

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas

Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog

and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)

Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand

names are mentioned in the document, these names have in fact all been changed to Renesas

Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and

corporate statement, no changes whatsoever have been made to the contents of the document, and

these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.

Customer Support Dept.

April 1, 2003

To all our customers

Cautions

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but

there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire

or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i)

placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or

mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation

product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any

other rights, belonging to Renesas Technology Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights,

originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in

these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents

information on products at the time of publication of these materials, and are subject to change by Renesas Technology

Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact

Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product

information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these

inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various means, including the

Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and

algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of

the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other

loss resulting from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used

under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an

authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for

any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea

repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these

materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license

from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is

prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

H8S/2215
USB Function Module
Application Notes

16

A
pplication N

otes

Rev.1.0 2002.04

Renesas 16-Bit Single-Chip
Microcomputer

HD64F2215

Rev. 1.0, 04/02, page ii of x

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that you
have received the latest product standards or specifications before final design, purchase or
use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may directly
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment for
life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation characteristics,
installation conditions and other characteristics. Hitachi bears no responsibility for failure or
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,
consider normally foreseeable failure rates or failure modes in semiconductor devices and
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi
product does not cause bodily injury, fire or other consequential damage due to operation of
the Hitachi product.

5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document

without written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi

semiconductor products.

Rev. 1.0, 04/02, Page iii of x

Preface

These application notes describe the printer-class firmware that uses the USB Function Module in
the H8S/2215. They are provided to be used as a reference when the user creates USB Function
Module firmware.

Using printer-class communications as an example, the application notes describe the
configuration of the USB Function Module that is built in the H8S/2215. The described system
configuration is an application example of the USB Function Module, and the contents are not
guaranteed.

In addition to these application notes, the manuals listed below are also available for reference
when developing applications.

[Related manuals]

• Universal Serial Bus Specification Revision 1.0

• Universal Serial Bus Device Class Definition for Printing Devices

• H8S/2215 Hardware Manual

• H8S/2215 Solution Engine (MS2215CP01) Instruction Manual

• Solution Engine Single-Chip Microcomputer Based Boad (MSCCBB01) Instruction Manual

• H8S/2215 E10A Emulator User’s Manual

[Caution] The sample programs described in these application notes do not include firmware
related to interrupt transfer, which is a USB transport type. When using this transfer
type (see page 19-1 of the H8S/2215 Hardware Manual), the user needs to create the
program for it.

Also, the hardware specifications of the H8S/2215 and H8S/2215 Solution Engine,
which will be necessary when developing the system described above, are described in
these application notes, but more detailed information is available in the H8S/2215
Hardware Manual and the H8S/2215 Solution Engine Instruction Manual.

Rev. 1.0, 04/02, page iv of x

Rev. 1.0, 04/02, Page v of x

Contents

Section 1 Overview... 1

Section 2 Overview of the USB.. 3
2.1 USB Connection Topology .. 3
2.2 USB Signal Transfer Method ... 5
2.3 Recognizing a Connection vs. Non-Connection... 8
2.4 USB Connector... 9
2.5 Endpoint ... 9
2.6 USB Packets and Data Transfer ..10

2.6.1 Overview of Packets...11
2.6.2 Control Transfer ...15
2.6.3 Bulk Transfer..18
2.6.4 Isochronous Transfer..19
2.6.5 Interrupt Transfer ...19

2.7 USB Device Framework..21
2.7.1 Device States ..21
2.7.2 Device Request...22

2.8 Descriptor ..24

Section 3 Development Environment ... 27
3.1 Hardware Environment ...27
3.2 Software Environment...29

3.2.1 Sample Program ...29
3.2.2 Compiling and Linking ..29

3.3 Loading and Executing the Program ...31
3.3.1 Loading the Program..32
3.3.2 Executing the Program ...32

3.4 Printing Procedure...33

Section 4 Overview of the Sample Program... 35
4.1 State Transition Diagram...35
4.2 USB Communication State..36
4.3 File Structure ...37
4.4 Purposes of Functions..38

Section 5 Sample Program Operation... 43
5.1 Main Loop ...43
5.2 Types of Interrupts ..43

5.2.1 Method of Branching to Different Transfer Processes ...45

Rev. 1.0, 04/02, page vi of x

5.3 USB Operating Clock Stabilization Interrupt..46
5.3.1 Endpoint Configuration..47

5.4 Interrupt on Cable Connection (VBUS) ..49
5.5 Bus Reset Interrupt (BRST) ..50
5.6 Control Transfers...50

5.6.1 Setup Stage...51
5.6.2 Data Stage ..53
5.6.3 Status Stage ..55

5.7 Bulk Transfers ...57
5.7.1 Bulk-Out Transfers...58
5.7.2 Bulk-in Transfers ...59

Section 6 Analyzer Data ..61
6.1 Control Transfer When a Device Is Connected...61
6.2 Bulk-Out Transport for Printing Out (For the bulk-out transport, refer to section 2.6.3.).67

Rev. 1.0, 04/02, Page vii of x

Figures

Section 1 Overview
Figure 1.1 System Configuration Example ...2

Section 2 Overview of the USB
Figure 2.1 Connection Topology...3
Figure 2.2 Logical Topology...4
Figure 2.3 USB Cable Configuration (for full-speed devices) ..5
Figure 2.4 NRZI Transfer Method ..6
Figure 2.5 Bit Stuffing ..6
Figure 2.6 SOP and SYNC..6
Figure 2.7 EOP..7
Figure 2.8 For Full-Speed Devices..8
Figure 2.9 For Low-Speed Devices...8
Figure 2.10 Type A Connector Figure 2.11 Type B Connector...9
Figure 2.12 Transactions and Frames..10
Figure 2.13 SOF Packet ..12
Figure 2.14 Token Packet..12
Figure 2.15 Data Packet ..13
Figure 2.16 Handshake Packet ..14
Figure 2.17 Special Packet ..14
Figure 2.18 Setup Stage ..15
Figure 2.19 Data stage (left: IN, right: OUT)..16
Figure 2.20 Status Stage...17
Figure 2.21 Data Stage Interrupted ...17
Figure 2.22 Bulk Transfer (left: IN, right: OUT) ..18
Figure 2.23 Isochronous Transfer (left: IN, right: OUT) ..19
Figure 2.24 (a) Interrupt-In Transfer ...20
Figure 2.24 (b) Interrupt-Out Transfer ..20
Figure 2.25 USB Device State ..21

Section 3 Development Environment
Figure 3.1 Device Connections ...27
Figure 3.2 Files Included in the Folder ...29
Figure 3.3 Creating a Working Folder ..29
Figure 3.4 Compile Results ...30
Figure 3.5 Memory Map ...31
Figure 3.6 Reset Request Dialog...32
Figure 3.7 Command Line Input ...32

Section 4 Overview of the Sample Program
Figure 4.1 State Transition Diagram ...35

Rev. 1.0, 04/02, page viii of x

Figure 4.2 USB Communication State ..36
Figure 4.3 Interrelationship between Functions ..42

Section 5 Sample Program Operation
Figure 5.1 Main Loop ...43
Figure 5.2 Types of Interrupt Flags...44
Figure 5.3 USB Operating Clock Stabilization Interrupt ..46
Figure 5.4 Endpoint Configuration in the Sample Program..47
Figure 5.5 Interrupt on Cable Connection...49
Figure 5.6 Bus Reset Interrupt ..50
Figure 5.7 Control Transfers ...50
Figure 5.8 Status in Control Transfers ..51
Figure 5.9 Setup Stage ..52
Figure 5.10 Data Stage (Control-In Transfer) ...53
Figure 5.11 Data Stage (Control-Out Transfer) ..54
Figure 5.12 Status Stage (Control-In Transfer)...55
Figure 5.13 Status Stage (Control-Out Transfer) ..56
Figure 5.14 Bulk Transfers..57
Figure 5.15 Bulk-Out Transfers ..58
Figure 5.16 Bulk-In Transfers...59

Section 6 Analyzer Data
Figure 6.1 Control Transfer When a Device is Connected..66
Figure 6.2 Bulk-Out Transport for Printing Out ...67

Rev. 1.0, 04/02, Page ix of x

Tables

Section 2 Overview of the USB
Table 2.1 Relationship between Signal Lines and Connected Devices ...8
Table 2.2 Number of Available Endpoints..9
Table 2.3 Max. data size (in bytes)..10
Table 2.4 List of PIDs ...11
Table 2.5 List of Standard Commands ..22
Table 2.6 Device Descriptor..24
Table 2.7 Configuration Descriptor...25
Table 2.8 Interface Descriptor...25
Table 2.9 Endpoint Descriptor ..26

Section 3 Development Environment
Table 3.1 Jumper Settings ...28

Section 4 Overview of the Sample Program
Table 4.1 File Structure...37
Table 4.2-1 UsbMain.c..38
Table 4.2-2 StartUp.c ..39
Table 4.2-3 ppout.c ...39
Table 4.2-4 DoRequest.c...40
Table 4.2-5 DoControl.c ...40
Table 4.2-6 DoBulk.c ..40
Table 4.2-7 DoRequestPrinterClass.c..41

Section 5 Sample Program Operation
Table 5.1 Interrupt Types and Functions Called on Branching...45
Table 5.2 Transfer Types and UEPIRs..47
Table 5.3 UEPIR Settings ...48

Rev. 1.0, 04/02, page x of x

Rev. 1.0, 04/02, page 1 of 68

Section 1 Overview

These application notes describe how to use the USB Function Module that is built into the
H8S/2215, and contain examples of firmware programs.

The features of the USB Function Module contained in the H8S/2215 are listed below.

• An internal UDC (USB Device Controller) conforming to USB 1.1

• Automatic processing of USB controls

• Automatic processing of USB standard commands for endpoint 0 (some commands need to be
processed through the firmware)

• Full-speed (12 Mbps) transfer supported

• Various interrupt signals needed for USB transmission and reception are generated.

• Internal system clock (16 MHz) multiplied by three or external input clock (48 MHz) can be
selected as the USB operating clock by the USB clock selector in the clock pulse generator.

• An internal bus transceiver

• Endpoint configuration selectable

Endpoint Configurations

Endpoint
Name

Name Transfer
Type

Max. Packet
Size

FIFO Buffer
Capacity

DMA
Transfer

Endpoint 0 EP0s Setup 8 bytes 8 bytes -

EP0i Control In 64 bytes 64 bytes -

EP0o Control Out 64 bytes 64 bytes -

Endpoint
(optional)

EPn Interrupt (in) 64 bytes 64 bytes (variable) -

Endpoint
(optional)

EPn Bulk-in 64 bytes 64 x 2 (128 bytes) Possible

Endpoint
(optional)

EPn Bulk-out 64 bytes 64 x 2 (128 bytes) Possible

Endpoint
(optional)

EPn Isochronous
(in)

128 bytes 128 x 2 (variable) -

Endpoint
(optional)

EPn Isochronous
(out)

128 bytes 128 x 2 (variable) -

Rev

Endpoint
Name

Name Transfer
Type

Max. Packet
Size

FIFO Buffer
Capacity

DMA
Transfer

Endpoint
(optional)

EPn Bulk-in 64 bytes 64 x 2 (128 bytes) Possible

Endpoint
(optional)

EPn Bulk-out 64 bytes 64 x 2 (128 bytes) Possible

Endpoint
(optional)

EPn Interrupt (in) 64 bytes 64 bytes (variable) -

Figure 1.1 shows an example of a system configuration.

This
Ltd.
Win

The
MS
prin
Win

This

1. T

2. T

3. A

4. A

Not

PC

USB Function
. 1.0, 04/02

 system is
 (hereafter
dows 2000

 system ca
2215CP, an
ter. In add
dows 2000

 system of

he sample

he sample

n E6000

dditional

e: * Interru
created

USB cable

Parallel cableUSB host

MS2215CP
, page 2 of 68

Figure 1.1 Syst

 configured of the H8S/2215
 referred to as the MS2215CP
 operating system.

n receive print data, transmit
d after converting them into

ition, the system can use USB
, as well as printer device dr

fers the following features.

 program can be used to eva

 program supports USB con

can be used, enabling efficie

 programs can be created to s

pt transfer and isochronous t
 by the user.
em Configuration Example

 Solution Engine made by Hitachi ULSI Systems Co.,
), a printer with a parallel port, and a PC containing

ted from a host PC to the USB, by means of the
 the parallel format, can output the print data to a
 printer-class device drivers that are standard items in

ivers.

luate the USB module of the H8S/2215 quickly.

trol transfer and bulk transport.

nt debugging.

upport interrupt transfer and isochronous transfer. *

ransfer programs are not provided, and will need to be

Rev. 1.0, 04/02, page 3 of 68

Section 2 Overview of the USB

This chapter describes USB standards, including connection topology, transfer methods, and data
formats, for your reference in developing USB systems. For details on these standards, refer to
Universal Serial Bus Specification Revision 1.0.

2.1 USB Connection Topology

Figure 2.1 shows USB connection topology. A USB comprises a Host Controller mounted on a
PC and devices that are connected to the Host Controller. By using a special device called a hub,
you can expand the bus in order to increase the number of devices that can be connected to it. A
particular type of hub, one that is directly connected to the Host Controller, is called the root hub,
which is normally housed in the PC system unit. A maximum of five levels of hubs (except for
the root hub) can be connected (or five hubs when connected serially).

PC

Host controller

Route hub

5m max.

Hub

Hub

Hub

Hub

Hub

Hub

Device

Device

Device

Device

Device

Device

Device

IN OUT

30m max.

Figure 2.1 Connection Topology

Rev. 1.0, 04/02, page 4 of 68

Host controller

Device

Device

Device
Device

Device

Device

Figure 2.2 Logical Topology

The Host Controller keeps track of devices by assigning 7-bit addresses to them. Because a
temporary address (default address: 0000000b) is needed that is used after a device is connected
until an address is assigned to it, the maximum number of devices, including the hubs, that can be
connected to the Host Controller is 127.

The actual connection topology takes the Tree form, shown in figure 2.1; however, the logical
topology will be the Star form, illustrated in figure 2.2, a form in which the Host Controller and
the devices perform one-to-one communications in a time division protocol. All time-division
schedules (even when a device is connected via a hub, it acts as an image that is directly linked to
the Host Controller) are decided by the Host Controller. Therefore, unless a command is issued by
the Host Controller (for details, see Token Packets in section 2.6.1), a device never sends data to
the Host Controller.

Devices can operate in two transfer modes: full speed device mode that performs high-speed
transfers (12 Mbps), and low-speed device mode that performs slow transfers (1.5 Mbps).

