Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

H8S/2200 Series

Bus Controller

Introduction

This application note provides subroutines that makes settings relating to bus controller modes, along with some examples of their usage.

Target Device

H8S/2215

Contents

1.	Overview	. 2
2.	Configuration	. 2
3.	Sample Programs	. 3
4.	Reference Documents	16

1. Overview

This Application Note provides subroutines that are used to set the H8S/2215 bus controller modes, and shows usage samples.

2. Configuration

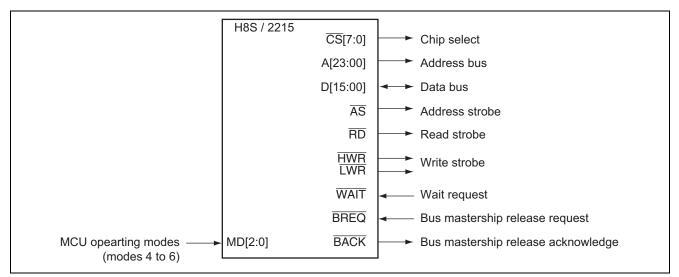


Figure 1 Bus Controller

Table 1Pin Configuration

Signal Name	I/O	Description
CS[7:0]	0	Chip select signal
00[1:0]	U	Indicates the selected area out of areas 0 to 7, each of which is a 2-Mbyte area making up a 16-
		Mbyte address space.
A[23:0]	0	Address bus
D[15:0]	I/O	Data bus
ĀS	0	Address strobe signal
		Indicates that the address output on address bus is valid when this signal is low.
RD	0	Read strobe signal
		Indicates that external address space is being read when this signal is low.
HWR	0	Write strobe signal (D[15:08])
		Indicates that external address space (D[15:08]) is being written to when this signal is low.
LWR	0	Write strobe signal (D[07:00])
		Indicates that external address space (D[07:00]) is being written to when this signal is low.
WAIT	I	Wait request signal
		Wait state can be inserted by inputting a low-level signal to this pin.
BREQ	I	Bus request signal
		Causes the microcomputer to release bus mastership (sets A[23:0], D[15:0], \overline{CS} [7:0], \overline{AS} , \overline{RD} ,
		HWR, and LWR to high impedance) by inputting a low-level signal to this pin.
BACK	0	Bus request acknowledge signal
		Indicates the external bus released state while this signal is low.

3. Sample Programs

3.1 Functions

The sample programs provide subroutines for setting registers necessary for bus control processing.

- 1. Sets bus controller modes set for each area.
- 2. Specifies idle cycle insertion conditions.
- 3. Sets burst ROM mode for area 0.
- 4. Enables/disables external bus release.
- 5. Enables/disables wait input on \overline{WAIT} pin.
- 6. Specifies address bus output enabled range.

3.2 Program Incorporation

- 1. Incorporate sample program 5-A: #define definitions.
- 2. Incorporate sample program 5-B: prototype declarations.
- 3. Sample program 5-C
 - A. Add the process of enabling/disabling the bus controller to initial setting processing.
 - B. Add bus controller-related common subroutines.

3.3 Modifications to Sample Programs

Without modifications to the sample program, the system may not run. Modifications must be made according to your program and system environment.

1. The sample programs can be used without further changes if you use the I/O register structure definition file, which is available free of charge from the following Renesas web site:

http://www.renesas.com/eng/products/mpumcu/tool/crosstool/iodef/index.html

When you create structure definitions by yourself, modify the I/O register structures used in the sample program as appropriate.

2. The chip select signal for the bus controller is set by the I/O port DDR register. The chip select signal is enabled when the corresponding DDR register is set to '1'. The initial settings should be modified according to your system. As for the locations of modifications, refer to program note in the sample program.

3.4 Using the Sample Programs

Subroutines for setting registers required for bus control processing provided in the sample programs are described below.

