To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
H8SX Family
BFLD Bit Field Transfer

Introduction
Shows an example of C compiler use of the BFLD instruction.

Contents
1. Specifications .. 2
2. Functions Used ... 3
3. Principles of Operation .. 3
4. Development Environment ... 4
5. Description of Software .. 5
6. Flowcharts .. 6
7. Program Listing ... 7
1. Specifications

- The H8SX family microcomputer BFLD instruction performs the following processing:
 - Performs low-order alignment of the field specified by the source operand, and transfers it to 8-bit register Rd.
 - Transfers a bit field specified by the source operand to the lower bits of a specified 8-bit general register Rd.
- In this sample task, bit transfer is performed using a C-language structure, and the assembly language code generated by the C compiler is shown.

![Figure 1 BFLD Instruction Processing](image-url)
2. Functions Used

This sample task shows an example of use of the BFLD instruction by the C compiler.

3. Principles of Operation

(1) To confirm BFLD instruction operation, a 1-byte RAM area (BFTST) is divided into three as a structure. The BFTST structure is shown in figure 2.

```
<table>
<thead>
<tr>
<th>Bit no.</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFTST.BYTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFTST.BIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2  BFTST Structure
```

(2) Table 1 shows an example of a C program that reads the M area of the BFTST structure, and the assembly language code generated by the C compiler.

Table 1 BFLD Code

<table>
<thead>
<tr>
<th>Sample C Program</th>
<th>Sample Assembly language code Generated by the C compiler</th>
</tr>
</thead>
</table>
| void main(void) | _main:
| { | . |
| . | . |
| . | . |
| /* Write 1 byte of data to BFTST memory */ | ; Write 1 byte of data to BFTST memory
| BFTST.BYTE = 0x74 | MOV.B #H'74:8,0_BFTST:32 |
| /* Read bits 4 to 2 */ | ; Read bits 4 to 2, bit field transfer
| readdt = BFTST.BIT.M; | BFLD #H'1C,0_BFTST:32,R0L |
| . | MOV.B R0L,0_readdt:32 |
| } | . |
4. Development Environment

4.1 Development Support Tool

The development support tools of this sample task is shown in table 2.

Table 2 Development Support Tool Versions

<table>
<thead>
<tr>
<th>Software Name</th>
<th>Version Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH38.EXE</td>
<td>C compiler (H8S, H8/300 series C/C++ compiler) Ver. 6.0.00.005</td>
</tr>
<tr>
<td>ASM38.EXE</td>
<td>Assembler (H8S, H8/300 series cross assembler) Ver. 6.0.01.005</td>
</tr>
<tr>
<td>OPTLNK.EXE</td>
<td>Linkage editor (optimizing linkage editor) Ver. 8.0.00.020</td>
</tr>
<tr>
<td>LBG38.EXE</td>
<td>Library configuration tool (H8S, H8/300 series C/C++ standard library generator) Ver. 2.0.00.000</td>
</tr>
</tbody>
</table>

4.2 C compiler Option Settings

C compiler option settings for this sample task are shown in table 3.

Table 3 C compiler Option Settings

<table>
<thead>
<tr>
<th>Option</th>
<th>Set Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPu</td>
<td>H8SX:24:MD</td>
</tr>
<tr>
<td>Code</td>
<td>Machinecode</td>
</tr>
<tr>
<td>OPtimize</td>
<td>1</td>
</tr>
<tr>
<td>REGParam</td>
<td>3</td>
</tr>
<tr>
<td>SPeed</td>
<td>Register, SHift, STruct, Expression</td>
</tr>
</tbody>
</table>
5. Description of Software

5.1 Modules

Modules used by this sample task are shown in table 4.

<table>
<thead>
<tr>
<th>Module Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>main</td>
<td>Main routine</td>
</tr>
<tr>
<td></td>
<td>Writes 1-byte data to BFTST.BYTE, and stores contents of BFTST.BIT.M.</td>
</tr>
</tbody>
</table>

5.2 Arguments

No arguments are used by this sample task.

5.3 Internal Registers Used

No internal registers are used by this sample task.

5.4 RAM Usage

Table 5 describes RAM usage in this sample task.

<table>
<thead>
<tr>
<th>Label</th>
<th>Size</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFTST</td>
<td>1 byte</td>
<td>BFLD test memory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— BFTST.BIT.H: Bits 7 to 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— BFTST.BIT.M: Bits 4 to 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>— BFTST.BIT.L: Bits 1, 0</td>
</tr>
<tr>
<td>readdt</td>
<td>1 byte</td>
<td>Stores contents of BFTST.BIT.M</td>
</tr>
</tbody>
</table>
6. Flowcharts

6.1 Main Routine

```
main
  CCR = H'80
  Disable interrupts
  BFTST.BYTE = H'74
  Write 1 byte of data
  readdt = BFTST.BIT.M
  Stores data of bits 4 to 2
```

6.2 Link Address Specifications

<table>
<thead>
<tr>
<th>Section Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV1</td>
<td>H'000000</td>
</tr>
<tr>
<td>P</td>
<td>H'001000</td>
</tr>
<tr>
<td>B</td>
<td>H'FEC000</td>
</tr>
</tbody>
</table>
7. Program Listing

7.1 C Program

/*****************************/
/*
/* H8SX Family
/* Application Note
/*
/* 'Bit Field LoaD'
/*
/* Function
/* : BFLD
/*
/*
/*
/*****************************/

#include <machine.h>

/*****************************/
/* Function define */
/*****************************/
void main (void);

/*****************************/
/* RAM define */
/*****************************/
union { /* Bit Field Test Memory */
 unsigned char BYTE;
 struct {
 unsigned char H :3; /* bit7-5 */
 unsigned char M :3; /* bit4-2 */
 unsigned char L :2; /* bit1-0 */
 } BIT;
}BFTST;

unsigned char readdt; /* Store memory */

/*****************************/
/* Vector Address */
/*****************************/
#pragma section V1 /* VECTOR SECTOIN SET */
void (*const VEC_TBL1[])(void) = {
 main /* 00 Reset */
};

#pragma entry main(sp=0xFFC000)
#pragma section /* P */
/*****************************/
/* Main Routine */
/*****************************/
void main (void)
{
 set_ccr(0x80); /* Initialize CCR/Interrupt Disable */
 BFTST.BYTE = 0x74; /* Set H'74 --> B'01110100 */
 readdt = BFTST.BIT.M; /* Store B'101 --> H'5 */
 while(1);
}

7.2 Assembly Language Code Generated by the C compiler

;*** File main.c , Line 50 ; function: main
 _main: ; section
 00000000 _main:
 00000000 7A0700FFC000 MOV.L #16760320,SP
 00000006 F980 MOV.B #128:8,R1L
 00000008 0309 LDC.B R1L,CCR
 0000000A 017D487400000000 MOV.B #116:8,@_BFTST:32
 00000012 6A3000000000F81C BFLD #28,@_BFTST:16,R0L
 0000001A 6AA800000000 MOV.B R0L,@_readdt:32
 00000020 L42:
 00000020 4000 BRA L42:8

;*** File main.c , Line 57 ; section
 _BFTST: ; static: Dummy
 00000000 _BFTST:
 00000000 00000001 .RES.B 1
 00000001 _readdt: ; static: readdt
 00000001 00000001 .RES.B 1
 _VEC_TBL1: ; static: VEC_TBL1
 00000000 _VEC_TBL1:
 00000000 00000000 .DATA.L _main
Revision Record

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Page</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Sep.15.04</td>
<td>—</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>
Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.