The direction in which a data transfer takes place is defined from the point of view of the Host
Controller: the direction in which data flow from the Host Controller to a device is designated the
OUT direction; the direction in which data flow from a device to the Host Controller is designated
the IN direction.

In the OUT direction, data are transferred in a broadcast mode, wherein they are transferred to all
devices that are connected. Only data with a speed of 1.5 Mbps are transferred to low-speed
devices. (12 Mbps data are filtered by either the root hub or regular hubs. For further details see
Special Packets in section 2.6.1.)

Token packets that are transmitted in the broadcasting OUT direction contain address information
(see Token Packets in section 2.6.1 for details) that enables the devices to identify the data being
sent. Based on the address information, only the device to which the address applies operates and
responds to the data.

Rev. 1.0, 04/02, page 5 of 68

2.2 USB Signal Transfer Method

The USB comprises two signal lines (D+, D-) and two power lines (Vbus, GND). Matching this
organization, the USB cable is also internally comprised of four lines as illustrated in figure 2.3.
In cables for full-speed devices, the signal lines (D+, D-) have a twisted pair structure. Although
full-speed device cables require shielding in addition to twisted pairs, cables used for low-speed
devices require neither twisted pairs nor shielding. The maximum cable length supported is 5 m
for full-speed devices and 3 m for low-speed devices, for which neither twisted pairs nor shielding
is required.

Twisted pair

VBus
D+
D-
GND

Shield

Note: Neither twisted pairs nor shielding are required in low-speed device cables.

Figure 2.3 USB Cable Configuration (for full-speed devices)

Data are transferred by means of differential signals using D+, D-. The transfer method employed
is the Non-Return to Zero Invert (NRZI) method, illustrated in figure 2.4, wherein when the source
data are 0, D+ and D- invert, and when they are 1, no inversion occurs. In NRZ, the occurrence of
successive 1s in the source data results in a lack of signal changes, which creates the potential
problem of a shift in synchronization between host and device. To prevent this problem, when
successive 1s occur in 6 or more bits, a 0 is inserted to cause an inversion (in a process called bit
stuffing). The 0s inserted in this manner are removed by the receiving device after the data are
transferred.

In a state called the idle state where no data are transferred, in full-speed devices D+ becomes the
high level, and D- the low level; in low-speed devices, D+ becomes the low level, and D- the high
level, according to the pull-up resistance in the device.

In the USB, data are transferred in packets (see section 2.6 for details on packets).

The leading packet is called SYNC (synchronization) with a fixed value of 00000001.

The portion of a packet in which the first bit of SYNC is inverted from D+ or D-from the idle state
is called a SOP (Start Of Packet) (figure 2.6).

The end of a packet is a special signal for identifying the end of the packet, where both D+ and D-
are low levels (2-bit time), which is called an EOP (End Of Packet) (figure 2.7).

Rev. 1.0, 04/02, page 6 of 68

In the figures below, 2.4, 2.5, 2.6, and 2.7, the post NRZI differential signal waveform is for the
connection of a full-speed device. For the connection of a low-speed device, D+ and D- are
reversed. (Note: In the EOP, both D+ and D- assume the low level, irrespective of the transfer
speed for the device.)

Source data

* Inverted when

 source data is 0

D+Differential signal
after NRZI D-

1 1 0 1 1 0 0 1 0

1 bit time (full speed: approx. 83 ns; low speed: approx. 667 ns)

Figure 2.4 NRZI Transfer Method

1 1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 0 1 0 1

Source data

Data after bit stuffing

D+

D-

Following insertion is shifted

1 continued for 6-bit period, so 0 is forced for 1-bit period.

Differential signal
after NRZI

Figure 2.5 Bit Stuffing

0 0 0 0 0 0 0 1

Idle SYNC

SOP

(No data)
Source data

D+
D-

Differential signal
after NRZI

Figure 2.6 SOP and SYNC

Rev. 1.0, 04/02, page 7 of 68

Data prior to EOP

D+

D-

EOP

Both are
low level

Idle

Differential signal
after NRZI

Figure 2.7 EOP

For each device, the power lines (Vbus, GND) can supply a maximum of 500 mA of current at a
supply voltage of 5V.

The available current immediately after a connection is 100 mA maximum. After a connection is
made, initialization is performed using a standard command (see Standard Command in section
2.7.2) using a maximum current of 100 mA.

In these settings, the Host Controller reads information on the maximum current used by devices
that are connected (this information is contained in the Descriptor information to be explained in
section 2.8). Based on this information, if the Host Controller determines that there are no power
supply problems, the devices are allowed to increase their power consumption for the first time.

In the case of devices that require a current greater than 500 mA, a power supply must be provided
in the devices themselves.

Note: If a hub that is not self-powered (a bus-powered hub) is used, the maximum current that
can be used per port is subject to a 100 mA limitation. If a device requiring more than 100
mA is connected to a bus-powered hub, during the initialization process the Host
Controller determines that an adequate power supply cannot be provided. In this case, the
Host Controller controls the bus-powered hub so that the latter will not supply power to
any of the devices that are connected to it.

Rev. 1.0, 04/02, page 8 of 68

2.3 Recognizing a Connection vs. Non-Connection

The side downstream from the Host Controller and the hub (the device side) pulls down the D+
and D- at 15KΩ. On the other hand, the device side pulls up the D+ for full-speed devices and the
D- for low-speed devices at 1.5KΩ. Consequently, when a device is connected to the Host
Controller or a hub, the Host Controller or the hub can recognize the transfer rate of the device
according to which signal line, D+ or D-, is pulled up. Table 2.1 shows the relationship between
the states of D+ and D- for the Host Controller/hub. Figures 2.8 and 2.9 illustrate actual circuit
configurations.

Table 2.1 Relationship between Signal Lines and Connected Devices

D+ D- Connected Device

Pulled up Pulled down Full-speed device

Pulled down Pulled up Low-speed device

Pulled down Pulled down Device not connected

Pulled up Pulled up Disabled

D+

D-

D+

D-
USB transceiver
(High-speed/
low-speed)

Host-Controller/hub Full-speed device

USB cable
twisted pair/shielding
required, 5m max.

* Power lines
omitted. See 2.2.

USB transceiver
(High-speed)

USB
conn.

Type A

USB
conn.

Type B

Pull-down resistor
15k 2

Pull-up resistor
1.5k

Figure 2.8 For Full-Speed Devices

D+

D-

D+

D-

USB transceiver
(High-speed/
low-speed)

Pull-down resistor
15k 2

Pull-up resistor
1.5k

USB cable
twisted pair/shielding
not required, 3m max

* Power lines
omitted. See 2.2

USB transceiver
(High-speed)

Full-speed deviceHost Controller/hub

USB
conn.

Type A

USB
conn.

Type B

Figure 2.9 For Low-Speed Devices

Rev. 1.0, 04/02, page 9 of 68

 2.4 USB Connector

The USB uses two types of connectors: a flat Type A connector used on the Host Controller side
(figure 2.10) and a square Type B connector used on the device side (figure 2.11). The different
connector configurations are designed to prevent physical misconnection (in the USB, connections
between Host Controllers or devices are prohibited).

In the case of a hub, a Type B connector is used on the upstream side (the Host Controller side),
and a Type-A connector is used on the downstream side (the device side).

Figure 2.10 Type A Connector Figure 2.11 Type B Connector

2.5 Endpoint

Each device has FIFOs called endpoints (EPs). When sending or receiving data, the Host
Controller and the device do so through endpoints. The number of endpoints that a device can
have depends on the transfer rate for the device and is defined as in table 2.2.

Table 2.2 Number of Available Endpoints

Device Transfer Rate End-Point No. Max. No. of End-Points

Full speed (12 Mbps) 0 to 15 16 each for IN/OUT

Low speed (1.5 Mbps) 0 to 2 3 each for IN/OUT

In table 2.2, the endpoint with number 0 is used for control transfers (section 2.6.2). All devices
must have endpoint 0. Any number of endpoints 1 ~ 15 can be used. The direction in which data
flow through an endpoint or the application of an endpoint can be user-defined as part of a device
design process. In USB1.0, however, interrupt transfers can occur only in the IN direction
(section 2.6.5).

For endpoints, the maximum amount of data that can be sent or received is defined for each
transfer method. Data greater than a specified side cannot be sent or received through a given
endpoint. However, any data less than the allowed maximum size (short packets) can be sent or
received. Table 2.3 shows the endpoint data sizes for each transfer method. For each endpoint,
any data size within the limits defined in table 2.3 can be specified.

Rev. 1.0, 04/02, page 10 of 68

Table 2.3 Max. data size (in bytes)

Transfer Method

Device
transfer rate

Control
transfer

Bulk transfer Interrupt transfer
Isochronous
transfer

Full speed 8,16,32,64 8,16,32,64
0 to 64 (any
integer)

0 to 1023 (any
integer)

Low speed 8 Not available 0 to 8 (any integer) Not available

Note: See sections 2.6.2 to 2.6.5 for transfer methods.

2.6 USB Packets and Data Transfer

In the USB, data are transferred in units of packets. A packet is the smallest unit of data in USB
data. The USB protocol communicates using a combination of several packets, and this
combination is referred to as a transaction. In a transaction, packets appear in the following order:
token, data, and handshake.

A set of transactions is referred to as a frame (figure 2.12).

SOF

SOF packet

Token packet

Data packet

Setup
transaction

IN
transaction

OUT
transaction

Handshake packet In each frame, the portion
devoid of a transaction is idle.

SETUP DATA0 ACK IN DATA1 ACK OUT DATA0 ACK SOF… …SETUP DATA0

Frame (1 ms)

Figure 2.12 Transactions and Frames

Rev. 1.0, 04/02, page 11 of 68

A frame begins with an SOF packet that is issued every millisecond and continues on to the next
SOF. The scheduling of transactions in a frame is handled completely by the Host Controller.

In each frame, the portion that is not filled with a transaction (the portion devoid of any data)
assumes an idle state, as explained in section 2.2.

Transactions are sent and received between the Host Controller and a device according to a
specified sequence. Following is a description of packets used in a USB, as well as the
characteristics and the format of each transfer method.

2.6.1 Overview of Packets

Packets used in the USB must conform to prescribed formats. As shown in table 2.4, packets can
be classified into five categories: SOF, token, data, handshake, and special. These categories are
identified using a 4-bit PID (packet ID).

Table 2.4 List of PIDs

PID Type PID Name Send Device PID[3:0]

SOF SOF Host controller 0101

OUT Host controller 0001

IN Host controller 1001

Token

SETUP Host controller 1101

DATA0 Host controller/device 0011Data

DATA1 Host controller/device 0010

ACK Host controller/device 0010

NAK Device 1010

Handshake

STALL Device 1110

Special PRE Host controller 1100

A packet takes the following format: a packet begins with SYNC, followed by PID, PID, and CRC
(the handshake or special packet does not have a CRC), and ends with an EOP. SYNC
(synchronization) indicates the beginning of a packet and transmits a fixed value of 00000001.
The receiver of the packet performs a synchronization by using SYNC. PID indicates the type of
packet, and each type has a unique value. PID is a bit-by-bit binary complement of PID. This
complement permits the detection of errors. CRC (Cyclic Redundancy Check) is the result of
CRC-checking of each packet with the exception of SYNC, PID, and PID.

Rev. 1.0, 04/02, page 12 of 68

SOF (Start Of Frame)

An SOF is a packet that is issued by the Host Controller at millisecond intervals. The interval
from on SOF to another is called a frame. SOFs are used to synchronize an entire device. In
addition, they are used to generate reference signals for isochronous transmissions (section 2.6.4)
or suspend-prevention signals (generated by the hub/root hub upon receipt of a keep-alive signal:
SOF) for low-speed devices. Although in terms of classification an SOF belongs to the token
packet, because it is used differently from other tokens as described above, it represents a separate
category.

SYNC
8 bits

PID
4 bits 4 bits

Frame no.
11 bits

PID type
SOF=0101

CRC
5 bits

EOP
2 bits

Figure 2.13 SOF Packet

Token

A token, which can only be issued by the Host Controller, is used to inform a device that a
command is being sent or the direction in which data are to be sent. Several types of token
packets exist, as described below. A token packet also includes address information that enables a
given device whether data being sent from the Host Controller are addressed to it, and end-point
information that identifies the endpoint for a device.

[OUT token]

The Host Controller issues an OUT token before sending data to a device.

[IN token]

The Host Controller issues an IN token when requesting the transmission of data from a
device.

[SETUP token]

This token is issued when a command is transmitted in a control transfer. See section 2.6.2 for
details on control transfers.

ADDR
7 bits

PID type
OUT=0001
IN=1001
SETUP=1101

SYNC
8 bits

PID
4 bits 4 bits

CRC
5 bits

EOP
2 bits

ENDP
4 bits

Figure 2.14 Token Packet

Rev. 1.0, 04/02, page 13 of 68

Data

The Host Controller and devices use the data packet when transmitting data. Two types of data
packets exist, differentiated by whether PID is DATA0 or DATA1. Transmission of these data
packets in an alternating fashion can detect any missing data, which enhances the reliability of the
transmission process. (Isochronous transmissions use data packets that are fixed at DATA0.)

SYNC
8 bits

PID
4 bits 4 bits

CRC
16 bits

DATA
0~1023 bytes

EOP
2 bits

PID type
DATA0=0011
DATA1=1011

Figure 2.15 Data Packet

Handshake

A handshake enables the receiver to notify the sender of whether the data have been received
normally. The following types of handshake exist: (Note: A handshake is not issued in an
isochronous transfer.)

[ACK]

This handshake is issued when either the Host Controller or a device has received a data packet
normally.

[NAK]

A NAK is issued by a device to the Host Controller under the following conditions:

 Although OUT token packets and data packets were received from the Host, data cannot be
received because the endpoint is full.

 Although an IN token packet was received from the Host, the data to be sent are not yet
ready.

When receiving NAK, in the case of an OUT transaction, the Host Controller re-issues an
OUT token and the data that failed to be received; in the case of an IN transaction, the Host
Controller re-issues an IN token later. Because the Host Controller is defined as being able to
send and receive data packets at any time, the Host Controller never returns NAK to a device.

[STALL]

A STALL handshake is issued by a device when an error condition occurs and the device
requires intervention by the Host.

Rev. 1.0, 04/02, page 14 of 68

[No response] (no handshake packets issued)

If an error is found in a PID or a CRC result does not match, a handshaking is not performed,
and no response is generated. If a no response condition lasts more than a fixed length of time
(16~18 bit time) after transmitting data, the Host Controller or a device goes into a timeout
state and recognizes that a communication error has occurred. Subsequently, the Host
Controller re-issues the token and data for which an error condition was recognized.