1. List of subroutines	
Subroutine Name	Function
com_bus_are_control	Sets bus controller modes for each area
com_bus_idle_cycle_mode	Specifies idle cycle insertion conditions
com_bus_burst_rom_mode	Sets burst ROM mode for area 0
com_bus_release_control	Enables/disables external bus release
com_bus_hw_wait_control	Enables/disables wait input on WAIT pin
com_bus_address_control	Specifies address bus output enabled range

2. Sets bus controller modes for each area.

• Subroutine name: void com bus area control (int area no, int bus width, int state num, int wait num)

Argument	Description				
area_no	Specifies an area.				
	BUS_AREA_0 to BUS_AREA_7 (0 to 7): Area 0 to 7				
bus_width	Selects data bus width.				
	BUS_16BIT (0): Data bus width: 16 bits				
	BUS_8BIT (1): Data bus width: 8 bits				
bus_state	Specifies the number of access states (the number of states for access to data bus).				
	BUS_STATE_2 (0): Bus cycle: 2 states				
	BUS_STATE_3 (1): Bus cycle: 3 states				
wait_num	Specifies the number of wait states to be inserted in the program. This is only effective				
	when bus cycle is 3 states.				
	BUS_WAIT_0 (0): No program wait state is inserted				
	BUS_WAIT_1 (1): 1 program wait state is inserted				
	BUS_WAIT_2 (2): 2 program wait states are inserted				
	BUS_WAIT_3 (3): 3 program wait states are inserted				

Note: The initial value of the microcomputer prior to executing this subroutine differs depending on the H8 microcomputer's operating mode.

	Mode 4	Modes 5 to 7
Data bus width	16 bits (BUS_16BIT)	8 bits (BUS_8BIT)
Number of access states	3 states (BUS_STATE_3)	\leftarrow
Number of wait states	3 states (BUS_WAIT_3)	\leftarrow

3. Specifies idle cycle insertion conditions.

• Subroutine name: void com_bus_idle_cycle_mode (int idle_cycle_mode)

Argument	Setting
idle_cycle_mode	Specifies idle cycle insertion.
	BUS_IDLE_0 (0): No idle cycle is inserted
	BUS_IDLE_1 (1): An idle cycle is inserted when successive external read and write cycles are performed
	BUS_IDLE_2 (2): An idle cycle is inserted when successive external read cycles are performed in different areas
	BUS_IDLE_3 (3): An idle cycle is inserted when successive external read and write cycles are performed and when successive external read cycles are performed in different areas

Note: The initial value of the microcomputer prior to executing this subroutine is BUS_IDLE_3.

4. Sets burst ROM mode for area 0.

• Subroutine name: void com_bus_burst_rom_mode (int burst_rom_mode)

Argument	Description
ADC_NO_EXE (0)	Sets burst ROM mode.
	BUS_AREA0_BASIC (0): Area 0 is used through the basic bus interface (area 0 is not
	set to burst ROM mode).
	BUS_AREA0_BURST_1_4 (4): Area 0 is set to burst ROM mode. Burst cycle: 1 state,
	Burst access: max. 4 words
	BUS_AREA0_BURST_1_8 (5): Area 0 is set to burst ROM mode. Burst cycle: 1 state,
	Burst access: max. 8 words
	BUS_AREA0_BURST_2_4 (6): Area 0 is set to burst ROM mode. Burst cycle: 2 states,
	Burst access: max. 4 words
	BUS_AREA0_BURST_2_8 (7): Area 0 is set to burst ROM mode. Burst cycle: 2 states,
	Burst access: max. 8 words

Note: he initial value of the microcomputer prior to executing this subroutine is BUS_AREA0_BASIC.

- 5. Enables/disables wait input on WAIT pin.
- Subroutine name: void com_bus_hw_wait_control (int hw_wait_control)

Argument	Setting
hw_wait_control	Enables/disables wait input by WAIT pin.
	BUS_WAIT_DISABLE (0): Wait input by WAIT pin is disabled
	BUS_WAIT_ENABLE (1): Wait input by WAIT pin is enabled
Nieter The Soldieler	- A state of the sector of the

Note: The initial value of the microcomputer prior to executing this subroutine is BUS_WAIT_DISABLE.

