-down menu of the [Max. ID] box.

2 Max. Static Stack Task ID Maximum task ID among the tasks using the static stack

Setting method:

Select from the pull-down menu of the [Max. ID] box.

Note: If the [OK] button is clicked with a value other than 0
specified, the [Definition of Stack Area] dialog box is
opened.

3 Max. Task Priority Maximum value of priorities assigned for the tasks
registered in the system

Setting method:

Select from the pull-down menu of the [Max. Priority] box.

4 Total Size of Dynamic Stack
Area

Total size of dynamic stack area

Setting methods:

• Select [Automatically sets the Required Size of Task].

The setting of the [Total Size] box is ignored and the
minimum value is automatically calculated in answer to

the tasks created by the configurator.

• Input the total size of the dynamic stack area in the
[Total Size] box.
Note: The size displayed below the [Total Size] box is

the value calculated from the size used by the
tasks currently registered.

The [Definition of Stack Area] dialog box is described next.

When setting [Max. Static Stack Task ID], if the [OK] button is clicked with a value other
than 0 specified, the [Definition of Stack Area] dialog box in figure 3.7 is opened.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 191 of 362

 REJ05B0364-0300

Figure 3.7 Definition of Stack Area

Clicking a stack displayed below [Stack Name] and then clicking the [Edit] button allows
the stack size to be modified. The window for modification is shown in figure 3.8.

Figure 3.8 Modification of Static Stack Size

After entering the necessary size for the static stack area in [Stack Size], click the [OK]
button for the modification to take effect.

On completing to set each static stack size, click the [Next >] button to define the task ID
that uses each static stack. The [Task Registration] dialog box where the task ID is to be
defined is shown in figure 3.9.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 192 of 362

REJ05B0364-0300

Figure 3.9 Registration of Task ID to Use Static Stack

Setting Procedure:

1. Select a static stack whose task ID is to be defined from the [Stack Areas] pull-down
menu.

2. Select the task ID that uses the static stack selected in [Stack Areas] from [List of
Tasks] and click the [<<] button to register it.

Note: Registration can be cleared by selecting a task ID displayed in [Registered
Tasks] and clicking the [>>] button.

3. When using the shared stack function, definition is done by registering more than one
task ID to use the static stack selected in [Stack Areas].

After registration of the task IDs has finished for all static stacks, click the [Next >] button.
The window in figure 3.10 is displayed to complete making settings relevant to static
stacks.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 193 of 362

 REJ05B0364-0300

Figure 3.10 Completion of Static Stack Information Definition

Clicking the [Finish] button reflects the contents defined in [List of Static Stacks] in the
Task View.

Modifying [List of Tasks] in the Task View is described next.

Modification is performed by selecting an item from the pop-up menu displayed by right-
clicking in [List of Tasks]. The pop-up menu is shown in figure 3.11.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 194 of 362

REJ05B0364-0300

Figure 3.11 Pop-up Menu

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 195 of 362

 REJ05B0364-0300

Table 3.7 Pop-up Menu Contents

No. Menu Item Contents

1 Create Opens the [Creation of Task] dialog box to define the contents for task
creation.

2 Delete Deletes the task creation information at the selected location.

3 Modify Opens the [Modification of Task Information] dialog box to modify the
creation information for the selected task.

4 Up Selection moves up by one task.*

5 Down Selection moves down by one task.*

Note: Since creation and initiation is processed in the display order, this is used for changing the
creation order or initiation order at system activation.

When [Create] in the pop-up menu is selected, the [Creation of Task] dialog box is
displayed. Settings in the [Creation of Task] dialog box are shown in table 3.8.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 196 of 362

REJ05B0364-0300

Figure 3.12 [Creation of Task] Dialog Box

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 197 of 362

 REJ05B0364-0300

Table 3.8 [Creation of Task] Dialog Box Contents

No. Item Contents

1 ID Number Specify the ID number of the created task.

Setting method:

• When automatic ID assignment is specified, the

configurator automatically assigns an unused ID when
creating configuration files.

• Select from the pull-down menu.
2 ID Name When automatic ID assignment is specified, input the ID

name of the created task.

3 Link with Kernel Library*1 Select the check box when the created task is to be linked
with the kernel library.

4 Address Input the start address of the created task as a symbol or
numeric value.

5 Priority Specify the priority when the created task is initiated.

6 Attribute*2 Specify the task state at creation.

Setting method:

When the task is to be created in the executable state,
select the [Start Task after Creation (TA_ACT)] check box.

7 Description Language Specify the description language for the created task.

• Select [High-Level Language (TA_HLNG)] when the

task is written in a high-level language.

• Select [Assembly Language (TA_ASM)] when the task
is written in assembly language.

8 Stack Size Input the stack size the created task uses.

Note: The size displayed below the [Stack Size] box is the
specifiable size that was calculated from the
remaining size of the dynamic stack area.

9 Stack Areas*3 The stack area used by the created task is displayed.

10 Extended Information Input the extended information as a symbol or numeric
value.

Notes: 1. Cannot be defined when automatic ID assignment is not selected in the [ID Number]
box.

 2. An item for defining the coprocessor attribute is also available. For details, refer to the
online help of the configurator.

 3. Displayed only when a task ID using the static stack has been specified in the [ID
Number] box.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 198 of 362

REJ05B0364-0300

After making all settings in the [Creation of Task] dialog box, click the [Create] button to
define them.

On completing definition for the task to be registered, click the [Cancel] button to finish
definition.

To define a task exception processing routine for the created task, click the [Define Task
Exception Processing...] button to display the [Definition of Task Exception Processing
Routine] dialog box.

Settings in the [Definition of Task Exception Processing Routine] dialog box are shown in
table 3.9.

Figure 3.13 [Definition of Task Exception Processing Routine] Dialog Box

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 199 of 362

 REJ05B0364-0300

Table 3.9 [Definition of Task Exception Processing Routine] Dialog Box Contents

No. Item Contents

1 Address Input the address of the task exception processing routine
to be defined as a symbol or numeric value.

2 Attribute* Select the coprocessor attribute to be used.

3 Description Language Specify the description language for the created task.

• Select [High-Level Language (TA_HLNG)] when the

task is written in a high-level language.

• Select [Assembly Language (TA_ASM)] when the task
is written in assembly language.

Note: For details of the item relevant to defining the coprocessor attribute, refer to the online help

of the configurator.

After making all settings in the [Definition of Task Exception Processing Routine] dialog
box, click the [OK] button to define them.

The necessary information for the configurator is defined in this manner.

Next, each configuration information view of the configurator is described.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 200 of 362

REJ05B0364-0300

(2) Configuration information views of configurator

The initiation window is shown in figures 3.14 to 3.16.

Figure 3.14 Configurator Initiation (HI7000/4)

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 201 of 362

 REJ05B0364-0300

Figure 3.15 Configurator Initiation (HI7700/4 and HI7750/4)

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 202 of 362

REJ05B0364-0300

Figure 3.16 Configurator Initiation (HI1000/4)

The configurator consists of a configuration information view list window (on the left side),
and a configuration information input window (on the right side).

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 203 of 362

 REJ05B0364-0300

(a) Kernel Execution Condition View

The initiation window is shared with the Kernel Execution Condition View.

The items to be set in the Kernel Execution Condition View are shown in table 3.10.

Table 3.10 Setting Items in Kernel Execution Condition View

No. Menu Item Contents Target OS

1 Kernel Interrupt
Mask Level

Define the mask level for masking
interrupts inside the kernel.

HI7000/4, HI7700/4, HI7750/4,
and HI1000/4

2 Interrupt Nest Count Define [Interrupt nest count with a
level higher than the kernel interrupt
mask level] and [Interrupt nest count
with a level equal to or lower than the
kernel interrupt mask level].

HI7000/4 and HI1000/4

3 CPU Operation
Mode

Select the CPU operating mode. HI1000/4

4 Interrupt Control
Mode

Select the interrupt control mode. HI1000/4

Set the items by pressing the button prepared for each item to make a selection from the
displayed pull-down menu.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 204 of 362

REJ05B0364-0300

(b) Kernel Extension Function View

The Kernel Extension Function View is shown in figures 3.17 and 3.18.

Figure 3.17 Kernel Extension Function View (HI7000/4)

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 205 of 362

 REJ05B0364-0300

Figure 3.18 Kernel Extension Function View (HI7700/4 and HI7750/4)

The HI1000/4 configurator does not have the Kernel Extension Function View.

The items to be set in the Kernel Extension Function View are shown in table 3.11.

Table 3.11 Setting Items in Kernel Extension Function View

No. Setting Item Contents Target OS

1 Parameter Check
Function

Select when installing the parameter
check function.

HI7000/4, HI7700/4, and
HI7750/4

2 DSP Function* Select when using the DSP function. HI7700/4

3 Cache Lock Function* Select when using the cache lock
function.

HI7700/4

Note: Must be set when using a processor that has the DSP function or cache lock function.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 206 of 362

REJ05B0364-0300

Each setting is made by selecting the check box for each item.

(c) Time Management Function View

The Time Management Function View is shown in figures 3.19 and 3.20.

Figure 3.19 Time Management Function View (HI7000/4, HI7700/4, and HI7750/4)

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 207 of 362

 REJ05B0364-0300

Figure 3.20 Time Management Function View (HI1000/4)

The items to be set in the Time Management Function View are shown in table 3.12.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 208 of 362

REJ05B0364-0300

Table 3.12 Setting Items in Time Management Function View

No. Setting Item Contents Target OS

1 Time Management
Functions

Select when installing the time
management function.

HI7000/4, HI7700/4,
HI7750/4, and HI1000/4

2 Timer Interrupt
Number

Define the timer interrupt vector
number (or INTEVT code).

HI7000/4, HI7700/4,
HI7750/4, and HI1000/4

3 Timer Interrupt Level Define the interrupt level of the timer
interrupt.

HI7000/4, HI7700/4,
HI7750/4, and HI1000/4

Time Event Handler
Stack Size

Define the stack size used by the time
event handler

HI7000/4, HI7700/4, and
HI7750/4

4

Timer Interrupt
Handler Stack Size

Define the stack size used by the
timer interrupt handler

HI1000/4

5 Time Tick Cycle Define when changing the precision
of the time tick supply cycle.

HI7000/4, HI7700/4,
HI7750/4, and HI1000/4

6 Use Time Out
Function

Select when using a service call with
the timeout function

HI1000/4

Note: In the time tick cycle specification, either the numerator or denominator must be 1.

Set the items by pressing the button prepared for each item to make a selection from the
displayed pull-down menu, or by directly entering a value for each item.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 209 of 362

 REJ05B0364-0300

(d) Debugging Function View

The Debugging Function View is shown in figures 3.21 and 3.22.

Figure 3.21 Debugging Function View (HI7000/4, HI7700/4, and HI7750/4)

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 210 of 362

REJ05B0364-0300

Figure 3.22 Debugging Function View (HI1000/4)

The items to be set in the Debugging Function View are shown in table 3.13.

Table 3.13 Setting Items in Debugging Function View

No. Setting Item Contents Target OS

1 Object Manipulation
Function

Select when using the object
manipulation function, such as [Start
Task] and [Set Event Flag], in the
debugging extensions.

HI7000/4, HI7700/4,
HI7750/4, and HI1000/4

2 Service Call Trace
Function

Select when installing the service call
trace function.

HI7000/4, HI7700/4,
HI7750/4, and HI1000/4

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 211 of 362

 REJ05B0364-0300

Set the items by pressing the button prepared for each item to make a selection from the
displayed pull-down menu, by selecting check boxes or radio boxes, or by directly entering
a value for the necessary items.

(e) Service Calls Selection View

The Service Calls Selection View is shown in figure 3.23.

Figure 3.23 Service Calls Selection View (HI7000/4, HI7700/4, and HI7750/4)

The HI1000/4 configurator does not have the Service Calls Selection View.

In the Service Calls Selection View, the service calls to be embedded or removed can be
selected in function units from the [List of Service Calls] dialog.

To select service calls in service call units, click the [Details...] button in the [Description]
frame.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 212 of 362

REJ05B0364-0300

Clicking the [All] button embeds all service calls. Clicking the [Standard] button embeds
only the service calls supported with the standard profile.

(f) Interrupt/CPU Exception Handler View

The Interrupt/CPU Exception Handler View is shown in figures 3.24 to 3.26.

Figure 3.24 Interrupt/CPU Exception Handler View (HI7000/4)

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 213 of 362

 REJ05B0364-0300

Figure 3.25 Interrupt/CPU Exception Handler View (HI7700/4 and HI7750/4)

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 214 of 362

REJ05B0364-0300

Figure 3.26 Interrupt/CPU Exception Handler View (HI1000/4)

The items to be set in the Interrupt/CPU Exception Handler View are shown in table 3.14.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 215 of 362

 REJ05B0364-0300

Table 3.14 Setting Items in Interrupt/CPU Exception Handler View

No. Setting Item Contents Target OS

Interrupt Information Define information relevant to
the interrupt handler.

HI7000/4, HI7700/4,
HI7750/4, and HI1000/4

Interrupt information:

Maximum vector number, total size of interrupt handler
stacks, whether direct interrupt handler is enabled or not, and
whether interrupt handler dynamically created is embedded
or not

HI7000/4

Interrupt information:

Maximum exception code and total size of interrupt handler
stacks

HI7700/4 and HI7750/4

1

Interrupt information:

Maximum vector number and vector table format

HI1000/4

List of Interrupt/CPU/Trap
Exception Handlers

Define the handler initiated by
each vector source.

HI7000/4

List of Interrupt/CPU
Exception Handlers

Define the handler initiated by
each exception source.

HI7700/4 and HI7750/4

2

List of Interrupt/CPU
Exception Handlers

Define the handler initiated by
each vector source.

HI1000/4

3 List of Stack Define information for the stack
used by the interrupt handler.

HI1000/4

The procedure for registering a handler, such as the interrupt handler or CPU exception
handler, is described below.

Handler Registering Procedure:

1. Select a vector number (or exception code) for registering a handler.

2. Select [Define] from the sub-menu displayed by right-clicking.

3. Set the necessary data in the displayed definition window and complete registration by
pressing the [OK] button.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 216 of 362

REJ05B0364-0300

(g) Trap Exception Handler View

The Trap Exception Handler View is shown in figure 3.27.

Figure 3.27 Trap Exception Handler View (HI7700/4 and HI7750/4)

The HI7000/4 and HI1000/4 configurators do not have the Trap Exception Handler View.

The items to be set in the Trap Exception Handler View are shown in table 3.15.

Table 3.15 Setting Items in Trap Exception Handler View

No. Setting Item Contents Target OS

1 Trap Information Define the maximum trap number. HI7700/4 and HI7750/4

2 List of Trap
Exception Handlers

Define the handler initiated by the trap
exception source.

HI7700/4 and HI7750/4

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 217 of 362

 REJ05B0364-0300

The procedure for registering a trap exception handler is described below.

Trap Exception Handler Registering Procedure:

1. Select a trap number for registering a handler.

2. Select [Define] from the sub-menu displayed by right-clicking.

3. Set the necessary data in the displayed definition window and complete registration by
pressing the [OK] button.

(h) Prefetch Function View

The Prefetch Function View is shown in figure 3.28.

Figure 3.28 Prefetch Function View (HI7700/4 and HI7750/4)

The HI7000/4 and HI1000/4 configurators do not have the Prefetch Function View.

The item to be set in the Prefetch Function View is shown in table 3.16.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 218 of 362

REJ05B0364-0300

Table 3.16 Setting Item in Prefetch Function View

No. Setting Item Contents Target OS

1 List of Prefetch
Function

Define the start address of the area to be
prefetched when the kernel is idle.

HI7700/4 and HI7750/4

The procedure for setting the prefetch functions is described below.

Prefetch Function Setting Procedure:

1. Select [Register] from the sub-menu displayed by right-clicking in [List of Prefetch
Function].

2. Set the necessary data in the displayed registration window and complete registration
by pressing the [Register] button.

3. Since registration can be performed continuously, after pressing the [OK] button, the
next prefetch function can be registered.

On completing all registrations, click the [Cancel] button to finish registration.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 219 of 362

 REJ05B0364-0300

(i) Initialization Routine View

The Initialization Routine View is shown in figure 3.29.

Figure 3.29 Initialization Routine View

The item to be set in the Initialization Routine View is shown in table 3.17.

Table 3.17 Setting Item in Initialization Routine View

No. Setting Item Contents Target OS

1 List of Initialization
Routines

Define the initialization routine called
from the kernel initialization processing.

HI7000/4, HI7700/4,
HI7750/4, and HI1000/4

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 220 of 362

REJ05B0364-0300

The procedure for registering an initialization routine is described below.

Initialization Routine Registering Procedure:

1. Select [Register] from the sub-menu displayed by right-clicking in [List of Initialization
Routines].

2. Set the necessary data in the displayed registration window and complete registration
by pressing the [Register] button.

3. Since registration can be performed continuously, after pressing the [OK] button, the
next initialization routine can be registered.

On completing all registrations, click the [Cancel] button to finish registration.

(j) Task View

The Task View is shown in figures 3.30 and 3.31.

Figure 3.30 Task View (HI7000/4, HI7700/4, and HI7750/4)

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 221 of 362

 REJ05B0364-0300

Figure 3.31 Task View (HI1000/4)

The items to be set in the Task View are shown in table 3.18.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 222 of 362

REJ05B0364-0300

Table 3.18 Setting Items in Task View

No. Setting Item Contents Target OS

1 Max. Task ID Define the maximum task ID to be
registered in the kernel.

HI7000/4, HI7700/4,
HI7750/4, and HI1000/4

2 Max. Static Stack
Task ID

Define the maximum task ID using the
static stack

HI7000/4, HI7700/4, and
HI7750/4

3 Max. Task Priority Define the maximum task priority to
be registered in the kernel.

HI7000/4, HI7700/4,
HI7750/4, and HI1000/4

4 Dynamic Stack Area
Size

Define the total used size of the
dynamic stack

HI7000/4, HI7700/4, and
HI7750/4

5 Number of Task Stack Number of stacks HI1000/4

6 List of Static Stacks Registered static stack information HI7000/4, HI7700/4, and
HI7750/4

7 List of Tasks Registered task information HI7000/4, HI7700/4,
HI7750/4, and HI1000/4

8 List of Stacks Registered task stack information HI1000/4

The procedure for registering a task is described below.

Task Registering Procedure:

1. Select [Create] from the sub-menu displayed by right-clicking in [List of Tasks].

2. Set the necessary data in the displayed creation window and complete registration by
pressing the [Create] button.

3. Since registration can be performed continuously, after pressing the [Create] button, the
next task can be registered.

On completing all registrations, click the [Cancel] button to finish registration.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 223 of 362

 REJ05B0364-0300

(k) Views for objects other than a task

For the view of each object, such as the Semaphore View and Event Flag View, the
structure and setting items are the same, except for those for the Task View. Therefore, the
view of each object other than a task is described with the Semaphore View as an example.
The Semaphore View is shown in figure 3.32.

Figure 3.32 Semaphore View

The items to be set in the Semaphore View are shown in table 3.19.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 224 of 362

REJ05B0364-0300

Table 3.19 Setting Items in Semaphore View

No. Setting Item Contents Target OS

1 Max. Semaphore ID Define the maximum semaphore ID to
be registered in the kernel.

HI7000/4, HI7700/4,
HI7750/4, and HI1000/4

2 List of Semaphores Registered semaphore information HI7000/4, HI7700/4,
HI7750/4, and HI1000/4

Refer to views of the objects, except for the Task View, with the above setting items
replaced with each object name (e.g. event flag or mailbox).

The procedure for registering an object is described below with a semaphore as an
example.

Semaphore Registering Procedure:

1. Select [Create] from the sub-menu displayed by right-clicking in [List of Semaphores].

2. Set the necessary data in the displayed creation window and complete registration by
pressing the [Create] button.

3. Since registration can be performed continuously, after pressing the [Create] button, the
next semaphore can be registered.