PID type
ACK=0010
NAK=1010
STALL=1110

SYNC
8 bits

Note: Packets not issued if no response

PID
4 bits 4 bits

EOP
2 bits

Figure 2.16 Handshake Packet

Special

A PRE(PREAMBLE) packet is defined as a special packet. The PRE packet indicates to the
device that a low-speed transfer will be performed following it.

A full-speed data transfer to low-speed device can cause an error.

The PRE packet can prevent this error.

When dealing with a low-speed device, hubs (including the root hub) filter out any full-speed data
so that they are not transmitted to the low-speed device. However, when receiving a PRE packet,
the hubs stop filtering, and begin to transfer the low-speed data received from the Host Controller
to the low-speed device.

Although low-speed data are also transferred to full-speed devices, because low-speed data cannot
generate valid full-speed PIDs, there is no possibility of full-speed devices producing an error due
to the low-speed data.

PID type
PRE=1100

SYNC
8 bits

Note: Low-speed data following this packet

PID
4 bits 4 bits

EOP
2 bits

Figure 2.17 Special Packet

Rev. 1.0, 04/02, page 15 of 68

2.6.2 Control Transfer

A control transfer is used to issue a command to a device. This is the first transfer that occurs
when a device is connected to the Host Controller. In this case, the Host Controller uses a control
transfer on the new device in order to obtain information on the device. Therefore, whether they
are full-speed devices or low-speed devices, all devices must support this transfer method.

Control transfers can be divided into a setup stage, a data stage, and a status stage.

Note: In the following description of transfer methods, which side sends a packet is indicated on
the right side of the packet, i.e., (H) indicates the Host Controller side, (D) the device side.

[Setup Stage]

This is the first stage in a control transfer. In the setup stage, the Host Controller issues a
command to a device and provides instructions on what is to be sent or received. According to
this command, the device sets up the data to be sent to the Host Controller or prepares
receiving data from the Host Controller.

The setup stage for a control transfer consists of setup transactions. The size of the data packet
for a setup transaction is always 8 bytes. The Host Controller stores the command being sent
in the data packet.

The PID for a data packet is always DATA0. The handshake packet for a setup transaction is
the packet that the device sends to the host. In this case, the device must always return ACK.
Returning either NAK or STALL in a setup transaction is prohibited. Therefore, devices must
always be prepared to receive a setup transaction.

(H)

(H)

(D)ACK

Setup Token

Sender

Data (8bytes fixed)
PID: DATA0 fixed

Figure 2.18 Setup Stage

Rev. 1.0, 04/02, page 16 of 68

[Data Stage]

In the data stage, according to the command received in the setup stage, the device repeats the
receipt of the data being sent or the transmission of the data to be sent.

The direction of data never changes in the midst of a data stage.

In an IN direction data stage, if the data to be sent by the device have depleted, the device uses
either a short packet (a data packet with a byte count less than the maximum data size specified
for the device) or a 0-byte data packet to notify the Host Controller of the end of transmission.

Some commands do not have any data to be sent or received, in which case the data stage itself
is omitted.

In cases where data are sent/received repeatedly, the PID for the data packets toggles
DATA1→DATA0→DATA1�

(H)

(D)

(H)

DATA0/
DATA1

(toggled on trans.)

ACK

IN token

Sender Sender

OUT token (H)

(H)

(D)

DATA0/
DATA1

(toggled on trans.)

ACK

Figure 2.19 Data stage (left: IN, right: OUT)

[Status Stage]

A status stage begins when a token is transmitted in a direction opposite to the data stage (or
the setup stage if there is no data stage). For example, if an IN token is issued in a data stage
and data are transferred from a device to the Host Controller, the status stage begins when an
OUT token is issued. Thus, the data stage terminates when the direction of data is reversed.

As illustrated in figure 2.20, a status stage is associated with three patterns: an IN direction
data stage, an OUT direction data stage, and no data stage.

The data packet following the transmission of a token in the status stage must contain a packet
with a 0-byte data length with a DATA1 PID.

Rev. 1.0, 04/02, page 17 of 68

(H)

(D)

(H)

DATA1
(0 byte)

ACK

(H)

(H)

(D)

DATA1
(0 byte)

IN dir. data stage
(Fig. 2.19, left)

OUT dir. data stage
(Fig. 2.19, right)

Setup stage only
(Fig. 2.18)

ACK

Note: left: after IN data stage
 middle: after IN data stage
 right: after setup stage only

OUT token
Sender Sender Sender

IN token IN token (H)

(D)

(H)

DATA1
(0 byte)

ACK

Figure 2.20 Status Stage

The reason that the reversal of direction brings on the status stage is that the data stage is defined
so that it can be terminated even before the Host Controller has received or transmitted all the data
that were requested by means of a setup stage command.

Figure 2.21 shows an example of a control transfer that has an IN direction data stage. Suppose
that the Host Controller requests 32-byte data in the setup stage; after the setup stage has ended,
the Host Controller issues an IN token; according to this command, the device sends 88-byte data
(if the maximum packet size is 88 bytes); and the Host Controller issues ACK. At this point, the
device will have sent 8 bytes out of the 32 bytes. If more data are needed, the Host Controller re-
issues the IN token. When no more data are needed, the Host Controller issues the OUT token.
The OUT token changes the direction of data, and at this time the status stage is brought on, and
the control transfer ends.

(H)

(D)

(H)ACK

Sender

Setup stage
(Fig. 2.18)

(H)

(H)

(D)ACK

Host requests 32-byte data

IN token

Data stage

Status stage

OUT token

Data (8 bytes)

Data (0 byte)

Figure 2.21 Data Stage Interrupted

Rev. 1.0, 04/02, page 18 of 68

2.6.3 Bulk Transfer

A bulk transfer is used to send large quantities of data without error when the transfer process is
not subject to a time constraint. In a bulk transfer, the data transfer speed is not guaranteed, but
data integrity is guaranteed. If a data error is found (e.g., a CRC mismatch), the receiver does not
issue a handshake. If ACK is not returned, the sender re-transmits the affected data. If there is no
room in the FIFO or the data to be sent are not yet ready, the sender issues NAK. The amount of
data that can be transferred in a bulk transfer can be specified in the MAX packet size. A bulk
transfer cannot be used with low-speed devices.

If an IN token is issued by the Host Controller (left side in figure 2.22), data are transmitted from
the device and a handshake is issued by the Host Controller.

If an OUT token is issued by the Host Controller (right side in figure 2.22), data are transmitted
from the Host Controller, and a handshake is issued by the device.

In both bulk IN/OUT, each time a data send/receive action is repeated, the PID for the data packet
toggles DATA0→DATA1→DATA0�

(H)

(D)

(D)(H)

ACK

IN token OUT token

Sender Sender

(H)

(H)
DATA0/
DATA1

(toggled on trans.)

DATA0/
DATA1

(toggled on trans.)

ACK

Figure 2.22 Bulk Transfer (left: IN, right: OUT)

Rev. 1.0, 04/02, page 19 of 68

2.6.4 Isochronous Transfer

An Isochronous transfer is used to send continuous data, such as audio data and moving pictures.
Isochronous transfers are priority-scheduled so that a data transfer occurs at a rate of once per
frame (1 ms). In an Isochronous transfer, however, offset values from an SOF packet cannot be
guaranteed. In other words, the first transfer can occur at the end of a frame and the next transfer
can occur at the beginning of the frame. Devices are required to be able to handle these
contingencies.

Isochronous transfers cannot be used with low-speed devices.

As shown in figure 2.23, Isochronous transactions do not contain handshake packets.

Unlike a bulk transfer, in an Isochronous transfer, data are not re-sent even if there are errors in the
data that are transferred. The maximum size of a data packet that can be specified for an
Isochronous transfer is 1023 bytes.

The PID for the data packet is fixed at DATA0 (the PID does not toggle).

(H)

(D)

(H)

(H)
DATA0,fixed
(no toggle)

DATA0,fixed
(no toggle)

No handshaking

IN token

Sender Sender

OUT token

Figure 2.23 Isochronous Transfer (left: IN, right: OUT)

2.6.5 Interrupt Transfer

In an interrupt transfer, the Host Controller generates IN transactions for devices in specified
cycles. Devices can specify to the Host Controller the cycle in which transactions are to be
generated. A cycle can be specified in 1 to 255 frames. The Host Controller starts an IN
transaction at least once per specified cycle. Note that although devices are not accessed in
intervals less than a specified cycle, they can be accessed in intervals greater than a specified
cycle. (Only IN interrupt transfers are supported in USB1.0, but USB1.1 supports both IN and
OUT interrupt transfers.)

Rev. 1.0, 04/02, page 20 of 68

Interrupt transfers can be used with both full-speed/low-speed devices.

The maximum data packet size that can be specified is 64 bytes for full-speed devices and 8 bytes
for low-speed devices.

Each time a data receive action is repeated, the PID for the data packet toggles
DATA0→DATA1→DATA0�

In an interrupt-in transfer, if the Host Controller generates an IN token and the device has data to
transmit, the device sends a data packet, as illustrated in figure 2.24 (a) (left). If the device has no
transmit data when an IN token is generated, the device issues NAK instead of sending a data
packet, as shown in figure 2.24 (a) (right)

OUT OUT(H)

Sender

(D)

(H)

ACK

DATA0/
DATA1

(toggled on trans.)

When the device
can receive data

When the device
cannot receive data

NAK

DATA0/
DATA1

(toggled on trans.)

Figure 2.24 (a) Interrupt-In Transfer

In an interrupt-out transfer, the Host Controller sends an OUT token then data to the device. When
the device has received the data, it sends an ACK packet, as illustrated in figure 2.24 (b) (left). If
the device failed to receive data following the OUT token sent from the host controller, the device
sends a NAK packet instead of an ACK packet, as shown in figure 2.24 (b) (right)

OUT OUT(H)

Sender

(D)

(H)

ACK

DATA0/
DATA1

(toggled on trans.)

When the device
can receive data

When the device
cannot receive data

NAK

DATA0/
DATA1

(toggled on trans.)

Figure 2.24 (b) Interrupt-Out Transfer

Rev. 1.0, 04/02, page 21 of 68

2.7 USB Device Framework

For plug-and-play, for the USB, detailed procedures are established from connecting the USB
cable to configuring the system. This section explains those procedures.

2.7.1 Device States

USB devices can have the various states shown in figure 2.25. A device can be used only when it
has transited to the configuration state.

Attached

Hub Configured.

Suspended

Suspended

Suspended

Suspended

Hub Reset.

Powered

Default

Set Address request

Address

Configured

Set Configuration request

Bus activity

Bus inactive

Bus activity

Bus inactive

Bus activity

Bus inactive

Bus activity

Bus inactive

<Attached state>
The device, attached to the root hub or a
hub, is not powered on.

<Powered state>
The root hub or hubs have been
configured by the Host Controller, and
they are supplying the power to the device.
In this state, all signals are ignored until
the reset signal is received.

<Default state>
The device that has been reset is
automatically assigned address 0.

<Address state>
A device-specific address other than 0
is assigned with the SetAddress command
(Standard Commands in section 2.7.2).

<Configured state>
The configuration has been set by the
Host.

<Suspended state>
If no bus traffic is detected for more than
3ms, the device goes into the power-
saving mode. After returning from this
state, the device regains the original state.

Reset

Reset

Figure 2.25 USB Device State

Rev. 1.0, 04/02, page 22 of 68

2.7.2 Device Request

For a device to be able to transit to the configuration state, it must respond to the commands issued
by the Host Controller. Commands issued by the Host Controller are called device requests, and
their format is defined by the USB standard. The Host Controller issues device requests in the
setup stage in a control transfer.

Three types of device requests are available:

Standard commands

These commands are defined in the USB standard. All devices must support these commands.
Table 2.5 shows a list of standard commands.

For details on standard commands, refer to the standards documentation.

Table 2.5 List of Standard Commands

Command Name Function Data Stage Direction of
Data Stage

Clear_Feature

(Endpoint_stall)

Clears the endpoint stall.
No

Clear_Feature

(Device_Remote_Wa
keup)

Clears the device remote wakeup
feature. No

Get_Configuration Gets configuration information. Yes IN

Get_Descriptor

(Device)

Gets device descriptor
information. Yes IN

Get_Descriptor

(Config)

Gets configuration descriptor
information. Yes IN

Get_Descriptor

(String)

Gets string descriptor
information. Yes IN

Get_Interface Gets interface information. Yes IN

Get_Status(Device) Gets device status information. Yes IN

Get_Status(Interface) Gets interface status information. Yes IN

Get_Status(EndPoint) Gets endpoint status information. Yes IN

Set_Address Sets the device address. No

Rev. 1.0, 04/02, page 23 of 68

Command Name Function Data Stage Direction of
Data Stage

Set_Descriptor

(Device)

Sets the device descriptor.
Yes Out

Set_Descriptor

(Config)

Sets the configuration descriptor.
Yes Out

Set_Descriptor

(String)

Sets the string descriptor.
Yes Out

Set_Configuration Sets configuration. No

Set_Feature

(EndPoint_Stall)

Sets the endpoint to the Stall
stage. No

Set_Feature

(Device_Remote_Wa
keup)

Sets the device to the wakeup
state. No

Set_Interface Sets an interface. No

Sync_Frame

Posts a specific frame number on
the endpoint during an
Isochronous transfer (if a special
number is required).

Yes Out

Class command

Class commands other than hub commands are established by corporate groups, subject to
certification by the USB-IF (USB Implementers Forum). Several classes exist: audio class,
common class, HID (Human Interface Device) class, and printer class.

Vendor command

Vendor commands can be defined freely by device designers, provided that the commands
conform to the same format as other commands.

Rev. 1.0, 04/02, page 24 of 68

2.8 Descriptor

Each USB device is associated with what is called descriptor information that indicates the type,
characteristics, and attributes of the device itself. By obtaining device information on a device, the
Host Controller can recognize the type of device that is connected to a given bus.

Standard USB devices have the following descriptors: device, configuration, interface, and
endpoint.

These descriptors are described in tables 2.6, 2.7, 2.8, and 2.9.