6. Enables/disables external bus release.

• Subroutine name: void com_bus_release_control (int bus_release_control)

Argument	Setting
bus_release_contro	bl Enables/disables external bus release.
	BUS_RELEASE_DISABLE (0): External bus release is disabled
	BUS_RELEASE_ENABLE (1): External bus release is enabled

Note: The initial value of the microcomputer prior to executing this subroutine is BUS_RELEASE_DISABLE.

- 7. Specifies address bus output enabled range.
- Subroutine name: void com bus address control (int address control)

Argument	Setting
address_control	Specifies address bus output enabled range.
	BUS_A7_0_ENABLE (0): A7 to A0 output is enabled
	BUS_A8_0_ENABLE (1): A8 to A0 output is enabled
	BUS_A9_0_ENABLE (2): A9 to A0 output is enabled
	BUS_A10_0_ENABLE (3): A10 to A0 output is enabled
	BUS_A11_0_ENABLE (4): A11 to A0 output is enabled
	BUS_A12_0_ENABLE (5): A12 to A0 output is enabled
	BUS_A13_0_ENABLE (6): A13 to A0 output is enabled
	BUS_A14_0_ENABLE (7): A14 to A0 output is enabled
	BUS_A15_0_ENABLE (8): A15 to A0 output is enabled
	BUS_A16_0_ENABLE (9): A16 to A0 output is enabled
	BUS_A17_0_ENABLE (10): A17 to A0 output is enabled
	BUS_A18_0_ENABLE (11): A18 to A0 output is enabled
	BUS_A19_0_ENABLE (12): A19 to A0 output is enabled
	BUS_A20_0_ENABLE (13): A20 to A0 output is enabled
	BUS_A21_0_ENABLE (14): A21 to A0 output is enabled
	BUS_A22_0_ENABLE (15): A22 to A0 output is enabled
	BUS_A23_0_ENABLE (16): A23 to A0 output is enabled

Note: The initial value of the microcomputer prior to executing this subroutine is BUS A20 0 ENABLE when the H8 microcomputer operating mode is 4 or 5; or BUS_A7_0_ENABLE when the H8 microcomputer operating mode is 6 or 7.

3.5 **Description of Operation**

3.5.1 **CPU Operating Modes**

The H8S/2215 can operate in four modes (modes 4 to 7) by setting the mode pins (MD2 to MD0) of the microcomputer. Of these, the bus controller settings are valid in modes 4 to 6. Table 2 shows specifications of each mode, and figure 2 shows the address map.

Table2 Specificat	ions of CPU Operatin	ng Modes		
	Mode 4 (Extended mode 1 with on-chip ROM disabled)	Mode 5 (Extended mode 2 with on-chip ROM disabled)	Mode 6 (Extended mode 1 with on-chip ROM enabled)	Mode 7 (single chip mode)
Address space	16 MB	\leftarrow	\leftarrow	\leftarrow
On-chip ROM	Disabled	Disabled	Enabled	Enabled
External bus	Enabled	Enabled	Enabled	Disabled
Initial external bus width	16 bits	8 bits	8 bits	
USB	Enabled (area 6)	\leftarrow	\leftarrow	Disabled

Т

H8S/2200 Series Bus Controller

	Modes 4 and 5		RAM: 18 kbytes Mode 6		RAM: 18 kbytes Mode 7* ²
	Advanced extended modes with on-chip ROM disabled		Advanced extended mode with on-chip ROM enabled		Advanced single chip mo
H'000000		H'000000		H'000000	
	External address space		On-chip ROM		On-chip ROM
		H'040000		H'03FFFF	
			External address space		
H'C00000	On-chip USB registers	H'C00000	On-chip USB registers		
H'E00000 H'FF9000	External address space	H'E00000 H'FF9000	External address space		
1111 3000	Reserved*1	1111 3000	Reserved*1		
H'FFB000	On-chip RAM*1	H'FFB000	On-chip RAM*1	H'FFB000 H'FFEFBF	On-chip ROM
H'FFEFC0	External address space	H'FFEFC0	External address space		
H'FFF800	Internal I/O registers	H'FFF800	Internal I/O registers	H'FFF800 H'FFFF3F	Internal I/O registers
H'FFFF40	Reserved	H'FFFF40	Reserved		
H'FFFF60	Internal I/O registers	H'FFFF60	Internal I/O registers	H'FFFF60	Internal I/O registers
H'FFFFC0 H'FFFFFF	On-chip RAM*1	H'FFFFC0 H'FFFFFF	On-chip RAM*1	H'FFFFC0 H'FFFFFF	On-chip RAM

