To our customers,

______________________________

Old Company Name in Catalogs and Other Documents

On April 1\textsuperscript{st}, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1\textsuperscript{st}, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

   “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

   “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

   “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
H8SX Family

RTS/L Return from Subroutine with Data Restoration

Introduction
Shows an example of C compiler use of the RTS/L instruction.

Target Device
H8SX/1688 EVA     Maximum mode

Contents
1. Specifications ............................................................................................................... 2
2. Functions Used .......................................................................................................... 2
3. Principles of Operation .......................................................................................... 2
4. Development Environment ..................................................................................... 3
5. Description of Software .......................................................................................... 4
6. Flowcharts ............................................................................................................... 5
7. Program Listing ....................................................................................................... 6
1. Specifications

- The H8SX family microcomputer RTS/L instruction performs the following processing.
  - Restores the saved data from the stack to the registers specified by the register list.
  - Restores the PC from the stack, and performs processing from the address indicated by the restored PC.
- In this sample task, a subroutine is called from the main routine, and the assembly language code generated by the C compiler is shown.

2. Functions Used

This sample task shows an example of use of the RTS/L instruction by the C compiler.

3. Principles of Operation

Table 1 shows an example of the assembly language code generated by the C compiler when a subroutine is called.

<table>
<thead>
<tr>
<th>Sample C Program</th>
<th>Sample Assembly Language Code Generated by the C compiler</th>
</tr>
</thead>
<tbody>
<tr>
<td>void main(void)</td>
<td>_main:</td>
</tr>
<tr>
<td></td>
<td>{</td>
</tr>
<tr>
<td></td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>sub_pgm() /* Subroutine call */ BSR _sub_pgm:8 ; Subroutine call</td>
</tr>
<tr>
<td></td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>}</td>
</tr>
<tr>
<td>void sub_pgm(void)</td>
<td>_sub_pgm:</td>
</tr>
<tr>
<td></td>
<td>{</td>
</tr>
<tr>
<td></td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>RTS/L ER3 ; End of subroutine</td>
</tr>
<tr>
<td></td>
<td>} /* End of subroutine */</td>
</tr>
<tr>
<td></td>
<td>.END</td>
</tr>
</tbody>
</table>
4. Development Environment

4.1 Development Support Tool Versions

The development support tools of this sample task is shown in table 2.

Table 2 Development Support Tool Versions

<table>
<thead>
<tr>
<th>Software Name</th>
<th>Version Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH38.EXE</td>
<td>C compiler (H8S, H8/300 series C/C++ compiler)</td>
</tr>
<tr>
<td></td>
<td>Ver. 6.0.00.005</td>
</tr>
<tr>
<td>ASM38.EXE</td>
<td>Assembler (H8S, H8/300 series cross assembler)</td>
</tr>
<tr>
<td></td>
<td>Ver. 6.0.01.005</td>
</tr>
<tr>
<td>OPTLNK.EXE</td>
<td>Linkage editor (optimizing linkage editor)</td>
</tr>
<tr>
<td></td>
<td>Ver. 8.0.00.020</td>
</tr>
<tr>
<td>LBG38.EXE</td>
<td>Library configuration tool (H8S, H8/300 series C/C++ standard library generator)</td>
</tr>
<tr>
<td></td>
<td>Ver. 2.0.00.000</td>
</tr>
</tbody>
</table>

4.2 C compiler Option Settings

C compiler option settings for this sample task are shown in table 3.

Table 3 C compiler Option Settings

<table>
<thead>
<tr>
<th>Option</th>
<th>Set Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>H8SX:24:MD</td>
</tr>
<tr>
<td>Code</td>
<td>Machinecode</td>
</tr>
<tr>
<td>OPTimize</td>
<td>1</td>
</tr>
<tr>
<td>REGParam</td>
<td>3</td>
</tr>
<tr>
<td>SPEed</td>
<td>Register, Shift, Struct, Expression</td>
</tr>
</tbody>
</table>
5. Description of Software

5.1 Modules

Modules used by this sample task are shown in table 4.

Table 4 Modules

<table>
<thead>
<tr>
<th>Module Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>main</td>
<td>Main routine</td>
</tr>
<tr>
<td></td>
<td>Calls rtsltst function.</td>
</tr>
<tr>
<td>rtsltst</td>
<td>RTS/L test program</td>
</tr>
<tr>
<td></td>
<td>Writes data to RAM as dummy processing.</td>
</tr>
</tbody>
</table>

5.2 Arguments

No arguments are used by this sample task.

5.3 Internal Registers Used

No internal registers are used by this sample task.

5.4 RAM Usage

Table 5 describes RAM usage in this sample task.

