To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESAS

10.

11

12.

Notice

All information included in this document is current as of the date this document isissued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful atention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any lossesincurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the devel opment of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errorsin or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’ s quality grade, as
indicated below. Y ou must check the quality grade of each Renesas Electronics product before using it in aparticular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not bein any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances, machine tools; personal electronic equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.
“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose adirect threat to human life.
Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physica injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as aresult of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sdes office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

To al our customers

Regarding the change of names mentioned in the document, such as Hitachi
Electric and Hitachi XX, to Renesas Technology Corp.

The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcompuiter, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)
Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand
names are mentioned in the document, these names have in fact all been changed to Renesas
Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and
corporate statement, no changes whatsoever have been made to the contents of the document, and
these changes do not constitute any alteration to the contents of the document itself.

Renesas Technology Home Page: http://www.renesas.com

Renesas Technology Corp.
Customer Support Dept.
April 1, 2003

RRENESAS

RenesasTechnology Corp.

Cautions

Keep safety first in your circuit designs!

1

Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but
there is aways the possibility that trouble may occur with them. Trouble with semiconductors may lead to personad injury, fire
or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i)
placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or
mishap.

Notes regarding these materias

1

These materials are intended as areference to assist our customers in the selection of the Renesas Technology Corporation
product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any
other rights, belonging to Renesas Technology Corporation or athird party.

Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights,
originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in
these materials.

All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents
information on products at the time of publication of these materials, and are subject to change by Renesas Technology
Corporation without notice due to product improvements or other reasons. It istherefore recommended that customers contact
Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product
information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corporation assumes no responsibility for any damage, liability, or other lossrising from these
inaccuracies or errors.

Please d so pay attention to information published by Renesas Technology Corporation by various means, including the
Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).

When using any or all of theinformation contained in these materials, including product data, diagrams, charts, programs, and
algorithms, please be sure to evaluate al information as atotal system before making afinal decision on the applicability of
theinformation and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other
loss resulting from the information contained herein.

Renesas Technology Corporation semiconductors are not designed or manufactured for use in adevice or system that is used
under circumstances in which human lifeis potentialy at stake. Please contact Renesas Technology Corporation or an
authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for
any specific purposes, such as apparatus or systems for transportation, vehicular, medica, aerospace, nuclear, or undersea
repeater use.

The prior written approva of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these
materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be exported under alicense
from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is
prohibited.

Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

LENESAS

>
©
S
=
Q
=
o
-
Z
)
—+
)
7))

H8S/2215
USB Function Module

Application Notes

—
(@)

Renesas 16-Bit Single-Chip

Microcomputer
HD64F2215

Renesas Electronics Rev.1.0 2002.04

www.renesas.com

Cautions

1

Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

Products and product specifications may be subject to change without notice. Confirm that you
have received the latest product standards or specifications before final design, purchase or
use.

Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’ s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may directly
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment for
life support.

Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation characteristics,
installation conditions and other characteristics. Hitachi bears no responsibility for failure or
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,
consider normally foreseeable failure rates or failure modes in semiconductor devices and
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi
product does not cause bodily injury, fire or other consequential damage due to operation of
the Hitachi product.

This product is not designed to be radiation resistant.

No oneis permitted to reproduce or duplicate, in any form, the whole or part of this document
without written approval from Hitachi.

Contact Hitachi’ s sales office for any questions regarding this document or Hitachi
semiconductor products.

Rev. 1.0, 04/02, page ii of x

RENESAS

Preface

These application notes describe the printer-class firmware that uses the USB Function Module in
the H8S/2215. They are provided to be used as a reference when the user creates USB Function
Module firmware.

Using printer-class communications as an example, the application notes describe the
configuration of the USB Function Module that is built in the H8S/2215. The described system
configuration is an application example of the USB Function Module, and the contents are not
guaranteed.

In addition to these application notes, the manuals listed below are also available for reference
when developing applications.

[Related manual g

» Universal Serial Bus Specification Revision 1.0

» Universal Serial Bus Device Class Definition for Printing Devices

» H8S/2215 Hardware Manual

e H8S/2215 Solution Engine (MS2215CP01) Instruction Manual

» Solution Engine Single-Chip Microcomputer Based Boad (M SCCBBO01) Instruction Manual
» H8S/2215 E10A Emulator User’s Manual

[Caution] The sample programs described in these application notes do not include firmware
related to interrupt transfer, which is a USB transport type. When using this transfer
type (see page 19-1 of the H8S/2215 Hardware Manual), the user needs to create the
program for it.

Also, the hardware specifications of the H8S/2215 and H8S/2215 Solution Engine,
which will be necessary when developing the system described above, are described in
these application notes, but more detailed information is available in the H8S/2215
Hardware Manual and the H8S/2215 Solution Engine Instruction Manual.

Rev. 1.0, 04/02, Page iii of x
RENESAS

Rev. 1.0, 04/02, page iv of x
RENESAS

Contents

SECHON L OVEIVIBIW ...ttt sttt be ettt seesneenaesnnens 1
Section 2 Overview of the USB.........ccocv e 3
2.1 USB CONNECLION TOPOIOGY -.-eeveveterueauerieeieeieseesiesiestesseseeseeseessessessessesaesseeeenseseesseseessesses 3
2.2 USB Signal Transfer Methodcocooiii e 5
2.3 Recognizing a Connection vs. NON-CONNECLION..........cccvieeeeeerene e sieseeee e e sre e 8
2.4 USB CONNECION. .. ctiiteeteeieeiiest ettt ettt ese et e et se bt b e eae st e e e se e b e sb e eb e ea e e e e e e ss et e nre b e nneene e s 9
228 TR 110 oo 1 1 | 9
2.6 USB Packets and Data TranSferooeieieeeeiee e 10
2.6.1 Overview Of PaCKELS........ccoiiieieeeee e e 11
AT o i o I I = 10 = OSSR 15
2.6.3 BUIK TraNSIO ..o 18
2.6.4 1SOChIrONOUS TraNSferccciiieieeieie e e e 19
2.6.5 INtEITUPL TIaNSFEN ...vevieicecec e st sre s 19
2.7 USB DEeViCE FIamMEWOIK.........cooiieiie ittt sb e eenea e e 21
A R R B T Y [o SIS - (S U 21
2.7.2 DEVICE REQUES ... cei ettt sttt et e e e saesbe e e e e e e nbesneseeeeas 22
28 T B 1= o 1 o] o SRS 24
Section 3 Development ENVIironmentccoceveereninneenese e 27
3.1 Hardware ENVIFONMENTcc.oiiiiieeeieiee ettt et e e et s sne e e e eee e 27
3.2 SOftWare ENVIFONMENTottt et e e e st e e e e nee e 29
2% RS 011 o [N o 0o = 10 ST 29
3.22 Compiling @and LiNKiNGcccoeieieiesieeeie e sreseesee e ste e e e sses e e sresseeneenes 29
3.3 Loading and EXeCUting the Programccccceveeeeieeresieseseseeeeseesees e e sseseesaesaeseesnesnens 31
3.3.1 Loading the Programccccceeiieieceeseeeese st ee et e e snesre e eneenes 32
3.3.2 EXECUtiNg the PrOgramooiiiiiieeceeeie et s 32
34 Printing PrOCEAUIE.........oiiie ittt ettt et ae e e e e e 33
Section 4 Overview of the Sample Program..........cccoceveeenenieneenesee e 35
41 State TranSition DiagramM......ccceieeerieeeeres e e e e re e sse e e e eaeseeseeseesnens 35
4.2 USB COMMUNICAION SEALE........cveuirieieiesieesie ettt s 36
4.3 FlE SLUCIUIE ...ttt ettt re e e e b e e e b e s e ebe e e e e e eeseeeesaeas 37
4.4 PUrpoSES Of FUNCHIONS.......couiitiiieieieeie ettt se et sbe e ne e e e e e ee e 38
Section 5 Sample Program Operation..........ccoceveererieneenesee e 43
ES300 R V- g T o o P 43
I 1Y/ o= Yo L 1 = (o] SRS 43
5.21 Method of Branching to Different Transfer Processes........cccooerereiericeieenieneennn. 45

Rev. 1.0, 04/02, Page v of x
RENESAS

5.3 USB Operating Clock Stabilization INtEITUPL..........ceeeeierererieseseseeeese e srese e 46
5.3.1 ENdpoint Configuration...........cccoiieiieerieee ettt 47
5.4 Interrupt on Cable Connection (VBUS) ... 49
55 BuUSReSet INErTUPL (BRST) ..oueeieiieeeee ettt st 50
5.6 CONrOl TraNSFES....cvoveireiieisc e 50
L ST S = (0 IS = o =S 51
LN I D T 1 = o = 53
B.6.3 SHAIUS SEAJE ... cueiieeiitieieete ettt sttt ettt ettt b e b et et eabe e sae e sae e saeenne e 55
I A = 101 I = = TSRO 57
5.7.1 BUIK-OUL TraNSFEIS.......eieeeeieieietese ettt ee e e 58
572 BUIK-INTIBNSFEIS ..ot 59
SECiON 6 ANAYZEN DAA......cceiiiieeieeie e 61
6.1 Control Transfer When aDevice IS CONNECLEd...........coeieiirerieieeie e 61
6.2 Bulk-Out Transport for Printing Out (For the bulk-out transport, refer to section 2.6.3.).67

Rev. 1.0, 04/02, page vi of x

RENESAS

Figures

Section 1 Overview

Figure 1.1

System Configuration EXamplec.coceriiiiiiiiiiiiiie e e 2

Section 2 Overview of the USB

Figure 2.1 Connection TOPOIOZY.......ccveruirieiieiieeiiese ettt eteste st sre et eaessaeseeesseenseenseensesnsesnnes 3
Figure 2.2 LoZICal TOPOLOZY ..cuveiuiiiieieiieiieeiiestt ettt ete ettt et et et esseessaeteesseensesnsessaessesnsennnes 4
Figure 2.3 USB Cable Configuration (for full-speed devices)covvrvirrviiriienienieieieeie e 5
Figure 2.4 NRZI Transfer Methodccccoooiiiiiiiiiiiiieeee e 6
Figure 2.5 Bit STUTING c..ooiiiiiiie et 6
Figure 2.6 SOP and SYNCottt ettt ettt et s e e b enae e 6
FIGUIE 2.7 EOP....iiiiiiie ettt ettt et b ettt et s 7
Figure 2.8 For Full-Speed DevVICes......cc.ciiriiiiiiiiiiiiiniiiescseicect ettt 8
Figure 2.9 For LOW-Speed DEVICES........coiriiririiriiiieieiiestesiesiceiteit ettt s 8
Figure 2.10 Type A Connector Figure 2.11 Type B Connector...........ccceceeveeneeiinienienieneenne. 9
Figure 2.12 Transactions and Frames...........ccocooiiiiiiiiiiiiiiienieeece e 10
Figure 2.13 SOF PACKELeoiiiiiiiieiiieieeee ettt sttt et saee 12
Figure 2.14 ToKen Packet.......cccoiiiiiiiiiiiiiiesies ettt 12
Figure 2.15 Data PaCKEt ...c..oouiiiiiiiiiiiiiee ettt 13
Figure 2.16 Handshake Packetcocueriiiiiiiiiiiiiiiiccnccnceeeee et 14
Figure 2.17 Special PaCKet.......c.couiiiiiieiee ettt 14
Figure 2.18 SEtUP SEAZE ..o..eetieiiiieeie ettt ettt ettt b et et et aeenaeen 15
Figure 2.19 Data stage (left: IN, right: OUT).....ccoeiiiiiiiiiiiieieeee e 16
Figure 2.20 Statis StAZE.......ceveteiiriirtiniertieieeie ettt ettt ettt sttt st ebe e 17
Figure 2.21 Data Stage INterruptedcocveriieriieiieieeieeieeete sttt st ssaeseens 17
Figure 2.22 Bulk Transfer (Ieft: IN, right: OUT)c.ccouiviiiieieieeieee et 18
Figure 2.23 Isochronous Transfer (left: IN, right: OUT)ccccoooiiiiiniiniiiiieeeeeeeeee e 19
Figure 2.24 (a) Interrupt-In Transfer.........oocooiiiiiiiiii e 20
Figure 2.24 (b) Interrupt-Out Transfer..........cocooiiiiiiiiiieeeee e 20
Figure 2.25 USB DEVICE STALEoouiriiriiriiriiriieiieieteiestesieste sttt ettt st st sb et sa et e 21
Section 3 Development Environment

Figure 3.1 Device CONNECLIONSc..ertiriirtiriiriieiieitetetenteste sttt ettt etest et see st sbeebeessetenbeseesbesbenaeas 27
Figure 3.2 Files Included in the FOIAETccociiiiiiiiiiiiiiee e 29
Figure 3.3 Creating a Working FOIAETcooiiiiiiiiiiieee e 29
Figure 3.4 Compile RESUILSccuiiiiiiiiiieiieite e et e 30
Figure 3.5 MeEmOTY MAP ..oocviiiieiieiieiieieete ettt ettt et e e s saessaessaesseenseenseessesssensaenseens 31
Figure 3.6 Reset ReqUest DIialog........cccverieriieiiiiieiieciieiteie ettt essaenseen 32
Figure 3.7 Command Line INPULcoceeiiriiiiinininiiieieceseese ettt 32

Section 4 Overview of the Sample Program

Figure 4.1

State Transition DIagramccoueiieiiiiiiieiecee e 35

Rev. 1.0, 04/02, Page vii of x
RENESAS

Figure 4.2 USB CommuniCation State.........ccceiuerierieniiiieieitierieeie ettt 36
Figure 4.3 Interrelationship between FUNCtIONSccveevieiiriinienieeeie e 42