Figure 2 HD64F2215/HD64F2215U Address Map

3.5.2 Bus Area

The bus controller divides 16-Mbyte external address space into eight areas in 2-Mbyte units and provides bus control over the external address space for each area. The bus width, the number of access states, the number of program wait states, and enabling/disabling of the chip select (CS) signal can be specified for each area. Those except for enabling/disabling of the chip select (CS) signal can be set easily with the subroutines com_bus_area_control and com_bus_address_control provided in this Application Note.

1. Address Space of Each Area			
Area	Address Space	Remarks	
0	0x000000 to 0x1FFFFF	In mode 6, 0x000000 to 0x03FFFF is the area for On-chip ROM.	
1	0x200000 to 0x3FFFFF		
2	0x400000 to 0x5FFFFF		
3	0x600000 to 0x7FFFFF		
4	0x800000 to 0x9FFFF		
5	0xA00000 to 0xBFFFFF		
6	0xC00000 to 0xDFFFFF	On-chip USB registers	
7	0xE00000 to 0xFFFFFF	0xFFB000 to 0xFFEFBF: On-chip RAM	
		0xFFF800 to 0xFFFF3F: Internal I/O registers	
		0xFFFF60 to 0xFFFFBF: Internal I/O registers	
		0xFFFFC0 to 0xFFEFFF: On-chip RAM	

2. Bus Width

A bus width of 8 or 16 bits can be selected depending on a device to be connected. When area 0 is set to burst ROM mode, the bus width is fixed to 16 bits. The bus width is set with the subroutine com_bus_area_control.

3. Number of Access States and Number of Program Wait States

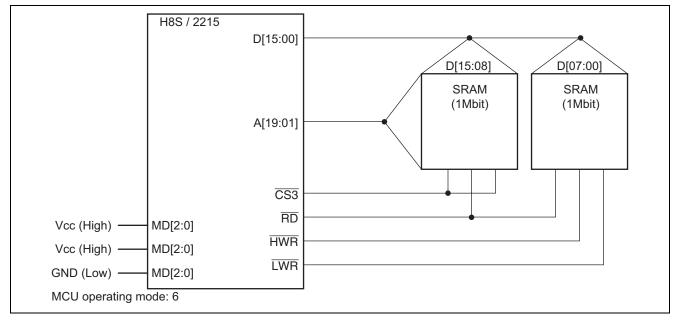
Two or three access states can be specified according to the operating speed of a device to be connected. When three access states are selected, the bus access period can be extended by specifying the number of program wait states. The number of access states and the number of program wait states are set with the subroutine com_bus_area_control.

Number of Access States	Number of Program Wait States	Bus Cycle
2	—	2
3	0	3
	1	4
	2	5
	3	6

4. Address Width

The address width to be used can be specified. Address pins that are not used can function as the I/O ports. The address width is set with the subroutine com_bus_address_control.

5. Chip Select Signals


The chip select (CS) signal is enabled/disabled by setting the corresponding data direction (DDR) register for the I/O port. The CS signal is enabled by setting the corresponding DDR register to '1'. When the corresponding external address space is accessed with CS enabled, a low level CS signal is output during the bus cycle. Being a write-only register, the DDR register cannot be read from and rewritten to after manipulating only the necessary bits. For this reason, this Application Note does not provide any subroutine for CS setting. The DDR resisters, including the bits not assigned a CS signal (PG0 and P74), should be set during the initial setting process of the microcomputer.