On completing all registrations, click the [Cancel] button to finish registration.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 225 of 362

 REJ05B0364-0300

3.2.2 FAQ about Configurator

This section answers a question about the configurator which is frequently asked by users of the
HI series OS.

FAQ Contents:

(1) Multiple Interrupt Setting by the Configurator ..226

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 226 of 362

REJ05B0364-0300

(1) Multiple Interrupt Setting by the Configurator

Classification: Configuration, kernel environment definition, and configurator

Question HI7000/4 HI7700/4 HI7750/4 HI1000/4

When multiple interrupts are enabled, what items should be specified by the configurator?

What descriptions are necessary for the defined interrupt handlers to implement multiple
interrupts?

Answer

In the Interrupt/CPU Exception Handler View of the configurator, specify the contents of the
exception code of each interrupt to be used. For each exception code, specify an address and a
value to be set to SR. As this SR setting is used as the SR value when the corresponding interrupt
handler is initiated, specify appropriate values according to the interrupt level. Multiple interrupts
are implemented by simply specifying these SR values.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 227 of 362

 REJ05B0364-0300

3.2.3 Definition by Setup Table (HI2000/3)

In the HI2000/3, the kernel environment is defined with the setup table.

The setup table consists of the definition fields listed in table 3.20.

Table 3.20 Setup Table Structure

Definition Field Name Defined Contents

Constant definition field Defines information required for the kernel functions
(synchronization and communication function, time management
function, etc.).

Task registration field Defines information required for task execution.

Fixed-length memory pool
registration field

Defines information required for fixed-length memory pools.

Variable-length memory pool
registration field

Defines information required for variable-length memory pools.

Cyclic handler registration field Defines information required for cyclic handlers.

System call trace function
registration field

Defines information required for system call trace functions.

Extended information
registration field

Defines information required for extended information for tasks,
event flags, semaphores, mailboxes, fixed-length and variable-
length memory pools, and cyclic handlers.

All of the above setting items must be set regardless of whether the item is registered or not or
used or not. If not, an undefined error will occur at system linkage.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 228 of 362

REJ05B0364-0300

(1) Constant definition field

This field defines information required for the kernel functions (such as synchronization-and-
communication and time-management functions). The constant definition field of the setup
table is shown in figure 3.33.

;%%
;%%% VALUE define section %%%
;%%
;------ Usage ---
;LABEL VALUE ;:[RANGE] ;: COMMENT
;---
CPUINTM: .assign 3 ;:[0.......3] ;: CPU interrupt mode
IMASK: .assign 6 ;:[0.......8] ;: Max interrupt level
MAXPRI: .assign 31 ;:[0......31] ;: Max low priority
FLGCNT: .assign 4 ;:[0.....255] ;: Eventflag definition count
SEMCNT: .assign 4 ;:[0.....255] ;: Semaphore definition count
MBXCNT: .assign 4 ;:[0.....255] ;: Mailbox definition count
;
OSSTKSIZ: .equ 18+(10*2)+(6*1)+8 ;:[18...] ;: OS stack size
TIMSTKSIZ: .equ 40+(10*1)+(6*1)+8 ;:[0, 40...] ;: Timer stack size
TRCSTKSIZ: .equ 26+(6*1)+8 ;:[0, 26...] ;: Trace stack size
;
TTMOUT: .assign USE ;:[USE / NOTUSE] ;: Time-out Function define
;

← (1)
← (2)
← (3)
← (4)
← (5)
← (6)

← (7)
← (8)
← (9)

←(10)

Figure 3.33 Constant Definition Field of Setup Table

(1) CPUINTM (Interrupt control mode)

Specifies the interrupt control mode used.

(2) IMASK (Kernel interrupt mask level)

Specifies the mask level for masking interrupts inside the kernel.

(3) MASKPRI (Maximum task priority)

Specifies the lowest task priority.

(4) FLGCNT (Number of event flags registered)

Specifies the maximum event flag ID to be registered in the kernel.

(5) SEMCNT (Number of semaphores registered)

Specifies the maximum semaphore ID to be registered in the kernel.

(6) MBXCNT (Number of mailboxes registered)

Specifies the maximum mailbox ID to be registered in the kernel.

(7) OSSTKSIZ (Kernel stack size)

Specifies the stack size used by the kernel (OS).

(8) TIMSTKSIZ (Timer interrupt handler stack size)

Specifies the stack size used by the timer interrupt handler.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 229 of 362

 REJ05B0364-0300

(9) TRCSTKSIZ (System call trace function stack size)

Specifies the stack size used for processing when the system call trace function is used.

(10) TTMOUT (Timeout function enabled/disabled)

Specifies whether a system call with timeout can be used.

Note: Do not modify or delete symbols used in the constant definition field.

For the calculation methods of OSSTKSIZ, TIMSTKSIZ, and TRCSTKSIZ, refer to the
HI2000/3 User's Manual.

(2) Task registration field

This field defines various information for registering tasks. The task registration field of the
setup table is shown in figure 3.34.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 230 of 362

REJ05B0364-0300

;%%%
;%%% TASK define section %%%
;%%%
;------ Usage ---
; TASK_TOP_LABEL ;: COMMENT
;---
 .import _TASKA ;: TASK.C
 .import _TASKB ;: TASK.C
;
;------ Usage ---
; .res.b SIZE + TSKSTKSIZ ;[RANGE] ;: COMMENT
;TSK?_SP_LABEL: .equ $;: COMMENT
;---
TSKSTKSIZ: .equ 50+(10*2)+(6*1)+6+8; [50...] ;: Task minimum stack size
 .section h2sstack, stack, align = 2
 .res.b (36) +TSKSTKSIZ ;[50...] ;: tskid1 stack area
TSK1_SP: .equ $
 .res.b 8
 .res.b (36) +TSKSTKSIZ ;[50...] ;: tskid2 stack area
TSK2_SP: .equ $
 .res.b 8
 .res.b (32) +TSKSTKSIZ ;[50...] ;: tskid3 stack area
TSK3_SP: .equ $
 .res.b 8
 .res.b (32) +TSKSTKSIZ ;[50...] ;: tskid4 stack area
TSK4_SP: .equ $
 .res.b 8
;
 .section h2ssetup, code, align = 2
_HI_H8S: .res.b 10 ;: System Area
;------ Usage ---
;LABEL .data.b IMOD, ITSKPRI ;: COMMENT
; .data.l ITSKADR, ITSKSP ;: COMMENT
;---
NOEXS: .assign 0 ;: initial mode = NO EXIST
RDY: .assign 1 ;: initial mode = READY
DMT: .assign (-1) ;: initial mode = DORMANT
TDTLEN: .assign 10;<- Not Change ! ;: TDT Length
 .section h2ssetup, code, align = 2
_HI_TDT: .equ $-TDTLEN ;: Task define table
TDT_TOP: .equ $;:
tdt_id1: .data.b DMT, 1 ;: init. mode, init. priority
 .data.l _TASKA, TSK1_SP ;: top address, stack pointer
tdt_id2: .data.b DMT, 2 ;: init. mode, init. priority
 .data.l _TASKB, TSK2_SP ;: top address, stack pointer
tdt_id3: .data.b NOEXS, 3 ;: init. mode, init. priority
 .data.l 0, TSK3_SP ;: top address, stack pointer
tdt_id4: .data.b NOEXS, 4 ;: init. mode, init. priority
 .data.l 0, TSK4_SP ;: top address, stack pointer
tdt_id5: .data.b NOEXS, 5 ;: init. mode, init. priority
 .data.l 0, TSK4_SP ;: top address, stack pointer
TDT_BTM:
TSKCNT: .equ (TDT_BTM-TDT_TOP) / TDTLEN
 ;:[0...255] ;: Task definition count
;

(1)

(2)

(3)

(4)

(5)

Figure 3.34 Task Registration Field of Setup Table

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 231 of 362

 REJ05B0364-0300

(1) Declares the start address of the task to be used as an external reference symbol.

(2) Task stack definition field

Allocates the stack area used by each task.

(3) Definition of task stack area

Defines the stack area for each task.

(4) Task definition field

Defines the tasks to be registered in the kernel.

(5) Definition of task

Defines information for each task to be registered in the kernel.

Note: Do not modify or delete symbols TDTLEN, _HI_TDT, TDT_TOP, TDT_BTM, and
TSKCNT, which are used in the task registration field.
Do not modify or delete the line where TSKCNT is defined.

The details of defining a task stack area are as follows:

Line 1: Defines the stack size used.

Line 2: Defines the stack label (task stack bottom).

Line 3: Defines the shared-stack-management area. (If the shared stack function is not used,
this area need not be defined.)

The details of defining a task are as follows:

[Format] LABEL: .data.b IMOD, ITSKPRI

 .data.l ITSKADR, ITSKSP

 LABEL: Can be freely defined (can be omitted).

 IMOD (task initial state): Defines each task's initial state at task registration and system
initiation as follows:
(1) NOEXS (= 0): Unregistered
(2) RDY (= 1): READY state when initiated
(3) DMT (= −1): DORMANT state when initiated

 ITSKPRI (task initial priority): Defines each task's initial priority.

 ITSKADR (task start address): Defines the start address of the task. (Defines the start
address to be defined as an external reference symbol.)

 ITSKSP (task stack pointer): Defines the stack pointer to be used at task initiation (stack
label defined in the task stack area definition field).

When adding a task to be registered, insert the definition data before TDT_BTM.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 232 of 362

REJ05B0364-0300

(3) Fixed-length memory pool registration field

This field defines various information for registering fixed-length memory pools. The fixed-
length memory pool registration field of the setup table is shown in figure 3.35.

;%%
;%%% FIXED-SIZE MEMORYPOOL define section %%%
;%%
;------ Usage ---
;MB?_CNT_LABEL: .assign VALUE ;:[RANGE] ;: COMMENT
;MB?_LEN_LABEL: .assign VALUE ;:[RANGE] ;: COMMENT
;---
MB1_CNT: .assign 14 ;:[0...65535] ;: memory block count
MB1_LEN: .assign 12 ;:[2...65530] ;: memory block length
;
MB2_CNT: .assign 14 ;:[0...65535] ;: memory block count
MB2_LEN: .assign 12 ;:[2...65530] ;: memory block length
;
MB3_CNT: .assign 14 ;:[0...65535] ;: memory block count
MB3_LEN: .assign 12 ;:[2...65530] ;: memory block length
;
MB4_CNT: .assign 14 ;:[0...65535] ;: memory block count
MB4_LEN: .assign 12 ;:[2...65530] ;: memory block length
;
;------ Usage ---
;MPF?_TOP_LABEL:.res.b MEMORYPOOL_SIZE ;: COMMENT
;---
 .section h2smpf, data, align = 2
MPF1_TOP: .res.b MB1_CNT * (MB1_LEN + 4) ;: mpfid1 memorypool area
MPF2_TOP: .res.b MB2_CNT * (MB2_LEN + 4) ;: mpfid2 memorypool area
MPF3_TOP: .res.b MB3_CNT * (MB3_LEN + 4) ;: mpfid3 memorypool area
MPF4_TOP: .res.b MB4_CNT * (MB4_LEN + 4) ;: mpfid4 memorypool area
;
;------ Usage ---
;LABEL .data.w BLFCNT, BLFLEN ;: COMMENT
; .data.l MPF_TOP_ADDRESS ;: COMMENT
;---
MPFDTLEN: .assign 8;<- Not Change ! ;: MPFDT Length
 .section h2ssetup, code, align = 2
_HI_MPFDT: .equ $-MPFDTLEN ;: Fixed-size MemoryPool define table
MPFDT_TOP: .equ $;:
mpfdt_id1: .data.w MB1_CNT, MB1_LEN ;: blf count, blf length
 .data.l MPF1_TOP ;: mpf top address
mpfdt_id2: .data.w MB2_CNT, MB2_LEN ;: blf count, blf length
 .data.l MPF2_TOP ;: mpf top address
mpfdt_id3: .data.w MB3_CNT, MB3_LEN ;: blf count, blf length
 .data.l MPF3_TOP ;: mpf top address
mpfdt_id4: .data.w MB4_CNT, MB4_LEN ;: blf count, blf length
 .data.l MPF4_TOP ;: mpf top address
MPFDT_BTM:
MPFCNT: .equ (MPFDT_BTM-MPFDT_TOP) / MPFDTLEN
 ;:[0...255] ;: Fixed-size Memorypool definition count
;

(1)

(2)

(3)

(4)

(5)

Figure 3.35 Fixed-Length Memory Pool Registration Field of Setup Table

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 233 of 362

 REJ05B0364-0300

(1) Definition field for memory block size and number of memory blocks

Defines the memory block size and number of memory blocks which are used by the fixed-
length memory pools to be registered in the kernel. (The symbols used here are used in the
subsequent area allocation and definition table information.)

(2) Definition of memory block size and number of memory blocks

Defines the memory block size and number of memory blocks which are used by the fixed-
length memory pools.

(3) Allocation of fixed-length memory pool areas

Allocates each fixed-length memory pool area based on the memory block size and number
of memory blocks.

(4) Fixed-length memory pool definition field

Defines the fixed-length memory pools to be registered in the kernel.

(5) Definition of fixed-length memory pool

Defines information for each fixed-length memory pool to be registered in the kernel.

Note: Do not modify or delete symbols MB?_CNT, MB?_SIZ, MPF?_TOP, MPFDTLEN,
MPFDT_TOP, and MPFDT_BTM, which are used in the fixed-length memory pool
registration field.
Do not modify or delete the line where MPFCNT is defined.

The details of defining a fixed-length memory pool are as follows:

[Format] LABEL: .data.w BLFCNT, BLFLEN

 .data.l MPF_TOP_ADDRESS

 LABEL: Can be freely defined (can be omitted).

 BLFCNT (number of blocks): Defines the number of memory blocks in the fixed-length
memory pool.

 BLFLEN (block size): Defines the memory block size of the fixed-length memory pool.

 MPF_TOP_ADDRESS (fixed-length memory pool address): Defines the start address of
the fixed-length memory pool.

When adding a fixed-length memory pool to be registered, insert the definition data before
MPFDT_BTM.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 234 of 362

REJ05B0364-0300

(4) Variable-length memory pool registration field

This field defines various information for registering variable-length memory pools. The
variable-length memory pool registration field of the setup table is shown in figure 3.36.

;%%
;%%% VARIABLE-SIZE MEMORYPOOL define section %%%
;%%
;------ Usage ---
;MPL?_SIZ_LABEL: .assign VALUE ;:[RANGE] ;: COMMENT
;---
MPL1_SIZ: .assign 380 ;:[18.....] ;: memorypool size
MPL2_SIZ: .assign 380 ;:[18.....] ;: memorypool size
MPL3_SIZ: .assign 380 ;:[18.....] ;: memorypool size
MPL4_SIZ: .assign 380 ;:[18.....] ;: memorypool size
;
;------ Usage ---
;MPL?_TOP_LABEL:.res.b VARIABLE_MEMORYPOOL_SIZE ;: COMMENT
;---
 .section h2smpl, data, align = 2
MPL1_TOP: .res.b MPL1_SIZ ;: mplid1 memorypool area
MPL2_TOP: .res.b MPL2_SIZ ;: mplid2 memorypool area
MPL3_TOP: .res.b MPL3_SIZ ;: mplid3 memorypool area
MPL4_TOP: .res.b MPL4_SIZ ;: mplid4 memorypool area
;
;------ Usage ---
;LABEL .data.l BLKSIZ ;: COMMENT
; .data.l VARIABLE_MEMORYPOOL_TOP ;: COMMENT
;--
MPLDTLEN: .assign 8;<- Not Change ! ;: MPLDT Length
 .section h2ssetup, code, align = 2
_HI_MPLDT: .equ $-MPLDTLEN ;: Variable-size MemoryPool define table
MPLDT_TOP: .equ $;:
mpldt_id1: .data.l MPL1_SIZ ;: mpl size
 .data.l MPL1_TOP ;: mpl top address
mpldt_id2: .data.l MPL2_SIZ ;: mpl size
 .data.l MPL2_TOP ;: mpl top address
mpldt_id3: .data.l MPL3_SIZ ;: mpl size
 .data.l MPL3_TOP ;: mpl top address
mpldt_id4: .data.l MPL4_SIZ ;: mpl size
 .data.l MPL4_TOP ;: mpl top address
MPLDT_BTM:
MPLCNT: .equ (MPLDT_BTM-MPLDT_TOP) / MPLDTLEN
 ;:[0...255] ;: Variable-size Memorypool definition count
;

(1)

(2)

(3)

(4)

Figure 3.36 Variable-Length Memory Pool Registration Field of Setup Table

(1) Memory pool size definition field

Defines the memory pool sizes that are used by the variable-length memory pools to be
registered in the kernel. (The symbols used here are used in the subsequent area allocation
and definition table information.)

(2) Allocation of variable-length memory pool areas

Allocates each variable-length memory pool area based on the memory pool size.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 235 of 362

 REJ05B0364-0300

(3) Variable-length memory pool definition field

Defines the variable-length memory pools to be registered in the kernel.

(4) Definition of variable-length memory pool

Defines information for each variable-length memory pool to be registered in the kernel.

Note: Do not modify or delete symbols MPL?_SIZ, MPL?_TOP, MPLDTLEN,
MPLDT_TOP, and MPLDT_BTM, which are used in the variable-length memory pool
registration field.
Do not modify or delete the line where MPLCNT is defined.

The details of defining a variable-length memory pool are as follows:

[Format] LABEL: .data.l MPL?_SIZ

 .data.l MPL?_TOP

 LABEL: Can be freely defined (can be omitted).

 BLKSIZ (block size): Defines the size of the variable-length memory pool.

 VARIABLE_MEMORYPOOL_TOP (variable-length memory pool address): Defines the
start address of the variable-length memory pool.

When adding a variable-length memory pool to be registered, insert the definition data before
MPLDT_BTM.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 236 of 362

REJ05B0364-0300

(5) Cyclic handler registration field

This field defines various information for registering cyclic handlers. The cyclic handler
registration field of the setup table is shown in figure 3.37.

;%%
;%%% cyclic handler define section %%%
;%%
;------ Usage ---
; .import CYCHDR_TOP_LABEL ;: COMMENT
;---
;
;------ Usage ---
;LABEL: .data.w CYC_ACTIVATE ;: COMMENT
; .data.l CYC_TIME, CYCHDR_TOP ;: COMMENT
;---
CYHOFF .assign 0 ;:initial cycact data = OFF
CYHON .assign 1 ;:initial cycact data = ON
CYHDTLEN .assign 10;<-Dont't Change! ;:CYHDT length
;
_HI_CYHDT: .equ $-CYHDTLEN ;: cyclic handler define table
CYHDT_TOP: .equ $;:
cyhdt_no1: .data.w CYHOFF ;: init. cycact data
 .data.l 0, NADR ;: cyctim, top address
cyhdt_no2: .data.w CYHOFF ;: init. cycact data
 .data.l 0, NADR ;: cyctim, top address
cyhdt_no3: .data.w CYHOFF ;: init. cycact data
 .data.l 0, NADR ;: cyctim, top address
cyhdt_no4: .data.w CYHOFF ;: init. cycact data
 .data.l 0, NADR ;: cyctim, top address
 .aifdef DX
cyhdt_no5: .data.w CYHON ;: init. cycact data
 .data.l 5, HI_DEAMON_MAIN ;: cyctim, top address
 .aendi
CYHDT_BTM:
CYHCNT: .equ (CYHDT_BTM-CYHDT_TOP) / CYHDTLEN
 ;:[0...255] ;: cyclic handler definition count
;

(2)

(3)

(4)

(1)

Figure 3.37 Cyclic Handler Registration Field of Setup Table

(1) Declares the start address of the cyclic handler to be used as an external reference symbol.

(2) Cyclic handler definition field

Defines the cyclic handlers to be registered in the kernel.

(3) Definition of cyclic handler

Defines information for each cyclic handler to be registered in the kernel.