Section 5 Sample Program Operation

Figure 5.1 Main LOOP c.veeveiieiieeiieiieit ettt ettt st sttt et et e e esaessaessaesseenseenseenseeseenseenns 43
Figure 5.2 Types of Interrupt F1ags.......ccooouiiiiiiiiiii e 44
Figure 5.3 USB Operating Clock Stabilization Interruptccoceeieiieniiiiniiieneceeeee 46
Figure 5.4 Endpoint Configuration in the Sample Program............ccocviiniiniiniinieniicecee 47
Figure 5.5 Interrupt on Cable CONNECHION.ccveriieriieieeiieie e eieeseeeieeieete e saesseesseenseenseennenns 49
Figure 5.6 Bus Reset INtEITUPLoovieiiiiieeieciieieee ettt s 50
Figure 5.7 Control TTansfersc.ccveruieeiieiiciecieeee ettt sse e e eeenseesaenseenes 50
Figure 5.8 Status in Control Transferscccooueiiiiiiiiiiiieeee e 51
Figure 5.9 SetUP STAZE ...oueiiiieiiiieee ettt ettt 52
Figure 5.10 Data Stage (Control-In Transfer)coccovoiriiiiiiiiiiiereeeee e 53
Figure 5.11 Data Stage (Control-Out Transfer)ccocevierieriieiiieieeieseeeee et 54
Figure 5.12 Status Stage (Control-In Transfer)..........cccocevierierieiieieeeceeee e 55
Figure 5.13 Status Stage (Control-Out Transfer)ccoeierieriieciieieeieeieeee e 56
Figure 5.14 Bulk Transfers.......cooeeiiiiiieeeeeeee ettt st 57
Figure 5.15 Bulk-Out Transferscoooierieiieiieieeie ettt e 58
Figure 5.16 Bulk-In Transfersccoouiiiiiiiniieieieee ettt 59
Section 6 Analyzer Data

Figure 6.1 Control Transfer When a Device is Connected............coeverierienieeseniiesiesieseeieeeenns 66
Figure 6.2 Bulk-Out Transport for Printing OUtccceoieviiriierienieieeeie et 67

Rev. 1.0, 04/02, page viii of x
RENESAS

Tables

Section 2 Overview of the USB

Table 2.1 Relationship between Signal Lines and Connected Devices.........ccceveererrienieneenenne. 8
Table 2.2 Number of Available ENAPOINES.......c.ccocuieiiiiiiiiieiie it 9
Table 2.3 Max. data SiZ€ (I DYLES)....ccverieriieriieiieieeiiertieieeiestesteste e enaeeaeseeesseeseenseenseessensaens 10
Table 2.4 LiSt OF PIDS .ueiiiiiiiiiieitice ettt st sttt 11
Table 2.5 List of Standard Commandsc..ceceeieieriininiiineiceieeee et 22
Table 2.6 DEVICE DESCIIPIOT....uviiiiieitieiiieeiieeieeeieeeteeeteesteesteesbeesnreessseessseessseessseessseesssaenssens 24
Table 2.7 Configuration DeSCIIPLOT.cc.eeiuiiiiiiiiieitieicee ettt 25
Table 2.8 INterface DESCIIPIOT .. .cccuvieriieiiieeiieeiieeieeeteeeee et e ereesteeeveesbeesrbeessseessseessseesssaensseas 25
Table 2.9 Endpoint DESCIIPLOLccvievieieiieriieriierie ettt etteseeesteeteeseesesaeseaesaeesseenseenseassesssesseens 26
Section 3 Development Environment

Table 3.1 JUMPET SELHINES ..eeveeveeiieiiieeiieitieste et ete st e st et et eeeaestae st eeseesessaessaesseenseenseessesssensnenseens 28
Section 4 Overview of the Sample Program

Table 4.1 File StIUCIUIE ...c..eeiuiiiieitieie ettt et sttt et et esaeesbeens 37
Table 4.2-1 USDIMAIN.C...eeutieiiieiieiiieitiest ettt ettt ettt st se e et et et eeeteeaeeeneenbeens 38
TabIE 4.2-2 STATLUP.C .eevreiieiieieeie ettt ettt et et esteeeaesta et aeseeseensessaesseesseenseenseansenssenseens 39
TaADIE 4.2-3 PPOULLC ceverireeiieeiieeiiett ettt ete et e s testte st e bt e bt esteessessaessaessaessaesseenseensesnseessesseensennseensens 39
Table 4.2-4 DORECQUESE.C....eeuvieeieeiieiietieiteeteeteete st et et esbeeeteseaessaesseesseeseessesnsesssesseenseensenssenseens 40
Table 4.2-5 DOCONIIOLC «..eeiuiiiiiiiiieitiettet ettt ettt ettt et ebeesaee b e b e eseesaeens 40
Table 4.2-6 DOBUIK.C.....eiiiiiiieiieeiietee ettt ettt st sb et et et eaee e 40
Table 4.2-7 DOReqUEStPIINIETCIASS.C..uvveieriieiieiiiieiee ettt ettt ettt ebeesbeesebeesebeessseeseaeensseas 41
Section 5 Sample Program Operation

Table 5.1 Interrupt Types and Functions Called on Branching..............ccooeeevvenieniieciiecienienienenn 45
Table 5.2 Transfer Types and UEPIRS..........cccoociiiiiiiiiieieieece et 47
Table 5.3 UEPIR SETHNESeeruietiiiiiieitiesteete ettt sttt ettt sttt et seeesaeeneeens 48

Rev. 1.0, 04/02, Page ix of x
RENESAS

Rev. 1.0, 04/02, page x of x
RENESAS

Section1 Overview

These application notes describe how to use the USB Function Module that is built into the
H8S/2215, and contain examples of firmware programs.

The features of the USB Function Module contained in the H8S/2215 are listed below.

* Aninternal UDC (USB Device Controller) conforming to USB 1.1
e Automatic processing of USB controls

» Automatic processing of USB standard commands for endpoint O (some commands need to be
processed through the firmware)

e Full-speed (12 Mbps) transfer supported
» Variousinterrupt signals needed for USB transmission and reception are generated.

» Internal system clock (16 MHZ) multiplied by three or external input clock (48 MHz) can be
selected as the USB operating clock by the USB clock selector in the clock pulse generator.

e Aninterna bustransceiver
» Endpoint configuration selectable

Endpoint Configurations

Endpoint Name Transfer Max. Packet FIFO Buffer DMA
Name Type Size Capacity Transfer
Endpoint 0 EPOs Setup 8 bytes 8 bytes -

EPOI Control In 64 bytes 64 bytes -

EPOo Control Out 64 bytes 64 bytes -
Endpoint EPn Interrupt (in) 64 bytes 64 bytes (variable) -
(optional)
Endpoint EPn Bulk-in 64 bytes 64 x 2 (128 bytes) Possible
(optional)
Endpoint EPn Bulk-out 64 bytes 64 x 2 (128 bytes) Possible
(optional)
Endpoint EPn Isochronous 128 bytes 128 x 2 (variable) -
(optional) (in)
Endpoint EPn Isochronous 128 bytes 128 x 2 (variable) -
(optional) (out)

Rev. 1.0, 04/02, page 1 of 68
RENESAS

Endpoint Name Transfer Max. Packet FIFO Buffer DMA

Name Type Size Capacity Transfer
Endpoint EPn Bulk-in 64 bytes 64 x 2 (128 bytes) Possible
(optional)

Endpoint EPn Bulk-out 64 bytes 64 x 2 (128 bytes) Possible
(optional)

Endpoint EPn Interrupt (in) 64 bytes 64 bytes (variable) -
(optional)

Figure 1.1 shows an example of a system configuration.

‘‘‘ | USB Function

Parallel cable

. MS2215CP

Figurel.1l System Configuration Example

This system is configured of the H8S/2215 Solution Engine made by Hitachi ULSI Systems Co.,
Ltd. (hereafter referred to as the MS2215CP), a printer with a parallel port, and a PC containing
Windows 2000 operating system.

The system can receive print data, transmitted from a host PC to the USB, by means of the
MS2215CP, and after converting them into the parallel format, can output the print datato a
printer. In addition, the system can use USB printer-class device drivers that are standard itemsin
Windows 2000, as well as printer device drivers.

This system offers the following features.

The sample program can be used to evaluate the USB module of the H8S/2215 quickly.
The sample program supports USB control transfer and bulk transport.

An E6000 can be used, enabling efficient debugging.

Additional programs can be created to support interrupt transfer and isochronous transfer. *

> w DN

Note: * Interrupt transfer and isochronous transfer programs are not provided, and will need to be
created by the user.

Rev. 1.0, 04/02, page 2 of 68
RENESAS

Section 2 Overview of the USB

This chapter describes USB standards, including connection topology, transfer methods, and data
formats, for your reference in developing USB systems. For details on these standards, refer to
Universal Serial Bus Specification Revision 1.0.

21 USB Connection Topology

Figure 2.1 shows USB connection topology. A USB comprises a Host Controller mounted on a
PC and devices that are connected to the Host Controller. By using a special device called a hub,
you can expand the bus in order to increase the number of devices that can be connected to it. A
particular type of hub, one that is directly connected to the Host Controller, is called the root hub,
which isnormally housed in the PC system unit. A maximum of five levels of hubs (except for
the root hub) can be connected (or five hubs when connected serially).

PC

Host controller

Hub| Route hub |Device

ouT

Device

30m max.

Device

Figure2.1 Connection Topology

Rev. 1.0, 04/02, page 3 of 68
RENESAS

Host controller

Figure2.2 Logical Topology

The Host Controller keeps track of devices by assigning 7-bit addresses to them. Because a
temporary address (default address: 0000000b) is needed that is used after adeviceis connected
until an address is assigned to it, the maximum number of devices, including the hubs, that can be
connected to the Host Controller is 127.

The actual connection topology takes the Tree form, shown in figure 2.1; however, the logical
topology will be the Star form, illustrated in figure 2.2, aform in which the Host Controller and
the devices perform one-to-one communicationsin atime division protocol. All time-division
schedules (even when a device is connected via a hub, it acts as an image that is directly linked to
the Host Controller) are decided by the Host Controller. Therefore, unless acommand is issued by
the Host Controller (for details, see Token Packetsin section 2.6.1), adevice never sends data to
the Host Controller.

Devices can operate in two transfer modes: full speed device mode that performs high-speed
transfers (12 Mbps), and low-speed device mode that performs slow transfers (1.5 Mbps).

The direction in which adata transfer takes place is defined from the point of view of the Host
Controller: the direction in which data flow from the Host Controller to adevice is designated the
OUT direction; the direction in which data flow from a device to the Host Controller is designated
the IN direction.

In the OUT direction, data are transferred in a broadcast mode, wherein they are transferred to all
devicesthat are connected. Only data with a speed of 1.5 Mbps are transferred to low-speed
devices. (12 Mbps data are filtered by either the root hub or regular hubs. For further details see
Specia Packetsin section 2.6.1.)

Token packets that are transmitted in the broadcasting OUT direction contain address information
(see Token Packetsin section 2.6.1 for details) that enables the devices to identify the data being
sent. Based on the address information, only the device to which the address applies operates and
responds to the data.

Rev. 1.0, 04/02, page 4 of 68
RENESAS

22 USB Signal Transfer M ethod

The USB comprises two signal lines (D+, D-) and two power lines (Vbus, GND). Matching this
organization, the USB cableis also internally comprised of four lines asillustrated in figure 2.3.
In cables for full-speed devices, the signal lines (D+, D-) have atwisted pair structure. Although
full-speed device cables require shielding in addition to twisted pairs, cables used for low-speed
devices require neither twisted pairs nor shielding. The maximum cable length supportedis5 m
for full-speed devices and 3 m for low-speed devices, for which neither twisted pairs nor shielding
isrequired.

VBus
:booommmommocﬁ: D+
D_
/
—*= GND
Twisted pair Shield

Note: Neither twisted pairs nor shielding are required in low-speed device cables.

Figure2.3 USB Cable Configuration (for full-speed devices)

Data are transferred by means of differential signalsusing D+, D-. The transfer method employed
isthe Non-Return to Zero Invert (NRZI) method, illustrated in figure 2.4, wherein when the source
data are 0, D+ and D- invert, and when they are 1, no inversion occurs. In NRZ, the occurrence of
successive 1sin the source data resultsin alack of signal changes, which creates the potential
problem of a shift in synchronization between host and device. To prevent this problem, when
successive 1soccur in 6 or more bits, a0 isinserted to cause an inversion (in a process called bit
stuffing). The Osinserted in this manner are removed by the receiving device after the data are
transferred.

In a state called the idle state where no data are transferred, in full-speed devices D+ becomes the
high level, and D- the low level; in low-speed devices, D+ becomes the low level, and D- the high
level, according to the pull-up resistance in the device.

In the USB, data are transferred in packets (see section 2.6 for details on packets).
The leading packet is called SYNC (synchronization) with a fixed value of 00000001.

The portion of apacket in which the first bit of SYNC isinverted from D+ or D-from theidle state
iscalled a SOP (Start Of Packet) (figure 2.6).

The end of a packet isa special signal for identifying the end of the packet, where both D+ and D-
are low levels (2-bit time), which is called an EOP (End Of Packet) (figure 2.7).

Rev. 1.0, 04/02, page 5 of 68
RENESAS

In the figures below, 2.4, 2.5, 2.6, and 2.7, the post NRZI differential signal waveform isfor the
connection of afull-speed device. For the connection of alow-speed device, D+ and D- are
reversed. (Note: In the EOP, both D+ and D- assume the low level, irrespective of the transfer
speed for the device.)