Table 2.6 Device Descriptor

Field Size (in bytes) Description

bLength 1 Descriptor size (fixed at 0x12)

bDescriptorType 1 Descriptor type (fixed at 0x01)

bcdUSB 2 USB version, represented in BCD

bDeviceClass 1 Class code: 0: no class; 0xFF: vendor class

1 to 0xFE: special class

bDeviceSubClass 1 Subclass code

bDeviceProtocol 1 Protocol code: 0: no specific protocol used

0xFF: vendor-specific protocol

bMaxPacketSize0 1 Maximum packet for endpoint 0

idVendor 2 Vendor ID (assigned to manufacturers by the
USB-IF)

idProduct 2 Product ID (assigned to each device by
manufacturer)

bcdDevice 2 Device version, represented in BCD

iManufacturer 1 Index to a string descriptor indicating the
manufacturer’s name

iProduct 1 Index to a string descriptor indicating the device
name

iSerialNumber 1 Index to a string descriptor indicating the serial
number of the device

bNumConfigurations 1 Number of configurable devices

Note: USB Implementers Forum

Rev. 1.0, 04/02, page 25 of 68

Table 2.7 Configuration Descriptor

Field Size (in bytes) Description

bLength 1 Descriptor size (fixed at 0x09)

bDescriptorType 1 Descriptor type (fixed at 0x02)

wTotalLength 2 Total length of descriptor

bNumInterface 1 Number of interfaces associated with descriptor

bConfiguration

Value

1 Argument value (1 or higher) for the selection of
this descriptor using Set_Configuration

iConfiguration 1 Index to a string descriptor

bmAttributes 1 Device power supply

Bit 7: bus power; bit 6: self-power; bit 5: remote
wakeup; bits 4 to 0: reserved

MaxPower 1 Specifies the maximum bus power consumption
in units of 2 mA.

Table 2.8 Interface Descriptor

Field Size (in bytes) Description

bLength 1 Descriptor size (fixed at 0x09)

bDescriptorType 1 Descriptor type (fixed at 0x04)

bInterfaceNumber 1 Zero-base index number that represents this
interface in the configuration�

bAlternateSetting 1 An argument value for the selection of alternate
settings using Set_Interface.

bNumEndpoints 1 Number of endpoints associated with a device
(exclusive of endpoint 0)

bInterfaceClass 1 Class code 0: no class; 0xFF: vendor class;
1 to 0xFE: special class

bInterfaceSubClass 1 Subclass code

bInterfaceProtocol 1 Protocol code : no specific protocols used

0xFF: vendor-specific protocol

iInterface 1 Index to the string descriptor representing this
interface

Rev. 1.0, 04/02, page 26 of 68

Table 2.9 Endpoint Descriptor

Field Size (in bytes) Description

bLength 1 Descriptor size (fixed at 0x07)

bDescriptorType 1 Descriptor type (fixed at 0x05)

bEndpointAddress 1 Endpoint address: bit 7: direction (0:OUT 1:IN);

bits 6 to 4: reserved (0); bits 3 to 0: endpoint
number

bmAttributes 1 Endpoint transfer method: bits 7 to 2: reserved
(0); bits 1 to 0: transfer method (0: control, 1:
Isochronous , 2: bulk, 3: interrupt)

wMaxPacketSize 2 Maximum packet size

bInterval 1 Specifies polling intervals in units of ms.

Specify 1 for Isochronous transfers.

Ignored for bulk or control transfers.

Section 3 Development Environment

This chapter looks at the development environment used to develop this system. The devices
(tools) listed below were used when developing the system.

• H8S/2215 Solution Engine (hereafter called the MS2215CP; type number: MS2215CP01_C/S)
manufactured by Hitachi ULSI Systems Co., Ltd.

• Solution Engine Single-Chip Microcomputer Base Board (hereafter called the base board; type
number: MSSCBB01) manufactured by Hitachi ULSI Systems Co., Ltd.

• E6000 (type number: HS2214EPI61H) Emulator manufactured by Hitachi, Ltd.

• H8S/2215 Series TFP120 User System Interface Cable (hereafter called the H8S/2215 user
cable; type number: HS2215ECN61H) manufactured by Hitachi, Ltd.

• PC (Windows 95/98) equipped with an ISA, PCI, or PCMCIA slot

• PC (Windows 2000/Windows Millennium Edition or Mac OS9) to serve as the USB host

• Parallel-port printer

• USB cable

• Parallel cable

• Hitachi Debugging Interface (hereafter called the HDI) manufactured by Hitachi, Ltd.

• Hitachi Embedded Workshop (hereafter called the HEW) manufactured by Hitachi, Ltd.

3.1 Hardware Environment

Figure 3.1 shows device connections.

Fig

Parallel cable

able

E6000 (Win95/98)

AC adapter
included with
SolutionEngine

Solution Engine single-chip
microcomputer base board

USB h

Used as the USB host;
outputs printing data

Recei the USB
host, and outputs data to

from the Solution
gle-chip
uter base board

MS2215CP
E6000 cable

Used to install HDI and

, and for progr

iling and
R

ure 3.1 Device Connect
USB cost PC (Win2000)

the printer
Engine sin
microcomp

am
ves data from
Printer
ions
HEW

comp
ev. 1.0, 04/02, page 27 of 68

Rev. 1.0, 04/02, page 28 of 68

1. MS2215CP

Some jumper settings on the MS2215CP board must be changed from those at shipment.
Before turning on the power, ensure that the jumpers are set as follows. There is no need to
change any other jumpers.

Table 3.1 Jumper Settings

At Shipment After Change Jumper Function

J9 1-2: Closed J9 2-3: Closed Switches the EXTAL48 pin
level

J14 1-2: Closed J14 1-2: Open Enables SRAM

J15 1-2: Closed J15 1-2: Open Enables LED

2. Solution Engine single-chip microcomputer base board

For an explanation of connection with the MS2215CP, please refer to the instruction manual
for the base board. This base board is not included with the SolutionEngine, and must be
purchased separately. The base board has a 26-pin Centronics interface connector (CN4). If the
parallel cable has a different type of connector, create a conversion connector according to
table 6.7, Connector Signal Assignment, in section 6.5.2, Centronics Interface of the
instruction manual for the base board.

3. USB host PC

A PC with Windows 2000 installed and with a USB port is used as the USB host. This system
uses printer-class device drivers installed as a standard part of the Windows 2000 system, and
so there is no need to install new drivers.

4. E6000

The ISA is used for the communication interface between the E6000 PC and the E6000
emulator.

The E6000 I/F board should be inserted into an ISA slot and connected to the E6000 via an
interface cable. Then, the E6000 should be connected to the MS2215CP via an H8S/2215 user
cable. After connection, start the HDI and perform emulation.

Rev. 1.0, 04/02, page 29 of 68

3.2 Software Environment

A sample program, as well as the compiler and linker used, are explained.

3.2.1 Sample Program

Files required for the sample program are all stored in the H8S2215 folder. When this entire folder
with its contents is moved to a PC on which HEW and HDI have been installed, the sample
program can be used immediately. Files included in the folder are indicated in figure 3.2 below.

H8S2215

CatProType.h
SetSystemSwitch.h
SysMemMap.h

CatTypedef.h
SetUsbInfo.h

SetMacro.h
h8s2215.h

SetPrinterInfo.h
tI16c552a.h

StartUp.c DoControl.c DoBulk.c DoInterrupt.c DoRequest.c
DoReqestPrinterClass.c UsbMain.c ppout.c
sct.src

debugger.ABS debugger.MAP debugger.MOT BildOfHew.bat InkSet1.sub
ch38iop (folder) dwfinf (folder) log.txt

debugger.hds debugger.HDT debugger.HDW

Figure 3.2 Files Included in the Folder

3.2.2 Compiling and Linking

The sample program is compiled and linked using the following software.

Hitachi Embedded Workshop Version 1.0 (release 9) (hereafter HEW)

When HEW is installed in C:\Hew, the procedure for compiling and linking the program is as
follows.*

First, a folder named Tmp should be created below the C:\Hew folder for use in compiling. (figure
3.3)

C:\

\Hew

\Tmp

Figure 3.3 Creating a Working Folder

Rev. 1.0, 04/02, page 30 of 68

Next, the folder in which the sample program is stored (H8S2215) should be copied to C:\Usr (or
can be copied to any location, then "C:\Usr\h8s2215" written in the debugger.hds file should be
modified to the path to the copied folder). In addition to the sample program, this folder contains a
batch file named BildOfHew.bat. This batch file sets the path, specifies compile options, specifies
a log file indicating the compile and linking results, and performs other operations. When
BildOfHew.bat is executed, compiling and linking are performed. As a result, a Motorola S-type
format file named debugger.MOT is created within the folder. This is the executable file. At the
same time, a map file named debugger.MAP and a log file named log.txt are created. The map file
indicates the program size and variable addresses. The compile results (whether there are any
errors etc.) are recorded in the log file.

Note: * If HEW is installed to a folder other than C:\Hew, the compiler path setting and
settings for environment variables used by the compiler in BildOfHew.bat, as well as
the library settings in InkSet1.sub, must be changed. Here the compiler path setting
should be changed to the path of ch38.exe, the setting for the environment variable
ch38 used by the compiler should be set to the folder of machine.h, and the setting of
ch38tmp should specify the work folder for the compiler. The library setting should
specify the path of c8s26a.lib.

Batch file

BuildOfHew.bat

Execution

Execution results

debugger.ABS

debugger.MOT

debugger.MAP

log.txt

H8S2215

Figure 3.4 Compile Results

Rev. 1.0, 04/02, page 31 of 68

3.3 Loading and Executing the Program

Figure 3.5 shows the memory map for the sample program.

MS2215CP+bace borad

Vector area

Empty space

Empty area

P,C,and D areas

R and B areas

Control transfer area 72 kbytes

Bulk transfer data area

Stack area

0000 0000

0000 01BF

0000 0200

0000 17F8

0040 0000

005F FFFF

00FF B000

00FF ED00
00FF ED00

00FF EED0
00FF EF78

00FF EFBF

448byte

2Mbyte

15617byte

465byte

72byte

5625byte

Note: The memory map differs according to the compiler version, compiling conditions,
firmware upgrade, etc.

Figure 3.5 Memory Map

As shown in figure 3.5, this sample program allocates areas for vectors, P, C, and D to the on-chip
ROM area (E6000 emulation memory) in area 1, the stack, B, R, and control transfer areas to the
on-chip RAM, and the print data area to the SRAM. These memory allocations are specified by
the InkSet1.sub file in the H8S2215 folder. When modifying the program allocation, this file must
be modified.

Rev. 1.0, 04/02, page 32 of 68

3.3.1 Loading the Program

In order to load the sample program into the MS2215CP, the following procedure is used.

• Connect the E6000 PC in which the HDI has been installed to the E6000.

• Connect the E6000 to the MS2215CP via an H8S/2215 user cable.

• Turn on the power to the E6000 PC, to start up the machine.

• Execute debugger.hds in the H8S2215 folder.

Through the above procedure, the sample program can be loaded into the MS2215CP.

Figure 3.6 Reset Request Dialog

Figure 3.7 Command Line Input

3.3.2 Executing the Program

In order to execute the program which was loaded in section 3.3.1, Loading the Program, above,
the program counter (PC) must be set appropriately.

Select Register Window from the View menu to open the Registers window. On double-clicking
the numerical area of the register (PC) in the window, a dialog box appears, and the register value
can be changed. Use this dialog box to set the PC to H'0000 0200.

After making the above settings, select Go from the Run menu to execute the program.

Batch file

Rev. 1.0, 04/02, page 33 of 68

3.4 Printing Procedure

With the program executed, insert the USB cable series B connected into the MS2215CP, and
connect the series A connected at the opposite end to the USB host PC. After control transfer is
completed, USB printing support is displayed below USB host controller in the device manager,
and the host PC recognizes the MS2215CP as a printer device.

Next, the printer driver*1 is installed. Open the printer from the Start menu Settings item, and
double-click on the Add a printer icon. A setup wizard is started; in port selection, check USB001
Virtual Printer Port for USB*2. Specify the printer to be used (the manufacturer name and printer
model). When the wizard processing is completed, a test print should be performed; if the driver is
correctly installed, the printer will output a print test.

Notes: *1 In this sample program, bidirectional communication with the printer is not supported;
please be sure to use a printer driver included as standard with Windows 2000.

*2 If a printer-class device has previously been connected to the host PC, the number may
be different (USB002, USB003, etc.). In this case, select the highest-numbered port.

Rev. 1.0, 04/02, page 34 of 68

Rev. 1.0, 04/02, page 35 of 68

Section 4 Overview of the Sample Program

In this section, features of the sample program and its structure are explained. This sample
program runs on the MS2215CP + base board, and initiates USB transfers by means of interrupts
from the USB function module. Of the interrupts from modules in the H8S/2215, there are three
interrupts related to the USB function module: EXIRQ0, EXIRQ1, and IRQ6, but in this sample
program, only EXIRQ0 is used.

Features of this program are as follows.

• Control transfer can be performed.

• Bulk-out transfer can be used to receive data from the host controller.

• Bulk-in transfer can be used to send data to the host controller.

• The Ultra I/O mounted on the MS2215CP can be used to output data to a printer.

4.1 State Transition Diagram

Figure 4.1 shows a state transition diagram for this sample program. In this sample program, as
shown in figure 4.1, there are transitions between four states.

Startup.c

Startup.c

Completion of initial settings

Reset state Immediately after power is applied, the reset
state is entered.After completion of initial
settings, execution enters the main loop and
the system is in a stationary state. The names
of files which can make transitions to each
state are also shown.

Startup.c
ppout.c

UsbMain.c
DoRequest.c
DoControl.c
DoBulk.c

Stationary

Interrupt generation (EXIRQ0) USB communication ends

Error generation

Error state

Manual reset

USB
communication

state

Parallel output state
When there is data

to print

Figure 4.1 State Transition Diagram

Rev. 1.0, 04/02, page 36 of 68

• Reset State

Upon power-on reset and manual reset, this state is entered. In the reset state, the H8S/2215
mainly performs initial settings.

• Stationary State

When initial settings are completed, a stationary state is entered in the main loop. Here, the
presence of printing data from the host is constantly monitored; if there is data, the parallel
output state is entered, and data is output to the printer.

• USB Communication State

In the stationary state, when an interrupt from the USB module occurs, this state is entered. In
the USB communication state, data transfer is performed by a transfer method according to the
type of interrupt. The interrupts used in this sample program are indicated by interrupt flag
register 0 (UIFR0) to interrupt flag register 3 (UIFR3), and there are nine interrupt types in all.
When an interrupt factor occurs, the corresponding bits in UIFR0 to UIFR3 are set.

• Error State

When an error occurs while in the USB communication state, this state is entered. In the case
of a transition to the error state, there is a problem with the USB communication contents.
When communication is performed normally, there are no transitions to the error state. If the
error state is entered, the firmware should be reexamined. In order to recover from the error
state, perform a power-on reset or a manual reset.

4.2 USB Communication State

The USB communication state can be further divided into three states according to the transfer
type (see figure 4.2). When an interrupt occurs, first there is a transition to the USB
communication state, and then there is further branching to a transfer state according to the
interrupt type. The branching method is explained in section 5, Sample Program Operation.