(4) When the debugging extension is used, the debug daemon handler is registered as a cyclic
handler.

Note: Do not modify or delete symbols _HI_CYHDT, CYHDTLEN, CYHDT_TOP, and
CYHDT_BTM, which are used in the cyclic handler registration field.
Do not modify or delete the line where CYHCNT is defined.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 237 of 362

 REJ05B0364-0300

The details of defining a cyclic handler are as follows:

[Format] LABEL: .data.w CYC_ACTIVATE

 .data.l CYC_TIME, CYCHDR_TOP

 LABEL: Can be freely defined (can be omitted).

 CYC_ACTIVATE (cyclic handler activation state): Defines the cyclic handler activation
state as follows:
(1) CYCOFF (= 0): Not initiated (not activated)
(2) CYCON (= 1): Initiated (activated)

 CYC_TIME (cyclic time interval): Defines the cycle time to initiate the cyclic handler.

 CYCHDR_TOP (cyclic handler address): Defines the start address of the cyclic handler.

When adding a cyclic handler to be registered, insert the definition data before CYHDT_BTM.

(6) System call trace function registration field

This field defines various information for registering system call trace functions. The system
call trace function registration field of the setup table is shown in figure 3.38.

;%%
;%%% SVC trace define section %%%
;%%
;------ Usage --
;TRC_CNT:.assign TRACE COUNT ;: COMMENT
;TRC_BUF:.assign TRACE BUFFER ADDRESS ;: COMMENT
;--
 .section h2strc, data, align = 2
TRC_CNT: .assign 4 ;: trace count
TRC_BUF: .res.b 16 + (TRC_CNT*28) ;: trace buffer address
;
;------ Usage --
;INITRC .data.l TRACE BUFFER ADDRESS ;: COMMENT
; .data.w TRACE COUNT ;: COMMENT
;--
 .section h2ssetup, code, align = 2
INITRC: .equ $;:
 .data.l TRC_BUF ;: trace buffer address
 .data.w TRC_CNT ;: trace count
;

← (1)
← (2)

← (3)

Figure 3.38 System Call Trace Function Registration Field of Setup Table

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 238 of 362

REJ05B0364-0300

(1) TRC_CNT (maximum amount of trace information)

Defines the maximum amount of trace information that can be acquired by the system call
trace function.

(2) TRC_BUF (allocation of trace buffer area)

Allocates the area for storing trace information that can be acquired by the system call trace
function.

(3) Definition of system call trace function

Defines information for the system call trace function.

Note: Do not modify or delete symbols used in the system call trace function registration
field.

The details of defining the system call trace function are as follows:

[Format] INITRC: .data.l TRACE BUFFER ADDRESS

 .data.l TRACE_COUNT

 INITRC: Symbol for defining system call trace function information

 TRACE BUFFER ADDRESS (trace buffer address for system call trace function): Defines
the start address of the trace information acquisition area used by the system call trace
function.

 TRACE_COUNT (amount of trace information for system call trace function): Defines the
amount of trace information acquired by the system call trace function.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 239 of 362

 REJ05B0364-0300

(7) Extended information registration fields

These fields define various information for registering extended information. The extended
information registration fields of the setup table are shown in figures 3.39 to 3.45.

;%%%
;%%% Task Extended Information define section %%%
;%%%
;------ Usage ---
;LABEL .data.l TSK?_EXINF ;: COMMENT
;---
 .section h2ssetup, code, align = 2
_HI_TSKEXINF: .equ $-EXLEN ;: TSK exinf define area
TSKE_TOP: .equ $;:
tsk1_exinf: .data.l 00000000 ;: tskid = 1 exinf
tsk2_exinf: .data.l 00000000 ;: tskid = 2 exinf
tsk3_exinf: .data.l 00000000 ;: tskid = 3 exinf
tsk4_exinf: .data.l 00000000 ;: tskid = 4 exinf
tsk5_exinf: .data.l 00000000 ;: tskid = 5 exinf
TSKE_BTM:
TSKECNT: .equ (TSKE_BTM-TSKE_TOP) / EXLEN
 ;:[0...255] ;: tsk exinf count
;

(1)

Figure 3.39 Task Extended Information Registration Field of Setup Table

;%%
;%%% Event Flag Extended Information define section %%%
;%%
;------ Usage --
;LABEL .data.l FLG?_EXINF ;: COMMENT
;--
 .section h2ssetup, code, align = 2
_HI_FLGEXINF: .equ $-EXLEN ;: FLG exinf define area
FLGE_TOP: .equ $;:
flg1_exinf: .data.l 00000000 ;: flgid = 1 exinf
flg2_exinf: .data.l 00000000 ;: flgid = 2 exinf
flg3_exinf: .data.l 00000000 ;: flgid = 3 exinf
flg4_exinf: .data.l 00000000 ;: flgid = 4 exinf
FLGE_BTM:
FLGECNT: .equ (FLGE_BTM-FLGE_TOP) / EXLEN
 ;:[0...255] ;: flg exinf count
;

(1)

Figure 3.40 Event Flag Extended Information Registration Field of Setup Table

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 240 of 362

REJ05B0364-0300

;%%
;%%% Semaphore Extended Information define section %%%
;%%
;------ Usage --
;LABEL .data.l SEM?_EXINF ;: COMMENT
;--
 .section h2ssetup, code, align = 2
_HI_SEMEXINF: .equ $-EXLEN ;: SEM exinf define area
SEME_TOP: .equ $;:
sem1_exinf: .data.l 00000000 ;: semid = 1 exinf
sem2_exinf: .data.l 00000000 ;: semid = 2 exinf
sem3_exinf: .data.l 00000000 ;: semid = 3 exinf
sem4_exinf: .data.l 00000000 ;: semid = 4 exinf
SEME_BTM:
SEMECNT: .equ (SEME_BTM-SEME_TOP) / EXLEN
 ;:[0...255] ;: sem exinf count
;

(1)

Figure 3.41 Semaphore Extended Information Registration Field of Setup Table

;%%
;%%% Mailbox Extended Information define section %%%
;%%
;------ Usage --
;LABEL .data.l MBX?_EXINF ;: COMMENT
;--
 .section h2ssetup, code, align = 2
_HI_MBXEXINF: .equ $-EXLEN ;: MBX exinf define area
MBXE_TOP: .equ $;:
mbx1_exinf: .data.l 00000000 ;: mbxid = 1 exinf
mbx2_exinf: .data.l 00000000 ;: mbxid = 2 exinf
mbx3_exinf: .data.l 00000000 ;: mbxid = 3 exinf
mbx4_exinf: .data.l 00000000 ;: mbxid = 4 exinf
MBXE_BTM:
MBXECNT: .equ (MBXE_BTM-MBXE_TOP) / EXLEN
 ;:[0...255] ;: mbx exinf count
;

(1)

Figure 3.42 Mailbox Extended Information Registration Field of Setup Table

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 241 of 362

 REJ05B0364-0300

;%%
;%%% Fixed-size MemoryPool Extended Information define section %%%
;%%
;------ Usage --
;LABEL .data.l MPF?_EXINF ;: COMMENT
;--
 .section h2ssetup, code, align = 2
_HI_MPFEXINF: .equ $-EXLEN ;: MPF exinf define area
MPFE_TOP: .equ $;:
mpf1_exinf: .data.l 00000000 ;: mpfid = 1 exinf
mpf2_exinf: .data.l 00000000 ;: mpfid = 2 exinf
mpf3_exinf: .data.l 00000000 ;: mpfid = 3 exinf
mpf4_exinf: .data.l 00000000 ;: mpfid = 4 exinf
MPFE_BTM:
MPFECNT: .equ (MPFE_BTM-MPFE_TOP) / EXLEN
 ;:[0...255] ;: mpf exinf count
;

(1)

Figure 3.43 Fixed-Length Memory Pool Extended Information Registration Field of Setup
Table

;%%
;%%% Variable-size MemoryPool Extended Information define section %%%
;%%
;------ Usage --
;LABEL .data.l MPL?_EXINF ;: COMMENT
;--
 .section h2ssetup, code, align = 2
_HI_MPLEXINF: .equ $-EXLEN ;: MPL exinf define area
MPLE_TOP: .equ $;:
mpl1_exinf: .data.l 00000000 ;: mplid = 1 exinf
mpl2_exinf: .data.l 00000000 ;: mplid = 2 exinf
mpl3_exinf: .data.l 00000000 ;: mplid = 3 exinf
mpl4_exinf: .data.l 00000000 ;: mplid = 4 exinf
MPLE_BTM:
MPLECNT: .equ (MPLE_BTM-MPLE_TOP) / EXLEN
 ;:[0...255] ;: mpl exinf count
;

(1)

Figure 3.44 Variable-Length Memory Pool Extended Information Registration Field of
Setup Table

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 242 of 362

REJ05B0364-0300

;%%
;%%% Cyclic Handler Extended Information define section %%%
;%%
;------ Usage --
;LABEL .data.l CYH?_EXINF ;: COMMENT
;--
 .section h2ssetup, code, align = 2
_HI_CYCEXINF: .equ $-EXLEN ;: CYH exinf define area
CYHE_TOP: .equ $;:
cyh1_exinf: .data.l 00000000 ;: cyhno = 1 exinf
cyh2_exinf: .data.l 00000000 ;: cyhno = 2 exinf
cyh3_exinf: .data.l 00000000 ;: cyhno = 3 exinf
cyh4_exinf: .data.l 00000000 ;: cyhno = 4 exinf
 .aifdef DX
cyh5_exinf: .data.l 00000000 ;: cyhno = 5 exinf
 .aendi
CYHE_BTM:
CYHECNT: .equ (CYHE_BTM-CYHE_TOP) / EXLEN
 ;:[0...255] ;: cyh exinf count
;

(1)

(2)

Figure 3.45 Cyclic Handler Extended Information Registration Field of Setup Table

(1) Definition of extended information

Defines extended information to be registered in each object.

(2) When the debugging extension is used, defines extended information to be registered in the
debug daemon cyclic handler.

Note: Do not modify or delete symbols used in the extended information registration fields.

When adding extended information to be registered, insert the definition data before
each ???E_BTM.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 243 of 362

 REJ05B0364-0300

3.2.4 FAQ about Setup Table

This section answers a question about the setup table which is frequently asked by users of the HI
series OS.

FAQ Contents:

(1) Optimizing Setup Table ...244

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 244 of 362

REJ05B0364-0300

(1) Optimizing Setup Table

Classification: Configuration, kernel environment definition, and setup table

Question HI2000/3

When the system is created by using the files generated when the OS is installed without change,
an error occurs and a correct system is not created. What causes this problem?

Answer

An error occurs because the setup table is specified for optimization.

Do not specify the setup table for optimization.

The setup table creates information (data table) required for the kernel according to the defined
contents, as well as allocation of the memory area used by the kernel according to the defined
value (such as calculation of stack size used by the kernel). Since no code (program) is described,
the setup table does not affect the code size or speed (performance) even if it is specified for
optimization. If assembly is performed with the setup table specified for optimization, an error
occurs during optimization.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 245 of 362

 REJ05B0364-0300

3.3 Stack Size Calculation

Calculate the task or interrupt handler stack size using the following procedures.

1. Calculate the stack size for each function in a task or interrupt handler

2. Calculate the stack size considering program nesting

3.3.1 Stack Size Calculation from Stack Frame Size

A C function allocates a stack frame in the stack area when the function is initiated.

The stack frame is used as a local variable area for the function or as a parameter area for a
function call.

The stack frame size can be determined from the frame size in the compile listing output by the C
compiler.

As the C compiler cannot determine the stack size when service calls of the HI series OS are used,
such extra stack size must be added to the frame size in the compile listing.

3.3.2 Stack Size Calculation by CallWalker

The stack size can be calculated using the "CallWalker", a tool supplied with the C compiler.

A calculation example of the task stack size using the CallWalker is shown below.

The following calculation example uses the HI7750/4, SuperHTM RISC engine Series C/C++
Compiler Package Ver. 8.0.01, and SH7770 whole linkage project (7770_mix) as the sub-project
of the HEW workspace.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 246 of 362

REJ05B0364-0300

(1) Starting HEW

Initiate the HEW, open "\kernel\for_shc8\hios\hios.hws" in the HI7750/4 install folder, and
select 7770_mix as the current project.

Figure 3.46 HEW Startup

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 247 of 362

 REJ05B0364-0300

In the window after setting the current project, select [SuperH RISC engine Standard
Toolchain...] from [Options] in the header menu to display the HEW option setting menu.

Figure 3.47 Menu Selection

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 248 of 362

REJ05B0364-0300

Figure 3.48 HEW Option Selection

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 249 of 362

 REJ05B0364-0300

Select "Other" for [Category] in the [Link/Library] tab and select [Stack information output].

Figure 3.49 HEW Option Settings

Click the [OK] button to finish setting and execute build.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 250 of 362

REJ05B0364-0300

(2) Starting CallWalker

Select [Program] -> [Renesas High-performance Embedded Workshop] -> [CallWalker] to
initiate the CallWalker.

Figure 3.50 CallWalker Startup

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 251 of 362

 REJ05B0364-0300

Select [Import Stack File...] from [File] in the header menu of the startup window to open the
created stack information file.

Figure 3.51 File Reading

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 252 of 362

REJ05B0364-0300

Figure 3.52 Read File Selection

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 253 of 362

 REJ05B0364-0300

(3) Calculation example of task stack size

In this example, the system consists of the application programs listed in table 3.21.

Table 3.21 Configuration of Sample System

Function Name Application Type Remarks

_hi_cpuini CPU initialization routine

_kernel_reset (Calls vsta_knl) Stack size is calculated as 0

_inithdr1 Initialization routine

_MainTask Task

_texrtn1 Task exception processing routine for
_MainTask

_sub1 Function called from _MainTask

_Task7 Task

_svchdr1 Extended service call handler Called from _MainTask

_inthdr_level1 Interrupt handler (interrupt level 1)

_inthdr_level5 Interrupt handler (interrupt level 5)

_kernel_tmrini Timer driver (timer initialization routine) Initialization routine

_kernel_tmrint Timer driver (timer interrupt routine) Interrupt handler

_cychdr1 Cyclic handler

_kernel_sysdwn System down

In the above application, the static stack and coprocessor are assumed not to be used and the
CFG_TRACE check disabled.

An example of stack size display by the CallWalker for the above application is shown in
figure 3.53.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 254 of 362

REJ05B0364-0300

Figure 3.53 Stack Size Display Example by CallWalker

The stack size is calculated from the displayed information. The stack size displayed by the
CallWalker is the stack size which a task or interrupt handler can use independently. The stack
size can be obtained by adding the necessary size of the kernel to this displayed size. Each
stack size is calculated below based on the displayed stack size example by the CallWalker.

The stack size of the "_MainTask" task is calculated as an example.

_MainTask calls the following function and service call. It also defines a task exception
processing routine.

 _sub1

 Extended service call routine (_svcrtn1)

 Task exception processing routine (_texrtn1)

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 255 of 362

 REJ05B0364-0300

_MainTask

_sub1

_svcrtn1

ras_tex

_texrtn1

Figure 3.54 Overview of Sample Task Processing

The Call Information View of the CallWalker indicates that _MainTask calls the _sub1
function. However, information for the other calls (e.g. service call) is not available. Since the
CallWalker cannot display information for the other two calls, calculation must be performed
manually.

The stack sizes of _MainTask and _sub1 can be obtained from the Call Information View and
Symbol Detail View, respectively. Add manually the stack sizes of the other extended service
call routine and task exception processing routine to these stack sizes.

The stack size of the "_MainTask" task alone becomes as shown in table 3.22.

Table 3.22 Stack Size of _MainTask Itself

No. Function Name Stack Size

1 _MainTask 44 bytes

2 _sub1 24 bytes

3 _svcrtn1 16 bytes

4 _texrtn1 24 + 152 bytes*

Total 260 bytes

Note: Added size (necessary size) of call routine and handler. For details, refer to the HI7000/4
Series User's Manual.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 256 of 362

REJ05B0364-0300

The value determined here is the stack size of the "_MainTask" task itself.

Substitute this value into item 1 in table C.5, Task Stack Size, in the HI7000/4 Series User's
Manual. The stack size of the "_MainTask" task is determined as shown in table 3.23.

Table 3.23 Task Stack Size Calculation

No. Item Stack Size

1 Obtained size 260 bytes

2 Necessary size 196 bytes

3 Tasks TA_COP0 attribute

4 TA_COP1 attribute

5 TA_COP2 attribute

6 Static stack usage

7 Checks CFG_TRACE

8 Addition considering nested interrupts

Total 456 bytes

(4) Calculation example of interrupt handler stack size

In this example, there are two interrupt handlers.

 inthdr_level1

 inthdr_level5

In addition, a timer is used. The stack size of each interrupt handler needs to be determined
because these interrupt handlers have different interrupt levels. Accordingly, nesting does not
need to be considered for these interrupts.

Substitute each stack size into item 1 in table C.6, Interrupt Handler Stack Size, in the
HI7000/4 Series User's Manual.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 257 of 362

 REJ05B0364-0300

Table 3.24 Interrupt Handler Stack Size Calculation

 Stack Size

No. Item _inthdr_level1 _inthdr_level5 _kernel_tmrint

1 Obtained size 32 bytes 20 bytes 4 bytes

2 Calls service call from the
interrupt handlers

192 bytes 192 bytes 192 bytes

3 Checks CFG_TRACE

4 Addition considering nested
interrupts

Total 224 bytes 212 bytes 196 bytes

The interrupt handler stack size to be specified is determined from these values.

Substitute these values into the following formula provided in the HI7000/4 Series User's
Manual to obtain the interrupt handler stack size.

CFG_IRQSTKSZ = ∑ (The stack area of the handler that uses the largest stack area) + 28 +
(stack size used by the NMI interrupt handler calculated as shown in
appendixes C.4 and C.5 + 48) × NMI nest count

The result is as follows:

CFG_IRQSTKSZ = 224 + 212 + 196 + 28 + 0 (no NMI nesting)
= 660 bytes

(5) Calculation example of time event handler stack size

In this example, only one cyclic handler (_cychdr1) is used.

Substitute this value into item 1 in table C.7, Time Event Handler Stack Size, in the HI7000/4
Series User's Manual.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 258 of 362

REJ05B0364-0300

Table 3.25 Time Event Handler Stack Size Calculation

No. Item Stack Size

1 Obtained size 20 bytes

2 Necessary size 192 bytes

3 Calls service call from the time event handlers 144 bytes

4 Checks CFG_TRACE

5 Addition considering nested interrupts

6 Addition when the NMI is used

Total 356 bytes

Only one cyclic handler is used as the time event handler in this example. When more than one
time event handler is used, calculate the stack size using the maximum size of all time event
handlers that use the stack.

(6) Calculation example of initialization routine stack size

In this example, one initialization routine (inithdr1) is used.

However, since a timer driver is used, the timer initialization handler “_kernel_tmrini” of the
timer driver is actually used, resulting in a total of two initialization routines being used.

Therefore, use the greater stack size among these two for calculating the initialization routine
stack size.

Table 3.26 Initialization Routine Stack Size Calculation

No. Item Stack Size

1 Obtained size 16 bytes

2 Necessary size 192 bytes

3 Checks CFG_TRACE

4 Addition when the NMI is used

Total 208 bytes

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 259 of 362

 REJ05B0364-0300

(7) Notes on using CallWalker

The notes when using the CallWalker are listed below.

 [RealTime OS Option...] in the Tools menu of the CallWalker is currently not supported.

 Assembly-language functions will not be calculated by the CallWalker, so they need to be
calculated manually.

 The following functions will also not be calculated by the CallWalker, so they need to be
calculated manually.

• Recursive function

• Circular function

• Function having an unclear source symbol

• Function having an address still not referenced

Note that when the function at the beginning of an application program, such as the starting
function of a task or task exception processing routine is written in the assembly language, it
may not be displayed in the Call Information View of the CallWalker.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 260 of 362

REJ05B0364-0300

3.4 System Configuration Procedure

A system using the HI series OS is configured using the HEW (High-performance Embedded
Workshop).