1 bit time (full speed: approx. 83 ns; low speed: approx. 667 ns)

I—— 1
Sourcedata 1 ; 1 \ O f 1 . 1
* Inverted when H '
source data is 0 : : :
Differential signal D+ E V E ;
after NRZI D- ! ' '

Source data 1

Data after bit stuffing

Differential signal D+
after NRZI D-

Source data i E E E E E E ’I
(No data) 4'\‘ 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1
Differential signal D+ v v y v v y v
after NRZI D- A A A A A A A

Figure2.6 SOP and SYNC

Rev. 1.0, 04/02, page 6 of 68
RENESAS

<~——Data prior to EOP ——»i«—EOP —»1<«—— Idle ——

Differential signal D+ |
after NRZI D- ! '

Both are
low level

Figure2.7 EOP

For each device, the power lines (Vbus, GND) can supply a maximum of 500 mA of current at a
supply voltage of 5V.

The available current immediately after a connection is 100 mA maximum. After aconnection is
made, initialization is performed using a standard command (see Standard Command in section
2.7.2) using amaximum current of 100 mA.

In these settings, the Host Controller reads information on the maximum current used by devices

that are connected (thisinformation is contained in the Descriptor information to be explained in

section 2.8). Based on thisinformation, if the Host Controller determines that there are no power
supply problems, the devices are allowed to increase their power consumption for the first time.

In the case of devices that require a current greater than 500 mA, a power supply must be provided
in the devices themselves.

Note: If ahub that is not self-powered (a bus-powered hub) is used, the maximum current that
can be used per port is subject to a 100 mA limitation. If a device requiring more than 100
mA is connected to a bus-powered hub, during the initialization process the Host
Controller determines that an adequate power supply cannot be provided. In this case, the
Host Controller controls the bus-powered hub so that the latter will not supply power to
any of the devices that are connected to it.

Rev. 1.0, 04/02, page 7 of 68
RENESAS

23 Recognizing a Connection vs. Non-Connection

The side downstream from the Host Controller and the hub (the device side) pulls down the D+
and D- at 15K Q. On the other hand, the device side pulls up the D+ for full-speed devices and the
D- for low-speed devices at 1.5KQ. Consequently, when a device is connected to the Host
Controller or ahub, the Host Controller or the hub can recognize the transfer rate of the device
according to which signal line, D+ or D-, ispulled up. Table 2.1 shows the relationship between
the states of D+ and D- for the Host Controller/hub. Figures 2.8 and 2.9 illustrate actual circuit
configurations.

Table2.1 Relationship between Signal Lines and Connected Devices

D+ D- Connected Device
Pulled up Pulled down Full-speed device
Pulled down Pulled up Low-speed device
Pulled down Pulled down Device not connected
Pulled up Pulled up Disabled

Pull-up resistor
1.5kQ
USB transceiver | P+ UsB USB cable UsB D+ USB transceiver
(High-speed/ D- conn. t\Nistechair/shielding): conn. D- | (High-speed)
low-speed) Type A required, 5m max. Type B
* Power lines
omitted. See 2.2.
Pull-down resistor
15kQ x 2
Host-Controller/hub Full-speed device
Figure2.8 For Full-Speed Devices
Pull-up resistor
1.5kQ
. D+ D+

USB transceiver USB USB cable .. uUsB USB transceiver

(High-speed/ D- conn. twisted pair/shielding conn. D- (High-speed)

low-speed) Type A [\/not required, 3m max/ | ype B

* Power lines
omitted. See 2.2
Pull-down resistor
15kQ x 2
Host Controller/hub Full-speed device

Figure2.9 For Low-Speed Devices

Rev. 1.0, 04/02, page 8 of 68
RENESAS

24 USB Connector

The USB uses two types of connectors: aflat Type A connector used on the Host Controller side
(figure 2.10) and a square Type B connector used on the device side (figure 2.11). The different
connector configurations are designed to prevent physical misconnection (in the USB, connections
between Host Controllers or devices are prohibited).

In the case of a hub, a Type B connector is used on the upstream side (the Host Controller side),
and a Type-A connector is used on the downstream side (the device side).

Figure2.10 TypeA Connector Figure2.11 TypeB Connector

25 Endpoint

Each device has FIFOs called endpoints (EPs). When sending or receiving data, the Host
Controller and the device do so through endpoints. The number of endpoints that a device can
have depends on the transfer rate for the device and is defined asin table 2.2.

Table2.2 Number of Available Endpoints

Device Transfer Rate End-Point No. Max. No. of End-Points
Full speed (12 Mbps) 0to 15 16 each for INJOUT
Low speed (1.5 Mbps) Oto2 3 each for IN/OUT

In table 2.2, the endpoint with number 0 is used for control transfers (section 2.6.2). All devices
must have endpoint 0. Any number of endpoints 1 ~ 15 can be used. The direction in which data
flow through an endpoint or the application of an endpoint can be user-defined as part of adevice
design process. In USB1.0, however, interrupt transfers can occur only in the IN direction
(section 2.6.5).

For endpoints, the maximum amount of data that can be sent or received is defined for each
transfer method. Data greater than a specified side cannot be sent or received through a given
endpoint. However, any data less than the allowed maximum size (short packets) can be sent or
received. Table 2.3 shows the endpoint data sizes for each transfer method. For each endpoint,
any data size within the limits defined in table 2.3 can be specified.

Rev. 1.0, 04/02, page 9 of 68
RENESAS

Table2.3 Max. datasize(in bytes)

Transfer Method

Device Control Isochronous
Bulk transfer Interrupt transfer

transfer rate transfer transfer

Full speed 8,16,32,64 8,16,32,64 010 64 (any 0 to 1023 (any
integer) integer)

Low speed 8 Not available 0 to 8 (any integer) Not available

Note: See sections 2.6.2 to 2.6.5 for transfer methods.

2.6 USB Packets and Data Transfer

In the USB, data are transferred in units of packets. A packet isthe smallest unit of datain USB
data. The USB protocol communicates using a combination of several packets, and this
combination isreferred to as atransaction. In atransaction, packets appear in the following order:
token, data, and handshake.

A set of transactionsis referred to as aframe (figure 2.12).

Frame (1 ms)

Setup IN ouT
transaction transaction transaction
A A N
r N\ N7 N
SOF ||SETUP | DATAO | ACK | IN | DATAL1| ACK | OUT | DATAO | ACK | -~ | SOF | SETUP | DATAO

t t ‘\ }
SOF packet Data packet

Handshake packet In each frame, the portion
devoid of a transaction is idle.

Token packet

Figure2.12 Transactionsand Frames

Rev. 1.0, 04/02, page 10 of 68
RENESAS

A frame begins with an SOF packet that is issued every millisecond and continues on to the next
SOF. The scheduling of transactionsin aframe is handled completely by the Host Controller.

In each frame, the portion that is not filled with a transaction (the portion devoid of any data)
assumes an idle state, as explained in section 2.2.

Transactions are sent and received between the Host Controller and adevice according to a
specified sequence. Following isadescription of packetsused in aUSB, aswell asthe
characteristics and the format of each transfer method.

2.6.1 Overview of Packets

Packets used in the USB must conform to prescribed formats. Asshown in table 2.4, packets can
be classified into five categories: SOF, token, data, handshake, and special. These categories are
identified using a4-bit PID (packet ID).

Table2.4 List of PIDs

PID Type PID Name Send Device PID[3:0]
SOF SOF Host controller 0101
Token ouT Host controller 0001
IN Host controller 1001
SETUP Host controller 1101
Data DATAO Host controller/device 0011
DATA1 Host controller/device 0010
Handshake ACK Host controller/device 0010
NAK Device 1010
STALL Device 1110
Special PRE Host controller 1100

A packet takes the following format: a packet begins with SYNC, followed by PID, PID, and CRC
(the handshake or special packet does not have a CRC), and ends with an EOP. SYNC
(synchronization) indicates the beginning of a packet and transmits a fixed value of 00000001.
The receiver of the packet performs a synchronization by using SYNC. PID indicates the type of
packet, and each type has aunique value. PID is a bit-by-bit binary complement of PID. This
complement permits the detection of errors. CRC (Cyclic Redundancy Check) isthe result of
CRC-checking of each packet with the exception of SYNC, PID, and PID.

RENESAS

Rev. 1.0, 04/02, page 11 of 68

SOF (Start Of Frame)

An SOF is a packet that isissued by the Host Controller at millisecond intervals. Theinterval
from on SOF to another is called aframe. SOFs are used to synchronize an entire device. In
addition, they are used to generate reference signals for isochronous transmissions (section 2.6.4)
or suspend-prevention signals (generated by the hub/root hub upon receipt of a keep-alive signal:
SOF) for low-speed devices. Although in terms of classification an SOF belongs to the token
packet, because it is used differently from other tokens as described above, it represents a separate
category.

SYNC | PID ' PID Frame no. CRC | EOP | PIDtype
8 bits | 4 bits | 4 bits 11 bits 5 bits | 2 bits | SOF=0101

Figure2.13 SOF Packet
Token

A token, which can only be issued by the Host Controller, is used to inform adevice that a
command is being sent or the direction in which data are to be sent. Several types of token
packets exist, as described below. A token packet also includes address information that enables a
given device whether data being sent from the Host Controller are addressed to it, and end-point
information that identifies the endpoint for a device.

[OUT token]
The Host Controller issues an OUT token before sending data to a device.
[IN token]

The Host Controller issues an IN token when requesting the transmission of datafrom a
device.

[SETUP token]

This token isissued when a command is transmitted in a control transfer. See section 2.6.2 for
details on control transfers.

SYNC | PID ! PID ADDR ENDP | CRC | EOP | PID type

8 bits | 4 bits | 4 bits 7 bits 4 bits | 5 bits | 2 bits OuUT=0001
IN=1001
SETUP=1101

Figure2.14 Token Packet

Rev. 1.0, 04/02, page 12 of 68
RENESAS

Data

The Host Controller and devices use the data packet when transmitting data. Two types of data
packets exist, differentiated by whether PID is DATAO or DATAL. Transmission of these data
packets in an alternating fashion can detect any missing data, which enhances the reliability of the
transmission process. (Isochronous transmissions use data packets that are fixed at DATAO.)

SYNC | PID PID DATA CRC | EOP | PID type
8 bits | 4 bits } 4 bits 0~1023 bytes 16 bits | 2 bits | DATA0=0011
DATA1=1011

Figure2.15 Data Packet
Handshake

A handshake enables the receiver to notify the sender of whether the data have been received
normally. The following types of handshake exist: (Note: A handshake isnot issued in an
isochronous transfer.)

[ACK]

This handshake is issued when either the Host Controller or a device has received a data packet
normally.

[NAK]
A NAK isissued by a device to the Host Controller under the following conditions:

O Although OUT token packets and data packets were received from the Host, data cannot be
received because the endpoint is full.

O Although an IN token packet was received from the Host, the data to be sent are not yet
ready.

When receiving NAK, in the case of an OUT transaction, the Host Controller re-issues an
OUT token and the data that failed to be received; in the case of an IN transaction, the Host
Controller re-issues an IN token later. Because the Host Controller is defined as being able to
send and receive data packets at any time, the Host Controller never returns NAK to adevice.

[STALL]

A STALL handshake is issued by a device when an error condition occurs and the device
requires intervention by the Host.

Rev. 1.0, 04/02, page 13 of 68
RENESAS

[No response] (no handshake packets i ssued)

If an error isfound in a PID or a CRC result does not match, a handshaking is not performed,
and no response is generated. |f ano response condition lasts more than afixed length of time
(16~18 bit time) after transmitting data, the Host Controller or a device goes into atimeout
state and recognizes that a communication error has occurred. Subsequently, the Host
Controller re-issues the token and data for which an error condition was recognized.

SYNC | PID ! PID | EOP PID type

8 bits | 4 bits' 4 bits | 2 bits ACK=0010
NAK=1010

STALL=1110

Note: Packets not issued if no response

Figure2.16 Handshake Packet
Special

A PRE(PREAMBLE) packet is defined as a special packet. The PRE packet indicatesto the
device that alow-speed transfer will be performed following it.

A full-speed data transfer to low-speed device can cause an error.
The PRE packet can prevent this error.

When dealing with alow-speed device, hubs (including the root hub) filter out any full-speed data
so that they are not transmitted to the low-speed device. However, when receiving a PRE packet,
the hubs stop filtering, and begin to transfer the low-speed data received from the Host Controller
to the low-speed device.

Although low-speed data are al so transferred to full-speed devices, because low-speed data cannot
generate valid full-speed PIDs, thereis no possibility of full-speed devices producing an error due
to the low-speed data.

SYNC | PID ! PID | EOP PID type
8 bits | 4 bits ! 4 bits | 2 bits PRE=1100

Note: Low-speed data following this packet

Figure2.17 Special Packet

Rev. 1.0, 04/02, page 14 of 68
RENESAS

2.6.2 Control Transfer

A control transfer is used to issue acommand to adevice. Thisisthefirst transfer that occurs
when adevice is connected to the Host Controller. In this case, the Host Controller uses a control
transfer on the new devicein order to obtain information on the device. Therefore, whether they
are full-speed devices or low-speed devices, al devices must support this transfer method.

Control transfers can be divided into a setup stage, a data stage, and a status stage.

Note: Inthe following description of transfer methods, which side sends a packet isindicated on
the right side of the packet, i.e., (H) indicates the Host Controller side, (D) the device side.

[Setup Stage]

Thisisthefirst stagein acontrol transfer. In the setup stage, the Host Controller issues a
command to adevice and provides instructions on what is to be sent or received. According to
this command, the device sets up the data to be sent to the Host Controller or prepares
receiving data from the Host Controller.