USB communication state

DoRequest.c
DoControl.c

DoBulk.c

UsbMain.c

C
ontrol transfer

B
ulk-in transfer

B
ulk-out transfer

Figure 4.2 USB Communication State

Rev. 1.0, 04/02, page 37 of 68

4.3 File Structure

This sample program consists of seven source files and nine header files. The overall file structure
is shown in table 4.1. Each function is arranged in one file by transfer method or function type.

Table 4.1 File Structure

Filename Main purpose

StartUp.c
Makes microcomputer initial settings

Clears ring buffer

UsbMain.c
Discriminates interrupt factors

Sends/receives packets

DoRequest.c Processes setup commands issued by host

DoControl.c Executes control transfer

DoBulk.c Executes bulk transfer

DoRequestPrinter Class.c Processes printer-class commands

ppout.c

Controls ring buffer

Initializes printer

Outputs data to printer

CatProType.h Declares prototypes

CatTypedef.h Defines basic structures used in the USB firmware

SysMemMap.h Defines MS2215CP memory map addresses

h8s2215.h Defines H8S/2215 registers

tl16c552a.h Defines the TL16C552A registers

SetSystemSwitch.h Sets system operation

USBFunctionModu.h Defines the USB function module registers

SetMacro.h Defines macros

SetUsbInfo.h Makes initial settings of variables needed to support USB

SetPrinterInfo.h Makes initial settings of variables needed to support bulk-only
transport

Rev. 1.0, 04/02, page 38 of 68

4.4 Purposes of Functions

Table 4.2 shows functions contained in each file and their purposes.

Table 4.2-1 UsbMain.c

File in Which Stored Function Name Purpose

UsbMain.c BranchOfInt
Discriminates interrupt factors, and calls
function according to interrupt

GetPacket
Writes data transferred from the host
controller to RAM.

GetPacket4
Writes data transferred from the host
controller to RAM in longwords. Ring buffer
support version.

GetPacket4S
Writes data transferred from the host
controller to RAM in longwords. High-speed
version. (not used by this sample program)

PutPacket
Writes data for transfer to the host controller
to the USB module

PutPacket4
Writes data for transfer to the host controller
to the USB module in longwords. Ring buffer
support version.

PutPacket4S

Writes data for transfer to the host controller
to the USB module in longwords. High-
speed version. (not used by this sample
program)

SetControlOutContents Overwrites data with that sent from the host

SetUsbModule Makes USB module initial settings

ActBusReset Clear FIFO on receiving bus reset

ActBusVcc
Pulls up D+ and controls USB module when
the USB cable is connected or disconnected

ConvRealn
Reads data of a specified byte length from a
specified address

ConvReflexn
Reads data of a specified byte length from
specified addresses, in reverse order

In UsbMain.c, interrupt factors are discriminated by the USB interrupt flag register, and functions
are called according to the interrupt type. Also, packets are sent and received between the host
controller and function modules.

Rev. 1.0, 04/02, page 39 of 68

Table 4.2-2 StartUp.c

File in Which Stored Function Name Purpose

StartUp.c SetPowerOnSection
Sets BSC, terminals, and interrupt controller,
calls initialization routines, and shifts to the
main loop

_INITSCT
Copies variables with initial values to RAM
work area

InitMemory
Clears RAM area used in bulk
communication

InitSystem
Specifies the USB clock, system interrupts,
and masks

When a power-on reset or manual reset is carried out, the SetPowerOnSection of the StartUp.c file
is called. At this point, the H8S/2215 default settings are entered and the RAM area used for
control transfer and bulk transport is cleared.

Table 4.2-3 ppout.c

File in Which Stored Function Name Purpose

ActPrintOut
Monitors the empty space in the buffer and
stops bulk-out transfer if necessary

Calls bulk-out functions

ppout.c LptMain

Monitors the empty space in the buffer and
restarts bulk-out transfer if necessary

Passes the read pointer as argument to
LptPortWrite

LptPortOpen Initializes printer

LptPortWrite Outputs data from parallel port

In ppout.c, print data stored in RAM is written to the TL16C552A register, and strobe and other
signals are controlled to output data to the printer.

Rev. 1.0, 04/02, page 40 of 68

Table 4.2-4 DoRequest.c

File in Which Stored Function Name Purpose

DecStandardCommands
Decodes command issued by host
controller, processes standard commandsDoRequest.c

DecVenderCommands Processes vendor commands

During control transfer, commands sent from the host controller are decoded, and commands are
processed. In this sample program, a vendor ID of 045B (vendor: Hitachi) is used. When the
customer develops a product, the customer should obtain a vendor ID at the USB Implementers'
Forum. Because vendor commands are not used, DecVenderCommands does not perform any
action. In order to use a vendor command, the customer should develop a program.

Table 4.2-5 DoControl.c

File in Which Stored Function Name Purpose

ActControl Performs setup stage for control transfer

ActControlIn
Performs data stage, status stage for control
transfer (data stage transferred in in
direction)DoControl.c

ActControlOut
Performs data stage, status stage for control
transfer (data stage transferred in out
direction)

When a control transfer interrupt (EPOoTS) is input, ActControl acquires the command, and
decoding is performed by DecStandardCommands. Next, the data stage and status stage are
performed by ActControlIn and ActControlOut, according to the command type.

Table 4.2-6 DoBulk.c

File in Which Stored Function Name Purpose

ActBulkOut Performs bulk-out transfer

ActBulkIn Performs bulk-in transferDoBulk.c

ActBulkInReady Performs preparations for bulk-in transfer

Processing related to bulk transfer is performed. ActBulkInReady is used only in bulk-in transfer.

Rev. 1.0, 04/02, page 41 of 68

Table 4.2-7 DoRequestPrinterClass.c

File in Which Stored Function Name Purpose

DoRequestPrinterClass.
c

DecPrinterClassComma
nds

Processes printer-class command

Processing for printer class commands is performed. In this sample program, an IEEE 1284
database ID is not used, and so 0 is output. When using an IEEE 1284 device ID, the output value
should be set by the customer.

Figure 4.3 shows the interrelationship between the functions explained in table 4.2. The upper-side
functions can call the lower-side functions. Also, multiple functions can call the same function. In
the stationary state, SetPowerOnSection calls other functions, and in the case of a transition to the
USB communication state which occurs on an interrupt, BranchOfInt calls other functions. Figure
4.3 shows the hierarchical relation of functions; there is no order for function calling. For
information on the order in which functions are called, please refer to the flow charts of section 5,
Sample Program Operation.

SetPowerOnSection

BranchOfInt

InitSystem LptPortOpen

LptPortWrite

InitMemory LptMain_INITSCT

ActControlIn

ActPrintOut ActBusReset ActBusVccSetUsbModule

PutPacketGetPacket

GetPacket GetPacket4

DecStandardCommands

ActControl

ActBulkOut

ConvReflexn

ActControlOut

DecVenderCommandsDecPrinterClassCommands

SetControlOutContents

Figure 4.3 Interrelationship between Functions

Rev. 1.0, 04/02, page 42 of 68

Rev. 1.0, 04/02, page 43 of 68

Section 5 Sample Program Operation

In this chapter, the operation of the sample program is explained, relating it to the operation of the
USB function module.

5.1 Main Loop

When the microcomputer is in the reset state, the internal state of the CPU and the registers of
internal peripheral modules are initialized. Next, function SetPowerOnSection in StartUp.C is
called to initialize the CPU. Figure 5.1 is a flow chart for the SetPowerOnSection function
operation.

Start StartUp.c <SetPowerOnSection>

After initial values have been set,
this program enters the main loop.
RAM areas are constantly monitored
for the presence of pint data. If print
data is present, the data is output to
the printer as it appears.

Microcomputer initial settings

 RAM is cleared to 0

 Variables are initialized

 Print data present?
NO

YES

 Output to printer

Figure 5.1 Main Loop

5.2 Types of Interrupts

As explained in section 5.1, State Transition Diagram, the interrupts used in this sample program
are indicated by the interrupt flag registers 0 to 3 (UIFR0 to UIFR3); there are a total of nine types
of interrupts. When an interrupt factor occurs, the corresponding bits in the interrupt flag register
are set to 1, and an EXIRQ0 interrupt request is sent to the CPU. In the sample program, the
interrupt flag registers are read as a result of this interrupt request, and the corresponding USB
communication is performed. Figure 5.2 shows the interrupt flag registers and their relation to
USB communication.

Rev. 1.0, 04/02, page 44 of 68

Bit:

Bit name:

Bit:

Bit name:

Bit:

Bit name:

Bit:

Bit name:

BRST
EP1i
TR

EP1i
TS

Setup
TS

EP0o
TS

EP0i
TR

EP0i
TS

7 6 5 4 3 2 1 0

 Bus reset Control transfer Not used

USB interrupt flag register 1 (UIFR1)

EP2
READY

EP2i
TR

EP2i
ENPTY

7 6 5 4 3 2 1 0

ActPrintOut ActBulkInActBulkInReady Not used

_

_

EP3o
TF

EP3o
TS

EP3i
TF

EP3i
TR

USB interrupt flag register 2 (UIFR2)

EP4o
READY

EP4i
TR

EP4i
ENPTY

7 6 5 4 3 2 1 0

 Not used

EP5i
TR

EP5i
TS

 Not used

USB interrupt flag register 3 (UIFR3)

SPRSi VBUSs VBUSi

7 6 5 4 3 2 1 0

Cable connection Not used

SPRSsCK48
READY

SOF SETC SETI

 USB clock
 stabilization detection

Note: This sample program does not support interrupt transfers and isochronous transfers.

USB interrupt flag register 0 (UIFR0)

Figure 5.2 Types of Interrupt Flags

Rev. 1.0, 04/02, page 45 of 68

5.2.1 Method of Branching to Different Transfer Processes

In this sample program the transfer method is determined by the type of interrupt from the USB
module as describe in section 4, Overview of the Sample Program. Branching to the different
transfer methods is executed by BranchOfInt in UsbMain.c. Table 5.1 shows the relations between
the types of interrupts and the functions called by BranchOfInt.

Table 5.1 Interrupt Types and Functions Called on Branching

Register Name Bit Bit Name Name of Function Called

7 BRST ActBusReset

6  

5 EP1i TR 

4 EP1i TS 

3 EP0o TS ActControlIn, ActControlOut

2 EP0i TR ActControlOut

1 EP0i TS ActControlIn, ActControlOut

USB interrupt
flag register 0
(UIFR0)

0 SETUP TS ActControl

7 EP3o TF 

6 EP3o TS 

5 EP3i TF 

4 EP3i TR 

3  

2 EP2o Ready ActPrintOut

1 EP2i TR ActBulkIn

USB interrupt
flag register 1
(UIFR1)

0 EP2i EMPTY ActBulkInReady

7 CK48 Ready ActBusReset

6 SOF SetUSBModule

5 SETC 

4 SETI 

3 SPRSs 

2 SPRSi 

1 VBUSs 

USB interrupt
flag register 3
(UIFR3)

0 VBUSi ActBusVcc

The EP0iTS and EP0oTS interrupts are used both for control-in and control-out transfer. Hence in
order to manage the direction and stage of control transfer, the sample program has three states:
TRANS_IN, TRANS_OUT, and WAIT. For details, refer to section 5.6, Control Transfers.

Rev. 1.0, 04/02, page 46 of 68

In the H8S/2215 hardware manual, operation of the USB function module when an interrupt
occurs, and a summary of operation on the application side, are described. From the next section,
details of application-side firmware are explained for each USB transfer method.

5.3 USB Operating Clock Stabilization Interrupt

This interrupt occurs when the USB operating clock (48 MHz) stabilization time is automatically
counted after USB module stop is canceled. After receiving the interrupt, the sample program
writes the endpoint configuration information to the USB endpoint information registers
(UEPIR00_0 to 22_4), makes necessary interrupt settings, and waits for USB cable connection.

USB function module

USB operating clock
 stabilization time waited?

USB operating clock stabilization
interrupt generated

EXIRQ0

SetUSBModule

Sample program

NO

YES

USB interface reset canceled
UCTLR/UIFRST = 0

Wait for USB cable connection

UIFR3/CK48Ready = 0

Power-on reset state canceled

USB operating clock
oscillation started

Wait for USB operating clock
stabilization

USB interface is ready

EPINFO setting

Interrupt settings

USB operating clock selected
UCTLR/UCKS3-0 written

USB module stop canceled
MSTPCRB/MSTPB = 0

EPINFO setting
115-byte data written to

UEPIR00_0 to 22_4

Interrupt settings

Figure 5.3 USB Operating Clock Stabilization Interrupt

Rev. 1.0, 04/02, page 47 of 68

5.3.1 Endpoint Configuration

In the USB function module in the H8S/2215, the endpoint configuration can be specified at
initialization by software. The following transfer types can be specified:

• Control transfer: One endpoint

• Bulk-in transfer: Two endpoints

• Bulk-out transfer: Two endpoints

• Interrupt-in transfer: Two endpoints

• Isochronous-in transfer: One endpoint

• Isochronous-out transfer: One endpoint

The endpoint number, interface number, alternate number, and maximum packet size can be
specified for the above transfers (excluding control transfer) with the USB endpoint information
registers (UEPIRs).

Table 5.2 shows transfer types and their corresponding UEPIRs.

Table 5.2 Transfer Types and UEPIRs

Transfer Type Endpoints Corresponding UEPIRs

Control transfer 1 00

Interrupt-in transfer 2 01 and 02

Bulk-in transfer 2 02 and 20

Bulk-out transfer 2 03 and 21

Isochronous-in transfer 1 04, 06, 08, 10, 12, 14, 16, and 18

Isochronous-out transfer 1 05, 07, 09, 11, 13, 15, 17, and 19

The H8S/2215 Hardware Manual assumes that endpoint information is configured based on the
Bluetooth standard. Figure 5.4 shows the comparison between the endpoint configuration used by
this sample program and the endpoint numbers described in the H8S/2215 Hardware Manual.

Configuration1 Interface0 Alternate0 EP1 BulkOut transfer

EP0 Contro transfer EP0

(Endpoint number
 in the Bluetooth standard)

EP2o

EP2i

EP1i

EP2 BulkIn transfer

EP3 Interrupt In transfer

Figure 5.4 Endpoint Configuration in the Sample Program

Rev. 1.0, 04/02, page 48 of 68

Table 5.3 shows the UEPIR00_0 to 22_4 settings for the endpoint configuration shown in figure
5.4. Dummy data (0) must be written to the unused endpoints.

Table 5.3 UEPIR Settings

UEPIR Set Value
(Hexadecimal)

Transfer Type EP
No.

Interface
No.

Alternate
No.