The overview of system configuration is shown in figure 3.55.

Kernel function
library file

Application
programs

Kernel information
definition file

HEW
(High-performance

Embedded Workshop)
Load module

Figure 3.55 System Configuration Procedure

Each HI series OS has a HEW configuration file (HEW workspace) for the supplied standard
sample programs.

The configuration procedure using the supplied standard HEW configuration file is described
below.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 261 of 362

 REJ05B0364-0300

3.4.1 HI7000/4

For the configuration procedure of the HI7000/4, the SuperHTM RISC engine Series C/C++
Compiler Package Ver. 6.0AR2, SH7612 HEW configuration file (referred to as HEW
workspace), and Configuration Guide using whole linkage are provided. These can be downloaded
from the website of Renesas Technology Corp.

3.4.2 HI7700/4

For the configuration procedure of the HI7700/4, the SuperHTM RISC engine Series C/C++
Compiler Package Ver. 6.0AR2, SH7729 HEW configuration file (referred to as HEW
workspace), and Configuration Guide using whole linkage are provided. These can be downloaded
from the website of Renesas Technology Corp.

3.4.3 HI7750/4

For the configuration procedure of the HI7750/4, the SuperHTM RISC engine Series C/C++
Compiler Package Ver. 6.0AR2, SH7750 HEW configuration file (referred to as HEW
workspace), and Configuration Guide using whole linkage are provided. These can be downloaded
from the website of Renesas Technology Corp.

3.4.4 HI2000/3

The configuration procedure using the HEW is shown below.

In this example, the H8S, H8/300 Series C/C++ Compiler Package Ver. 4.0AR2 is used.

Double-clicking the sample workspace file "product.hws" in the HI2000/3 installation folder
"product" launches the HEW for configuring the HI2000/3. The HEW startup window is shown in
figure 3.56.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 262 of 362

REJ05B0364-0300

Figure 3.56 HEW Startup

Sample projects corresponding to each device are already registered in the workspace file
"product.hws".

There are four sample projects corresponding to the CPU and operating modes as shown in table
3.27.

Select a project that matches the user environment (CPU and operating mode) and change the
settings with reference to the subsequent descriptions.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 263 of 362

 REJ05B0364-0300

Table 3.27 Standard Sample Projects

No. Project Name Configuration File* Contents

1 hi26a hi26a Project to create a load module for the
H8S/2600 CPU in advanced mode
(already registered for H8S/2655)

2 hi26n hi26n Project to create a load module for the
H8S/2600 CPU in normal mode
(already registered for H8S/2655)

3 hi20a hi20a Project to create a load module for the
H8S/2000 CPU in advanced mode
(already registered for H8S/2655)

4 hi20n hi20n Project to create a load module for the
H8S/2000 CPU in normal mode
(already registered for H8S/2655)

Note: A setting is made to create a load module in the configuration file.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 264 of 362

REJ05B0364-0300

To select a sample project, select a project from the HEW workspace window and select [Set as
Current Project] from the pop-up menu.

Figure 3.57 Project Selection from Pop-up Menu

Note that projects for unused environments can be deleted.

When using a device other than the H8S/2655 or H8S/2245, after selecting a project, change the
system configuration file already registered to that for the CPU used.

Define (add) the application programs created in section 2, Application Program Creation, in the
project file. The procedure for adding files is shown below.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 265 of 362

 REJ05B0364-0300

Select [Add Files...] from [Project] in the header menu in the window after setting the current
project, and add the created application program files to the project file.

Figure 3.58 File Addition Menu

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 266 of 362

REJ05B0364-0300

Figure 3.59 Additional File Selection

In the additional file selection window, more than one file can be selected simultaneously by
moving to the folder containing the files to be added and then selecting the files with the Shift key
pressed down.

Define the section information of the added files.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 267 of 362

 REJ05B0364-0300

Select [OptLinker...] from [Options] in the header menu, select the [Section] tab of the [OptLinker
options (hi26a)] dialog box, and make settings to add the section information.

Figure 3.60 OptLinker Selection Menu

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 268 of 362

REJ05B0364-0300

Figure 3.61 Section Information Addition

How to add a section is described next. Adding program section "P_section" of the added
application file is shown as an example.

Select [Ptask] and press the [Add...] button.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 269 of 362

 REJ05B0364-0300

Figure 3.62 Additional Section Information Input

Input "P_section" in [Section name :] in the [Add section] dialog box and press the [OK] button.
The added "P_section" section will be displayed below the "Ptask" section.

Figure 3.63 Added Section Information Confirmation

To reflect the updated section information, press the [OK] button.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 270 of 362

REJ05B0364-0300

Next, select [Build] from [Build] in the header menu to configure (build) the system.

Figure 3.64 Build Execution

The above operations create an executable file.

Note that the result of compile, assemble, and linkage is displayed in the lowest part of the
window. If an error occurs, after correcting the corresponding source program, re-execute build.

The executable file (extension of abs) is created in the folder (folder with the relevant project
name under the [product] folder) specified by the configuration file selected in the relevant
project.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 271 of 362

 REJ05B0364-0300

Build by standard configuration uses a kernel library in which the parameter check function and
shared-stack function are enabled.

After the application program has been debugged and it has reached a level to be embedded in a
product, the parameter check executed at the beginning of the system call becomes a useless
routine. Accordingly, this parameter check function can be removed in the HI2000/3.

For details on the how to remove the parameter check function, refer to section 1.3.2, Installation
in HI2000/3 and HI1000/4.

3.4.5 HI1000/4

The configuration procedure using the HEW is shown below.

In this example, the H8S, H8/300 Series C/C++ Compiler Package Ver. 6.0.00 is used.

Double-clicking the sample workspace file "product.hws" in the HI1000/4 installation folder
"product" launches the HEW for configuring the HI1000/4. The HEW startup window is shown in
figure 3.65.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 272 of 362

REJ05B0364-0300

Figure 3.65 HEW Startup

Sample projects corresponding to each device are already registered in the workspace file
"product.hws". There are two sample projects corresponding to the CPU and operating modes as
shown below. Select a project that matches the user environment (CPU and operating mode) and
change the settings with reference to the subsequent descriptions.

• 1650asmp: Project to create a load module for the H8SX/1650 CPU in advanced mode

• 1525asmp: Project to create a load module for the H8SX/1525 CPU in advanced mode

To select a sample project, select a project from the HEW workspace window and select [Set as
Current Project] from the pop-up menu.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 273 of 362

 REJ05B0364-0300

Figure 3.66 Project Selection from Pop-up Menu

Note that projects for unused environments can be deleted.

Define (add) the application programs created in section 2, Application Program Creation, in the
project file. The procedure for adding files is shown below.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 274 of 362

REJ05B0364-0300

Select [Add Files...] from [Project] in the header menu in the window after setting the current
project, and add the created application program files to the project file.

Figure 3.67 File Addition Menu

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 275 of 362

 REJ05B0364-0300

Figure 3.68 Additional File Selection

In the additional file selection window, more than one file can be selected simultaneously by
moving to the folder containing the files to be added and then selecting the files with the Shift key
pressed down.

Define the section information of the added files.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 276 of 362

REJ05B0364-0300

Select [H8S, H8/300 Standard Toolchain...] from [Options] in the header menu, select the
[Link/Library] tab of the [H8S, H8/300 Standard Toolchain] dialog box, and make settings to add
the section information.

Figure 3.69 H8S, H8/300 Standard Toolchain Selection Menu

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 277 of 362

 REJ05B0364-0300

Figure 3.70 Section Setting Menu

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 278 of 362

REJ05B0364-0300

Figure 3.71 Section Information Addition

How to add a section is described next. Adding program section "P_section" of the added
application file is shown as an example.

Select [P_hiidle] and press the [Add...] button.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 279 of 362

 REJ05B0364-0300

Figure 3.72 Additional Section Information Input

Input "P_section" in [Section name :] in the [Add section] dialog box and press the [OK] button.
The added "P_section" section will be displayed below the "P_hiidle" section.

Figure 3.73 Added Section Information Confirmation

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 280 of 362

REJ05B0364-0300

To reflect the updated section information, press the [OK] button.

Next, select [Build] from [Build] in the header menu to configure (build) the system.

Figure 3.74 Build Execution

The above operations create an executable file.

Note that the result of compile, assemble, and linkage is displayed in the lowest part of the
window. If an error occurs, after correcting the corresponding source program, re-execute build.

The executable file (extension of abs) is created in the folder ("obj_adv" folder under the [product]
folder) specified by the relevant project.

Build by standard configuration uses a kernel library in which the parameter check function and
shared-stack function are enabled.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 281 of 362

 REJ05B0364-0300

After the application program has been debugged and it has reached a level to be embedded in a
product, the parameter check executed at the beginning of the system call becomes a useless
routine. Accordingly, this parameter check function can be removed in the HI1000/4.

For details on the how to remove the parameter check function, refer to section 1.3.2, Installation
in HI2000/3 and HI1000/4.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 282 of 362

REJ05B0364-0300

3.4.6 FAQs about System Configuration

This section answers questions about system configuration which are frequently asked by users of
the HI series OS.

FAQ Contents:

(1) Stack Size Used for Service Calls.. 283

(2) Calculation of OS Stack Size ... 284

(3) Definitions for Separate Linkage ... 285

(4) Calculation of Interrupt Nesting Level .. 287

(5) Section Information ... 288

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 283 of 362

 REJ05B0364-0300

(1) Stack Size Used for Service Calls

Classification: Configuration

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

Does the necessary size in stack size calculation described in the HI7000/4 Series User's Manual
include the stack used for service calls?

Answer

The necessary size in stack size calculation described in the HI7000/4 Series User's Manual does
include the stack used for service calls.

Note that some service calls involve task switching, and some do not. The stack size for a service
call which involves task switching is included in the necessary stack size for calculation described
in the HI7000/4 Series User's Manual. On the other hand, as the latter type of service calls do not
involve task switching, they are executed at a high speed without switching task stacks. This
processing is possible because there is no task switching. In this case too, the stack size is included
in the necessary stack size for calculation.

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 284 of 362

REJ05B0364-0300

(2) Calculation of OS Stack Size

Classification: Configuration

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

When calculating the OS stack size, should the calls of a run-time library from another run-time
library be counted as the interrupt nesting level?

Answer

Interrupt nesting does not mean nesting of function calls.

Only an interrupt that occurs in the same interrupt processing should be counted as the nesting
level.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 285 of 362

 REJ05B0364-0300

(3) Definitions for Separate Linkage

Classification: Configuration

Question HI7000/4 HI7700/4 HI7750/4

We are considering using separate linkage for system creation.

Though updating the load modules will change the addresses of the application programs unless
they are intentionally managed, do such programs operate correctly even after the addresses have
changed? In addition, what should be kept in mind when separate linkage is used for task creation?

Answer

Though the addresses of the application programs will be changed by updating the load modules,
the application programs are operated without problems.

The points that should be kept in mind when separate linkage is used for task creation are shown
below.

When the application programs are not saved in ROM, objects must be created dynamically by
service calls. Therefore, include the service calls needed to dynamically create objects by the
configurator.

If service calls to dynamically create objects are not included by the configurator, note the
following when separate linkage is used.

(1) The programs must be linked to the kernel side.

(2) While the [Link with Kernel Library] check box is selected in the configurator, handlers cannot
be defined.

When separate linkage is used, note the following for task creation.

• When creating tasks that use the static stack by the configurator, always select the [Link with
Kernel Library] check box.

• When automatic task ID assignment is specified in the configurator, never select the [Link
with Kernel Library] check box.

(Continued on next page)

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 286 of 362

REJ05B0364-0300

(Continued from previous page)

Answer

For separate linkage, when each load module is created, one symbol of the other load module must
be referenced.

When the kernel environment load module is created, the address of __kernel_cnfgtbl (service call
interface information: start address of the C_hibase section) must be defined. This defined address
must be the same as the address where the C_hibase section is allocated.

When the kernel load module is created, the address of__kernel_sysmt (kernel environment
information: start address of the C_hisysmt section) must be defined. This defined address must be
the same as the address where the C_hisysmt section is allocated.

As described above, the OS does not require that the start address of the C_hibase section be the
same as that of the C_hisysmt section. Please see the following table for a summary of this
information.

Kernel Side Kernel Environment Side

 C_hibase section

Symbol _kernel_cnfgtbl is forcibly defined
to the start address of the C_hibase
section.

 <Actual description>

Service call interface information is
allocated.

<Reference>

Issues service calls according to the
address of symbol _kernel_cnfgtbl.

 Symbol _kernel_sysmt is forcibly defined
to the start address of the C_hisysmt
section.

C_hisysmt section

 <Reference>

Refers to the kernel information at the
address of symbol _kernel_sysmt.

<Actual description>

Kernel environment information is
allocated.

Section 3 Configuration

 Rev. 3.00 Jan. 12, 2005 Page 287 of 362

 REJ05B0364-0300

(4) Calculation of Interrupt Nesting Level

Classification: Configuration

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

How many levels are interrupts to be nested in the following case? (The specified interrupt levels
are not sequential values).

[Interrupt source level]

• Interrupt_IRQ0: Interrupt level 15

• Interrupt_IRQ1: Interrupt level 14

• Interrupt_IRQ2: Interrupt level 12

• Interrupt_IRQ3: Interrupt level 10

• DMAC DEIO: Interrupt level 10

• CMT: Interrupt level 08

• Kernel interrupt mask level: Interrupt mask level 12

How should the number of the following interrupts be determined? Should it be determined by
simply counting the nesting level, or by calculating the difference between the highest interrupt
level and mask level and the difference between the lowest interrupt level and mask level?

1. Interrupts higher than the kernel interrupt mask level

2. Interrupts equal to or lower than the kernel interrupt mask level

Answer

It can be determined by simply counting the nesting level. It does not depend on whether the
interrupt level settings are sequential values.

See the following for the above example.

• Interrupts higher than the kernel interrupt mask level: 2

• Interrupts equal to or lower than the kernel interrupt mask level: 3

Section 3 Configuration

Rev. 3.00 Jan. 12, 2005 Page 288 of 362

REJ05B0364-0300

(5) Section Information

Classification: Configuration

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

When arbitrary functions are created and the system is configured, sections P, C, D, and B are not
generated. Is it necessary to prepare these sections in addition to the sections defined in advance
by the OS?

Answer

The sections of the user-created programs can be freely allocated by the user.

User programs do not need to be added to the OS section names. The OS does not provide the
function to add them to the OS section names.

User programs can be allocated with arbitrary section names.

Section 4 Device-Dependent Specifications

 Rev. 3.00 Jan. 12, 2005 Page 289 of 362

 REJ05B0364-0300

Section 4 Device-Dependent Specifications

4.1 FAQs about Device-Dependent Specifications

This section answers questions frequently asked by users of the HI series OS about device-
dependent specifications.

FAQ Contents:

4.1.1 Cache Enabling Setting ...290

4.1.2 Cache Usage..292

4.1.3 Restrictions on Write-Back Mode (1) ...295

4.1.4 Restrictions on Write-Back Mode (2) ...297

4.1.5 Cache Support ...299

4.1.6 X/Y Memory Usage ..300

4.1.7 Support of MMU...301

4.1.8 Timer Driver..302

4.1.9 Control of Timer Used by OS ...304

4.1.10 CPU Initialization Routine Written in C Language...305

4.1.11 Location of Interrupt Entry/Exit Processing Routine ..306

4.1.12 Initialization of External Memory ...307

4.1.13 Transition to Power-Down Mode..308

Section 4 Device-Dependent Specifications

Rev. 3.00 Jan. 12, 2005 Page 290 of 362

REJ05B0364-0300

4.1.1 Cache Enabling Setting

Classification: Device-dependent specifications

Question HI7700/4 HI7750/4

What settings are needed to enable the cache?

Answer

The cache should be enabled (initialized) in the CPU initialization process.

The OS provides a service call specialized for cache initialization (vini_cac service call), which
must be added to the CPU initialization processing.

A coding example using the HI7700/4 CPU initialization routine for the SH7708 is shown below.

 /**/
/* NAME = hi_cpuini */
/* FUNCTION = CPU initialize routine */
/**/
#pragma noregsave(hi_cpuini)

void hi_cpuini(void)
{

/*** Initialize Hardware Environment ***/
 set_gbr((VP)IOBASE); /* set I/O base address to GBR */
 vini_cac(9, 128, 4); /* CACHE disable */

/*** Initialize Software Environment ***/

/* _INITSCT(); */ /* Call section-initialize routine */

 vsta_knl(); /* Start kernel */
}

(1)

Figure 4.1 CPU Initialization Routine When Using Cache (SH7708)

The following table shows examples of the vini_cac service call specification ((1) shown in the
above figure) for each CPU type.

(Continued on next page)

Section 4 Device-Dependent Specifications

 Rev. 3.00 Jan. 12, 2005 Page 291 of 362

 REJ05B0364-0300

(Continued from previous page)

Answer

Table 4.1 vini_cac Specification Example for Each CPU

CPU Type Description

 vini_cac (9, 128, 4); Internal RAM mode is not used, writing
mode for P0, U0, and P3 areas is copy-
back mode, number of entries is 128,
and number of ways is 4

SH7708
series

vini_cac (0x2E, 128, 2); Internal RAM mode is used, writing
mode for P0, U0, and P3 areas is write-
through mode, number of entries is
128, and number of ways is 2

 SH7709 vini_cac (0xF, 128, 4); Internal RAM mode is not used, writing
mode for P0, U0, and P3 areas is write-
through mode, number of entries is
128, and number of ways is 4

 SH7706,
SH7709S,
SH7727,
SH7641,
SH7660

vini_cac (0xB, 256, 4); Writing mode for P0, U0, and P3 areas
is write-through mode, writing mode for
P1 area is copy-back mode, number of
entries is 256, and number of ways is 4

 vini_cac (0xF, 512, 4); Writing mode for P0, U0, and P3 areas
is write-through mode, writing mode for
P1 area is copy-back mode, number of
entries is 512, and number of ways is 4

SH7290,
SH7294,
SH7300,
SH7705,
SH7710 vini_cac (0xF, 256, 4); Writing mode for P0, U0, and P3 areas

is write-through mode, writing mode for
P1 area is copy-back mode, number of
entries is 256, and number of ways is 4

For notes on using cache, refer to the HI7000/4 Series User's Manual.

Section 4 Device-Dependent Specifications

Rev. 3.00 Jan. 12, 2005 Page 292 of 362

REJ05B0364-0300

4.1.2 Cache Usage

Classification: Device-dependent specifications

Question HI7700/4 HI7750/4

What should be kept in mind when using the cache?

Answer

• Separating the areas in which data will be cached or not cached

To separate the areas in which data will be cached or not cached, allocate programs and data at
linkage as follows.

 Programs and data that should be cached: P0, P1, or P3 area

 Programs and data that should not be cached: P2 area

Note that data in the P2 area will not be cached even when the cache is enabled.

To enable or disable the cache dynamically, use the following examples of procedures for
HI7700/4 and HI7750/4.

• HI7700/4

(1) To disable the cache

 /* Setting SR.BL = 1 is recommended for interrupt masking. */

 old_sr = get_cr();
 set_cr(old_sr|0x10000000); /* Set BL = 1. */
 vini_cac(0, entnum, waynum); /* Disable the cache and clear the CF bit to 0 . */
 vfls_cac(0, 0x1bfffff); /* Write the necessary area back to the actual memory. */
 /* At this point, all cache entries can be safely destroyed. */

 vini_cac(8, entnum, waynum); /* Disable the cache and set the CF bit to 1. */
 /* This step invalidates all cache entries. */

 set_cr(old_sr);

Figure 4.2 Coding Example for Disabling Cache (HI7700/4)

(Continued on next page)

Section 4 Device-Dependent Specifications

 Rev. 3.00 Jan. 12, 2005 Page 293 of 362

 REJ05B0364-0300

(Continued from previous page)

Answer

(2) To enable the cache

 vini_cac(9, entnum, waynum); /* Set CE = 1 and CF = 1 */
 /* CF = 0 is allowable, but CF = 1 is safer. */

Figure 4.3 Coding Example for Enabling Cache (HI7700/4)

 Note on vfls_cac

The address specified by vfls_cac must be in a physical address range from H'0 to
H'1BFFFFFF (the upper three bits of the address must be 0).