The setup stage for a control transfer consists of setup transactions. The size of the data packet

for a setup transaction is always 8 bytes. The Host Controller stores the command being sent
in the data packet.

The PID for adata packet is always DATAO. The handshake packet for a setup transaction is
the packet that the device sendsto the host. In this case, the device must always return ACK.

Returning either NAK or STALL in asetup transaction is prohibited. Therefore, devices must
always be prepared to receive a setup transaction.

Sender
I Setup Token I (H)

Data (8bytes fixed)

H
PID: DATAO fixed)

ACK (D)

Figure2.18 Setup Stage

Rev. 1.0, 04/02, page 15 of 68
RENESAS

[Data Stage]

In the data stage, according to the command received in the setup stage, the device repeats the
receipt of the data being sent or the transmission of the data to be sent.

The direction of data never changes in the midst of a data stage.

Inan IN direction data stage, if the data to be sent by the device have depleted, the device uses
either a short packet (a data packet with a byte count less than the maximum data size specified
for the device) or a O-byte data packet to notify the Host Controller of the end of transmission.
Some commands do not have any data to be sent or received, in which case the data stage itself
is omitted.

In cases where data are sent/received repeatedly, the PID for the data packets toggles
DATA1-DATAO-DATAL.

Sender Sender
| IN token I (H) | OUT token I (H)
DATAO/ DATAO/
DATAL (D) DATAL (H)
(toggled on trans.) (toggled on trans.)
ACK H) ACK (D)

Figure2.19 Datastage (Ieft: IN, right: OUT)
[Status Stage]

A status stage begins when atoken is transmitted in a direction opposite to the data stage (or
the setup stage if there is no data stage). For example, if an IN token isissued in a data stage
and data are transferred from a device to the Host Controller, the status stage begins when an
OUT tokenisissued. Thus, the data stage terminates when the direction of datais reversed.

Asillustrated in figure 2.20, a status stage is associated with three patterns: an IN direction
data stage, an OUT direction data stage, and no data stage.

The data packet following the transmission of atoken in the status stage must contain a packet
with a O-byte data length with aDATAL1 PID.

Rev. 1.0, 04/02, page 16 of 68
RENESAS

IN dir. data stage
(Fig. 2.19, left)

OUT dir. data stage
(Fig. 2.19, right)

Setup stage only

(Fig. 2.18)

Sender Sender Sender
| OUT token I (H) | IN token I (H) | IN token I (H)
DATA1 DATA1 DATA1
| (0 byte) H) | (0 byte) | (D) | (0 byte) (D)
ACK (D) ACK (H) ACK (H)

Note: left: after IN data stage
middle: after IN data stage
right: after setup stage only

Figure2.20 Status Stage

The reason that the reversal of direction brings on the status stage is that the data stage is defined
so that it can be terminated even before the Host Controller has received or transmitted all the data
that were requested by means of a setup stage command.

Figure 2.21 shows an example of a control transfer that has an IN direction data stage. Suppose
that the Host Controller requests 32-byte data in the setup stage; after the setup stage has ended,
the Host Controller issues an IN token; according to this command, the device sends 88-byte data
(if the maximum packet size is 88 bytes); and the Host Controller issues ACK. At this point, the
device will have sent 8 bytes out of the 32 bytes. If more data are needed, the Host Controller re-
issuesthe IN token. When no more data are needed, the Host Controller issues the OUT token.
The OUT token changes the direction of data, and at this time the status stage is brought on, and
the control transfer ends.

Data stage <

Status stage <

Figure2.21 Data Stage Interrupted

Rev. 1.0, 04/02, page 17 of 68
RENESAS

2.6.3 Bulk Transfer

A bulk transfer is used to send large quantities of data without error when the transfer processis
not subject to atime constraint. In abulk transfer, the data transfer speed is not guaranteed, but
dataintegrity is guaranteed. If adataerror isfound (e.g., a CRC mismatch), the receiver does not
issue a handshake. If ACK is not returned, the sender re-transmits the affected data. If thereisno
room in the FIFO or the data to be sent are not yet ready, the sender issues NAK. The amount of
data that can be transferred in a bulk transfer can be specified in the MAX packet size. A bulk
transfer cannot be used with low-speed devices.

If an IN token isissued by the Host Controller (left sidein figure 2.22), data are transmitted from
the device and a handshake isissued by the Host Controller.

If an OUT token isissued by the Host Controller (right side in figure 2.22), data are transmitted
from the Host Controller, and a handshake is issued by the device.

In both bulk IN/OUT, each time a data send/receive action is repeated, the PID for the data packet
toggles DATAO-DATA1-DATAO...

Sender Sender
IN token I (H) I OUT token I (H)
DATAO0/ DATAO0/
DATAL (D) DATAL (H)
(toggled on trans.) (toggled on trans.)
(H) (D)
ACK ACK

Figure2.22 Bulk Transfer (left: IN, right: OUT)

Rev. 1.0, 04/02, page 18 of 68
RENESAS

2.6.4 I sochronous Transfer

An Isochronous transfer is used to send continuous data, such as audio data and moving pictures.
Isochronous transfers are priority-scheduled so that a data transfer occurs at a rate of once per
frame (1 ms). In an Isochronous transfer, however, offset values from an SOF packet cannot be
guaranteed. In other words, the first transfer can occur at the end of aframe and the next transfer
can occur at the beginning of the frame. Devices are required to be able to handle these
contingencies.

I sochronous transfers cannot be used with low-speed devices.
Asshown in figure 2.23, Isochronous transactions do not contain handshake packets.

Unlike a bulk transfer, in an | sochronous transfer, data are not re-sent even if there are errorsin the
datathat are transferred. The maximum size of a data packet that can be specified for an
Isochronous transfer is 1023 bytes.

The PID for the data packet is fixed at DATAO (the PID does not toggle).

Sender Sender
IN token I H) I OUT token I (H)
DATAQO,fixed DATAO,fixed
(no toggle) ©) (no toggle) Q)

No handshaking

Figure2.23 lIsochronous Transfer (Ieft: IN, right: OUT)

265 Interrupt Transfer

In an interrupt transfer, the Host Controller generates IN transactions for devicesin specified
cycles. Devices can specify to the Host Controller the cycle in which transactions are to be
generated. A cycle can be specified in 1 to 255 frames. The Host Controller startsan IN
transaction at least once per specified cycle. Note that although devices are not accessed in
intervals less than a specified cycle, they can be accessed in intervals greater than a specified
cycle. (Only IN interrupt transfers are supported in USB1.0, but USB1.1 supports both IN and
OUT interrupt transfers.)

Rev. 1.0, 04/02, page 19 of 68
RENESAS

Interrupt transfers can be used with both full-speed/low-speed devices.

The maximum data packet size that can be specified is 64 bytes for full-speed devices and 8 bytes
for low-speed devices.

Each time a data receive action is repeated, the PID for the data packet toggles
DATAO-DATA1-DATAO..

In an interrupt-in transfer, if the Host Controller generates an IN token and the device has datato
transmit, the device sends a data packet, asillustrated in figure 2.24 (a) (Ieft). If the device has no
transmit data when an IN token is generated, the device issues NAK instead of sending adata
packet, as shown in figure 2.24 (a) (right)

Sender When the device When the device
can receive data cannot receive data
(H) ouT ouT
DATAO/ DATAO/
(H) DATA1 DATAL
(toggled on trans.) (toggled on trans.)
(D) ACK NAK

Figure2.24 (a) Interrupt-In Transfer

In an interrupt-out transfer, the Host Controller sends an OUT token then data to the device. When
the device has received the data, it sends an ACK packet, asillustrated in figure 2.24 (b) (left). If
the device failed to receive data following the OUT token sent from the host controller, the device
sends a NAK packet instead of an ACK packet, as shown in figure 2.24 (b) (right)

Sender When the device When the device
can receive data cannot receive data
(H) ouT ouT
DATAO/ DATAO/
(H) DATA1 DATAL
(toggled on trans.) (toggled on trans.)
(D) ACK NAK

Figure2.24 (b) Interrupt-Out Transfer

Rev. 1.0, 04/02, page 20 of 68
RENESAS

2.7

USB Device Framewor k

For plug-and-play, for the USB, detailed procedures are established from connecting the USB
cable to configuring the system. This section explains those procedures.

2.7.1 Device States

USB devices can have the various states shown in figure 2.25. A device can be used only when it
has transited to the configuration state.

Hub Reset.

S

Attached | \

Hub Configured.

Bus inactive

r\\ Bus activity

<Attached state>
The device, attached to the root hub or a
hub, is not powered on.

q> Default

I Set Address

Bus inactive
Suspended,
Bus activity
request I
Bus inactive
Suspended
Bus activity

I Set Configuration request I

Configured

<_IE Bus inactive
Suspended

Bus activity

<Powered state>

The root hub or hubs have been
configured by the Host Controller, and
they are supplying the power to the device.
In this state, all signals are ignored until
the reset signal is received.

<Default state>
The device that has been reset is
automatically assigned address 0.

<Address state>

A device-specific address other than 0

is assigned with the SetAddress command
(Standard Commands in section 2.7.2).

<Configured state>
The configuration has been set by the
Host.

<Suspended state>

If no bus traffic is detected for more than
3ms, the device goes into the power-
saving mode. After returning from this
state, the device regains the original state.

Figure2.25 USB Device State

RENESAS

Rev. 1.0, 04/02, page 21 of 68

272 Device Request

For a device to be able to transit to the configuration state, it must respond to the commands issued
by the Host Controller. Commandsissued by the Host Controller are called device requests, and
their format is defined by the USB standard. The Host Controller issues device requestsin the
setup stage in a control transfer.

Three types of device requests are available:
Standard commands

These commands are defined in the USB standard. All devices must support these commands.
Table 2.5 shows alist of standard commands.

For details on standard commands, refer to the standards documentation.

Table25 List of Standard Commands

Command Name Function Data Stage Direction of
Data Stage

Clear_Feature Clears the endpoint stall. No

(Endpoint_stall)

Clear_Feature Clears the device remote wakeup

(Device_Remote_Wa eature. No

keup)

Get_Configuration Gets configuration information. Yes IN

Get_Descriptor Gets device descriptor

(Device) information. Yes IN

Get_Descriptor Gets configuration descriptor

(Config) information. Yes IN

Get_Descriptor Gets string descriptor

(String) information. Yes IN

Get_Interface Gets interface information. Yes IN

Get_Status(Device) Gets device status information. Yes IN

Get_Status(Interface) Gets interface status information. Yes IN

Get_Status(EndPoint) Gets endpoint status information. Yes IN

Set_Address Sets the device address. No

Rev. 1.0, 04/02, page 22 of 68
RENESAS

Command Name Function Data Stage Direction of
Data Stage
Set_Descriptor Sets the device descriptor.
) Yes Out
(Device)
Set_Descriptor Sets the configuration descriptor.
] Yes Out
(Config)
Set_Descriptor Sets the string descriptor.
] Yes Out
(String)
Set_Configuration Sets configuration. No
Set_Feature Sets the endpoint to the Stall
- stage No
(EndPoint_Stall) :
Set_Feature Sets the device to the wakeup
(Device_Remote_Wa State. No
keup)
Set_Interface Sets an interface. No
Posts a specific frame number on
Sync_Frame the endpoint during an Yes out

Isochronous transfer (if a special

number is required).

Class command

Class commands other than hub commands are established by corporate groups, subject to
certification by the USB-IF (USB Implementers Forum). Several classes exist: audio class,
common class, HID (Human Interface Device) class, and printer class.

Vendor command

Vendor commands can be defined freely by device designers, provided that the commands

conform to the same format as other commands.

RENESAS

Rev. 1.0, 04/02, page 23 of 68

2.8 Descriptor

Each USB deviceis associated with what is called descriptor information that indicates the type,
characteristics, and attributes of the device itself. By obtaining device information on a device, the
Host Controller can recognize the type of device that is connected to a given bus.

Standard USB devices have the following descriptors: device, configuration, interface, and

endpoint.

These descriptors are described in tables 2.6, 2.7, 2.8, and 2.9.

Table2.6 Device Descriptor

Field Size (in bytes) Description

bLength 1 Descriptor size (fixed at 0x12)

bDescriptorType 1 Descriptor type (fixed at 0x01)

bcdUSB 2 USB version, represented in BCD

bDeviceClass 1 Class code: 0: no class; OxFF: vendor class

1 to OXFE: special class
bDeviceSubClass 1 Subclass code
bDeviceProtocol 1 Protocol code: 0: no specific protocol used
O0xFF: vendor-specific protocol

bMaxPacketSize0 Maximum packet for endpoint O

idvVendor 2 Vendor ID (assigned to manufacturers by the
USB-IF)

idProduct 2 Product ID (assigned to each device by
manufacturer)

bcdDevice 2 Device version, represented in BCD

iManufacturer 1 Index to a string descriptor indicating the
manufacturer's name

iProduct 1 Index to a string descriptor indicating the device
name

iSerialNumber 1 Index to a string descriptor indicating the serial
number of the device

bNumConfigurations 1 Number of configurable devices

Note: USB Implementers Forum

Rev. 1.0, 04/02, page 24 of 68

RENESAS

Table2.7 Configuration Descriptor

Field Size (in bytes) Description
bLength 1 Descriptor size (fixed at 0x09)
bDescriptorType 1 Descriptor type (fixed at 0x02)
wTotalLength 2 Total length of descriptor
bNumlinterface 1 Number of interfaces associated with descriptor
bConfiguration 1 Argument value (1 or higher) for the selection of
Value this descriptor using Set_Configuration
iConfiguration 1 Index to a string descriptor
bmAttributes Device power supply
Bit 7: bus power; bit 6: self-power; bit 5: remote
wakeup; bits 4 to 0: reserved
MaxPower 1 Specifies the maximum bus power consumption

in units of 2 mA.