Table 5 RAM Usage

<table>
<thead>
<tr>
<th>Label</th>
<th>Size</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>dmy1[16]</td>
<td>16 bytes</td>
<td>For dummy processing</td>
</tr>
</tbody>
</table>
6. Flowcharts

6.1 Main Routine

main
CCR = H'80
Disable interrupts
rtsltst()
RTS/L test program execution

6.2 RTS/L Test Program

rtsltst
i = 0

i < 16?
Yes
No
dmy2 [ i ] = i
i ++

i = 0

i < 16?
Yes
No
dmy1 [ i ] = dmy2 [ i ]
i ++

End

6.3 Link Address Specifications

<table>
<thead>
<tr>
<th>Section Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV1</td>
<td>H'000000</td>
</tr>
<tr>
<td>P</td>
<td>H'001000</td>
</tr>
<tr>
<td>B</td>
<td>H'FEC000</td>
</tr>
</tbody>
</table>
7. Program Listing

7.1 C Program

/*******************************************************/
/*                                                 */
/*  H8SX Family                                    */
/*  Application Note                                */
/*                                                 */
/*  'RTS/L Test Program'                            */
/*                                                 */
/*  Function                                        */
/*  : RTS/L                                           */
/*                                                 */
/*                                                 */
/*******************************************************/
#include <machine.h>

/*******************************************************/
/*  Function define                                  */
/*******************************************************/
void main ( void );
void rtsltst ( void );

/*******************************************************/
/*  RAM define                                       */
/*******************************************************/
long dmy1[16];

/*******************************************************/
/*  Vector Address                                   */
/*******************************************************/
#pragma section     V1                         /* VECTOR SECTOIN SET               */
void (*const VEC_TBL1[])(void) = {
  main                                       /* 00 Reset                         */
};
#pragma entry main(sp=0xFFC000)
#pragma section                                /* P                                */
/*******************************************************/
/*  Main Routine                                    */
/*******************************************************/
void main ( void )
{
  set_ccr(0x80);                             /* Initialize CCR/Interrupt Disable */
  rtsltst();                                 /* RTS/L Test Program               */
  while(1);
}
/********************************************/
/* RTS/L Test Program                      */
/********************************************/
void rtsltst ( void )
{
    unsigned char i;
    unsigned long dmy2[16];

    for ( i=0; i<16; i++)
        dmy2[i] = i;

    for ( i=0; i<16; i++)
        dmy1[i] = dmy2[i];
}
7.2 Assembly Language Code Generated by the C compiler

```
P
;*** File main.c , Line 42
00000000          _main:          ; function: main
00000000 7A0700FFC000  MOV.L       #16760832,SP
00000006 F880            MOV.B       #128:8,R0L
00000008 0308            LDC.B       R0L,CCR
0000000A 5500            BSR         _rtsltst:8
0000000C L33:          ;*** File main.c , Line 54
0000000C 4000            BRA         L33:8

;*** File main.c , Line 54
0000000E          _rtsltst:          ; function: rtsltst
0000000E 01006DF3          PUSH.L      ER3
00000012 7A3F0040          SUB.L       #64:16,SP
00000016 18AA          L36:          ;*** File main.c , Line 54
00000018 0CAB          MOV.B       R2L,R3L
0000001A 1763          L36:          ;*** File main.c , Line 54
0000001C 0CA9          MOV.B       R2L,R1L
0000001E 01CC5041          MULXU.B     #4:4,R1
00000020 01CC5041          MULXU.B     #4:4,R1
00000022 0D10          L36:          ;*** File main.c , Line 54
00000024 1770          L36:          ;*** File main.c , Line 54
00000026 0A0A          INC.B       R2L
00000028 AA10          CMP.B       #16:8,R2L
0000002A 4500          CMP.B       #16:8,R2L
0000002C 010800DA00000000          MOV.L     @ER0,8(_dmy1:32,R2L.B)
0000002E 0A0A          INC.B       R2L
00000030 4500          BLO         L38:8
00000032 18AA          L38:          ;*** File main.c , Line 54
00000034 0CA9          MOV.B       R2L,R1L
00000036 01CC5041          MULXU.B     #4:4,R1
00000038 01CC5041          MULXU.B     #4:4,R1
0000003A 0D10          MULXU.B     #4:4,R1
0000003C 1770          MULXU.B     #4:4,R1
0000003E 0A0A          ADD.L       SP,ER0
00000040 010800DA00000000          MOV.L     @ER0,8(_dmy1:32,R2L.B)
00000042 0A0A          ADD.L       SP,ER0
00000044 7A1F0040          RTS.L       ER3
00000046 5403          RTS/L       ER3

B
00000000          _dmy1:          ; static: dmy1
00000000 00000000          .RES.L      16
CV1
00000000          _VEC_TBL1:          ; static: VEC_TBL1
00000000 00000000          .DATA.L    _main
```
### Revision Record

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Page</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Sep.15.04</td>
<td>—</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>
Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer’s application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.