For details, refer to the HI7000/4 Series User's Manual.

 Notes on vini_cac

The entnum and waynum parameters of vini_cac must be specified as follows.

(1) When the 16-kbyte cache is provided in the device such as SH7709S or SH7729

entnum = 256 and waynum = 4

(2) When the 32-kbyte mode is used for a device such as SH7705 or SH7290

After selecting the 32-kbyte mode with the CCR3 register, set entnum = 512 and
waynum = 4, and issue a vini_cac service call.

(Continued on next page)

Section 4 Device-Dependent Specifications

Rev. 3.00 Jan. 12, 2005 Page 294 of 362

REJ05B0364-0300

(Continued from previous page)

Answer

• HI7750/4

(1) To disable the cache

 /* Setting SR.BL = 1 is recommended for interrupt masking. */

 old_sr = get_cr();
 set_cr(old_sr|0x10000000); /* Set BL = 1. */
 vini_cac(0x00000000); /* Set ICE = off and OCE = off. */
 vfls_cac(0x80000000, 0x9bffffff);
 /* Write the necessary area back to the actual memory. */
 /* At this point, all cache entries can be safely destroyed. */

 vini_cac(0x00000808); /* Set ICE = off, OCE = off, ICI = 1, and OCI = 1. */
 /* This step invalidates all cache entries. */

 set_cr(old_sr);

Figure 4.4 Coding Example for Disabling Cache (HI7750/4)

(2) To enable the cache

 vini_cac(0x0000090d); /* Set ICI = 1, ICE = 1, OCI = 1, CB = 1, and OCE = 1. */
 /* ICI = 0 and OCI = 0 are allowable, but ICI = 1 and OCI = 1 are safer. */

Figure 4.5 Coding Example for Enabling Cache (HI7750/4)

 Note on vfls_cac

The address specified by vfls_cac must be in a physical address range from H'80000000 to
H'9BFFFFFF.

For details, refer to the HI7000/4 Series User's Manual.

Section 4 Device-Dependent Specifications

 Rev. 3.00 Jan. 12, 2005 Page 295 of 362

 REJ05B0364-0300

4.1.3 Restrictions on Write-Back Mode (1)

Classification: Device-dependent specifications

Question HI7700/4 HI7750/4

What should be kept in mind when setting the cache to the write-back mode? Is there any
restriction on cache settings for the HI7000/4?

Answer

There is nothing that needs special care, except for the coherency.

For example, when writing data through the program and then transferring the data through the
DMAC, use either of the following procedures.

(1) Allocate the address where data is to be written through the program to a cache through area
(write data by bypassing the cache).

(2) Create a function to write the cache contents back to the memory, call the function after data is
written, and then perform DMA transfer.

When transferring data through the DMAC and then reading the data through the program, use
either of the following procedures.

(1) Read data from an address allocated to a cache through area (read data by bypassing the
cache).

(2) Create a function to invalidate the cache contents, call the function, and then read the data
transferred by the DMAC from an address allocated to a cache through area.

The overview of write-back mode is shown in figure 4.6.

(Continued on next page)

Section 4 Device-Dependent Specifications

Rev. 3.00 Jan. 12, 2005 Page 296 of 362

REJ05B0364-0300

(Continued from previous page)

Answer

 Cache area

Data (x)

Cache area

Actual memory area Actual memory area

Data (x)

Data (y)

Note: When write-back (flushing data from cache) occurs, the
cache area data is reflected into the actual memory area.

Figure 4.6 Overview of Write-Back Mode

Section 4 Device-Dependent Specifications

 Rev. 3.00 Jan. 12, 2005 Page 297 of 362

 REJ05B0364-0300

4.1.4 Restrictions on Write-Back Mode (2)

Classification: Device-dependent specifications

Question HI7750/4

When data is transferred through the DMA after the cache is disabled in an acquired variable-
length memory block (vinv_cac service call), the data at the beginning of the variable-length
memory block becomes invalid. What causes this problem?

Answer

This problem occurs when the memory block contents are stored in the cache. It occurs only in the
SH-4 which uses 32-byte cache lines, and does not occur in the SH-3 which uses 16-bytes cache
lines.

When variable-length memory blocks are allocated, 16-byte management areas are also allocated
in the memory pool as shown in the following figure.

 Start address of
memory block A

Start address of
memory block B

Memory block B

Memory block A

Kernel management area A

Kernel management area B

16 bytes

16 bytes

Memory pool area

Figure 4.7 Configuration of Variable-Length Memory Blocks

(Continued on next page)

Section 4 Device-Dependent Specifications

Rev. 3.00 Jan. 12, 2005 Page 298 of 362

REJ05B0364-0300

(Continued from previous page)

Answer

If the cache line size is 32 bytes and acquired memory block A is allocated to address 32n + 16 (n
is an integer), the first 16 bytes of memory block A is stored in the cache when the kernel accesses
management area A. The following shows an example of storing memory block contents in the
cache.

Memory block B

Memory block A

Kernel management area A

Kernel management area B

Memory pool area

Address 32n + 16 The contents of the cache line
size are stored in the cache.

Figure 4.8 Example of Storing Variable-Length Memory Block Contents in Cache

1. When the kernel accesses management area A before DMA transfer, the data before DMA
transfer is stored in the cache.

2. When the cache is flushed after DMA transfer, the first 16 bytes of memory block A is
overwritten with the cache data and the contents are lost.

To prevent this problem, the start address of the memory block to be acquired must always be set
to 32n as shown below.

• Specify the variable-length memory block size to be acquired to (actual required size) + 28.

• When accessing an acquired memory block, round up the start address passed from the kernel
to 32n (round up to a higher address) and use the result as the start address of the memory
block.

Section 4 Device-Dependent Specifications

 Rev. 3.00 Jan. 12, 2005 Page 299 of 362

 REJ05B0364-0300

4.1.5 Cache Support

Classification: Device-dependent specifications

Question HI7700/4 HI7750/4

When using cache-support service calls which manipulate the CCR, what should be kept in mind
about memory allocation?

Answer

The cache-support service calls access the CCR or address-mapped cache array. During this
access, the kernel internally corrects the program counter (PC) value to point to the P2 area (non-
cacheable).

Section 4 Device-Dependent Specifications

Rev. 3.00 Jan. 12, 2005 Page 300 of 362

REJ05B0364-0300

4.1.6 X/Y Memory Usage

Classification: Device-dependent specifications

Question HI7700/4

What should be kept in mind when using the X/Y memory of the SH7729R?

Answer

The following addresses must be accessed by a program (the section addresses to be specified at
linkage).

In P2/Uxy,

• X-RAM: H'A5007000 to H'A5008FFF

• Y-RAM: H'A5017000 to H'A5018FFF

When the following addresses are used,

• X-RAM: H'05007000 to H'05008FFF

• Y-RAM: H'05017000 to H'05018FFF

note the restriction on X/Y memory usage that 2-cycle accesses must always be ensured when the
cache is enabled.

Section 4 Device-Dependent Specifications

 Rev. 3.00 Jan. 12, 2005 Page 301 of 362

 REJ05B0364-0300

4.1.7 Support of MMU

Classification: Device-dependent specifications

Question HI7700/4 HI7750/4

Is there any restriction on MMU usage?

Answer

The HI series OS does not assume that the MMU is enabled, but it can be used under the
following restrictions.

(1) Allocation of the kernel sections to areas where addresses are not to be translated (P1 or P2)

During kernel processing, some areas are accessed with SR.BL = 1. If a TLB miss occurs
while SR.BL = 1, the CPU execution moves to the reset vector. Such areas must be allocated
to areas where addresses are not to be translated (P1 or P2). This restriction is applied to the
following sections.

 P_hiknl, P_hireset,

 C_hivct, C_hitrp, C_hibase, C_hisysmt, C_hicfg,

 B_hitrcbuf, B_hitrceml, B_hiwrk, B_hidystk, B_histstk,

 B_hiirqstk, P_hisysdwn, P_hiintdwn

(2) Address of the service call parameters to be passed through the pointer (such as pk_xxx)

The kernel accesses the parameter address specified by a service call with the SR.BL bit in the
same state as when the service call is issued (0). If a TLB miss might occur at this point, no
service call should be issued in the TLB miss handler. If it can be ensured that no TLB miss
occurs at this point, the TLB miss handler can issue service calls. Note that in the HI7700/4
specifications, no service call should be issued while SR.BL = 1.

(3) Privileged/user mode

In the HI7700/4 specifications, all programs such as tasks and handlers are initiated in the
privileged mode. The application program cannot move the state to the user mode.

(4) Write a program to the location of symbol __kernel_tlb_ent in TLB miss handler

nnnn_expent.src.

Section 4 Device-Dependent Specifications

Rev. 3.00 Jan. 12, 2005 Page 302 of 362

REJ05B0364-0300

4.1.8 Timer Driver

Classification: Device-dependent specifications

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

To obtain a hardware timer cycle of 1 ms when the crystal resonator on the board generates
33.333 MHz, is 33.333 the correct value to use for calculation?

Answer

Use 33.333 × 106 for calculation instead of 33.333.

If 33.333 is used, it will not affect task switching but will affect time management by the OS.

[Reference] Timer driver cycle time calculation
A calculation example of a 1-ms timer cycle time using the SH7604 in the HI7000/4 is shown
below.

The hardware timer cycle time (T) is determined by the counter clock cycle time (t) and counter
value (n) as follows:

 T = {t × (n + 1)}

t is determined by the counter clock (φ/8, φ/32, or φ/128) selected by the timer control register
(TCR).
When φ (CPU clock) is 28.6364 MHz, t becomes as follows:

• Counter clock = φ/8: t = 279 ns

• Counter clock = φ/32: t = 1.11 µs

• Counter clock = φ/128: t = 4.46 µs

(Continued on next page)

Section 4 Device-Dependent Specifications

 Rev. 3.00 Jan. 12, 2005 Page 303 of 362

 REJ05B0364-0300

(Continued from previous page)

Answer

n is determined by setting a value from 0x0000 to 0xFFFF in output compare match register A
(OCRA).
When φ (CPU clock) is 28.6364 MHz, T is between the following ranges:

• Counter clock = φ/8: t = 279 ns to 18.2 ms

• Counter clock = φ/32: t = 1.11 µs to 72.7 ms

• Counter clock = φ/128: t = 4.46 µs to 292 ms

Calculation of 1-ms cycle:
Output compare match register A (OCRA) = Timer cycle time (s) × n − 1

In the above formula, timer cycle time (s) = 1 × 10−3 to specify a 1-ms timer cycle time.
If φ/8 is selected as the counter clock, when φ = 28.6364 MHz, n = 28.6364 × 106 ÷ 8.

Accordingly, output compare match register A (OCRA) becomes as follows:

Output compare match register A (OCRA) = Timer cycle time (s) × n − 1
 = (1 × 10−3) × (28.6364 × 106 ÷ 8) − 1
 = 3578.55 (0x0DFA)

To obtain a 1-ms timer cycle time (s) with φ (CPU clock) set to 28.6364 MHz, the value set to
output compare match register A (OCRA) should be 3578.55 (0x0DFA).

Section 4 Device-Dependent Specifications

Rev. 3.00 Jan. 12, 2005 Page 304 of 362

REJ05B0364-0300

4.1.9 Control of Timer Used by OS

Classification: Device-dependent specifications

Question HI7000/4 HI7700/4 HI7750/4

How should the timer be controlled?

Answer

How to control the timer is described below with using the SH7751 in the HI7750/4 as an
example.

Open the 7751_tmrdef.h file in the supplied SH7751 folder.

Change the “Peripheral clock” value on line 19 to the value used in the actual environment,
reconfigure the system, and then check the result.

Only the corresponding file can be used to control the timer in the OS.

 /**/
/* HI7750/4 header file for timer driver */
/* Copyright (c) 2000(2003) Renesas Technology Corp. */
/* and Renesas Solutions Corp. All Rights Reserved. */
/* HI7750/4(HS0775ITI41SR) V1.0 */
/**/
/**/
/* FILE = 7751_tmrdef.h ; */
/* CPU type = SH7751 */
/* Module = TMU */
/* INTC */
/**/
/**/
/* TMU, IPR setting data */
/* Condition: */
/* (1) Peripheral clock: 42MHz */
/* (2) Timer interrupt level: 13 */
/**/
#define PCLOCK 41666667 /* Peripheral clock (Hz) */

(1)

Figure 4.9 7751_tmrdef.h File

Change the part of (1) in figure 4.9 to match the operating frequency of the device used.

Section 4 Device-Dependent Specifications

 Rev. 3.00 Jan. 12, 2005 Page 305 of 362

 REJ05B0364-0300

4.1.10 CPU Initialization Routine Written in C Language

Classification: Device-dependent specifications

Question HI2000/3 HI1000/4

How should a CPU initialization routine be written in C?

Answer

The CPU initialization routine can be written in the C language.

However, a C program accesses the stack (memory). A CPU exception may occur if the stack area
is accessed before the necessary settings for stack access are completed. (A CPU exception causes
system termination.) Accordingly, the CPU initialization routine must be written in the assembly
language until the stack settings are completed.

After the necessary settings for stack access have been completed, a CPU initialization routine
written in the C language may be executed.

For the method of changing the provided sample CPU initialization routine (written in the
assembly language) to enable execution of a CPU initialization routine written in the C language,
refer to section 2, Application Program Creation.

Section 4 Device-Dependent Specifications

Rev. 3.00 Jan. 12, 2005 Page 306 of 362

REJ05B0364-0300

4.1.11 Location of Interrupt Entry/Exit Processing Routine

Classification: Device-dependent specifications

Question HI7000/4 HI7700/4 HI7750/4

Which address should the interrupt entry/exit processing routine (P_hiexpent section) be allocated
to? (Which address is the initial value when the kernel initializes the VBR?)

Answer

The interrupt entry/exit processing routine (P_hiexpent section) can be allocated to any address;
the user can choose the address.

When the kernel initializes the VBR, H'100 should be subtracted from the address where P_expent
is located (kernel initialization processing automatically calculates it).

For the contents of the sample, refer to the description of exception processing in the user's manual
of the device. The description includes the exception processing vector addresses.

Table 4.2 Interrupt or Exception Entry/Exit Processing

Symbol Name Allocation Address Processing Contents

 __kernel_exp_ent P_hiexpent section VBR + H'100 is the general
exception vector address

 __kernel_tlb_ent P_hiexpent section + H'300 VBR + H'400 is the TLB miss
exception vector address

 __kernel_int_ent P_hiexpent section + H'500 VBR + H'600 is the interrupt
vector address

If a general exception occurs, processing starts from VBR + H'100, so necessary processing must
be located at the corresponding address.

Therefore, the above settings are necessary.

Section 4 Device-Dependent Specifications

 Rev. 3.00 Jan. 12, 2005 Page 307 of 362

 REJ05B0364-0300

4.1.12 Initialization of External Memory

Classification: Device-dependent specifications

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

When the stack area of a task is allocated to the external area, why can the task not be woken up?

Answer

When using the external RAM area, the I/O ports must be set (initialized).

Before starting the OS, initialize the I/O ports. After a reset, the kernel initialization processing
accesses external addresses to initialize the task stack area.

An example using the H8S microcomputer is shown below.

For example, in mode 6, ports A, B, and C work as input ports immediately after a reset. They
must be set to address output pins by setting PFCR1 (pin function control register 1) for ports A
and B to 1 and DDR (data direction register) for port C to 1.

Section 4 Device-Dependent Specifications

Rev. 3.00 Jan. 12, 2005 Page 308 of 362

REJ05B0364-0300

4.1.13 Transition to Power-Down Mode

Classification: Device-dependent specifications

Question HI7000/4 HI7700/4 HI7750/4

Does any problem arise when the software standby mode is entered while the system timer is
operating? What should be kept in mind when entering the software standby mode?

Answer

When the software standby mode is entered, the timer device used for the OS system timer stops.
Accordingly, the following errors will occur.

Standby not specified

Standby specified

Time

1) Error in the system time.

2) Error in the hardware timer intervals

1. 2. 2. 2.

Time tick supplied

In standby mode

Figure 4.10 Errors in System Time in Standby Mode

(Continued on next page)

Section 4 Device-Dependent Specifications

 Rev. 3.00 Jan. 12, 2005 Page 309 of 362

 REJ05B0364-0300

(Continued from previous page)

Answer

Note the following when a register of the timer device used for the OS system timer is initialized
in software standby mode.

1. Stop the system time in software standby mode and resume it when the software standby mode
is canceled.

For example, if 0.6 ms has passed before the software standby mode is entered since the last
timer interrupt, the following processing should be done to generate a timer interrupt 0.4 ms
after the software standby mode is cancelled (when the time tick cycle is 1 ms).

 Save the value of the timer counter, which is a register in the timer device, when the
software standby mode is entered.

 Restore the timer counter to the saved value when the software standby mode is canceled.

2. Stop the system time in software standby mode and initialize the timer counter value when the
software standby mode is canceled.

For example, even if 0.6 ms has passed before the software standby mode is entered since the
last timer interrupt, the following processing should be done to generate a timer interrupt 1 ms
after the software standby mode is cancelled (when the time tick cycle is 1 ms).

 Initialize the timer device registers (call timer initialization routine _kernel_tmrini()) when
the software standby mode is canceled.

Section 4 Device-Dependent Specifications

Rev. 3.00 Jan. 12, 2005 Page 310 of 362

REJ05B0364-0300

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 311 of 362

 REJ05B0364-0300

Section 5 Debugging

5.1 Overview of Debugging

In a system incorporating the HI series OS, the system down routine is initiated when the kernel
finds an abnormal state such as an error in an object that was initially defined through the
configurator or an undefined interrupt or exception. The system down routine can also be initiated
through the application program when necessary.

This section describes how to debug the system using the system down routine and how to analyze
the cause of an error when the system down routine is initiated.

When an abnormal state is found in the system, perform the following steps to solve the problem.

The cause of the error
is determined.

The cause of the error
is determined.

System goes down.

 Abnormal state

Analyze the cause
of the abnormal state.

Problem solved

Determine the
error location.

Check the
source program.

Correct the error.

Figure 5.1 Procedure for Debugging Abnormal State in the System

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 312 of 362

REJ05B0364-0300

Note: The system down routine is a term used in the HI7000/4 series and HI1000/4. The
equivalent routine is called the system termination routine in the HI2000/3. In this section,
both are collectively called the system down routine.

5.2 HI7000/4 Series

5.2.1 Preparation for Debugging

(1) Enabling Parameter Check Function

During debugging, the function for checking service call parameters should be enabled. For details
on the function, refer to section 1.3, Service Call Parameter Check.

(2) Adding Debugging Code

Add a code for calling the system down routine to the application program so that the system
down routine is called if a service call returns a fatal error code, such as a parameter error, and the
processing cannot be continued. As this debugging code is unnecessary in the final version of the
system, it is efficient to generate the code only when necessary through a macro and compiler's
preprocessor directives.

The following shows the interface for calling the system down routine and a coding example.

void vsys_dwn (W type, ER ercd, VW inf1, VW inf2);

Error type

Error code

System down information 1

System down information 2

Figure 5.2 System Down Routine Calling Interface (HI7000/4 Series)

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 313 of 362

 REJ05B0364-0300

#define _DEBUG

#ifdef _DEBUG
#define CHK_SYSDWN(cd) if(cd) vsys_dwn((W)1, ercd, (VW)__FILE__, (VW)__LINE__)
#else
#define CHK_SYSDWN(cd)
#endif

ER ercd;

 (Processing omitted)

ercd = set_flg((ID)flgid, (FLGPTN)setptn); /* Set the event flag */
CHK_SYSDWN(ercd != E_OK);

 (Processing omitted)

The error type must be 1 or a larger
value when the system down routine
is called from the application program.
For the other parameters, any values
can be selected by the user.