Table2.8 Interface Descriptor

Field Size (in bytes) Description

bLength 1 Descriptor size (fixed at 0x09)

bDescriptorType 1 Descriptor type (fixed at 0x04)

binterfaceNumber 1 Zero-base index number that represents this
interface in the configurationO

bAlternateSetting 1 An argument value for the selection of alternate
settings using Set_Interface.

bNumEndpoints 1 Number of endpoints associated with a device
(exclusive of endpoint 0)

binterfaceClass 1 Class code 0: no class; OxFF: vendor class;
1 to OXFE: special class

binterfaceSubClass 1 Subclass code

binterfaceProtocol 1 Protocol code : no specific protocols used

OxFF: vendor-specific protocol
iinterface 1 Index to the string descriptor representing this

interface

Rev. 1.0, 04/02, page 25 of 68

RENESAS

Table2.9 Endpoint Descriptor

Field Size (in bytes) Description

bLength 1 Descriptor size (fixed at 0x07)

bDescriptorType 1 Descriptor type (fixed at 0x05)

bEndpointAddress 1 Endpoint address: bit 7: direction (0:OUT 1:IN);
bits 6 to 4: reserved (0); bits 3 to 0: endpoint
number

bmAttributes 1 Endpoint transfer method: bits 7 to 2: reserved

(0); bits 1 to 0: transfer method (O: control, 1:
Isochronous , 2: bulk, 3: interrupt)

wMaxPacketSize

Maximum packet size

binterval

Specifies polling intervals in units of ms.
Specify 1 for Isochronous transfers.
Ignored for bulk or control transfers.

Rev. 1.0, 04/02, page 26 of 68

RENESAS

Section 3 Development Environment

This chapter looks at the development environment used to develop this system. The devices
(tools) listed below were used when developing the system.

H8S/2215 Solution Engine (hereafter called the M S2215CP; type number: MS2215CP01_C/S)
manufactured by Hitachi ULSI Systems Co., Ltd.

Solution Engine Single-Chip Microcomputer Base Board (hereafter called the base board; type
number: MSSCBBO01) manufactured by Hitachi ULSI Systems Co., Ltd.

E6000 (type number: HS2214EPI61H) Emulator manufactured by Hitachi, Ltd.

H8S/2215 Series TFP120 User System Interface Cable (hereafter called the H8S/2215 user
cable; type number: HS2215ECN61H) manufactured by Hitachi, Ltd.

PC (Windows 95/98) equipped with an ISA, PCI, or PCMCIA slot

PC (Windows 2000/Windows Millennium Edition or Mac OS9) to serve as the USB host
Parallel-port printer

USB cable

Parallel cable

Hitachi Debugging Interface (hereafter called the HDI) manufactured by Hitachi, Ltd.
Hitachi Embedded Workshop (hereafter called the HEW) manufactured by Hitachi, Ltd.

3.1 Hardwar e Environment

Figure 3.1 shows device connections.

compiling and

[E6000 (Win95/98)

m MS2215CP
[E6000 cable

Receives data from the USB

Solution Engine single-chip
microcomputer base board

Used to install HDI and

HEW, and for program

AC adapter
included with
SolutionEnaine

Used as the USB host;
outputs printing data

Figure3.1 Device Connections

Rev. 1.0, 04/02, page 27 of 68
RENESAS

1. MS2215CP

Some jumper settings on the M S2215CP board must be changed from those at shipment.
Before turning on the power, ensure that the jumpers are set as follows. There isno need to
change any other jumpers.

Table3.1 Jumper Settings

At Shipment After Change Jumper Function

J9 1-2: Closed J9 2-3: Closed Switches the EXTALA48 pin
level

J14 1-2: Closed J14 1-2: Open Enables SRAM

J15 1-2: Closed J15 1-2: Open Enables LED

2. Solution Engine single-chip microcomputer base board
For an explanation of connection with the MS2215CP, please refer to the instruction manual
for the base board. This base board is not included with the SolutionEngine, and must be
purchased separately. The base board has a 26-pin Centronics interface connector (CN4). If the
parallel cable has a different type of connector, create a conversion connector according to
table 6.7, Connector Signal Assignment, in section 6.5.2, Centronics Interface of the
instruction manual for the base board.

3. USB host PC

A PC with Windows 2000 installed and with a USB port is used as the USB host. This system
uses printer-class device driversinstalled as a standard part of the Windows 2000 system, and
so thereis no need to install new drivers.

4, E6000
The ISA is used for the communication interface between the E6000 PC and the E6000
emulator.
The E6000 I/F board should be inserted into an |SA slot and connected to the E6000 via an
interface cable. Then, the E6000 should be connected to the MS2215CP via an H8S/2215 user
cable. After connection, start the HDI and perform emulation.

Rev. 1.0, 04/02, page 28 of 68
RENESAS

3.2 Softwar e Envir onment

A sample program, as well as the compiler and linker used, are explained.

321 Sample Program

Files required for the sample program are all stored in the H8S2215 folder. When this entire folder
with its contents is moved to a PC on which HEW and HDI have been installed, the sample
program can be used immediately. Filesincluded in the folder are indicated in figure 3.2 below.

| H882215|

/ CatProType.h CatTypedef.h SetMacro.h SetPrinterinfo.h \
SetSystemSwitch.h SetUsblInfo.h h8s2215.h tlI16c552a.h
SysMemMap.h
StartUp.c DoControl.c DoBulk.c Dolnterrupt.c DoRequest.c
DoRegestPrinterClass.c UsbMain.c ppout.c

sct.src

debugger.ABS debugger.MAP debugger.MOT BildOfHew.bat InkSetl.sub
ch38iop (folder) dwfinf (folder) log.txt

\ debugger.hds debugger.HDT debugger.HDW /

Figure3.2 FilesIncluded in the Folder

322 Compiling and Linking
The sample program is compiled and linked using the following software.
Hitachi Embedded Workshop Version 1.0 (release 9) (hereafter HEW)

When HEW isinstalled in C:\Hew, the procedure for compiling and linking the program is as
follows.*

First, afolder named Tmp should be created below the C:\Hew folder for use in compiling. (figure
3.3)

C:\
I— \Hew

\Tmp

Figure3.3 Creatinga Working Folder

Rev. 1.0, 04/02, page 29 of 68
RENESAS

Next, the folder in which the sample program is stored (H8S2215) should be copied to C:\Usr (or
can be copied to any location, then " C:\Usr\h8s2215" written in the debugger.hds file should be
modified to the path to the copied folder). In addition to the sample program, this folder contains a
batch file named BildOfHew.bat. This batch file sets the path, specifies compile options, specifies
alog fileindicating the compile and linking results, and performs other operations. When
BildOfHew.bat is executed, compiling and linking are performed. As aresult, a Motorola S-type
format file named debugger.MOT is created within the folder. This is the executable file. At the
same time, a map file named debugger.MAP and alog file named log.txt are created. The map file
indicates the program size and variable addresses. The compile results (whether there are any
errors etc.) are recorded in the log file.

Note: * If HEW isingtalled to afolder other than C:\Hew, the compiler path setting and
settings for environment variables used by the compiler in BildOfHew.bat, as well as
the library settingsin InkSet1.sub, must be changed. Here the compiler path setting
should be changed to the path of ch38.exe, the setting for the environment variable
ch38 used by the compiler should be set to the folder of machine.h, and the setting of
ch38tmp should specify the work folder for the compiler. The library setting should
specify the path of c8s26a.lib.

/I H8S2215 I \

Batch file Execution results
BuildOfHew.bat —> debugger.ABS
Execution debugger.MOT
debugger.MAP
log.txt

Figure 3.4 Compile Results

Rev. 1.0, 04/02, page 30 of 68
RENESAS

3.3 L oading and Executing the Program

Figure 3.5 shows the memory map for the sample program.

MS2215CP+bace borad

0000 0000

Vector area 448byte
0000 01BF
0000 0200

P,C,and D areas 5625byte

0000 17F8

Empty space
0040 0000

Bulk transfer data area 2Mbyte

005F FFFF

Empty area
00FF BOOO

Stack area 15617byte

O0OFF EDOO
00FF EDOO

R and B areas 465byte
OOFF EEDO
OOFF EF78

Control transfer area 72 kbytes 72byte
O00FF EFBF
Note: The memory map differs according to the compiler version, compiling conditions,

firmware upgrade, etc.

Figure3.5 Memory Map

Asshown in figure 3.5, this sample program allocates areas for vectors, P, C, and D to the on-chip
ROM area (E6000 emulation memory) in area 1, the stack, B, R, and control transfer areas to the
on-chip RAM, and the print data area to the SRAM. These memory allocations are specified by
the InkSet1.sub file in the H8S2215 folder. When modifying the program allocation, this file must
be modified.

Rev. 1.0, 04/02, page 31 of 68
RENESAS

331 L oading the Program
In order to load the sample program into the M S2215CP, the following procedure is used.

e Connect the E6000 PC in which the HDI has been installed to the E6000.
¢ Connect the E6000 to the MS2215CP via an H8S/2215 user cable.

e Turn on the power to the E6000 PC, to start up the machine.

¢ Execute debugger.hdsin the H8S2215 folder.

Through the above procedure, the sample program can be loaded into the M S2215CP.

1E Fissss, reowt tes usss symiss wred pemaw Eness) bap.

Figure3.6 Reset Request Dialog

Batch file

¥ i

Figure3.7 Command LineInput

332 Executing the Program

In order to execute the program which was loaded in section 3.3.1, Loading the Program, above,
the program counter (PC) must be set appropriately.

Select Register Window from the View menu to open the Registers window. On double-clicking
the numerical area of the register (PC) in the window, a dialog box appears, and the register value
can be changed. Use this dialog box to set the PC to H'0000 0200.

After making the above settings, select Go from the Run menu to execute the program.

Rev. 1.0, 04/02, page 32 of 68
RENESAS

34 Printing Procedure

With the program executed, insert the USB cable series B connected into the M S2215CP, and
connect the series A connected at the opposite end to the USB host PC. After control transfer is
completed, USB printing support is displayed below USB host controller in the device manager,
and the host PC recognizes the M S2215CP as a printer device.

Next, the printer driver ™ isinstalled. Open the printer from the Start menu Settings item, and
double-click on the Add a printer icon. A setup wizard is started; in port selection, check USB001
Virtual Printer Port for USB™. Specify the printer to be used (the manufacturer name and printer
model). When the wizard processing is completed, atest print should be performed; if the driver is
correctly installed, the printer will output a print test.

Notes: *1 In this sample program, bidirectional communication with the printer is not supported;
please be sure to use a printer driver included as standard with Windows 2000.
*2 If aprinter-class device has previously been connected to the host PC, the number may
be different (USB002, USB0O3, etc.). In this case, select the highest-numbered port.

Rev. 1.0, 04/02, page 33 of 68
RENESAS

Rev. 1.0, 04/02, page 34 of 68
RENESAS

Section 4 Overview of the Sample Program

In this section, features of the sample program and its structure are explained. This sample
program runs on the M S2215CP + base board, and initiates USB transfers by means of interrupts
from the USB function module. Of the interrupts from modules in the H8S/2215, there are three
interrupts related to the USB function module: EXIRQO, EXIRQ1, and IRQ6, but in this sample
program, only EXIRQO is used.

Features of this program are as follows.

Control transfer can be performed.

Bulk-out transfer can be used to receive data from the host controller.

Bulk-in transfer can be used to send data to the host controller.

The Ultral/O mounted on the MS2215CP can be used to output datato a printer.

4.1 State Transition Diagram

Figure 4.1 shows a state transition diagram for this sample program. In this sample program, as
shown in figure 4.1, there are transitions between four states.

Immediately after power is applied, the reset
state is entered.After completion of initial
settings, execution enters the main loop and
the system is in a stationary state. The names
of files which can make transitions to each
state are also shown.

Startup.c
Reset state

Completion of initial settings

Startup.c

out.c .
PP Stationary

Manual reset

tanup.c
Error generationf

Parallel output state
When there is data

Interrupt generation (EXIRQO) USB communication ends

%

uUsB
communication
state
UsbMain.c
DoRequest.c
DoControl.c
DoBulk.c

Figure4.1 State Transition Diagram

Rev. 1.0, 04/02, page 35 of 68
RENESAS

¢ Reset State
Upon power-on reset and manual reset, this state is entered. In the reset state, the H8S/2215
mainly performsinitial settings.

e Stationary State
When initial settings are completed, a stationary state is entered in the main loop. Here, the
presence of printing data from the host is constantly monitored; if there is data, the parallel
output state is entered, and data is output to the printer.

e USB Communication State
In the stationary state, when an interrupt from the USB module occurs, this state is entered. In
the USB communication state, data transfer is performed by atransfer method according to the
type of interrupt. The interrupts used in this sample program are indicated by interrupt flag
register 0 (UIFRO) to interrupt flag register 3 (UIFR3), and there are nine interrupt typesin all.
When an interrupt factor occurs, the corresponding bitsin UIFRO to UIFR3 are set.

e Error State
When an error occurs while in the USB communication state, this state is entered. In the case
of atrangition to the error state, there is a problem with the USB communication contents.
When communication is performed normally, there are no transitionsto the error state. If the
error state is entered, the firmware should be reexamined. In order to recover from the error
state, perform a power-on reset or a manual reset.