Maximum
Packet Size
(Byte)

00 00_00_40_00_00 Control 0 0 0 64

01 34_1C_08_00_01 Interrupt In 3 0 0 8

02 24_15_40_00_02 BulkIn 2 0 0 64

03 14_10_40_00_03 BulkOut 1 0 0 64

04 04_1C_00_00_04 Isochronous In 0 0 0 0

05 04_08_00_00_05 Isochronous Out 0 0 0 0

06 04_1C_00_00_06 Isochronous In 0 0 0 0

07 04_08_00_00_07 Isochronous Out 0 0 0 0

08 04_1C_00_00_08 Isochronous In 0 0 0 0

09 04_08_00_00_09 Isochronous Out 0 0 0 0

10 04_1C_00_00_0A Isochronous In 0 0 0 0

11 04_08_00_00_0B Isochronous Out 0 0 0 0

12 04_1C_00_00_0C Isochronous In 0 0 0 0

13 04_08_00_00_0D Isochronous Out 0 0 0 0

14 04_1C_00_00_0E Isochronous In 0 0 0 0

15 04_08_00_00_0F Isochronous Out 0 0 0 0

16 04_1C_00_00_10 Isochronous In 0 0 0 0

17 04_08_00_00_11 Isochronous Out 0 0 0 0

18 04_1C_00_00_12 Isochronous In 0 0 0 0

19 04_08_00_00_13 Isochronous Out 0 0 0 0

20 04_14_00_00_14 BulkIn 0 0 0 0

21 04_10_00_00_15 BulkOut 0 0 0 0

22 04_10_00_00_16 Interrupt In 0 0 0 0

Rev. 1.0, 04/02, page 49 of 68

5.4 Interrupt on Cable Connection (VBUS)

This interrupt occurs when the cable of the USB function module is connected to the host
controller. On the application side, after completion of initial microcomputer settings, a general-
purpose output port is employed to pull-up the USB data bus D+. By means of this pull-up, the
host controller recognizes that the device has been connected. (figure 5.5)

USB function module

USB cable
connected/disconnected

USB cable
status checked

All FIFOs cleared UDC core reset

UDC core reset

Wait for UBC cable
connection

EPINFO automatically
loaded to UDC core

Wait for bus reset signal

EXIRQ0 interrupt
 generated

VBUSi flag cleared

D+ pull-up enabled

UDC core reset
canceled

D+ pull-up disabled

ActBusVcc

Sample program

Connected Disconnected

VBUS interrupt generated

USB module initialization
completed

Figure 5.5 Interrupt on Cable Connection

Rev. 1.0, 04/02, page 50 of 68

5.5 Bus Reset Interrupt (BRST)

When the host controller detects that a device has been connected to the USB data bus, it outputs a
bus reset signal. When receiving this bus reset signal, the USB function module generates a bus
reset.

USB function module

Bus reset received
from the host

BRST interrupt
generated

Wait for setup token

 All endpoint stall
canceled

EXIRQ0 interrupt
generated

 BRST flag cleared

 All FIFOs cleared

ActBusReset

 Sample program

Figure 5.6 Bus Reset Interrupt

5.6 Control Transfers

In control transfers, bits 0 to 3 of the interrupt flag registers are used. Control transfers can be
divided into two types according to the direction of data in the data stage. (figure 5.7) In the data
stage, data transfers from the host controller to the USB function module are control-out transfers,
and transfers in the opposite direction are control-in transfers.

Host controller USB function module

Data (Data stage)

Control-out transfers

Control-in transfers

Host controller USB function module

Data (Data stage)

Figure 5.7 Control Transfers

Rev. 1.0, 04/02, page 51 of 68

Control transfers consist of three stages: setup, data (no data is possible), and status (figure 5.8).
Further, the data stage consists of multiple bus transactions.

In control transfers, stage changes are recognized through the reversal of the data direction. Hence
the same interrupt flag is used to call a function to perform control-in or control-out transfers (cf.
Table 5.1). For this reason, the firmware must use states to manage the type of control transfer
currently being performed, whether control-in or control-out, (figure 5.8) and must call the
appropriate function. States in the data stage (TRANS_IN and TRANS_OUT) are determined by
commands received in the setup stage.

Control-in

Firmware state

SETUP (0) IN (1) IN (0)

DATA0 DATA1 DATA0

IN (0/1)

DATA0/1

OUT (1)

DATA1

.....

WAITWAIT TRANS_IN

Contrlo-out

Firmware state

SETUP (0) OUT (1) OUT (0)

DATA0 DATA1 DATA0

OUT (0/1)

DATA0/1

IN (1)

DATA1

.....

WAITWAIT TRANS_OUT

No data

Firmware state

SETUP (0)

DATA0

IN (1)

DATA1

WAITWAIT TRANS_OUT

Setup stage Data stage Status stage

Figure 5.8 Status in Control Transfers

5.6.1 Setup Stage

In the setup stage, the host and function modules exchange commands. For both control-in and
control-out transfer, the firmware goes into the WAIT state. Depending on the type of command
issued, discrimination between control-in transfer and control-out transfer is performed, and the
state of the firmware in the data stage (TRANS_IN or TRANS_OUT) is determined.

• Commands for control-in transfers: GetDescriptor (TRANS_IN) Standard command
GetDeviceID (TRANS_IN) Class command
GetPortStatus (TRANS_IN) Class command

• Commands for control-out transfers: SoftReset (TRANS_OUT) Class command

Rev. 1.0, 04/02, page 52 of 68

Figure 5.9 shows operation of the sample program in the setup stage. The figure on the left shows
operation of the USB function module.

USB function module

Setup token received

To control-in data stage

8-byte command data
received at EP0s

Application
 processing command?

Setup command receive
complete flag set

(UIFR0/SETUP TS = 1)

BranchOfInt

Automatic
processing

by USB module

YES

ActControl

 SETUP TS flag cleared
 EP0o FIFO cleared
 EP0i FIFO cleared

Firmware state
 changed to WAIT

 Read pointer and write pointer to
the command buffer initialized

GetPacket

DecStandardCommands

DecPrinterClassCommands

EP0i TR interrupt disabled

Firmware statechanged
 toTRANS_IN

 EP0s read complete flag set to 1
(UTRG0/EP0s RDFN=1)

 EP0s read complete flag set to 1
(UTRG0/EP0s RDFN=1)

PutPacket

 Data
direction determined by

the command
type

 Printer class command?

Firmware statechanged to
TRANS_OUT

 EP0 transfer request
 interrupt enabled

 (UIFR0/EP0 TR = 1)

To control-in data stage To control-out data stage

Data written to FIFO

Control-in transfer
from device to host

Control-out transfer
from host to device

NO

YES

NO

 Sample program

EXIRQ0 interrupt
generated

Figure 5.9 Setup Stage

Rev. 1.0, 04/02, page 53 of 68

5.6.2 Data Stage

In the data stage, the host and function module exchange data. The firmware state becomes
TRANS_IN for control-in transfers, and TRANS_OUT for control-out transfers, according to the
result of decoding of the command in the setup stage. Figures 5.10 and 5.11 show the operation of
the sample program in the data stage of control transfer

USB function module

In-token received

Data sent to host

Valid data in
EP0i FIFO?

EP0i transmit flag set
(UIFR0/EP0iTS = 1)

BranchOfInt

UTRG0/EP0s RDFN
set to 1?

YES

YES

ActControl In

UIFR0/EP0i TS interrupt
 flag cleared

Data written to
UEDR0i data register

EP0i packet enable bit set to 1
(UTRG0/EP0i PKTE = 1)

PutPacket

NO
NO

YES

NO

Sample program

EXIRQ0 interrupt
generated

ACK

NAK

NAK

 When firmware state is TRANS_IN

Receive
complete interrupt?
 (UIFR0/EP0o TS)

Status stage

When data direction changes,
data stage is completed and
status stage is entered.

Figure 5.10 Data Stage (Control-In Transfer)

Rev. 1.0, 04/02, page 54 of 68

USB function module

Out-token received

Out-token received

EP0o receive complete flag set
(UIFR0/EP0o TS = 1)

BranchOfInt

Data received from host

1 is written to
UTRG0/EP0s RDFN?

UTRG0/EP0s RDFN
set to 1?

YES

YES

ActControlOut

EP0o receive complete
 flag cleared

 (UIFR0/EP0o TS = 0)

Data read from USBEP0o receive
data size register (UESZ0o)

 Data read from USBEP0o
 data register (UEDR0o)

EP0o read complete bit set to 1
(UTRG0/EP0o RDFN = 1)

GetPacket

YES

NO

NO

Sample program

EXIRQ0 interrupt
generated

ACK

NAK

NAK

When firmware state is TRANS_OUT

Receive
complete interrupt?
(UIFR0/EP0o TS)

Status stage

When data direction changes,
data stage is completed and

status stage is entered.

NO

Figure 5.11 Data Stage (Control-Out Transfer)

Rev. 1.0, 04/02, page 55 of 68

5.6.3 Status Stage

The status stage begins with a token for the opposite direction from the data stage. That is, in
control-in transfer, the status stage begins with an out-token from the host controller; in control-
out transfer, it begins with an in-token from the host controller.

USB function module

Out-token received

Control transfer end

EP0o receive complete flag set
(UIFR0/EP0o TS = 1) BranchOfInt

0 byte received from host

ActControl In

EP0o-related interrupt
flags excluding SETUP

flag cleared

Firmware state
changed to WAIT

EP0o receive complete
flag set to 1

 (UTRG0/EP0o RDFN = 1)

 Control-in transfer end

YES

NO

Sample program

ACK

When firmware state is TRANS_IN

Receive
complete interrupt?
(UIFR0/EP0o TS)

Data stage

 EXIRQ0 interrupt generated

Figure 5.12 Status Stage (Control-In Transfer)

Rev. 1.0, 04/02, page 56 of 68

USB function module

In-token received

Control transfer end

EP0i transmit complete
flag set

(USBIFR0/EP0i TS = 1)

BranchOfInt

0 byte sent to host

ActControlOut

SetControlOutContents

EP0i transmit complete flag cleared
 (USBIFR0/EP0i TS = 0)

 Firmware state
 changed to WAIT

 EP0i transfer request flag cleared
 (USBIFR0/EP0i TR = 0)

EP0i packet enable bit set to 1
 (USBTRG/EP0i PKTE = 1)

YES

YES

YES

NO

NO

NO

Sample program

EXIRQ0 interrupt
generated

EXIRQ0
 interrupt
generated

ACK

NAK

EP0o receive
complete interrupt?
(USBIFR0/EP0o TS)

EP0i transmit
request interrupt?

 (USBIFR0/EP0i TS)

 Data stage

Valid data in
EP0i FIFO?

When firmware state is TRANS_OUT

Figure 5.13 Status Stage (Control-Out Transfer)

Rev. 1.0, 04/02, page 57 of 68

5.7 Bulk Transfers

In bulk transfers, bits 0 to 2 of interrupt flag register 1 are used. Bulk transfers can also be divided
into two types according to the direction of data transmission. (figure 5.14)

When data is transferred from the host controller to the USB function module, the transfer is
called a bulk-out transfer; when data is transferred in the opposite direction, it is a bulk-in transfer.

Bulk-out transfers

Bulk-in transfers

Host controller USB function module

Data

Data

USB function moduleHost controller

Figure 5.14 Bulk Transfers

Rev. 1.0, 04/02, page 58 of 68

5.7.1 Bulk-Out Transfers

The operation of the sample program in bulk-out transfers is shown in figure 5.15.

USB function module

Out-token received

EP1 FIFO full status set
(UIFR1/EP2o READY = 1)

BranchOfInt

Data received from host

EP1 FIFO full status cleared
(UIFR1/EP2o READY = 0)

EP1 FIFO empty?

Both EP1 FIFOs empty?

YES

YES

YES

ActBulkOut

Memory area for copying
data checked

 Data read from USBEP1 receive
 data size register (UESZ2o)

 Data read from USBEP1 data
register (UEDR2o) and stored in buffer

EP1 read complete bit set to 1
(UTRG0/EP2o RDFN = 1)

GetPacket

NO

NO

NO

Sample program

EXIRQ0 interrupt
generated

EXIRQ0 interrupt generated

ACK

NAK

Memory area for copying
data checked

ActPrintOut

Is empty space in bulk
transmit data area smaller
than maximum packet
size 8?

EP1 FIFO full status interrupt
disabled

Figure 5.15 Bulk-Out Transfers

Rev. 1.0, 04/02, page 59 of 68

5.7.2 Bulk-in Transfers

Figure 5.16 shows the operation of the sample program in bulk-in transfers.

USB function module

In-token received
BranchOfInt

Data sent to host

EP2 empty status cleared
(UIFR1/EP2i EMPTY = 0)

 EP2 empty status set
(UIFR1/EP2i EMPTY = 1)

Valid data in EP2 FIFO?

EP1 FIFO empty?
YES

YES

ActBulkInReady

EP2 transfer request flag cleared
(UIFR1/EP2i TR = 0)

EP2 FIFO empty interrupt enabled
 (UIER1/EP2i EMPTY)

ActBulkIn

EP2 FIFO empty interrupt
disabled

(UIER1/EP2i EMPTY = 0)

Write data

EP2 packet enable bit set to 1
(UTRG0/EP2i PKTE = 1)

PutPacket

NO

NO

NO

Sample program

EXIRQ0 interrupt generated

EXIRQ0 interrupt generated

ACK

NAK

 UIFR1/EP2i TR interrupt

Is transmit data
 a short packet?

YES

On enabling empty interrupt,
interrupts are generated

Figure 5.16 Bulk-In Transfers

Rev. 1.0, 04/02, page 60 of 68

Rev. 1.0, 04/02, page 61 of 68

Section 6 Analyzer Data

In this chapter, we look at how measurement is carried out with the USB Inspector, a USB
protocol analyzer made by CATC (http://www.catc.com), using the USB function module in the
H8S/2215, and at what happens to the data as it actually flows along the bus. The following gives
the description for control transfer when a device is connected and bulk-out transport in printing
out as examples. For more detailed information on packets, see section 2.6.1.

Note: The Packet # found in front of each packet is the packet number used when measuring.

The Idle found at the end of each packet indicates the idle between packets (see sections
2.2 and 2.6).

6.1 Control Transfer When a Device Is Connected

Figure 6.1 shows the measurement made, with a device connected to the host controller, while
shifting from the power-on state (the power is supplied to Vbus) until the configuration state (the
device is ready for being used (configuration state). For details on the state transitions, see section
2.7.1.

Though the packet scheduling may differ depending on the host controller, the command flow to
the configuration state is always the same.

¦ƒ Šƒ Zƒ bƒg M †‚ ðŽ ó M‚ ·‚ éŽ –‚ É‚ æ‚ è“ dŒ ¹“ Š“ üƒ Xƒ e [ƒg‚ ©‚ çAƒ fƒ tƒ Hƒ ‹ƒgƒ Xƒ e [ƒg‚ É̂ Ú s‚ µ‚ Ü‚ ·B Reset signal. A transition is made from power-on state to default state.