This example generates the
debugging code only when
the _DEBUG symbol is valid.

Figure 5.3 Debugging Code Example (HI7000/4 Series)

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 314 of 362

REJ05B0364-0300

(3) Setting a Breakpoint

Set a breakpoint at the line shown in each example below through an emulator or an ICE and
execute the application program.

/***/
/* NAME = _kernel_sysdwn ; */
/* FUNCTION = System down routine ; */
/***/
void _kernel_sysdwn(type, ercd, inf1, inf2)
W type; /* system down type */
 /* type >= 1 : system down of user program */
 /* type == 0 : initial information error */
 /* type == -1 : context error of ext_tsk */
 /* type == -2 : context error of exd_tsk */
 /* type == -16: undefined interrupt/exception */
ER ercd; /* error code */
 /* type >= 0 : error code of user program */
 /* type == 0 : error code of initial information */
 /* type == -1 : error code of ext_tsk */
 /* type == -2 : error code of exd_tsk */
 /* type == -16: interrupt vector number */
VW inf1; /* information-1 */
 /* type >= 0 : information of user program */
 /* type == 0 : indicator of initial information error */
 /* type == -1 : address of ext_tsk call */
 /* type == -2 : address of exd_tsk call */
 /* type == -16: address of interrupt occurrence */
VW inf2; /* information-2 */
 /* type >= 0 : information of user program */
 /* type == 0 : number of error initial information */
 /* type == -16: SR of interrupt occurrence */
{
 set_imask(SR_IMS15); /* mask all interrupt */
 while(TRUE); /* endless loop */
}

Set a breakpoint at this line.

Figure 5.4 Example of Setting a Breakpoint (HI7000/4)

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 315 of 362

 REJ05B0364-0300

/**/
/* NAME = _kernel_sysdwn ; */
/* FUNCTION = System down routine ; */
/**/
void _kernel_sysdwn(type, ercd, inf1, inf2)
W type; /* system down type */
 /* type >= 1 : system down of user program */
 /* type == 0 : initial information error */
 /* type == -1 : context error of ext_tsk */
 /* type == -2 : context error of exd_tsk */
 /* type == -16: undefined interrupt/exception */
ER ercd; /* error code */
 /* type >= 0 : error code of user program */
 /* type == 0 : error code of initial information */
 /* type == -1 : error code of ext_tsk */
 /* type == -2 : error code of exd_tsk */
 /* type == -16: interrupt vector number */
VW inf1; /* information-1 */
 /* type >= 0 : information of user program */
 /* type == 0 : indicator of initial information error */
 /* type == -1 : address of ext_tsk call */
 /* type == -2 : address of exd_tsk call */
 /* type == -16: address of interrupt occurrence */
VW inf2; /* information-2 */
 /* type >= 0 : information of user program */
 /* type == 0 : number of error initial information */
 /* type == -16: SR of interrupt occurrence */
{
 set_cr(MD_BIT | (SR_IMS15 << 4)); /* mask all interrupt */
 while(TRUE); /* endless loop */
}

Set a breakpoint at this line.

Figure 5.5 Example of Setting a Breakpoint (HI7700/4, HI7750/4)

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 316 of 362

REJ05B0364-0300

5.2.2 System Going Down

When the system goes down, the program execution stops at the breakpoint set as described in
section 5.2.1 (3), Setting a Breakpoint. In the HI7000/4 series, the error information obtained
when the system went down is passed through registers.

The error information parameters are stored in the following format.

System down information 2
(inf2)

Error type
(type)

31 0

R4

R5

R6

R7

System down information 1
(inf1)

Error code
(ercd)

Figure 5.6 System Down Information Parameter Format (HI7000/4 Series)

5.2.3 Types of System Down Causes

The HI7000/4 series system goes down due to the following types of causes.

Table 5.1 Types of System Down Causes (HI7000/4 Series)

No. Error Type (R4) Description

1 0 Initially defined object error

2 H'FFFFFFFF (-1) Context error (ext_tsk service call)

3 H'FFFFFFFE (-2) Context error (exd_tsk service call)

4 H'FFFFFFF0 (-16) Undefined interrupt or exception

5 1 or larger (selectable by the user) *1 vsys_dwn or ivsys_dwn service call

Note: *1 The error type value depends on the value specified by the application program.

The error information for each error cause is described below.

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 317 of 362

 REJ05B0364-0300

(1) Initially Defined Object Error

This error is found in the information about an object initially defined by the configurator. The
following values are returned as error information.

Table 5.2 List of Error Information (Initially Defined Object Error)

Item
Register for Storing
Information Description

Error type (type) R4 H'0

Error code (ercd) R5 Code for the generated error

System down information 1 (inf1) R6 0 (kernel side) or 1 (kernel
environment side)

System down information 2 (inf2) R7 Number for the initially defined
object that has generated the error

The error code (ercd) indicates the code for the generated error (service call error code).

For system down information 1 (inf1), 0 is passed when the error occurred during object definition
in the kernel side, or 1 when the error occurred during object definition in the kernel environment
side. For the difference between the kernel side and the kernel environment side, see the following
table.

Table 5.3 Difference between Kernel Side and Kernel Environment Side

Item Description

Kernel side An object which is included in the kernel load module and for which the
"Link with Kernel Library" check box has been selected in the object
generating dialog box of the configurator.

Kernel environment side An object which is included in the kernel environment load module and
for which the "Link with Kernel Library" check box has not been
selected in the object generating dialog box of the configurator.

System down information 2 (inf2) indicates the ordinal number of the error object in definition
processing. Note that the kernel side is processed first and the kernel environment side is then
processed.

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 318 of 362

REJ05B0364-0300

The following shows examples of values for system down information 1 and 2.

1) When an error occurred during initial definition of task A inf1 = 0, inf2 = 1
2) When an error occurred during initial definition of cyclic handler A inf1 = 0, inf2 = 2
3) When an error occurred during initial definition of extended service call A inf1 = 0, inf2 = 3
4) When an error occurred during initial definition of task B inf1 = 1, inf2 = 1
5) When an error occurred during initial definition of task C inf1 = 1, inf2 = 2
6) When an error occurred during initial definition of semaphore A inf1 = 1, inf2 = 3
7) When an error occurred during initial definition of event flag A inf1 = 1, inf2 = 4

Initial Definitions in the Kernel
Side

Initial Definitions in the Kernel
Environment Side

• Task A
• Cyclic handler A
• Extended service call A

• Task B
• Task C
• Semaphore A
• Event flag A

Figure 5.7 Examples of System Down Information 1 and 2

Check the definitions using the configurator according to the ordinal number of the error object.

For details on processing for each object, refer to the HI7000/4 Series User's Manual.

(2) Context Error (ext_tsk Service Call)

This error occurs when a non-task context issues an ext_tsk service call. The following values are
passed as the error information.

Table 5.4 List of Error Information (Context Error)

Item
Register for Storing
Information Description

Error type (type) R4 H'FFFFFFFF (-1)

Error code (ercd) R5 H'FFFFFFE7 (-25)

System down information 1 (inf1) R6 Address where ext_tsk was called

System down information 2 (inf2) R7 Undetermined

Check the application program line corresponding to the address passed as system down
information 1, and correct the program so that the ext_tsk service call is issued from a task
context.

For how to determine the program module corresponding to the error address, refer to section 5.5,
Determining System Down Location.

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 319 of 362

 REJ05B0364-0300

(3) Context Error (exd_tsk Service Call)

This error occurs when a non-task context issues an exd_tsk service call. The following values are
passed as the error information.

Table 5.5 List of Error Information (Context Error)

Item
Register for Storing
Information Description

Error type (type) R4 H'FFFFFFFE (-2)

Error code (ercd) R5 H'FFFFFFE7 (-25)

System down information 1 (inf1) R6 Address where exd_tsk was called

System down information 2 (inf2) R7 Undetermined

Check the application program line corresponding to the address passed as system down
information 1, and correct the program so that the exd_tsk service call is issued from a task
context.

For how to determine the program module corresponding to the error address, refer to section 5.5,
Determining System Down Location.

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 320 of 362

REJ05B0364-0300

(4) Undefined Interrupt or Exception

This error occurs when an undefined interrupt or undefined general exception is generated. The
following values are passed as the error information.

Table 5.6 List of Error Information (Undefined Interrupt or Exception)

Description

Item
Register for Storing
Information HI7000/4 HI7700/4, HI7750/4

Error type (type) R4 H'FFFFFFF0 (-16)

Error code (ercd) R5 Vector number Exception code

System down information 1
(inf1)

R6 PC information when the interrupt or
exception occurred*1*2*3

System down information 2
(inf2)

R7 SR information when the interrupt or
exception occurred*3

Note: *1 For a slot illegal instruction exception, the address of the undefined code or delayed
branch instruction placed in a delay slot is passed as the PC information (or the
address of the next instruction is passed only for the HI7000/4).

 *2 For a trap instruction exception, the address of the next instruction after the TRAPA
instruction is passed.

 *3 For a CPU address error or DMAC address error in the HI7000/4, if the stack pointer
(SP) value is not a multiple of four, undetermined values are passed as the PC and SR
information.

The error code (ercd) indicates the vector number of the generated undefined interrupt or
exception in the HI7000/4, or the generated exception code in the HI7700/4 or HI7750/4.
Determine the generated interrupt or exception according to the error code (ercd). For details on
the vector number or exception code, refer to the hardware manual of the target microcomputer.

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 321 of 362

 REJ05B0364-0300

(a) When an Undefined Interrupt Occurred

If the generated interrupt is necessary, create and register an interrupt handler for it. If it is not an
intended interrupt, determine the cause, and correct the program so that the interrupt will not
occur.

An unintended interrupt may occur due to the following reasons.

• A register is set up incorrectly in the interrupt source (an external device or an on-chip
peripheral module in the microcomputer).

• The IRQ or IRL mode is set up incorrectly in the interrupt controller.

• The interrupt priority is set up incorrectly in the interrupt controller and an incorrect-level
interrupt is detected.

• A noise is misinterpreted as an interrupt request signal.

• A failure or incorrect setting in the hardware circuit.

(b) When an Undefined General Exception Occurred

If the generated exception is necessary, create and register a CPU exception handler or a trap
exception handler for it. If it is not an intended exception, determine the error location according
to the PC value passed as system down information 1 (inf1), and analyze the cause.

According to the SR value passed as system down information 2 (inf2), the CPU operating mode
or interrupt mask level when the exception occurred can be determined.

For how to determine the program module corresponding to the PC address passed as system
down information 1 (inf1), refer to section 5.5, Determining System Down Location.

For how to check the cause of an undefined exception , refer to section 5.6, Examples and
Solutions of CPU Exception.

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 322 of 362

REJ05B0364-0300

(5) vsys_dwn or ivsys_dwn Service Call

This error occurs when the application program issues a vsys_dwn or ivsys_dwn service call. The
passed error information indicates the parameters for the issued vsys_dwn or ivsys_dwn service
call.

The debugging code shown in section 5.2.1 (2), Adding Debugging Code, passes the following
values as error information.

Table 5.7 List of Error Information (vsys_dwn or ivsys_dwn Service Call)

Item
Register for Storing
Information Description

Error type (type) R4 1

Error code (ercd) R5 Error code for the issued service call

System down information 1 (inf1) R6 Address of the path to the source
program file where the error occurred

System down information 2 (inf2) R7 Line number of the source program
where the error occurred

Determine the error cause according to the error information, and correct the application program.

For the error code for the service call, refer to the HI7000/4 Series User's Manual.

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 323 of 362

 REJ05B0364-0300

5.3 HI2000/3

5.3.1 Preparation for Debugging

(1) Enabling Parameter Check Function

During debugging, the function for checking service call parameters should be enabled. For details
on the function, refer to section 1.3, Service Call Parameter Check.

(2) Adding Debugging Code

Add a code for calling the system down routine to the application program so that the system
down routine is called if a service call returns a fatal error code, such as a parameter error, and the
processing cannot be continued. As this debugging code is unnecessary in the final version of the
system, it is efficient to generate the code only when necessary through a macro and compiler's
preprocessor directives.

The following shows the interface for calling the system down routine and a coding example.

void HIPRG_ABNOML(void);

Figure 5.8 Example of System Down Routine Calling Interface (HI2000/3)

extern void HIPRG_ABNOML(void);

#define _DEBUG

#ifdef _DEBUG
#define CHK_SYSDWN(cd) if(cd) HIPRG_ABNOML()
#else
#define CHK_SYSDWN(cd)
#endif

ER ercd;

 (Processing omitted)

ercd = set_flg((ID)flgid, (UINT)setptn); /* Set the event flag */
CHK_SYSDWN(ercd != E_OK);

 (Processing omitted)
This example generates the
debugging code only when
the _DEBUG symbol is valid.

Figure 5.9 Debugging Code Example (HI2000/3)

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 324 of 362

REJ05B0364-0300

(3) Setting a Breakpoint

Set a breakpoint at the line shown in each example below through an emulator or an ICE and
execute the application program.

;***
;*specifications ; *
;*name = _HIPRG_ABNOML : abnormal quit handler ; *
;*function = ; *
;*notes = ; *
;*date = 99/02/22 ; *
;*author = Hitachi, Ltd. ; *
;*attribute = public ; *
;*class = system ; *
;*linkage = ; *
;*input = ; *
;*output = ; *
;*end of specifications ; *
;***
_HIPRG_ABNOML:
 orc #HIDEF_IMASK_CCR:8,ccr ;: interrupt mask for CCR register
 orc #HIDEF_IMASK_EXR:8,exr ;: interrupt mask for EXR register
 bra $;: forever loop
;

Set a breakpoint at this line.

Figure 5.10 Example of Setting a Breakpoint (HI2000/3)

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 325 of 362

 REJ05B0364-0300

5.3.2 System Going Down

When the system goes down, the program execution stops at the breakpoint set as described in
section 5.3.1 (3), Setting a Breakpoint. In the HI2000/3, the error information obtained when the
system went down is passed through the stack.

The error information parameters are stored in the following format.

CCR information

Vector number
(vctno)

7 0

SP

Error code
(ercd)

Task ID
(tskid)

PC information
(24 bits)

PC information
(24 bits)

Vector number
(vctno)

7 0

SP

CCR information

Task ID
(tskid)

(Reserved)

Vector number
(vctno)

7 0

SP

EXR information

Task ID
(tskid)

Other than undefined interrupt Undefined interrupt
 (interrupt control mode 0 or 1)

Undefined interrupt
(interrupt control mode 2 or 3)

+1 +1 +1

+2 +2 +2

+3 +3

+4

+5

+3

+4

+5

+6

+7

Figure 5.11 System Down Information Parameter Format (HI2000/3)

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 326 of 362

REJ05B0364-0300

5.3.3 Types of System Down Causes

The HI2000/3 system goes down due to the following types of causes.

Table 5.8 Types of System Down Causes (HI2000/3)

Error Type

No. Vector Number (SP + 0) Error Code (SP + 2, SP + 3) Description

1 H'0 to H'0FFF Setup information error

2 H'F9ED Unsupported timer

3 H'FFEB Context error
(ext_tsk service call)

4

0

H'FFBB Context error
(ret_int service call)

5 0 or larger Undefined interrupt

6 *1 *1 Call from the application
program

Note: *1 The error type value depends on the value specified by the application program. For
details, refer to section 5.3.3 (6), Call from the Application Program.

The error information for each error cause is described below.

(1) Setup Information Error

This error is found in the setup table. The following values are passed as the error information.

Table 5.9 List of Error Information (Setup Information Error)

Item Stack for Storing Information Description

Vector number (vecno) SP + 0 0

Task ID (tskid) SP + 1 0

Error code (ercd) SP + 2
SP + 3

Setup information error code
(H'0 to H'0FFF)

The error code (ercd) indicates the code (H'0000 to H'0FFF) for the invalid setting in the setup
table. Check the setup table setting corresponding to the error code. For details on the error code,
refer to the HI2000/3 User's Manual.

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 327 of 362

 REJ05B0364-0300

(2) Unsupported Timer

This error occurs when an attempt is made to use the timeout function while the timeout function
is disabled in the setup table. The following values are passed as the error information.

Table 5.10 List of Error Information (Unsupported Timer)

Item Stack for Storing Information Description

Vector number (vecno) SP + 0 0

Task ID (tskid) SP + 1 0

Error code (ercd) SP + 2
SP + 3

H'F9ED

Specify "USE" for the timeout function in the setup table or correct the application program so
that the timeout function is not specified for service calls.

(3) Context Error (ext_tsk Service Call)

This error occurs when a non-task context issues an ext_tsk service call. The following values are
passed as the error information.

Table 5.11 List of Error Information (Context Error)

Item Stack for Storing Information Description

Vector number (vecno) SP + 0 0

Task ID (tskid) SP + 1 0

Error code (ercd) SP + 2
SP + 3

H'FFEB

Check the application program line where ext_tsk is used, and correct the program so that the
ext_tsk service call is always issued from a task context.

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 328 of 362

REJ05B0364-0300

(4) Context Error (ret_int Service Call)

This error occurs when a ret_int service call is issued in task execution state or CPU-locked state.
The following values are passed as the error information.

Table 5.12 List of Error Information (Context Error)

Item Stack for Storing Information Description

Vector number (vecno) SP + 0 0

Task ID (tskid) SP + 1 0

Error code (ercd) SP + 2
SP + 3

H'FFBB

Check the application program line where ret_int is used, and correct the program so that the
ret_int service call is always issued from an interrupt handler.

(5) Undefined Interrupt

This error occurs when an undefined interrupt is generated. The following values are passed as the
error information.

Table 5.13 List of Error Information (Undefined Interrupt)

Stack for Storing Information

Item Interrupt Mode 0 or 1 Interrupt Mode 2 or 3 Description

Vector number (vecno) SP + 0 SP + 0 Vector number

Task ID (tskid) SP + 1 SP + 1 Task ID or 0

EXR SP + 2 EXR information when
the interrupt occurred

CCR SP + 2 SP + 4 CCR information when
the interrupt occurred

PC (SP + 3)*1
SP + 4
SP + 5

(SP + 5)*1
SP + 6
SP + 7

PC information when
the interrupt occurred

Note: *1 This value is only valid in advanced mode; it has no means in normal mode (only the
lower 16 bits of the PC are valid).

The vector number (vecno) indicates the vector number for the generated interrupt. Determine the
generated interrupt according to the vector number. For details on the vector number, refer to the
hardware manual of the target microcomputer.

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 329 of 362

 REJ05B0364-0300

If the generated interrupt is necessary, create and register an interrupt handler for it. If it is not an
intended interrupt, determine the cause, and correct the program so that the interrupt will not
occur.

An unintended interrupt may occur due to the following reasons.

• A register is set up incorrectly in the interrupt source (an external device or an on-chip
peripheral module in the microcomputer).

• The IRQ or IRL mode is set up incorrectly in the interrupt controller.

• The interrupt priority is set up incorrectly in the interrupt controller and an incorrect-level
interrupt is detected.

• A noise is misinterpreted as an interrupt request signal.

• A failure or incorrect setting in the hardware circuit.

The EXR and CCR information indicates the interrupt mask level when the interrupt occurred.

If an undefined interrupt occurred in a task context, the task ID (tskid) indicates the ID of the task
being executed when the interrupt occurred.

For how to determine the program module corresponding to the PC information, refer to section
5.5, Determining System Down Location.

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 330 of 362

REJ05B0364-0300

(6) Call from the Application Program

When the system down routine (_HIPRG_ABNOML) provided as a sample is called from an
application program written in the C language, the return address is stored in the stack and error
information cannot be passed through the stack.

When calling the sample system down routine from the application program, the user must
analyze the cause of the error.