4.2 USB Communication State

The USB communication state can be further divided into three states according to the transfer
type (see figure 4.2). When an interrupt occurs, first thereis atransition to the USB
communication state, and then there is further branching to atransfer state according to the
interrupt type. The branching method is explained in section 5, Sample Program Operation.

USB communication state

l1ajsuel) [01U0D
Jajsuen ui-ying
Jajsuen no-yng

DoRequest.c DoBulk.c

DoControl.c

UsbMain.c

Figure4.2 USB Communication State

Rev. 1.0, 04/02, page 36 of 68
RENESAS

4.3 File Structure

This sample program consists of seven source files and nine header files. The overall file structure
isshown in table 4.1. Each function is arranged in one file by transfer method or function type.

Table4.1 File Structure

Filename Main purpose
Makes microcomputer initial settings
StartUp.c .
Clears ring buffer
. Discriminates interrupt factors
UsbMain.c

Sends/receives packets

DoRequest.c

Processes setup commands issued by host

DoControl.c

Executes control transfer

DoBulk.c

Executes bulk transfer

DoRequestPrinter Class.c

Processes printer-class commands

ppout.c

Controls ring buffer
Initializes printer
Outputs data to printer

CatProType.h

Declares prototypes

CatTypedef.h Defines basic structures used in the USB firmware
SysMemMap.h Defines MS2215CP memory map addresses
h8s2215.h Defines H8S/2215 registers

tl16c552a.h Defines the TL16C552A registers

SetSystemSwitch.h

Sets system operation

USBFunctionModu.h

Defines the USB function module registers

SetMacro.h

Defines macros

SetUsblnfo.h

Makes initial settings of variables needed to support USB

SetPrinterinfo.h

Makes initial settings of variables needed to support bulk-only
transport

Rev. 1.0, 04/02, page 37 of 68
RENESAS

4.4

Pur poses of Functions

Table 4.2 shows functions contained in each file and their purposes.

Table4.2-1 UsbMain.c

File in Which Stored

Function Name

Purpose

Discriminates interrupt factors, and calls

UsbMain.c BranchOfint . . .
function according to interrupt
Writes data transferred from the host
GetPacket controller to RAM.
Writes data transferred from the host
GetPacket4 controller to RAM in longwords. Ring buffer
support version.
Writes data transferred from the host
GetPacket4S controller to RAM in longwords. High-speed
version. (not used by this sample program)
PutPacket Writes data for transfer to the host controller
to the USB module
Writes data for transfer to the host controller
PutPacket4 to the USB module in longwords. Ring buffer
support version.
Writes data for transfer to the host controller
PutPacketdsS to the USB.moduIe in Iongworc.is. High-
speed version. (not used by this sample
program)
SetControlOutContents Overwrites data with that sent from the host
SetUsbModule Makes USB module initial settings
ActBusReset Clear FIFO on receiving bus reset
ACtBUSVCC Pulls up D+ and controls USB module when
the USB cable is connected or disconnected
ConvRealn Read§ data of a specified byte length from a
specified address
ConvReflexn Reads data of a specified byte length from

specified addresses, in reverse order

In UsbMain.c, interrupt factors are discriminated by the USB interrupt flag register, and functions
are called according to the interrupt type. Also, packets are sent and received between the host
controller and function modules.

Rev. 1.0, 04/02, page 38 of 68

RENESAS

Table4.2-2 StartUp.c

File in Which Stored Function Name Purpose
Sets BSC, terminals, and interrupt controller,
StartUp.c SetPowerOnSection calls initialization routines, and shifts to the
main loop
INITSCT Copies variables with initial values to RAM
- work area
. Clears RAM area used in bulk
InitMemory L
communication
InitSystem Specifies the USB clock, system interrupts,

and masks

When a power-on reset or manual reset is carried out, the SetPowerOnSection of the StartUp.c file
iscalled. At this point, the H85/2215 default settings are entered and the RAM area used for

control transfer and bulk transport is cleared.

Table4.2-3 ppout.c

File in Which Stored Function Name Purpose
Monitors the empty space in the buffer and
ActPrintOut stops bulk-out transfer if necessary
Calls bulk-out functions
Monitors the empty space in the buffer and
) restarts bulk-out transfer if necessary
ppout.c LptMain)
Passes the read pointer as argument to
LptPortWrite
LptPortOpen Initializes printer
LptPortWrite Outputs data from parallel port

In ppout.c, print data stored in RAM iswritten to the TL16C552A register, and strobe and other

signals are controlled to output data to the printer.

Rev. 1.0, 04/02, page 39 of 68

RENESAS

Table4.2-4 DoRequest.c

File in Which Stored Function Name Purpose
DecStandardCommands Decodes command issued by host
DoRequest.c controller, processes standard commands
DecVenderCommands Processes vendor commands

During control transfer, commands sent from the host controller are decoded, and commands are
processed. In this sample program, avendor ID of 045B (vendor: Hitachi) is used. When the
customer develops a product, the customer should obtain avendor 1D at the USB Implementers
Forum. Because vendor commands are not used, DecV enderCommands does not perform any
action. In order to use avendor command, the customer should develop a program.

Table4.2-5 DoControl.c

File in Which Stored Function Name Purpose
ActControl Performs setup stage for control transfer
Performs data stage, status stage for control
ActControlin transfer (data stage transferred in in
DoControl.c direction)
Performs data stage, status stage for control
ActControlOut transfer (data stage transferred in out
direction)

When acontrol transfer interrupt (EPO0TS) isinput, ActControl acquires the command, and
decoding is performed by DecStandardCommands. Next, the data stage and status stage are
performed by ActControlln and ActControlOut, according to the command type.

Table4.2-6 DoBulk.c

File in Which Stored Function Name Purpose
ActBulkOut Performs bulk-out transfer

DoBulk.c ActBulkin Performs bulk-in transfer
ActBulkinReady Performs preparations for bulk-in transfer

Processing related to bulk transfer is performed. ActBulkinReady is used only in bulk-in transfer.

Rev. 1.0, 04/02, page 40 of 68
RENESAS

Table4.2-7 DoRequestPrinterClass.c

File in Which Stored Function Name Purpose

DoRequestPrinterClass. DecPrinterClassComma

Processes printer-class command
c nds

Processing for printer class commandsis performed. In this sample program, an |[EEE 1284
database ID is not used, and so 0 is output. When using an |EEE 1284 device ID, the output value
should be set by the customer.

Figure 4.3 shows the interrel ationship between the functions explained in table 4.2. The upper-side
functions can call the lower-side functions. Also, multiple functions can call the same function. In
the stationary state, SetPowerOnSection calls other functions, and in the case of atransition to the
USB communication state which occurs on an interrupt, BranchOfInt calls other functions. Figure
4.3 shows the hierarchical relation of functions; there is no order for function calling. For
information on the order in which functions are called, please refer to the flow charts of section 5,
Sample Program Operation.

SetPowerOnSection

_INITSCT InitMemory InitSystem LptPortOpen LptMain

LptPortWrite
BranchOfInt
ActControl ActControlOut ActControlin
| | |
[[|
DecStandardCommands GetPacket SetControlOutContents PutPacket
|
[[|
ConvReflexn DecPrinterClassCommands DecVenderCommands

ActPrintOut ActBusReset SetUsbModule ActBusVcc

|
ActBulkOut

!Q—\

GetPacket GetPacket4

Figure4.3 Interrelationship between Functions

Rev. 1.0, 04/02, page 41 of 68
RENESAS

Rev. 1.0, 04/02, page 42 of 68
RENESAS

Section 5 Sample Program Operation

In this chapter, the operation of the sample program is explained, relating it to the operation of the
USB function module.

51 Main L oop

When the microcomputer isin the reset state, the internal state of the CPU and the registers of
internal peripheral modules are initialized. Next, function SetPowerOnSection in StartUp.C is
called to initialize the CPU. Figure 5.1 isaflow chart for the SetPowerOnSection function
operation.

StartUp.c <SetPowerOnSection>

|Microcomputer initial settingsl
After initial values have been set,
| this program enters the main loop.
| RAM areas are constantly monitored
for the presence of pint data. If print
| data is present, the data is output to
the printer as it appears.

| RAM is cleared to 0

| Variables are initialized |

Print data present?

| Output to printer

]

Figure5.1 Main Loop

52 Typesof Interrupts

Asexplained in section 5.1, State Transition Diagram, the interrupts used in this sample program
areindicated by the interrupt flag registers 0 to 3 (UIFRO to UIFR3); there are atotal of nine types
of interrupts. When an interrupt factor occurs, the corresponding bitsin the interrupt flag register
are set to 1, and an EXIRQO interrupt request is sent to the CPU. In the sample program, the
interrupt flag registers are read as aresult of thisinterrupt request, and the corresponding USB
communication is performed. Figure 5.2 shows the interrupt flag registers and their relation to
USB communication.

Rev. 1.0, 04/02, page 43 of 68
RENESAS

USB interrupt flag register 0 (UIFRO)

Bit: 7 6 5 4 3 2 1 0

EP1i EP1i | EPOo | EPOI EPOi | Setup
TR TS TS TR TS TS

l J l

Bus reset Not used Control transfer

Bit name: BRST -

USB interrupt flag register 1 (UIFR1)

Bit: 7 6 5 4 3 2 1 0
Bitname: | EP30 | EP30 | EP3i | EPSi [| EP2 | EP2i | EpP2i
| 1S | TF | TR READY| TR [ENPTY
_Not used ActPrintOut ActBulkinReady ActBulkin

USB interrupt flag register 2 (UIFR2)

Bit: 7 6 5 4 3 2 1 0
Bit) B _ | epsi | EPsi | EP40 | EP4i | EP4i
it name: TR TS READY| TR |ENPTY
Not used Not used

USB interrupt flag register 3 (UIFR3)

Bit: 7 6 5 4 3 2 1 0
i . | CK48 | soF | seTc | SETI | SPRSs| SPRSi |VBUSs | vBUSI
Bit name: READYI
USB clock Not used Cable connection

stabilization detection

Note: This sample program does not support interrupt transfers and isochronous transfers.

Figure5.2 Typesof Interrupt Flags

Rev. 1.0, 04/02, page 44 of 68
RENESAS

521 Method of Branching to Different Transfer Processes

In this sample program the transfer method is determined by the type of interrupt from the USB
module as describe in section 4, Overview of the Sample Program. Branching to the different
transfer methods is executed by BranchOfInt in UsbMain.c. Table 5.1 shows the relations between
the types of interrupts and the functions called by BranchOfInt.

Table5.1 Interrupt Typesand Functions Called on Branching

Register Name Bit Bit Name Name of Function Called
7 BRST ActBusReset
6 ad]
5 EP1i TR O
flag register O
(UIFRO) 3 EPO0 TS ActControlln, ActControlOut
2 EPOi TR ActControlOut
1 EPOI TS ActControlln, ActControlOut
0 SETUP TS ActControl
7 EP30 TF O
6 EP30 TS O
5 EP3i TF O
USB intgrrupt 4 EP3i TR 0
flag register 1
(UIFR1) 3 0 U
2 EP20 Ready ActPrintOut
1 EP2i TR ActBulkin
0 EP2i EMPTY ActBulkinReady
7 CK48 Ready ActBusReset
6 SOF SetUSBModule
5 SETC O
USB int_errupt 4 SETI 0
flag register 3
2 SPRSi O
1 VBUSs O
0 VBUSI ActBusVcc

The EPOI TS and EPOOT S interrupts are used both for control-in and control-out transfer. Hence in
order to manage the direction and stage of control transfer, the sample program has three states:
TRANS IN, TRANS OUT, and WAIT. For details, refer to section 5.6, Control Transfers.

Rev. 1.0, 04/02, page 45 of 68
RENESAS

In the H8S/2215 hardware manual, operation of the USB function module when an interrupt
occurs, and a summary of operation on the application side, are described. From the next section,
details of application-side firmware are explained for each USB transfer method.

53 USB Operating Clock Stabilization Interrupt

Thisinterrupt occurs when the USB operating clock (48 MHz) stabilization time is automatically
counted after USB module stop is canceled. After receiving the interrupt, the sample program
writes the endpoint configuration information to the USB endpoint information registers
(UEPIROO_0to 22_4), makes necessary interrupt settings, and waits for USB cable connection.

USB function module Sample program

> USB operating clock selected
¢ UCTLR/UCKS3-0 written

USB operating clock ¢

oscillation started
USB module stop canceled

MSTPCRB/MSTPB =0

v

Wait for USB operating clock
stabilization

Power-on reset state canceled

USB operating clock
stabilization time waited?

NO

{| setusemodule ||

EXIRQO USB interface reset canceled

> UCTLR/UIFRST =0

v

UIFR3/CK48Ready = 0

I
h 4

EPINFO setting
115-byte data written to
UEPIR00_Oto 22_4

v

Interrupt settings

v

Wait for USB cable connection

USB operating clock stabilization
interrupt generated

v

USB interface is ready

EPINFO setting <

Interrupt settings .

Figure5.3 USB Operating Clock Stabilization Interrupt

Rev. 1.0, 04/02, page 46 of 68
RENESAS

531 Endpoint Configuration

In the USB function module in the H8S/2215, the endpoint configuration can be specified at
initialization by software. The following transfer types can be specified:

e Control transfer: One endpoint

» Bulk-intransfer: Two endpoints

¢ Bulk-out transfer: Two endpoints

» Interrupt-in transfer: Two endpoints

¢ Isochronous-in transfer: One endpoint
» Isochronous-out transfer: One endpoint

The endpoint number, interface number, alternate number, and maximum packet size can be
specified for the above transfers (excluding control transfer) with the USB endpoint information
registers (UEPIRS).