Rev. 1.0, 04/02, page 62 of 68

ƒ
Rƒ

“ƒ
gƒ

[ƒ
‹“

]‘
— (G

et_D
escri

ptor(
D

evice))

ƒ Zƒ bƒgƒ Aƒ bƒ vƒ g [ƒ Nƒ “ƒ pƒ Pƒ bƒ g

(ƒ fƒ tƒ Hƒ ‹ƒ gƒ Aƒhƒ Œƒ XŽ g— p) ƒ tƒ Œ [ƒ €

(1m s) ƒ Zƒ bƒgƒ Aƒ bƒ v

ƒ Xƒ e [ƒ W

C
ontrol transfer (G

et_D
escriptor (D

evice))

Setup token packet (default address used) Frame

(1 ms)Setup
ƒ f [ƒ ƒ̂ pƒ t e)

(Get _Descr vi ce)ƒACKƒ nƒ “ƒhƒ Vƒ Fƒ Cƒ Nƒ pƒ Pƒ bƒ g

g

Ž g— p)

ƒ f [ƒ ƒ̂ pƒ Pƒ bƒg(18Byt e)

(ƒ fƒ oƒ Cƒ Xƒ fƒBƒ Xƒ Nƒ Šƒ vƒ ^ î• ñ)

ƒ Aƒ Eƒgƒ g [ƒ Nƒ “ƒ pƒ Pƒ bƒ g

(ƒ fƒ tƒ Hƒ ‹ƒ gƒ Aƒhƒ Œƒ XŽ g— p)

ƒ Šƒ Zƒ bƒg M †‚ ª“ ü‚ è‚ Ü‚ ·

stage
Data pac byte

e or (D

nd)

ACK handshake packet

 (default ad

Out-token packet (default addre

Reset signal is input again

*Con

Data packet (18 bytes)(d tor
s)

Rƒ }ƒ “ƒh)

[ƒ ƒ̂ Xƒ e [ƒ W

(ƒ Cƒ “)

ƒ tƒ Œ [ƒ €

(1m s)

ƒ tƒ Œ [ƒ €

(1m s)

Frame

(1 ms)

evice)

dress used)

stage (in)

ation)

Frame (1 ms)
ƒ fData

inform
ƒ tƒ Œ [ƒ €

(1m s) ƒ Xƒ e [ƒ ƒ̂ X

ƒ Xƒ e [ƒ W

Frame

(1 ms)
Status

stage

ss used)
Pƒ bƒg(8By

iptor (De
ket (8

script
ƒ Cƒ “ƒg [ƒ Nƒ “ƒ pƒ Pƒ bƒ

(ƒ fƒ tƒ Hƒ ‹ƒ gƒ Aƒhƒ Œƒ X

(Get_D

comma

In-token packet
evice descrip
ƒ f [ƒ ƒ̂ pƒ Pƒ bƒg(0Byte) Data packet (0 byte)
¦Ž Ÿ €‚ É‘ ±‚ «‚ Ü‚ ·
tinued on next page

¦‚ ±‚ ÌŠ ÔSOFƒ pƒ Pƒbƒg‚ Ì ‚ Ý‚ ª‘ ±‚ «‚ Ü‚ ·B c

ƒ tƒ Œ [ƒ €
i1ms j

©ƒ Zƒ bƒ gƒ Aƒ bƒ vƒ g [ƒ Nƒ “

 ƒ pƒ Pƒ bƒ g iƒ fƒ tƒ Hƒ ‹ƒ gƒ Aƒ hƒ Œƒ XŽ g—

pƒ Pƒ bƒ g j

ƒ Zƒ bƒ gƒ Aƒ bƒ v
ƒ Xƒ e [ƒ W

¦‚ ±‚ ÌŠ Sc

ƒ
Rƒ

“ƒ
gƒ

[ƒ
‹“

]‘
— (S

et_
A

ddress)

ƒ
Rƒ

“ƒ
gƒ

[ƒ
‹“

]‘
— (G

et_D
escri

ptor(
D

evice))

*Only SOF packets continue in this period

…

*Only SOF

…

C
ontrol transfer (S

et A
ddress))

C
ontrol transfer (G

et_D
escriptor (D

evice))

 Setup token packet (default address used)

Setup

*Continued on next page

Frame

(1 ms)a packet s)
©ƒ f [ƒ ƒ̂

 Dat
ƒ tƒ Œ [ƒ €
i1ms j

hƒ Œƒ j

©ƒ Cƒ “ƒ g [ƒ Nƒ “ƒ pƒ Pƒ bƒ g
iƒ fƒ tƒ Hƒ ‹ƒ gƒ Aƒ hƒ Œƒ XŽ g— p j

y’ ẑ È ~ Aƒ Aƒ hƒ Œƒ Xƒ Xƒ e [ƒ g‚ É‘ Ĵ Ú‚ µ‚ Ü‚ ·

ƒ Xƒ e [ƒ ƒ̂ X
ƒ Xƒ e [ƒ W

Pƒ bƒ g

©ACKƒ nƒ “ƒ hƒ Vƒ

ÔOF

ªƒ f [ƒ ƒ̂ pƒ Pƒ bƒg(8Byte)

(Get_Descr iptor(Device)ƒ Rƒ

©ƒ Zƒ bƒgƒ Aƒ bƒ vƒ g [ƒ Nƒ “ƒ pƒ Pƒ bƒ g

(ƒ Aƒhƒ Œƒ XF2)

©ƒ Cƒ “ƒg [ƒ Nƒ “ƒ pƒ Pƒ bƒ g

(ƒ Aƒhƒ Œƒ XF2)

ªƒ f [ƒ ƒ̂ pƒ Pƒ bƒg(18Byt e)

(ƒ fƒ oƒ Cƒ Xƒ fƒBƒ Xƒ Nƒ Šƒ vƒ ^ î• ñ)
ƒ f [ƒ ƒ̂ Xƒ e [ƒ W

(ƒ Cƒ “)

ƒ Zƒ bƒgƒ Aƒ bƒ v

ƒ Xƒ e [ƒ W

©ƒ Aƒ Eƒ gƒ g [ƒ Nƒ “ƒ pƒ Pƒ bƒ g

(ƒ Aƒhƒ Œƒ XF2)

ƒ tƒ Œ [ƒ €
i1ms j

ƒ tƒ Œ [ƒ €
i1ms j

ƒ tƒ Œ [ƒ €
i1ms j

ƒ Xƒ e [ƒ ƒ̂ X
ƒ Xƒ e [ƒ W

ƒ tƒ Œ [ƒ €
i1ms j

©ƒ Zƒ bƒgƒ Aƒ bƒ vƒ g [ƒ Nƒ “ƒ

(ƒ Aƒhƒ Œƒ XF2)

 pa

Frame

(1 ms)

Frame

(1 ms)

Frame

(1 ms)

Frame

(1 ms)

Frame (1 ms)

stage

Setup

stage

Status

stage

Note: A transition is made to configuration state.

 ACK han

 In-token packet (default address used)

 ACK handshake packet

 Setup token packet (address: 2)

Data packet (8 bytes) (Get_Descriptor e) command)

 In-token packet (address: 2)

Data packet (18 bytes)

crip)

ta stage (in)

 Out-token packet (address: 2)

bytes)
Status

stage

 Setup token

ddres)

nd)
©ƒ f [ƒ ƒ̂ pƒ Pƒ bƒ g i0By te j
 Data packet (0 bytes)
tor information
ƒ tƒ Œ [ƒ €
i1ms j

f [ƒ ƒ̂ pƒ Pƒ bƒg(8B

t_Descr iptor(Co “ƒh)

pƒ Pƒ bƒ g

ƒ Zƒ bƒgƒ Aƒ bƒ v

ƒ Xƒ e [ƒ W

‘ ±‚ «‚ Ü‚ ·

Frame

(1 ms)
 packet (address: 2)

ac b

e or (config)

nd)

Setup

stage
Rev. 1.0
Da
,

yte)

nfig)ƒ Rƒ }ƒ

¦Ž Ÿ €‚ Éytes)
X F2)ƒ R
s (add
}ƒ “ƒh)
(Devic
ƒ pƒ Pƒbƒg‚ Ì ‚ Ý‚ ª‘ ±‚ «‚ Ü‚ ·B ckets continue in this period
©ACKƒ nƒ “ƒ hƒ Vƒ Fƒ Cƒ Nƒ pƒ
©ƒ

(Ge
 (device des
©ƒ f [ƒ ƒ̂ pƒ Pƒ bƒg(0Byt e)
 Data packet (0
Data p

 (Get_D

comma
ket (8

script
p j

i8By te
ƒ }ƒ “ƒ h

 (8 byte

ress :2

iSet_Address(ƒ Aƒ

Fƒ Cƒ Nƒ pƒ Pƒ bƒ g dshake packet
(Set_A

comma
 04/02, page 63 of 68

Rev. 1.0, 04/02, page 64 of 68

ƒ tƒ Œ [ƒ €
i1ms j

ƒ tƒ Œ [ƒ €
i1ms j

©ƒ f [ƒ ƒ̂ pƒ Pƒ bƒ g i0By te j

ƒ
Rƒ

“ƒ
gƒ

[ƒ
‹“

]‘
— (G

et_D
escri

ptor(
C

onfig))

ƒ
Rƒ

“ƒ
gƒ

[ƒ
‹“

]‘
— (G

et_D
escri

ptor(
C

onfig))

ªƒ f [ƒ ƒ̂ pƒ Pƒ bƒg(8Byte)

(Get_Descr iptor(Config)ƒ Rƒ

©ƒ Zƒ bƒgƒ Aƒ bƒ vƒ g [ƒ Nƒ “ƒ pƒ Pƒ bƒ g

(ƒ Aƒhƒ Œƒ XF2)

©ƒ Cƒ “ƒg [ƒ Nƒ “ƒ pƒ Pƒ bƒ g

(ƒ Aƒhƒ Œƒ XF2)

ªƒ f [ƒ ƒ̂ pƒ Pƒ bƒg(32Byt e)

(ƒ Rƒ “ƒ tƒBƒ Mƒ …ƒ Œ vƒ ^ î• ñ)

ƒ f [ƒ ƒ̂ Xƒ e [ƒ W

(ƒ Cƒ “)

ƒ Zƒ bƒgƒ Aƒ bƒ v

ƒ Xƒ e [ƒ W

©ƒ Aƒ Eƒ gƒ g [ƒ Nƒ “ƒ pƒ Pƒ

(ƒ Aƒhƒ Œƒ XF2)

ƒ tƒ Œ [ƒ €
i1ms j

ƒ tƒ Œ [ƒ €
i1ms j

ƒ tƒ Œ [ƒ €
i1ms j

©ƒ Cƒ “ƒg [ƒ Nƒ “ƒ pƒ Pƒ bƒ g
(ƒ Aƒhƒ Œƒ XF2)

ªƒ f [ƒ ƒ̂ pƒ Pƒ

(ƒ Rƒ “ƒ tƒBƒ Mƒ …ƒ Œ [ƒ Vƒ ‡ƒ “ƒ fƒBƒ Xƒ Nƒ Šƒ vƒ ^ î• ñ)

ƒ f [ƒ ƒ̂ Xƒ e [ƒ W

(ƒ Cƒ “)

ƒ Xƒ e [ƒ ƒ̂ X
ƒ Xƒ e [ƒ W

ƒ tƒ Œ [ƒ €
i1ms j

¦‚ ±‚ ÌŠ ÔSOFƒ pƒ Pƒbƒg‚ Ì ‚ Ý‚ ª‘ ±‚ «‚ Ü‚ ·B c

Frame

(1 ms)

Frame

(1 ms)

Frame

(1 ms)

Frame

(1 ms)

Frame (1 ms)

Frame (1 ms)

 stage (in)

C
ontrol transfer (G

et_D
escriptor (C

onfig))

 In-token packet (address: 2)

Data packet (8 bytes) (co iptor information)

 Data packet (0 byte)
Status

stage

Setup

stage

 Setup token packet (address: 2)

Data packet (8 bytes) (Get_Descriptor (co om

 In-token packet (address: 2)

tage (in)

Data packet (32 bytes) (con tor information)

 Out-token pa

 b

…

*Only SOF packets continue in this period

C
ontrol transfer (G

et_D
escriptor (C

onfig))
bƒg(9Byte)
nfiguration descr
[ƒ Vƒ ‡ƒ “ƒ fƒBƒ Xƒ Nƒ Šƒfiguration descrip
bƒ g
ƒ tƒ Œ [ƒ €

i1ms j
ƒ Xƒ e [ƒ ƒ̂ X
ƒ Xƒ e [ƒ W

Frame

(1 ms)Status

stage

cket (address: 2)

yte)

ƒ tƒ Œ [ƒ €
i1ms j ¦Ž Ÿ €‚ É‘ ±‚ «‚ Ü‚ · Frame

(1 ms)

*Continued on next page

Data
mand)
Data s
©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg(0Byte) Data packet (0
}ƒ “ƒh) nfig) c

ƒ
Rƒ

“ƒ
gƒ

[ƒ
‹“

]‘
— (G

et_D
escri

ptor(
D

evice))

ªƒ f [ƒ ƒ̂ pƒ Pƒ bƒg(8Byte)

(Get_Descr iptor(Device)ƒ Rƒ }ƒ “ƒ

©ƒ Zƒ bƒgƒ Aƒ bƒ vƒ g [ƒ Nƒ “ƒ pƒ Pƒ bƒ g

(ƒ Aƒhƒ Œƒ XF2)

©ƒ Cƒ “ƒg [ƒ Nƒ “ƒ pƒ Pƒ bƒ g

(ƒ Aƒhƒ Œƒ XF2)

ªƒ f [ƒ ƒ̂ pƒ Pƒ bƒg(18Byt e)

(ƒ fƒ oƒ Cƒ Xƒ fƒBƒ Xƒ Nƒ Šƒ vƒ ^ î• ñ)
ƒ f [ƒ ƒ̂ Xƒ e [ƒ W

(ƒ Cƒ “)

ƒ Zƒ bƒgƒ Aƒ bƒ v

ƒ Xƒ e [ƒ W

©ƒ Aƒ Eƒ gƒ g [ƒ Nƒ “ƒ pƒ Pƒ bƒ g

(ƒ Aƒhƒ Œƒ XF2)

)