To pass error information through the stack in the same way as when other system down causes
are generated, modify the system down routine and change the symbol name called from the
application program (any name can be selected by the user; _HIPRG_ABNOML_CSUB in the
following example) as shown below.

 .export _HIPRG_ABNOML_CSUB

 (Processing omitted)

_HIPRG_ABNOML_CSUB:
 pop.l er2
;
_HIPRG_ABNOML:
 orc #HIDEF_IMASK_CCR:8,ccr ;: interrupt mask for CCR register
 orc #HIDEF_IMASK_EXR:8,exr ;: interrupt mask for EXR register
 bra $;:forever loop

Add these lines to enable
calls from a C program.

Add these lines to adjust the
stack pointer.

Figure 5.12 Example of System Down Routine Modification (HI2000/3)

The following shows an example of debugging code for the system down routine modified as
shown above.

void HIPRG_ABNOML_CSUB(VW inf1, VW inf2, UB vctno, UB tskid, ER ercd);

Vector number

Error code

System down information 1

System down information 2

Task ID

Figure 5.13 Example of System Down Routine Calling Interface (HI2000/3)

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 331 of 362

 REJ05B0364-0300

extern void __regparam2 HIPRG_ABNOML_CSUB(VW inf1, VW inf2, UB vctno, UB tskid, ER ercd);

#define _DEBUG
#ifdef _DEBUG
#define CHK_SYSDWN(cd) if(cd) HIPRG_ABNOML_CSUB(__FILE__, __LINE__, 255, 255, ercd)
#else
#define CHK_SYSDWN(cd)
#endif

ER ercd;

 (Processing omitted)

ercd = set_flg((ID)flgid, (FLGPTN)setptn); /* Set the event flag */
CHK_SYSDWN(ercd != E_OK);

 (Processing omitted)
This example generates the
debugging code only when the
_DEBUG symbol is valid.

vctno and tskid must be 255 when
the system down routine is called
from the application program. For
the other parameters, any values can
be selected by the user.

Figure 5.14 Debugging Code Example (HI2000/3)

When the system down routine is called from the application program after the above debugging
code is added, the following values are passed as the error information.

Table 5.14 List of Error Information (Call from the Application Program)

Item
Stack or Register for
Storing Information Description

Vector number (vecno) SP + 0 H'FF (255)

Task ID (tskid) SP + 1 H'FF (255)

Error code (ercd) SP + 2
SP + 3

Error code for the issued service call

System down information 1 ER0 Address of the path to the source
program file where the error occurred

System down information 2 ER1 Line number of the source program
where the error occurred

When the system goes down due to a call from the application program, determine the error cause
according to the error information, and correct the application program.

For the error code for the service call, refer to the HI2000/3 User's Manual.

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 332 of 362

REJ05B0364-0300

5.4 HI1000/4

5.4.1 Preparation for Debugging

(1) Enabling Parameter Check Function

During debugging, the function for checking service call parameters should be enabled. For details
on the function, refer to section 1.3, Service Call Parameter Check.

(2) Adding Debugging Code

Add a code for calling the system down routine to the application program so that the system
down routine is called if a service call returns a fatal error code, such as a parameter error, and the
processing cannot be continued. As this debugging code is unnecessary in the final version of the
system, it is efficient to generate the code only when necessary through a macro and compiler's
preprocessor directives.

The following shows the interface for calling the system down routine and a coding example.

void vsys_dwn(H type, H inf1, B inf2, B inf3, H inf4, UW inf5);

Error type

System down information 4

System down information 3

System down information 2

System down information 1

System down information 5

Figure 5.15 Example of System Down Routine Calling Interface (HI1000/4)

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 333 of 362

 REJ05B0364-0300

extern void __regparam3 vsys_dwn(H type, H inf1, B inf2, B inf3, H inf4, UW inf5);

#define _DEBUG

#ifdef _DEBUG
#define CHK_SYSDWN(cd) if(cd) vsys_dwn((H)1, ercd, 0, 0, __LINE__, __FILE__)
#else
#define CHK_SYSDWN(cd)
#endif

ER ercd;

 (Processing omitted)

ercd = set_flg((ID)flgid, (FLGPTN)setptn); /* Set the event flag */
CHK_SYSDWN(ercd != E_OK);

 (Processing omitted)

The error type must be 1 or a larger
value when the system down
routine is called from the
application program. For the other
parameters, any values can be
selected by the user.

This example generates the
debugging code only when
the _DEBUG symbol is valid.

Figure 5.16 Debugging Code Example (HI1000/4)

(3) Setting a Breakpoint

Set a breakpoint at the line shown in each example below through an emulator or an ICE and
execute the application program.

;***;
;* NAME = vsys_dwn ;*;
;* FILE = vsys_dwn.src ;*;
;* FUNC = System down routine ;*;
;* NOTE = ;*;
;* INPU = none : ;*;
;* OUTP = none : ;*;
;***;
;
 .section P_hisysdwn, code, align = 2
;
 .export _vsys_dwn
 .export _ivsys_dwn
_vsys_dwn:
_ivsys_dwn:
 bra _vsys_dwn:8
 rts
;
 .end; of vsys_dwn.src

Set a breakpoint at this line.

Figure 5.17 Example of Setting a Breakpoint (HI1000/4)

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 334 of 362

REJ05B0364-0300

5.4.2 System Going Down

When the system goes down, the program execution stops at the breakpoint set as described in
section 5.4.1 (3), Setting a Breakpoint. In the HI1000/4, the error information obtained when the
system went down is passed through registers.

The error information parameters are stored in the following format.

System down information 4
(inf4)

System down information 5
(inf5)

Error type
(type)

15 0 0 0 7 7

ER

ER

ER

System down information 1
(inf1)

System down
information 3

(inf3)

System down
information 2

(inf2)

Figure 5.18 System Down Information Parameter Format (HI1000/4)

5.4.3 Types of System Down Causes

The HI1000/4 system goes down due to the following types of causes.

Table 5.15 Types of System Down Causes (HI1000/4)

No. Error Type (R0) Description

1 H'FFFB (-5) Initially defined object error

2 H'FFFD (-3) Context error 1

3 H'FFFE (-2) Context error 2

4 H'FFFF (-1) Undefined interrupt or exception

5 1 or larger (selectable by the user) vsys_dwn or ivsys_dwn service call

The error information for each error type is described below.

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 335 of 362

 REJ05B0364-0300

(1) Initially Defined Object Error

This error is found in the information defined by the configurator. The following values are passed
as the error information.

Table 5.16 List of Error Information (Initially Defined Object Error)

Item
Register for Storing
Information Description

Error type (type) R0 H'FFFB

System down information 1 (inf1) E0 Error number (H'0000 to H'0FFF)

System down information 2 (inf2) R1L 0

System down information 3 (inf3) R1H 0

System down information 4 (inf4) E1 0

System down information 5 (inf5) ER2 0

System down information 1 (inf1) indicates the error number (H'0000 to H'0FFF) corresponding
to the invalid setting in the setup information. Check the setting in the setup information
corresponding to the error number using the configurator. For details on the error number, refer to
the HI1000/4 User's Manual.

(2) Context Error 1

This error occurs when the kernel finds a context error in a service call (ext_tsk). The following
values are passed as the error information.

Table 5.17 List of Error Information (Context Error 1)

Item
Register for Storing
Information Description

Error type (type) R0 H'FFFD

System down information 1 (inf1) E0 H'FFE7

System down information 2 (inf2) R1L CCR information when the error
occurred

System down information 3 (inf3) R1H EXR information when the error
occurred

System down information 4 (inf4) E1 0

System down information 5 (inf5) ER2 PC information when the error
occurred

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 336 of 362

REJ05B0364-0300

Check the application program line corresponding to the address where the error occurred, and
correct the program so that the ext_tsk service call is always issued from a task context.

For how to determine the program module corresponding to the PC value passed through system
down information 5 (inf5), refer to section 5.5, Determining System Down Location.

(3) Context Error 2

This error occurs when the kernel finds a context error in a ret_int routine call. The following
values are passed as the error information.

Table 5.18 List of Error Information (Context Error 2)

Item
Register for Storing
Information Description

Error type (type) R0 H'FFFE

System down information 1 (inf1) E0 0

System down information 2 (inf2) R1L Task ID

System down information 3 (inf3) R1H 0

System down information 4 (inf4) E1 0

System down information 5 (inf5) ER2 0

Check the application program line where the ret_int routine is used, and correct the program so
that the ret_int routine is always called from an interrupt handler or an exception handler.

(4) Undefined Interrupt or Exception

This error occurs when an undefined interrupt or exception is generated. The following values are
passed as the error information.

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 337 of 362

 REJ05B0364-0300

Table 5.19 List of Error Information (Undefined Interrupt or Exception)

Item
Register for Storing
Information Description

Error type (type) R0 H'FFFF

System down information 1 (inf1) E0 Interrupt vector number

System down information 2 (inf2) R1L CCR information when the
interrupt occurred

System down information 3 (inf3) R1H EXR information when the
interrupt occurred

System down information 4 (inf4) E1 Task ID or 0

System down information 5 (inf5) ER2 PC information when the
interrupt occurred

System down information 1 (inf1) indicates the vector number for the generated interrupt or
exception. Determine the generated interrupt or exception according to the vector number. For
details on the vector number, refer to the hardware manual of the target microcomputer.

(a) When an Undefined Interrupt Occurred

If the generated interrupt is necessary, create and register an interrupt handler for it. If it is not an
intended interrupt, determine the cause, and correct the program so that the interrupt will not
occur.

An unintended interrupt may occur due to the following reasons.

• A register is set up incorrectly in the interrupt source (an external device or an on-chip
peripheral module in the microcomputer).

• The IRQ or IRL mode is set up incorrectly in the interrupt controller.

• The interrupt priority is set up incorrectly in the interrupt controller and an incorrect-level
interrupt is detected.

• A noise is misinterpreted as an interrupt request signal.

• A failure or incorrect setting in the hardware circuit.

(b) When an Undefined General Exception Occurred

If the generated exception is necessary, create and register a CPU exception handler or a trap
exception handler for it. If it is not an intended exception, determine the error location according
to the PC value passed as system down information 5 (inf5), and analyze the cause.

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 338 of 362

REJ05B0364-0300

The interrupt mask level can be determined according to system down information 2 (inf2) and
system down information 3 (inf3).

If an undefined exception occurred in a task context, system down information 4 (inf4) indicates
the ID of the task being executed when the exception occurred.

For how to determine the program module corresponding to the PC information passed as system
down information 5 (inf5), refer to section 5.5, Determining System Down Location.

For how to check the cause of an undefined exception, refer to section 5.6, Examples and
Solutions of CPU Exception.

(5) vsys_dwn or ivsys_dwn Service Call

This error occurs when the application program issues a vsys_dwn or ivsys_dwn service call. The
passed error information indicates the parameters for the issued service call.

The debugging code shown in section 5.4.1 (2), Adding Debugging Code, passes the following
values as the error information.

Table 5.20 List of Error Information (vsys_dwn, ivsys_dwn Service Call)

Item
Register for Storing
Information Description

Error type (type) R0 H'1

System down information 1 (inf1) E0 Error code for the issued service
call

System down information 2 (inf2) R1L 0

System down information 3 (inf3) R1H 0

System down information 4 (inf4) E1 Line number of the source
program where the error
occurred

System down information 5 (inf5) ER2 Address of the path to the
source program file where the
error occurred

Determine the error cause according to the error information, and correct the application program.

For the error code for the service call, refer to the HI1000/4 User's Manual.

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 339 of 362

 REJ05B0364-0300

5.5 Determining System Down Location

The PC information is passed as system down information. To determine the system down
location in a program according to the PC information, use the source-level debugging function of
an emulator or an ICE, or check the map file output from the linker to determine the approximate
location.

5.5.1 Determining the Location of a Program Module through Mapview

This section describes how to determine the location of a program module according to the PC
information using the Mapview, an accessory tool of the C compiler. In the following example,
HI7700/4, SuperHTM RISC engine series C/C++ compiler package Ver. 8.0.01, and the SH7641
whole linkage project (7641_mix) as a subproject in the HEW workspace are used.

When the Mapview is used, a map file including symbol information must be output through the
linkage editor. Specify output of a map file including the symbol information through the
optimizing linkage editor option setting window of the HEW.

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 340 of 362

REJ05B0364-0300

Figure 5.19 List Output Setting for Optimizing Linkage Editor

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 341 of 362

 REJ05B0364-0300

(1) Initiating the Mapview

Select [Program (P)] -> [Renesas High-performance Embedded Workshop] -> [Mapview] from
the Start menu to initiate the Mapview.

Figure 5.20 Initiated Mapview Window

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 342 of 362

REJ05B0364-0300

Select [File] -> [Open...] from the header menu in the initiated window and open the map file
output from the linkage editor.

Figure 5.21 Window for Reading a File

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 343 of 362

 REJ05B0364-0300

(2) Searching for an Address

Clicking a section name displays a list of symbols used in the clicked section in the symbol
information view. Check the displayed addresses and sizes and search for the symbol where the
PC value is included and determine the system down location in the program.

Figure 5.22 Window for Listing Symbols

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 344 of 362

REJ05B0364-0300

5.6 Examples and Solutions of CPU Exception

This section describes examples of how the system goes down due to a CPU exception and how
the problem should be solved. The following shows the main causes of CPU exceptions. Note that
it is assumed in this section that neither the memory management unit (MMU) nor the user break
controller (UBC) is used and there is no trap instruction.

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 345 of 362

 REJ05B0364-0300

Table 5.21 Main Error Causes

Exception
Cause Exception Location Probable Cause

Direct
cause

• Incorrect CPU option setting through the

compiler (5.6.2)

• Damaged program area (5.6.3)

• Failure in hardware (5.6.1)

User program

Indirect
cause

• Stack overflow (5.6.2)

Direct
cause

• Damaged program area (5.6.3)

• Failure in hardware (5.6.1)

Kernel

Indirect
cause

• Damaged kernel management area (5.6.3)

• Stack overflow (5.6.2)

General illegal
instruction, slot
illegal instruction

Other location,
outside the program
area

Indirect
cause

• Incorrect function call using a pointer

variable (5.6.3)

• Stack overflow (5.6.2)

Direct
cause

• Access violation at a data boundary (5.6.3)

• Access violation in the physical address

space (5.6.3)

• Incorrect DMAC or DTC register setting

• Failure in hardware (5.6.1)

User program

Indirect
cause

• Incorrect section information setting

through the linkage editor (5.6.2)

• Stack overflow (5.6.2)

Direct
cause

• Failure in hardware (5.6.1) Kernel

Indirect
cause

• Damaged kernel management area (5.6.3)

• Incorrect section information setting

through the linkage editor (5.6.2)

• Stack overflow (5.6.2)

CPU address
error,
DMAC or DTC
address error

Other location, outside
the program area

Indirect
cause

• Incorrect function call using a pointer

variable (5.6.3)

• Stack overflow (5.6.2)

Direct cause: Directly causes the system to go down.

Indirect cause: Causes malfunction of the program, which results in system going down.

Note: The number in parenthesis shows the reference section in this application note.

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 346 of 362

REJ05B0364-0300

5.6.1 Failure in Hardware

(1) Failure in Memory Initialization

When using external memory devices (such as SDRAM or SRAM), check that the bus state
controller (BSC) is correctly set up and all areas in the memory to be used can be correctly
accessed (read and written to). When using emulation memory, check that the emulator is
correctly set up.

Hardware must be initialized before the kernel initialization processing is called. For details, refer
to section 2.2, Overview of CPU Initialization Routine.

5.6.2 Incorrect Configuration

(1) Incorrect CPU Option Setting through the Compiler

Check that the CPU options (CPU type or endian) set through the compiler matches the target
hardware specifications. In particular, check whether the target hardware uses big endian or little
endian in the SH-2, SH-3, SH-3DSP, and SH-4 series microcomputers. The following shows the
window for specifying the CPU options in the compiler.

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 347 of 362

 REJ05B0364-0300

Figure 5.23 Window for Specifying CPU Options

(2) Incorrect Section Information Setting through the Linkage Editor

Check that the work spaces (such as B_hixxxx, B, and R sections) used by the HI series OS and
the application program are allocated in the available RAM area and they do not exceed the RAM
capacity.

To check that the sections do not exceed the available RAM area, use the map file output from the
linkage editor. For output of a map file, refer to the user's manual of the compiler used.

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 348 of 362

REJ05B0364-0300

The following shows an example of a map file output from the SuperHTM RISC engine series
C/C++ compiler package Ver. 8.0.01.

Optimizing Linkage Editor (Ver. 8.0.02.000) 03-Sep-2004 10:35:31

(Processing omitted)

*** Mapping List ***

SECTION START END SIZE ALIGN

P_hiexpent
 80000100 800007df 6e0 4
C_hibase
 80001000 80001363 364 4
P_hireset
 80001364 80001530 1cd 4
C_hivct
 80001534 80001933 400 4
C_hitrp
 80001934 80002133 800 4
P_hiknl
 80002134 8000c7a7 a674 4
C_hidef
 8000c7a8 8000c7ef 48 4
C_hisysmt
 8000c7f0 8000c9c3 1d4 4
C_hicfg
 8000c9c4 8000ca2f 6c 4
P_hisysdwn
 8000ca30 8000ca4f 20 4
P_hiintdwn
 8000ca50 8000cab3 64 4
P_hitmrdrv
 8000cab4 8000cb4b 98 4
C_hitmrdrv
 8000cb4c 8000cb4d 2 4
P
 8000cb50 8000d6cf b80 4
B_hiwrk
 8c000000 8c009ddb 9ddc 4
B_himpl
 8c009ddc 8c021ddb 18000 4
B_hidystk
 8c021ddc 8c025ddb 4000 4
B_histstk
 8c025ddc 8c026ddb 1000 4
B_hiirqstk
 8c026ddc 8c027fdb 1200 4
B_hitrcbuf
 8c027fdc 8c037fdb 10000 4
P_hicpuasm
 a0000000 a000002f 30 4
P_hicpuini
 a0000030 a0000057 28 4

Check that the work
spaces of the OS and
application program do
not exceed the available
RAM area.

Figure 5.24 Mapping List in a Map File

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 349 of 362

 REJ05B0364-0300

(3) Stack Overflow

Check that there is enough stack size for each task, interrupt handler, initialization routine, and
time event handler.

For calculation of each stack size, refer to section 3.3, Stack Size Calculation.

For the stack, the specified area is used from the highest address in descending order. If the stack
runs out of space, the contents of the lower addresses (nearer to address 0) will be damaged. The
following shows an example of an exception caused by a stack overflow.

Task A Task B Lower address

Higher address

Memory pool area

Stack for task A

Stack for task B

Stack for task X

Stack for
interrupt handler

Dynamic
stack

Static
stack

B_hiirqstk

B_histstk

B_hidystk

B_himpl

Address 0

Task switch

Task switch

System
goes down

(1)

(2)

(3)

(4)

(5)

Note: The order of section allocation in memory depends
on the order of section settings through the linkage
editor options.

Figure 5.25 Example of Task Operation and Stack Allocation

(1) When task A is executed, the stack for task A is used.

(2) When tasks are switched and task B is executed, the stack for task B is used.

(3) If the stack for task B runs out of space, the stack area for task A, which is allocated to lower
addresses, is damaged.

(4) When tasks are switched and task A is resumed, task A uses the contents of the stack. In this
case, the stack contents have been overwritten and a malfunction occurs in the program.

(5) The malfunction in the program causes a CPU exception or a hang-up.

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 350 of 362

REJ05B0364-0300

The area to be damaged depends on the section allocated to lower addresses than the stack; for
example, another program area or a memory pool area may be damaged. Depending on the
damaged area, the type of malfunction differs.

5.6.3 Error in Program Description

(1) Damaged Kernel Management Area

Check if the kernel management area is damaged due to an error in program description. When
either of the following functions is used, special care must be taken so that the kernel management
area is not damaged.