Table 5.2 shows transfer types and their corresponding UEPIRS.

Table5.2 Transfer Typesand UEPIRs

Transfer Type Endpoints Corresponding UEPIRs

Control transfer 1 00

Interrupt-in transfer 2 01 and 02

Bulk-in transfer 2 02 and 20

Bulk-out transfer 2 03 and 21

Isochronous-in transfer 1 04, 06, 08, 10, 12, 14, 16, and 18
Isochronous-out transfer 1 05, 07, 09, 11, 13, 15, 17, and 19

The H85/2215 Hardware Manual assumes that endpoint information is configured based on the
Bluetooth standard. Figure 5.4 shows the comparison between the endpoint configuration used by
this sample program and the endpoint numbers described in the H852215 Hardware Manual .

(Endpoint number
in the Bluetooth standard)

EPO Contro transfer EPO
Configurationl Interface0 —— AlternateO EP1 BulkOut transfer EP20
EP2 Bulkin transfer EP2i

EP3 Interrupt In transfer EP1i

Figure5.4 Endpoint Configuration in the Sample Program

Rev. 1.0, 04/02, page 47 of 68
RENESAS

Table 5.3 shows the UEPIR00_0 to 22 4 settings for the endpoint configuration shown in figure
5.4. Dummy data (0) must be written to the unused endpoints.

Table5.3 UEPIR Settings

UEPIR Set Value Transfer Type EP Interface Alternate Maximum
(Hexadecimal) No. No. No. Packet Size

(Byte)

00 00_00_40_00_00 Control 0 0 0 64

01 34 1C_08_00_01 InterruptIn 3 0 0 8

02 24 15 40 00 02 Bulkin 2 0 0 64

03 14_10_40_00_03 BulkOut 1 0 0 64

04 04_1C_00_00_04 Isochronous In 0 0 0 0

05 04_08 00_00_05 Isochronous OQut 0 0 0 0

06 04_1C_00_00_06 Isochronous In 0 0 0 0

07 04_08_00_00_07 Isochronous Out 0 0 0 0

08 04_1C_00_00_08 Isochronous In 0 0 0 0

09 04_08_00_00_09 Isochronous Out O 0 0 0

10 04_1C_00_00_OA Isochronous In 0 0 0 0

11 04_08_00_00_0OB Isochronous Out 0 0 0 0

12 04_1C_00_00_0C Isochronous In 0 0 0 0

13 04_08 _00_00_OD Isochronous Out 0 0 0 0

14 04_1C_00_00_OE Isochronous In 0 0 0 0

15 04_08 _00_00_OF Isochronous Out 0 0 0 0

16 04_1C _00_00_10 Isochronous In 0 0 0 0

17 04_08 00_00_11 Isochronous OQut O 0 0 0

18 04_1C _00_00_12 Isochronous In 0 0 0 0

19 04_08 _00_00_13 Isochronous Out O 0 0 0

20 04_14 00_00_14 Bulkin 0 0 0 0

21 04_10 00 00 15 BulkOut 0 0 0 0

22 04_10 00 _00_16 InterruptIn 0 0 0 0

Rev. 1.0, 04/02, page 48 of 68

RENESAS

54 Interrupt on Cable Connection (VBUS)

Thisinterrupt occurs when the cable of the USB function module is connected to the host
controller. On the application side, after completion of initial microcomputer settings, a general-
purpose output port is employed to pull-up the USB data bus D+. By means of this pull-up, the
host controller recognizes that the device has been connected. (figure 5.5)

USB function module Sample program

USB cable
connected/disconnected

: ActBusVcc I.

p| VBUSIflag cleared

Connected USB cable Disconnected
status checked

| All FIFOs cleared |—| UDC core reset |

v v

D+ pull-up enabled D+ pull-up disabled

v

UDC core reset
canceled

- J

EXIRQO interrupt
generated

|VBUS interrupt generated H

EPINFO automatically <
loaded to UDC core

v

USB module initialization
completed

Wait for bus reset signal

| UDC core reset |<

v

Wait for UBC cable
connection

Figure5.5 Interrupt on Cable Connection

Rev. 1.0, 04/02, page 49 of 68
RENESAS

5.5 Bus Reset Interrupt (BRST)

When the host controller detects that a device has been connected to the USB data bus, it outputs a
bus reset signal. When receiving this bus reset signal, the USB function modul e generates a bus
reset.

USB function module I Sample program

Bus reset received

from the host I
¢ ! / : ActBusReset I

EXIRQO interrupt
generated

BRST interrupt
generated

1 i v

All FIFOs cleared

i v

, All endpoint stall
: canceled

i _ Y,

Pp| BRST flag cleared

Wait for setup token

Figure5.6 BusReset Interrupt

5.6 Control Transfers

In control transfers, bits 0 to 3 of the interrupt flag registers are used. Control transfers can be
divided into two types according to the direction of datain the data stage. (figure 5.7) In the data
stage, data transfers from the host controller to the USB function module are control-out transfers,
and transfersin the opposite direction are control-in transfers.

Control-out transfers

Host controller ———>| uSB function module

[oata Joat sage

Control-in transfers

Host controller <:| USB function module
| Data I(Data stage)

Figure5.7 Control Transfers

Rev. 1.0, 04/02, page 50 of 68
RENESAS

Control transfers consist of three stages: setup, data (no datais possible), and status (figure 5.8).
Further, the data stage consists of multiple bus transactions.

In control transfers, stage changes are recognized through the reversal of the data direction. Hence
the same interrupt flag is used to call afunction to perform control-in or control-out transfers (cf.
Table 5.1). For this reason, the firmware must use states to manage the type of control transfer
currently being performed, whether control-in or control-out, (figure 5.8) and must call the
appropriate function. States in the data stage (TRANS _IN and TRANS OUT) are determined by
commands received in the setup stage.

E Setup stage E Data stage E Status stage
Control-in | SETUP (0) || IN (1) || IN (0) | ----- | IN (0/2) || OUT (1) |
5 DATAO 5 DATAL DATAO DATAO/L DATAL
Firmware state il WAIT |§| TRANS_IN |E_-_-VE/'_&E1_:_-:
Contrlo-out [seTup (0 || out) || our@ || ourionm || N@D |
DATAO DATA1 DATAO DATAO/1 DATA1L

Firmware state ;| WAIT || TRANS_OUT | WAIT |
No data | setup(0) | 0N

! DATAO ! ! DATAL

| WAIT || TRANS_OUT T WAIT

Firmware state

Figure5.8 Statusin Control Transfers

5.6.1 Setup Stage

In the setup stage, the host and function modul es exchange commands. For both control-in and
control-out transfer, the firmware goesinto the WAIT state. Depending on the type of command
issued, discrimination between control-in transfer and control-out transfer is performed, and the
state of the firmware in the data stage (TRANS_IN or TRANS _OUT) is determined.

e Commandsfor control-in transfers: GetDescriptor (TRANS_IN) Standard command
GetDevicelD (TRANS IN) Class command
GetPortStatus (TRANS IN) Class command

e Commandsfor control-out transfers. SoftReset (TRANS_OUT) Class command

Rev. 1.0, 04/02, page 51 of 68
RENESAS

Figure 5.9 shows operation of the sample program in the setup stage. The figure on the left shows
operation of the USB function module.

USB function module H Sample program
, BranchOfint

| Setup token received *l || ActControl ”_

SETUP TS flag cleared
EPOo FIFO cleared
EPOi FIFO cleared

v

Firmware state
changed to WAIT

v

Read pointer and write pointer to
the command buffer initialized

8-byte command data
received at EPOs

NO Automatic
processing
by USB module|

Application
processing command?

EXIRQO interrupt

Setup command receive generated
complete flag set

(UIFRO/SETUP TS =1)

[Geraser |

I DecStandardCommands”—

| To control-in data stage | YES

Printer class command?

| | DecPrinterCIassCommandsl |

Control-out transfer

Data from host to device

direction determined by
the command
typ!
Control-in transfer
from device to hos v
- Firmware statechanged to
Firmware statechanged TRANS OUT
toTRANS_IN — L

| EPOi TR interrupt disabled | EPO transfer request
interrupt enabled
(UIFRO/EPO TR = 1)

wData written to FIFO

PutPacket
EPOs read complete flag set to 1

EPOs read complete flag set to 1 (UTRGO/EPOs RDFN=1)
(UTRGO/EPOs RDFN=1)

v !

| Tocontrokindatastage | | Tocontrol-out data stage |

Figure5.9 Setup Stage

Rev. 1.0, 04/02, page 52 of 68
RENESAS

5.6.2 Data Stage

In the data stage, the host and function module exchange data. The firmware state becomes
TRANS IN for control-in transfers, and TRANS_OUT for control-out transfers, according to the
result of decoding of the command in the setup stage. Figures 5.10 and 5.11 show the operation of
the sample program in the data stage of control transfer

USB function module

—®| In-token received

Sample program

BranchOfInt

When firmware state is TRANS_IN

ActControl In I
v

When data direction changes,
data stage is completed and
YES status stage is entered.

Receive
complete interrupt?
(UIFRO/EPOO TS)

Valid data in
EPOi FIFO?

A4

| Status stage I

UIFRO/EPOQI TS interrupt

flag cleared
Data sent to host I
A
4 XIRQO interrupt Data written to
EPOI transmit flag set |—9enerated UEDROI data register

(UIFRO/EPOITS = 1)

v

EPOI packet enable bit set to 1
(UTRGO/EPOI PKTE = 1)

Figure5.10 Data Stage (Control-In Transfer)

Rev. 1.0, 04/02, page 53 of 68
RENESAS

USB function module

Out-token received

Sample program

BranchOfInt

When firmware state is TRANS_OUT

ActControlOut I

v When data direction changes,
data stage is completed and
status stage is entered.

NO
y
| Status stage I

1 is written to

complete interrupt?
UIFRO/EPOO TS

Data received from host |

Il |
EXIRQO interrupt

EPOo receive complete flag set generated
(UIFRO/EPOO TS = 1)

EPOo receive complete
flag cleared
(UIFRO/EPO0 TS = 0)

GetPacket I

Data read from USBEPOo receive
data size register (UESZ00)

v

Data read from USBEPOo
data register (UEDROO)

v

EPOo read complete bit set to 1
(UTRGO/EPO0 RDFN = 1)

A4

UTRGO/EPOs RDFN
set to 1?

Figure5.11 Data Stage (Control-Out Transfer)

Rev. 1.0, 04/02, page 54 of 68
RENESAS

5.6.3 Status Stage

The status stage begins with a token for the opposite direction from the data stage. That is, in
control-in transfer, the status stage begins with an out-token from the host controller; in control-
out transfer, it begins with an in-token from the host controller.

USB function module Sample program

| Out-token received |

A
| 0 byte received from hostl

+
EPOo receive complete flag set |EXIRQO interrupt generated |,
(UIFRO/EPOO TS = 1) 'i | BranchOfint | |

When firmware state is TRANS IN

I ActControl In | I—
v

Receive
complete interrupt?
UIFRO/EPO0 TS

A 4
Control transfer end

YES

y

EPOo-related interrupt

flags excluding SETUP
flag cleared

Data stage

v

Firmware state
changed to WAIT

v

EPOo receive complete
flag setto 1
(UTRGO/EPO0 RDFN = 1)

| Control-in transfer end

Figure5.12 Status Stage (Control-In Transfer)

Rev. 1.0, 04/02, page 55 of 68
RENESAS

USB function module

In-token received

EXIRQO interrupt

Valid data in

Sample program

generated
EPOi FIFO? '

»|| BranchOfint

When firmware state is TRANS_OUT

0 byte sent to host

EXIRQO
interrupt
generated

EPOi transmit complete
flag set
(USBIFRO/EPQI TS = 1)

A
Control transfer end

ActControlOut I

POo receive
complete interrupt?
USBIFRO/EPOQo T:

Data stage

EPOi transmit NO

request interrupt?
(USBIFRO/EPOI TS

EPOi transmit complete flag cleared
(USBIFRO/EPOQI TS = 0)

EPOi transfer request flag cleared

(USBIFRO/EPQI TR = 0)

Firmware state
changed to WAIT

I ISetControIOutContentSI I

EPOi packet enable bit set to 1
(USBTRG/EPOi PKTE = 1)

Figure5.13 Status Stage (Control-Out Transfer)

Rev. 1.0, 04/02, page 56 of 68

RENESAS

5.7 Bulk Transfers

In bulk transfers, bits 0 to 2 of interrupt flag register 1 are used. Bulk transfers can a so be divided
into two types according to the direction of data transmission. (figure 5.14)

When datais transferred from the host controller to the USB function module, the transfer is
called a bulk-out transfer; when datais transferred in the opposite direction, it is a bulk-in transfer.

Bulk-out transfers

Host controller USB function module

—]%
| Data I

Bulk-in transfers

Host controller <E:| USB function module

| Data I

Figure5.14 Bulk Transfers

Rev. 1.0, 04/02, page 57 of 68
RENESAS

571

Bulk-Out Transfers

The operation of the sample program in bulk-out transfers is shown in figure 5.15.

USB function module

Out-token received

EP1 FIFO empty?