ƒ tƒ Œ [ƒ €
i1ms j

ƒ tƒ Œ [ƒ €
i1ms j

ƒ Xƒ e [ƒ ƒ̂ X
ƒ Xƒ e [ƒ W

ƒ tƒ Œ [ƒ €
i1ms j

ƒ tƒ Œ [ƒ €
i1ms j

ƒ
Rƒ

“ƒ
gƒ

[ƒ
‹“

]‘
— (G

et_D
escri

ptor(
C

onfig))

ªƒ f [ƒ ƒ̂ pƒ Pƒ bƒg(8Byte)

(Get_Descr iptor(Config)ƒ Rƒ }ƒ

©ƒ Zƒ bƒgƒ Aƒ bƒ vƒ g [ƒ Nƒ “ƒ pƒ Pƒ bƒ g

(ƒ Aƒhƒ Œƒ XF2)

©ƒ Cƒ “ƒg [ƒ Nƒ “ƒ pƒ Pƒ bƒ g

(ƒ Aƒhƒ Œƒ XF2)

ªƒ f [ƒ ƒ̂ pƒ Pƒ bƒg(32

[ƒ V î• ñ)

ƒ f [ƒ ƒ̂ Xƒ e [ƒ W
(ƒ Cƒ “)

ƒ Zƒ bƒgƒ Aƒ bƒ v

ƒ Xƒ e [ƒ W

©ƒ Aƒ Eƒ gƒ g [ƒ Nƒ “ƒ pƒ Pƒ

(ƒ Aƒhƒ Œƒ XF2)

)

ƒ tƒ Œ [ƒ €
i1ms j

ƒ tƒ Œ [ƒ €
i1ms j

Frame

(1 ms)

Frame

(1 ms)

Frame

(1 ms)

Frame

(1 ms)

Frame (1 ms)

Frame (1 ms)

Setup

stage

 Setup token packet (address: 2)

Data packet (8 bytes) (Get_Descriptor e) command)

 In-token packet (address: 2)

Data packet (8 bytes)

escrip

 stage (in)

C
ontrol transfer (G

et_D
escriptor (D

evice))

 Out-token packet (address: 2)

yte) Status

stage

 Setup token packet (address: 2)

ta stage (in)

Data packet (8 bytes) (Get_Descriptor (command)

 In-token packet (address: 2)

Data packet (32 b

es n)

Setup

stage

 Out-token pa

y

C
ontrol transfer (G

et_D
escriptor (C

onfig))
tor information)
Byt e)

ƒ ‡ƒ “ƒ fƒBƒ Xƒ Nƒ Šƒ vƒ ^
ytes)

criptor informatio

bƒ g
ƒ tƒ Œ [ƒ €

i1ms j
 ƒ Xƒ e [ƒ ƒ̂ X

ƒ Xƒ e [ƒ W

Frame

(1 ms)Status

stage

cket (address: 2)

te)
¦Ž Ÿ €‚ É‘ ±‚ «‚ Ü‚ · *Continued on next page
Rev. 1.0
Data
,

Da
©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg(0Byte Data packet (0 b
©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg(0Byte Data packet (0 b
h)
 (Devic
 (device d
(ƒ Rƒ “ƒ tƒBƒ Mƒ …ƒ Œ
(configuration d
“ƒh)
Config)
 04/02, page 65 of 68

Rev. 1.0, 04/02, page 66 of 68

ƒ
Rƒ

“ƒ
gƒ

[ƒ
‹“

]‘
— (S

et_
C

onfigurati
on)

ªƒ f [ƒ ƒ̂ pƒ Pƒ bƒg(8Byte)

(Set_Configurat ionƒ Rƒ }ƒ “ƒh)

©ƒ Zƒ bƒgƒ Aƒ bƒ vƒ g [ƒ Nƒ “ƒ pƒ Pƒ bƒ g
(ƒ Aƒhƒ Œƒ XF2)

©ƒ Cƒ “ƒg [ƒ Nƒ “ƒ pƒ Pƒ bƒ g

(ƒ Aƒhƒ Œƒ XF2)

©ƒ f [ƒ ƒ̂ pƒ Pƒ bƒg(0Byt e)

ƒ Zƒ bƒgƒ Aƒ bƒ v
ƒ Xƒ e [ƒ W

ƒ tƒ Œ [ƒ €
i1ms j

ƒ tƒ Œ [ƒ €
i1ms j

ƒ Xƒ e [ƒ ƒ̂ X
ƒ Xƒ e [ƒ W

ƒ tƒ Œ [ƒ €
i1ms j

ƒ tƒ Œ [ƒ €
i1ms j

ƒ
Rƒ

“ƒ
gƒ

[ƒ
‹“

]‘
— (G

et_D
evice_ID

)

ªƒ f [ƒ ƒ̂ pƒ Pƒ bƒg(8Byte)

(Get_Device_ID(IEEE1284)ƒ Rƒ }ƒ “ƒh)

©ƒ Zƒ bƒgƒ Aƒ bƒ vƒ g [ƒ Nƒ “ƒ pƒ Pƒ bƒ g
(ƒ Aƒhƒ Œƒ XF2)

©ƒ Cƒ “ƒg [ƒ Nƒ “ƒ pƒ Pƒ bƒ g

(ƒ Aƒhƒ Œƒ XF2)

©ƒ f [ƒ ƒ̂ pƒ Pƒ bƒg(0Byt e)

¦IEEE1284ƒ fƒ oƒ Cƒ XID ƒ f [ƒ ‚̂ ÍA•]‰ ¿— p‚ Ìˆ ×0Byte‚ Å

• Ô M‚ µ‚ Ä‚ ¢‚ Ü‚ · Bƒ Vƒ Xƒ eƒ €‚ Æ‚ µ‚ Ä‘ g‚ Ý ž‚ Þ Û‚ ÍA‚ ¨‹ q— l

‚ ÅŽ æ“ ¾‚ µ‚ Ä‚ ¢‚ éƒ fƒ oƒ Cƒ XID‚ ð• Ô‚ µ‚ Ä‚-‚ ¾‚ ³‚ ¢ B

ƒ f [ƒ ƒ̂ Xƒ e [ƒ W
(ƒ Cƒ “)

ƒ Zƒ bƒgƒ Aƒ bƒ v
ƒ Xƒ e [ƒ W

©ƒ Aƒ Eƒ gƒ g [ƒ Nƒ “ƒ pƒ Pƒ bƒ g
(ƒ Aƒhƒ Œƒ XF2)

©ƒ f [ƒ ƒ̂ pƒ Pƒbƒg(0Byte)

ƒ tƒ Œ [ƒ €
i1ms j

ƒ tƒ Œ [ƒ €
i1ms j

ƒ Xƒ e [ƒ ƒ̂ X
ƒ Xƒ e [ƒ W

ƒ tƒ Œ [ƒ €
i1ms j

ƒ tƒ Œ [ƒ €
i1ms j

ƒ tƒ Œ [ƒ €
i1ms j

ƒ tƒ Œ [ƒ €
i1ms j

¦̂ È ~Aƒ oƒ ‹ƒ N“]‘ —‚ ª— L‚ é‚ Ü‚ Å’ è í ó ‘ Ô‚ Æ‚ È‚è‚ Ü‚ ·B

y’ ẑ È ~ A \ ¬ƒ Xƒ e [ƒ g‚ É‘ Ĵ Ú‚ µ‚ Ü‚ ·

}6.1 ƒ fƒ oƒ Cƒ X Ú‘ ±Ž ž‚ Ìƒ Rƒ “ƒgƒ [ƒ ‹“]‘ —

Figure 6.1 Control Transfer When a Device is Connected

Frame

(1 ms)

Frame

(1 ms)

Frame

(1 ms)

Frame

(1 ms)

Frame

(1 ms)

Frame (1 ms)

Frame (1 ms)

Frame (1 ms)

Frame (1 ms)

Frame (1 ms)

C
ontrol transfer (S

et_C
onfiguration)

Setup

stage

 Setup token packet (address: 2)

Data packet (8 bytes) (Set_Configuration command)

 In-token packet (address: 2)

 Data packet (0 byte)
Status

stage

Note: A transition is made to configuration state.

C
ontrol transfer (G

et_D
evice_ID

)

 Setup token packet (address: 2)

 In-token packet (address: 2)

Data packet (8 bytes) (Get_Device_ID (IEEE1284) command)

Setup

stage

Data

stage(in)
 Data packet (0 byte)

Note: IEEE1284 device ID data is returned in 0 byte for

evaluation. When the device is incorporated in the system,

return the device ID the user got.

Status

stage

 Out-token packet (address: 2)

 Data packet (0 byte)

Note: The stationary state continues until a bulk transfer is performed.

6.2 Bulk-Out Transport for Printing Out (For the bulk-out transport,
refer to section 2.6.3.)

Figure 6.2 shows the measurement results when the bulk-out transport (printing out) is performed
from the host controller to this device.

For each transfer, the PID of data packets is toggled like DATA0 → DATA1 → DATA0.

PID:DATA0

ƒ f [ƒ ƒ̂ pƒ Pƒ bƒ g(64By te j
iƒ vƒ Šƒ “ƒ gƒ Aƒ Eƒ gƒ f [ƒ ^ j

ACKƒ nƒ “ƒ hƒ Vƒ Fƒ Cƒ N

ƒ pƒ Pƒ bƒ g

PID:DATA1
ACKƒ nƒ “ƒ hƒ Vƒ Fƒ Cƒ N

ƒ pƒ Pƒ bƒ g

ƒ Aƒ Eƒ gƒ g [ƒ Nƒ “ƒ pƒ Pƒ bƒ g
iƒ Aƒ hƒ Œƒ X F3 j

ƒ

ƒ f [ƒ ƒ̂ pƒ Pƒ bƒ g(64By te j
iƒ vƒ Šƒ “ƒ gƒ Aƒ Eƒ gƒ f [ƒ ^ j

PID:DATA0
NACKƒ nƒ “ƒ hƒ Vƒ Fƒ Cƒ N

ƒ pƒ Pƒ bƒ g

ƒ f [ƒ ƒ̂ pƒ Pƒ bƒ g(64By te j
iƒ vƒ Šƒ “ƒ gƒ Aƒ Eƒ gƒ f [ƒ ^ j

PID:DATA0
ACKƒ nƒ “ƒ hƒ Vƒ Fƒ Cƒ N

ƒ pƒ Pƒ bƒ g

ƒ f [ƒ ƒ̂ pƒ Pƒ bƒ g(64By te j
iƒ vƒ Šƒ “ƒ gƒ Aƒ Eƒ gƒ f [ƒ ^ j

c

ƒ
oƒ

‹ƒ
Nƒ

Aƒ
Eƒ

g“
]

ƒ
oƒ

‹ƒ
Nƒ

Aƒ
Eƒ

g“
]‘

ƒ
oƒ

‹ƒ
Nƒ

Aƒ
Eƒ

g“
]‘

ƒ
oƒ

‹ƒ
Nƒ

Aƒ
Eƒ

g“
]‘

Figure

Out token packet (Address: 3)

…

B
ulk out transfe

B
ulk out transfe

B
ulk out transf

B
ulk out transfer

Out

Out)

Data packet (64 bytes)
rint-out data)

Data packet (64 bytes)
rint-out data)

Data packet (64 bytes)
rint-out data)

Data packet (64 bytes)
rint-out data)

ACK handshake packet

NACK handshake packet

ACK handshake packet

ACK handshake packet

PID:DATA0

PID:DATA0

PID:DATA1

PID:DATA0
}6.2 ƒ vƒ Šƒ “ƒgƒ Aƒ EƒgŽ ž‚ Ìƒ oƒ ‹ƒ Nƒ Aƒ Eƒg“]‘ —
6.2 Bulk-Out T
ransport for P
Aƒ Eƒ gƒ g [ƒ Nƒ “ƒ pƒ Pƒ bƒ g
iƒ Aƒ hƒ Œƒ X F3 j

token packet (Address: 3)

(P
ƒ Aƒ Eƒ gƒ g [ƒ Nƒ “ƒ pƒ Pƒ bƒ g
iƒ Aƒ hƒ Œƒ X F3 j

Out token packet
(Address: 3)

(P
ƒ Aƒ Eƒ gƒ g [ƒ Nƒ “ƒ pƒ Pƒ bƒ g
iƒ Aƒ hƒ Œƒ X F3 j token packet (Address: 3

(P
(P

—
— er

‘
—

r

— r
Rev. 1.0, 04/02, page 67 of 68

rinting Out

Rev. 1.0, 04/02, page 68 of 68

H8S/2215 USB Function Module

Application Notes

Publication Date: 1st Edition, April 2002
Published by: Customer Operation Division

Semiconductor & Integrated Circuits
Hitachi, Ltd.

Edited by: Technical Documentation Group
Hitachi Kodaira Semiconductor Co., Ltd.

Copyright © Hitachi, Ltd., 2002. All rights reserved. Printed in Japan.

	Cover
	Cautions
	Preface
	Contents
	Figures
	Tables
	Section 1 Overview
	Section 2 Overview of the USB
	2.1	USB Connection Topology
	2.2	USB Signal Transfer Method
	2.3	Recognizing a Connection vs. Non-Connection
	2.4	USB Connector
	2.5	Endpoint
	2.6	USB Packets and Data Transfer
	2.6.1	Overview of Packets
	2.6.2	Control Transfer
	2.6.3	Bulk Transfer
	2.6.4	Isochronous Transfer
	2.6.5	Interrupt Transfer

	2.7	USB Device Framework
	2.7.1	Device States
	2.7.2	Device Request

	2.8	Descriptor

	Section 3 Development Environment
	3.1	Hardware Environment
	3.2	Software Environment
	3.2.1	Sample Program
	3.2.2	Compiling and Linking

	3.3	Loading and Executing the Program
	3.3.1	Loading the Program
	3.3.2	Executing the Program

	3.4	Printing Procedure

	Section 4 Overview of the Sample Program
	4.1	State Transition Diagram
	4.2	USB Communication State
	4.3	File Structure
	4.4	Purposes of Functions

	Section 5 Sample Program Operation
	5.1	Main Loop
	5.2	Types of Interrupts
	5.2.1	Method of Branching to Different Transfer Processes

	5.3	USB Operating Clock Stabilization Interrupt
	5.3.1	Endpoint Configuration

	5.4	Interrupt on Cable Connection (VBUS)
	5.5	Bus Reset Interrupt (BRST)
	5.6	Control Transfers
	5.6.1	Setup Stage
	5.6.2	Data Stage
	5.6.3	Status Stage

	5.7	Bulk Transfers
	5.7.1	Bulk-Out Transfers
	5.7.2	Bulk-in Transfers

	Section 6 Analyzer Data
	6.1	Control Transfer When a Device Is Connected
	6.2	Bulk-Out Transport for Printing Out (For the bulk-out transport, refer to section 2.6.3.)

	Colophon