• Mailbox

• Variable-length memory pool

The following shows a bad coding example using a mailbox.

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

typedef struct user_msg{
 T_MSG t_msg;
 B data[10];
} USER_MSG;

void Task_sub_sndmsg(VP_INT exinf)
{
 ER ercd;
 USER_MSG message;

 (Processing omitted)

 /* Processing to store the user message */

 message->t_msg.msghead = 0;

 ercd = snd_mbx((ID)mbxid, (T_MSG *)&message);
 if(ercd != E_OK){
 /* Error processing */
 }

 return;
}

(2) Declare the user message.

(3) Clear the kernel management area in the message to 0.

(4) Send the message.

(1) Declare the user message type.

Figure 5.26 Bad Coding Example for Sending a Message

If the priority of the task sending a message is higher than that of the task receiving the message,
the area for local variable "message" becomes invalid when execution returns from the

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 351 of 362

 REJ05B0364-0300

Task_sub_sndmsg function. When the kernel accesses the management area in the message after
that, a malfunction occurs in the program and the system goes down.

Write a program so that the contents of the message data area for a mailbox is retained until it is
received; for example, allocate the message data area in the memory pool area.

(2) Damaged Program Area

When the program area (including the user program and OS) is allocated in the RAM, it may be
overwritten due to an error in user program description or a failure in hardware, and the system
may go down.

The following shows an example for determining the cause of the damage in the program area.

(1) Verify the program area contents in the RAM with the loaded executable file to determine
whether the program area has been overwritten.

(2) Specify a hardware break so that a break occurs when a write access is made to the overwritten
location.

(3) Load the program and reexecute it.

(4) If program execution stops due to a hardware break, it is confirmed that the program area has
been overwritten by the program execution. Check the program code where execution stops.

(5) If program execution does not stop due to a hardware break but the same location is damaged,
there may be a failure in hardware.

(3) Access Violation at a Data Boundary

When memory is manipulated through pointer variables in the SH-2, SH-3, SH-3DSP, or SH-4
series microcomputer, check if the program contains either of the following descriptions.

• Word data read or write at an address other than a word boundary (address 2n+1)

• Longword data read or write at an address other than a longword boundary (address 4n+1,
4n+2, or 4n+3)

When either of the above program code is executed, the system may go down (a CPU address
error). The following shows a bad coding example.

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 352 of 362

REJ05B0364-0300

#include "itron.h"
#include "kernel.h"
#include "kernel_id.h"

UB buf[16];

void Task_sub1(void)
{
 UW *ptr;
 int i;

 ptr = (UW *)&buf;

 for(i=0; i < 4; i++) {
 *ptr++ = 0;
 }

 (Processing omitted)
}

(1) Allocate a 16-byte area (buf) for a global variable.

(2) Set pointer variable ptr to the start address of buf.

(3) Clear the contents of buf to 0.

Figure 5.27 Bad Coding Example Causing System-Down

If the buf area is allocated to address 4n through the linkage editor, the program is correctly
executed. If it is allocated to an odd-valued address or address 2n, the system goes down at
location 3) in the above example.

To solve this problem, modify statement 1) in the example to "UW buf[4]", then the buf area is
always allocated at a longword boundary and the system-down problem can be avoided.

(4) Access Violation in the Physical Address Space

When memory is manipulated through pointer variables, check if the program contains the
following description.

• Access to an unintended area due to an attempt to use an uninitialized global or local variable

When the above program code is executed, the system goes down (a CPU address error).

When the uninitialized data area (B section) for global or static variables should be cleared to 0,
the section must be initialized by the CPU initialization routine. For the CPU initialization routine,
refer to section 2.2, Overview of CPU Initialization Routine.

Use the information message output from the compiler to check whether uninitialized local
variables are used. Note that, in some cases, this cannot be checked through the information
message depending on the coding method. In this case, the user must check it through other
means.

The following shows the window for specifying information message output when the HEW is
used.

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 353 of 362

 REJ05B0364-0300

Figure 5.28 Window for Specifying Output of Compiler Information Messages

(5) Incorrect Function Call Using a Pointer Variable

When a pointer variable value becomes illegal during a function call through the pointer variable,
the program execution address in the called function becomes illegal and the system may go down
or may be reset. When a function should be called through a pointer variable, be sure to confirm
that the source code is correct.

If the system-down cause is outside the program area and the caller of the target function cannot
be determined, use the trace function of an ICE or an emulator to check the program execution
flow.

The following shows an example of a function call through an illegal pointer variable.

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 354 of 362

REJ05B0364-0300

Power-on reset

CPU initialization
routine

Create initially-defined
objects.

Initiate the
initialization routine.

Initiate the task.

Kernel processing

Task

An interrupt occurs.

Set p_callback to the
address of call-back

routine A.

Task processing

Call-back routine
processing

Interrupt processing

END

Interrupt handler

Call the routine
specified fo
 p_callback.

Return

Return

Call-back routine A

System
goes down.

(1)

(2)

(3)

(4)

Figure 5.29 Example of a Function Call through an Illegal Pointer Variable

(1) Define an interrupt handler during initial definition.

(2) Enable hardware interrupts through the initialization routine.

(3) If no interrupt is generated, the pointer variable (p_callback) is set to the call-back address
value in the task context.

(4) If an interrupt is generated before the pointer variable is set to the call-back routine address, a
call is made to an illegal address, that is, the execution address is illegal and the system goes
down.

In the above case, take appropriate measures so that the call-back routine is not called until the
call-back routine address is determined or no interrupt is generated before the pointer variable
(p_callback) is set up.

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 355 of 362

 REJ05B0364-0300

5.7 FAQs about Debugging

This section answers questions about debugging which are frequently asked by users of the HI
series OS.

FAQ Contents:

5.7.1 Saving a Program in ROM ..356

5.7.2 System-Down When Memory Pool is Used..361

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 356 of 362

REJ05B0364-0300

5.7.1 Saving a Program in ROM

Classification: Debugging

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

My program correctly runs on an ICE but cannot run correctly after it is stored in ROM.

What causes this problem?

Answer

The sections must be initialized when program execution is started.

The initialized data area (D section) in a program written in the C language must be copied from
ROM to RAM when program execution is started. Therefore, the initialized data area must be
allocated to both ROM and RAM. This allocation can be done by using the ROM support function
of the linkage editor. For the ROM support function, refer to the user's manual of the cross
compiler used.

The sections must be initialized by the CPU initialization routine.

The following shows how to initialize the sections, using the CPU initialization routine provided
together with each HI series OS as an example.

(Continued on next page)

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 357 of 362

 REJ05B0364-0300

(Continued from previous page)

Answer

/**/
/* FILE = 7604_cpuini.c ; */
/* CPU type = SH7604 */
/**/
#include <machine.h>
#include "itron.h"
#include "kernel.h"

/* extern void _INITSCT(void); */ /* section-initialize routine */

#pragma section _hicpuini
#pragma noregsave(hi_cpuini)

void hi_cpuini(void)
{

/*** Initialize Hardware Environment ***/

/*** Initialize Software Environment ***/

/* _INITSCT(); */ /* Call section-initialize routine */

 vsta_knl(); /* Start kernel */
}

Delete the comment
characters (/* */) to call the
section initialization
processing.

Figure 5.30 Example of CPU Initialization Routine (HI7000/4 Series)

(Continued on next page)

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 358 of 362

REJ05B0364-0300

(Continued from previous page)

Answer

/***/
/* FILE = 7604_initsct.c ; */
/***/
#include <machine.h>
#include "itron.h"

extern int *B_BGN, *B_END, *D_BGN, *D_END, *D_ROM;
extern void _INITSCT(void);

#pragma section _hicpuini
/***/
/* NAME = _INITSCT ; */
/* FUNCTION = Section Initialize routine ; */
/***/
void _INITSCT(void)
{
 register int *p, *q;
 for(p=B_BGN; p<B_END; p++) /* 0 clear B-section */
 *p = 0;
 for(p=D_BGN,q=D_ROM; p<D_END; p++, q++) /* Copy D-section -> R-section */
 *p = *q;
}

Figure 5.31 Example of Section Initialization Processing (HI7000/4 Series)

(Continued on next page)

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 359 of 362

 REJ05B0364-0300

(Continued from previous page)

Answer

_H_2S_CPUINI:
 mov.l #CPUINI_SP:32,sp ;: get CPUINI_SP
 mov.b @SYSCR:32,r0L ;: get SYSCR
 and.b #low~(INTM0|INTM1):8,r0L ;: clear interrupt mode bit
 or.b #low (INTM0|INTM1):8,r0L ;: set interrupt mode = 3
 mov.b r0L,@SYSCR:32 ;: set SYSCR
;
 mov.b @MSTPCRH:32,r0L ;: get MSTPCRH
 and.b #low TPU:8,r0L ;: set TPU bit off
 mov.b r0L,@MSTPCRH:32 ;: set MSTPCRH
;
 .aifdef DX
 jsr @_HI_DEAMON_INI ;: call to init deamon code
 .aendi
;
 jsr @_h_cpuini_c ;: call to C-language initialize routine
;
 jmp @_H_2S_INIT ;: goto HI2000/3 initialize module
;

Add a call to the CPU
initialization routine written in C.

Note: In this example, h_cpuini_c is assumed as the CPU initialization routine written in C.

Figure 5.32 Example of CPU Initialization Routine (HI2000/3)

void h_cpuini_c(void)
{

/*** Initialize Hardware Environment ***/

/*** Initialize Hardware Environment ***/

 _INITSCT(); /* Call section-initialize routine */

}

Call the section initialization processing
in the standard library to clear
uninitialized data to 0 and to copy the
uninitialized data from ROM to RAM.

Add the following as necessary.
• Initialization of the bus state controller
• Initialization of the external memory
 (SDRAM)

Figure 5.33 Example of a Call to Section Initialization Processing (HI2000/3)

(Continued on next page)

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 360 of 362

REJ05B0364-0300

(Continued from previous page)

Answer

_KERNEL_H_CPUINI:
 mov.l #_KERNEL_HI_OS_SP:32,sp ;: SP <- OS stack
 mov.l #VBR_ADR,er0 ;:
 ldc.l er0,vbr ;: set VBR address
 mov.l #h'ffffff00,er0 ;: initial SBR
 ldc.l er0,sbr ;: initial SBR
;
; mov.w #h'00ff,@ABWCR:32 ;: set ABWCR
; mov.w #h'0000,@ASTCR:32 ;: set ASTCR
; mov.w #h'0000,@WTCRA:32 ;: set WTCRA
; mov.w #h'0000,@WTCRB:32 ;: set WTCRB
;
 mov.b #INTM1,r0L ;: set interrupt mode 2
 mov.b r0L,@INTCR:32 ;: set INTCR
;
 mov.w @MSTPCRA:32,r0 ;: get MSTPCRA
 and.w #MSTPA0:16,r0 ;: set TPU bit off
 mov.w r0,@MSTPCRA:32 ;: set MSTPCRA
;
 jmp @_h_cpuini_c ;: goto _hcpuini
;

Note: In this example, h_cpuini_c is assumed as the CPU initialization routine written in C.

Add a call to the CPU
initialization routine written in C.

Figure 5.34 Example of CPU Initialization Routine (HI1000/4)

void h_cpuini_c(void)
{

/*** Initialize Hardware Environment ***/

/*** Initialize Hardware Environment ***/

 _INITSCT; /* Call section-initialize routine */

 vsta_knl(); /* Start kernel */
}

Call the section initialization processing
in the standard library to clear
uninitialized data to 0 and to copy the
uninitialized data from ROM to RAM.

Add the following as necessary.
• Initialization of the bus state controller
• Initialization of the external memory
 (SDRAM)

Figure 5.35 Example of a Call to Section Initialization Processing (HI1000/4)

Section 5 Debugging

 Rev. 3.00 Jan. 12, 2005 Page 361 of 362

 REJ05B0364-0300

5.7.2 System-Down When Memory Pool is Used

Classification: Debugging

Question HI7000/4 HI7700/4 HI7750/4 HI2000/3 HI1000/4

When a memory block is acquired and released in a variable-length memory pool, the system goes
down. What causes this problem?

Answer

The user program seems to use memory beyond the memory block acquired from a variable-length
memory pool.

In a variable-length memory pool, when a memory block is acquired, a 16-byte kernel
management area is allocated in the memory pool. The following shows the configuration of the
variable-length memory blocks in a memory pool.

Start address of
memory block A

Start address of
memory block B

Memory block B

Memory block A

Kernel management area A

Kernel management area B

16 bytes

16 bytes

Memory pool area

Figure 5.36 Configuration of Variable-Length Memory Blocks

(Continued on next page)

Section 5 Debugging

Rev. 3.00 Jan. 12, 2005 Page 362 of 362

REJ05B0364-0300

(Continued from previous page)

Answer

If the kernel management area is accidentally overwritten with the user program, the system goes
down or hangs up when the kernel accesses the kernel management area to release a memory
block.

Use an ICE or an emulator in the following procedure to check whether the user program uses
memory beyond the acquired memory block.

(1) Specify the required size + 4 as the memory block size when acquiring a memory block.

(2) Set a hardware break at the end address of the acquired memory block (start address + required
size + 1) so that a break occurs when this address is read or written to.

(3) Execute the program.

If program execution stops due to the specified hardware break, the user program has attempted to
use memory beyond the available memory block range.

HI Series OS Application Note

Publication Date: Rev.1.00, Dec 19, 2003
 Rev.3.00, Jan 12, 2005
Published by: Sales Strategic Planning Div.
 Renesas Technology Corp.
Edited by: Technical Documentation & Information Department
 Renesas Kodaira Semiconductor Co., Ltd.

 2005. Renesas Technology Corp., All rights reserved. Printed in Japan.

Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

http://www.renesas.com
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd.
Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

RENESAS SALES OFFICES

Colophon 2.0

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

HI SeriesOS

REJ05B0364-0300

Application Note

	Cover
	Keep safety first in your circuit designs!
	Notes regarding these materials
	Preface
	Contents
	Figures
	Section 1 Functions of the HI Series OS
	1.1 System State
	1.1.1 FAQs about System State

	1.2 Objects
	1.2.1 What Is an Object?
	1.2.2 ID Assignment
	1.2.3 FAQs about Objects

	1.3 Service Call Parameter Check
	1.3.1 Installation in HI7000/4 Series
	1.3.2 Installation in HI2000/3 and HI1000/4
	1.3.3 FAQ about Service Call Parameter Check

	1.4 Tasks
	1.4.1 Tasks and Functions
	1.4.2 Task Initiation
	1.4.3 Task Stacks
	1.4.4 CPU Allocation to Tasks
	1.4.5 Polling
	1.4.6 FAQs about Tasks

	1.5 Interrupts
	1.5.1 Processing before Handler Initiation after Interrupt Occurrence
	1.5.2 Kernel Interrupt Mask Level
	1.5.3 Notes When Using an H8S or H8SX Family Microcomputer
	1.5.4 Notes on Interrupt Handler Creation
	1.5.5 FAQs about Interrupts

	1.6 Event Flags
	1.6.1 Specification of Event Flag Clearing
	1.6.2 FAQ about Event Flags

	1.7 Semaphore
	1.7.1 Task Deadlock by Using Semaphore

	1.8 Mutex
	1.8.1 Priority Inversion
	1.8.2 Overview of Mutex Processing

	1.9 Mailbox
	1.9.1 Overview of Mailbox Processing
	1.9.2 Overview of Sending a Message Using Mailbox
	1.9.3 Overview of Receiving a Message Using Mailbox
	1.9.4 FAQ about Mailbox

	1.10 Message Buffer
	1.10.1 Overview of Message Buffer Processing
	1.10.2 Overview of Sending a Message Using Message Buffer
	1.10.3 Overview of Receiving a Message Using Message Buffer

	1.11 Data Queue
	1.11.1 Overview of Data Queue Processing
	1.11.2 Overview of Sending a Message Using Data Queue
	1.11.3 Overview of Receiving a Message Using Data Queue

	1.12 Memory Pool
	1.12.1 Fragmentation
	1.12.2 FAQ about Memory Pool

	1.13 Time Management
	1.13.1 Concept of Time Management
	1.13.2 Modification of Hardware Timer Cycle Unit
	1.13.3 Cyclic Handler
	1.13.4 Overview of Timer Management Processing

	Section 2 Application Program Creation
	2.1 Overview of Processing from Reset to Task Initiation
	2.2 Overview of CPU Initialization Routine
	2.2.1 FAQs about CPU Initialization Routine

	2.3 Overview of Kernel Initialization Processing
	2.3.1 Initialization Routine
	2.3.2 Shifting to Multitask Environment
	2.3.3 FAQ about Kernel Initialization Processing

	2.4 Overview of System Idling Processing
	2.4.1 System Idling Processing Using SLEEP Instruction
	2.4.2 FAQs about System Idling Processing

	2.5 Overview of System Termination Processing
	2.5.1 Sample System Termination Processing
	2.5.2 FAQ about System Termination Processing

	2.6 Application Program Types
	2.6.1 Task Creation Example
	2.6.2 Interrupt Handler Creation Example
	2.6.3 CPU Initialization Routine Creation Example
	2.6.4 System Termination Processing Creation Example
	2.6.5 System Idling Routine Creation Example
	2.6.6 Initialization Routine Creation Example
	2.6.7 Timer Interrupt Routine Creation Example
	2.6.8 Task Exception Processing Routine Creation Example
	2.6.9 Extended Service Call Routine Creation Example
	2.6.10 CPU Exception Handler Creation Example
	2.6.11 Time Event Handler Creation Example

	2.7 Development Procedures for Application Programs

	Section 3 Configuration
	3.1 Configuration Procedure Outline
	3.2 Defining Kernel Environment
	3.2.1 Definition by Configurator (HI7000/4 Series and HI1000/4)
	3.2.2 FAQ about Configurator
	3.2.3 Definition by Setup Table (HI2000/3)
	3.2.4 FAQ about Setup Table

	3.3 Stack Size Calculation
	3.3.1 Stack Size Calculation from Stack Frame Size
	3.3.2 Stack Size Calculation by CallWalker

	3.4 System Configuration Procedure
	3.4.1 HI7000/4
	3.4.2 HI7700/4
	3.4.3 HI7750/4
	3.4.4 HI2000/3
	3.4.5 HI1000/4
	3.4.6 FAQs about System Configuration

	Section 4 Device-Dependent Specifications
	4.1 FAQs about Device-Dependent Specifications
	4.1.1 Cache Enabling Setting
	4.1.2 Cache Usage
	4.1.3 Restrictions on Write-Back Mode (1)
	4.1.4 Restrictions on Write-Back Mode (2)
	4.1.5 Cache Support
	4.1.6 X/Y Memory Usage
	4.1.7 Support of MMU
	4.1.8 Timer Driver
	4.1.9 Control of Timer Used by OS
	4.1.10 CPU Initialization Routine Written in C Language
	4.1.11 Location of Interrupt Entry/Exit Processing Routine
	4.1.12 Initialization of External Memory
	4.1.13 Transition to Power-Down Mode

	Section 5 Debugging
	5.1 Overview of Debugging
	5.2 HI7000/4 Series
	5.2.1 Preparation for Debugging
	5.2.2 System Going Down
	5.2.3 Types of System Down Causes

	5.3 HI2000/3
	5.3.1 Preparation for Debugging
	5.3.2 System Going Down
	5.3.3 Types of System Down Causes

	5.4 HI1000/4
	5.4.1 Preparation for Debugging
	5.4.2 System Going Down
	5.4.3 Types of System Down Causes

	5.5 Determining System Down Location
	5.5.1 Determining the Location of a Program Module through Mapview

	5.6 Examples and Solutions of CPU Exception
	5.6.1 Failure in Hardware
	5.6.2 Incorrect Configuration
	5.6.3 Error in Program Description

	5.7 FAQs about Debugging
	5.7.1 Saving a Program in ROM
	5.7.2 System-Down When Memory Pool is Used

	Colophon
	Address List
	Back Cover