Data received from host |

<s

EP1 FIFO full status set

EXI

Sample program
EXIRQO interrupt generated

BranchOfint

Memory area for copying
data checked

| Actprintout_{]

fis empty space in bulk
transmit data area smaller
than maximum packet
size 82

YES

EP1 FIFO full status interrupt
disabled

NO

y

Memory area for copying

RQO interrupt data checked

generated

(UIFR1/EP20 READY = 1)

A

ActBulkout ||

[Germanee |

v

NO
Both EP1 FIFOs empty?,

EP1 FIFO full status cleared
(UIFR1/EP20 READY = 0)

Data read from USBEP1 receive
data size register (UESZ20)

v

Data read from USBEP1 data
register (UEDR20) and stored in buffer

v

EP1 read complete bit set to 1
(UTRGO/EP20 RDFN = 1)

g Y « » R

Rev. 1.0, 04/02, page 58 of 68

Figure5.15 Bulk-Out Transfers

RENESAS

57.2 Bulk-in Transfers

Figure 5.16 shows the operation of the sample program in bulk-in transfers.

USB function module

In-token received

Sample program

?I | BranchOfint | I

UIFR1/EP2i TR interrupt

ActBulkinReady I

EP2 transfer request flag cleared
(UIFR1/EP2i TR = 0)

EXIRQO interrupt generated

NO

Valid data in EP2 FIFO? A

A4

EP2 FIFO empty interrupt enabled
(VIERL/EP2i EMPTY)

On enabling empty interrupt,
o interrupts are generated

YES

EP2 empty status set EXIRQO interrupt generated

(UIFR1/EP2i EMPTY = 1)

EP1 FIFO empty?

ActBulkin I

YES

S transmit data
a short packet?

EP2 empty status cleared
(UIFR1/EP2i EMPTY = 0)

NO v
< EP2 FIFO empty interrupt
disabled
(UIER1/EP2i EMPTY = 0)
[Pupadke ||
v
Write data

v

EP2 packet enable bit setto 1
(UTRGO/EP2i PKTE = 1)

Figure5.16 Bulk-In Transfers

Rev. 1.0, 04/02, page 59 of 68
RENESAS

Rev. 1.0, 04/02, page 60 of 68
RENESAS

Section 6 Analyzer Data

In this chapter, we look at how measurement is carried out with the USB Inspector, a USB
protocol analyzer made by CATC (http://www.catc.com), using the USB function module in the
H8S/2215, and at what happens to the data as it actually flows along the bus. The following gives
the description for control transfer when a device is connected and bulk-out transport in printing
out as examples. For more detailed information on packets, see section 2.6.1.

Note: The Packet # found in front of each packet is the packet number used when measuring.

The Idle found at the end of each packet indicates the idle between packets (see sections
2.2 and 2.6).

6.1 Control Transfer When a Device |s Connected

Figure 6.1 shows the measurement made, with a device connected to the host controller, while
shifting from the power-on state (the power is supplied to Vbus) until the configuration state (the
deviceisready for being used (configuration state). For details on the state transitions, see section
2.7.1.

Though the packet scheduling may differ depending on the host controller, the command flow to
the configuration state is always the same.

Rev. 1.0, 04/02, page 61 of 68
RENESAS

Reset signal. A transition is made from power-on state to default state.

| oosoconl | mwhd § i mars | da] ¢ |
(Hl [|] I mp <—Setup token packet (default address used) f Frame

Pu.:tll:ll Setup (1 ms)
A

stage
Eﬂ m P s handshale packer D@ Packet (6 byes)
(Get_Descriptor (Device)
e
; Hl L] | ": I | !l E”!| command)
E[EI

Picked
l:: 4 In-token packet (default address used)
T CRCK FOF Frame
(1 ms)

Data stage (in) '

¥ T 4—|
% AN .EE.H! ﬁ Data packet (18 bytes)(device descriptor information)+
Fackbed
- e [E2D | Oete | 100 Frame (1 ms)
[5
= [] [reT] 2t | o | 200][4 T
| Fambed I! [=Thi
m 4—out-token packet (default address used) A
Frame
i - e e £l
] oosoonl | Eao2 [E Data packet (0 byte) stage M9
e
] LiL] -, *
[T] | sor IECETE - - S
]] 1] | oam | doo || ez
e e e “Continued on next page

((e21n8Q) J0)duDSa@ 199) Jajsuel) [01U0D

Rev. 1.0, 04/02, page 62 of 68
RENESAS

((ssaippy 19S) Jajsuely |0aU0D

((e21n8Q) Jo1duosa@ 199) Jajsuel) |0U0D

*Only SOF packets continue in this period

Fachet # f
4
([Fusiais Frame
[t i [] 1 Sy | Ao 4— Setup token packet (default address used)
(1 ms)
|E«_-‘E . . sen
(Set_Address (address :2) ;
stace
R e <o ;

Data packet (8 bytes)

{ T T s f

! Il [T | [| | !ml:mll l‘—ln-token packet (default address used) f Frame

: m<_ Data packet (0 bytes) Status (1 MS)

| I [il
stage
kl ; E m E<— ACK handshake packet +

I.?‘.i‘

[E3] [ET I EO | T
(| -. ED ; <—Setup token packet (address: 2) + Frame
Setup (1 ms)
I“—“EMWE«
stage
Dat: ket (8 b Get_D tor (D d
HHEEH ata packet (8 bytes) (Get_Descriptor (Device) command) ¢ i
T -

et i (D FII I::l'

= (1 ms)
t Data packet (18 bytes) Data stage (in)

i 15
OIW! 0OF 03 03 O

| El o] I EE“ H (device descriptor information) *

e 1

Status (1 ms)

stage

v

Frame (1 ms) ¢
| l R =] H I I s Setup token packet (address: 2) ? Frame

1ms
L <4 Setup -)
w oowadi | oecs |80 Ok 00 B 00 A0 @9 00 |ostsao) ia

Data packet (8 bytes) stage |

*Continued on next page (Get_Descriptor (config)

command)

Rev. 1.0, 04/02, page 63 of 68

RENESAS

((ByuoD) 101duasa@ 199) Jajsuel [0JUOD

((Byuo) 101duosa@ 199) Jajsuel) |0aU0D

: - L
i o
EEETIN ¢

E e e [l I [l L]

| Peched [Frame
BT - [T] 3 s | A In-token packet (address: 2)
MH Data stage (|n)

™ = | e M 02 FO PO EL L OD fp M oeCeE] e || &

5 E
HEHH tData packet (8 bytes) (configuration descriptor information) L l

+ Frame
Status (1 ms)

stage

\lemm vl
Frame (1 ms) t

T
f Frame

Setup (1 ms)

stage

Y

Frame

(1 ms)

0 Data stage (in)
| Peched [A o | Data packet (32 bytes) (configuration descriptor information) ¢
| ma)| owensd | osde | 100 [0

¥

Frame (1 ms) ¢

+ Frame

Status (1 ms)

stage

v 5

*Only SOF packets continue in this period

e)

*Continued on next page ~ Frame
(1 ms)

Rev. 1.0, 04/02, page 64 of 68

RENESAS

((®21n8@) Jo1duosa@g 199) Jajsuely |0aU0D

((ByuoD) 101duasa@ 199) Jajsuely [0UOD

CRCE| ECF Setup
o Db OO E3 B0 00 3% A0 Jowitor | 2| stage

[c
IHIE.ZI' -E-'::" ‘=‘ Data packet (8 bytes) (Get_Descriptor (Devi d
] t ata packet (8 bytes) (Get_Descriptor (Device) command) i
| Pl
[| coaaE [y P | oem | L
-m& In-oken packet (address: 2) .

(1 ms)

Data packet (8 bytes) Data stage (in)

| Puked [
L] Sl [oo [-0 BN (device descriptor information) *

¥

Out-token packet (address: 2) f Frame

Hm&« Data packet (0 byte) Status (1 ms)

stage

N ‘|
H [C] 1 | | B Frame (1 ms) t

T
f Frame

CACK [oF Setup (1 ms)

[] [T W] [i' I0 B0 0% 3 [oarees] 36| stage
B0 | ke Data packet (8 bytes) (Get_Descriptor (Config) command
|m packet (8 bytes) (Get_Descripor (Config) A
H 100 In-token packet (address: 2) Frame
(2 ms)
[i (M 02 PO B0 EL

CRC#E EOF

Data stage (in)

Ic

i1 A0 £ & [v OO fO

Data packet (32 bytes)

L [} [0
[T | [g
T - B e (confiauration descriptor information)
B Fiarsw CRDS EOF |
> 1 E Frame (1 ms)
| coeseal | war | @ | o | e |iea || i |4 Out-token packet (address: 2)

Status (1 ms)
Data packet (0 byte)

stage

v

*Continued on next page

Rev. 1.0, 04/02, page 65 of 68
RENESAS

'

Setup token packet (address: 2) f Frame

Setup (1 ms)

stage

v

I

A Frame
Status (1 ms)

stage

+l

ke m
o P R ——— ¢
| Pectecd I
| 38 | T

f Frame

. Setup (1 ms)
] s kG 00 00 [0 ||;|_|j| 73 1] [omoom] e stage

Emm tData packet (8 bytes) (Get_Device_ID (IEEE1284) command) +
| l L Ce]

Hm— In-token packet (address: 2) f Frame
Data
F=R m&m packet (0 byte) ams

stage(in)
- [d I Note: IEEE1284 device ID data is returned in 0 byte for
| == ‘::E- E I]IEI

evaluation. When the device is incorporated in the system,

(uonresnByuoD 19S) Jajsuel) [0JUOD

return the device ID the user got. Frame (1 ms)

(QI"@21ne@ 199) Jajsuely |0U0D

X

Out-token packet (address: 2) * Frame

Status (1 ms)
- m&‘ Data packet (0 byte) stage
HEﬁH v l
HHIWHMI % Frame (1 ms) ¢

| EF] o [CFCE EDE
| % E [l.l-l-.- ard || veit | uow Frame(lms)¢

MEetaa BA

ke o
= H moaoon) | weax | a3 | e :m@

Note: The stationary state continues until a bulk transfer is performed.

Figure6.1 Control Transfer When a Deviceis Connected

Rev. 1.0, 04/02, page 66 of 68
RENESAS

6.2 Bulk-Out Transport for Printing Out (For the bulk-out transport,
refer to section 2.6.3.)

Figure 6.2 shows the measurement results when the bulk-out transport (printing out) is performed

from the host controller to this device.

For each transfer, the PID of data packetsistoggled like DATAO — DATAL1 - DATAO.

[os} FETT
c CEE ey -
=~ e
g :
2 |:|:l'||: ::ul.l:l:||:|.|:|:-:|:||.lu|.'l|'.t:|:||;|:||.lr:|:|.:|.!:-a
‘5} [(OoE v e a9 oo |.:||
|_.._._,, m m ACK handshake packet g
el
[E:E Bt token packet (@
Ly
c
° .
=
2
a
o]

Out token packet
Address: 3

Data packet (64 bytes)
Print-out data)

BJSUel} N0 X INg

|l 1k 'ilul
E H M NACK handshake packe

[
||||rr.5|:|:.|u1.u-rm|::.||:.|1-mu TN AR
1 T

AAE- Y 3 S FL DD AR fF) 0Lt B l"'l' 000 ¥ FLEN M I‘-Ii'l.‘l

el HE D 3% 0
e ACK handshake packet Data packet (64 bytes)
ECE | EER

JJsuel) N0 3 ng
AL
3
9
o
>
=
>
o
|

ST o

\ = C= Print-out data)

Figure6.2 Bulk-Out Transport for Printing Out

Rev. 1.0, 04/02, page 67 of 68

RENESAS

Rev. 1.0, 04/02, page 68 of 68
RENESAS

H8S5/2215 USB Function Module
Application Notes

Publication Date: 1st Edition, April 2002
Published by: Customer Operation Division
Semiconductor & Integrated Circuits
Hitachi, Ltd.
Edited by: Technical Documentation Group
Hitachi Kodaira Semiconductor Co., Ltd.
Copyright © Hitachi, Ltd., 2002. All rights reserved. Printed in Japan.

	Cover
	Cautions
	Preface
	Contents
	Figures
	Tables
	Section 1 Overview
	Section 2 Overview of the USB
	2.1	USB Connection Topology
	2.2	USB Signal Transfer Method
	2.3	Recognizing a Connection vs. Non-Connection
	2.4	USB Connector
	2.5	Endpoint
	2.6	USB Packets and Data Transfer
	2.6.1	Overview of Packets
	2.6.2	Control Transfer
	2.6.3	Bulk Transfer
	2.6.4	Isochronous Transfer
	2.6.5	Interrupt Transfer

	2.7	USB Device Framework
	2.7.1	Device States
	2.7.2	Device Request

	2.8	Descriptor

	Section 3 Development Environment
	3.1	Hardware Environment
	3.2	Software Environment
	3.2.1	Sample Program
	3.2.2	Compiling and Linking

	3.3	Loading and Executing the Program
	3.3.1	Loading the Program
	3.3.2	Executing the Program

	3.4	Printing Procedure

	Section 4 Overview of the Sample Program
	4.1	State Transition Diagram
	4.2	USB Communication State
	4.3	File Structure
	4.4	Purposes of Functions

	Section 5 Sample Program Operation
	5.1	Main Loop
	5.2	Types of Interrupts
	5.2.1	Method of Branching to Different Transfer Processes

	5.3	USB Operating Clock Stabilization Interrupt
	5.3.1	Endpoint Configuration

	5.4	Interrupt on Cable Connection (VBUS)
	5.5	Bus Reset Interrupt (BRST)
	5.6	Control Transfers
	5.6.1	Setup Stage
	5.6.2	Data Stage
	5.6.3	Status Stage

	5.7	Bulk Transfers
	5.7.1	Bulk-Out Transfers
	5.7.2	Bulk-in Transfers

	Section 6 Analyzer Data
	6.1	Control Transfer When a Device Is Connected
	6.2	Bulk-Out Transport for Printing Out (For the bulk-out transport, refer to section 2.6.3.)

	Colophon