The DDR registers (PG0 and P74) that do not correspond to the CS signal should also be set in the initial setting process of the microcomputer.

I/O Port (Address)	Bit	Corresponding CS	Setting Value
PG (FE3F)	4	CS0	1: CS is enabled (output mode)
	3	CS1	0: CS is disabled (input mode)
	2	CS2	
	1	CS3	
	0		
P7 (FE36)	4		1: CS is enabled (output mode)
	3	CS7	0: CS is disabled (input mode)
	2	CS6	
	1	CS5	
	0	CS4	

6. Usage Examples

The following example shows the setting when two 128-kbit \times 8-bit SRAMs are connected to area 3.

The followings should be set in the initial setting routine of the microcomputer.

- Chip select 3 (CS3) setting:
- PG.DDR = 0x08;
- Bus controller mode setting for each area:
- com_bus_area_control (BUS_AREA3, BUS_16BIT, BUS_STATE_3, BUS_WAIT_3)

Through the above settings, SRAM can be accessed in 2-byte units at addresses 0x600000 to 0x67FFFF.

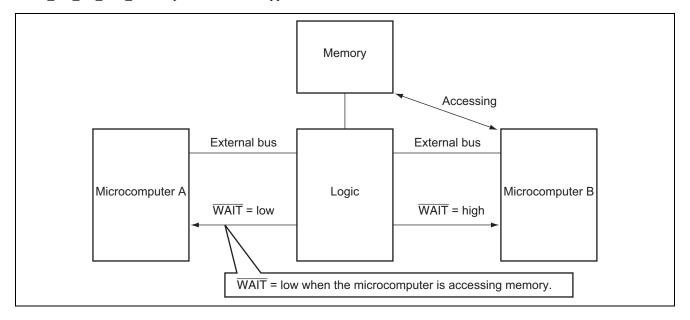
3.5.3 Idle Cycle

An idle cycle can be inserted between bus cycles in the following two cases.

- When read accesses to different areas occur consecutively
- When a write cycle occurs immediately after a read cycle

By inserting an idle cycle it is possible to avoid data collisions between devices with different speeds that are connected to different areas. For details, see section 6.8, Idle Cycle, of the H8S/2215 Series Hardware Manual.

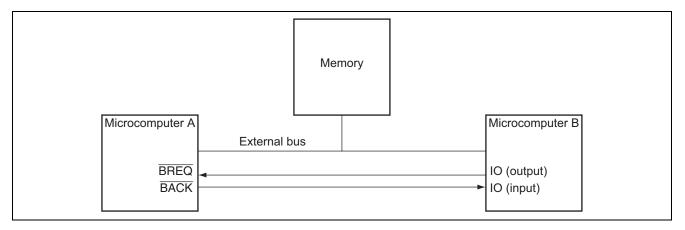
In the initial setting, the idle cycle insertion is enabled. Unless there is any specific strict performance request, the initial setting need not be changed.

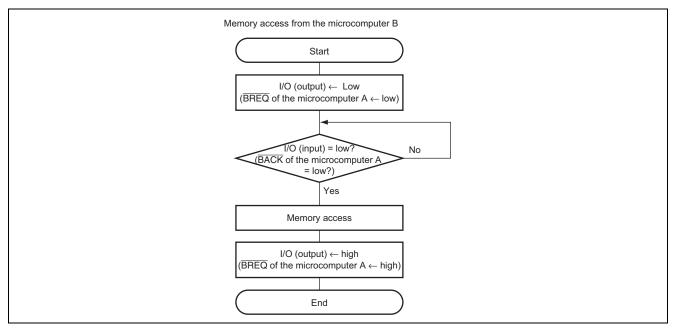

The idle cycle insertion can be easily set with the subroutine com_bus_ilde_cycle_mode provided in this Application Note.

3.5.4 Burst ROM Mode

ROM that supports burst mode (consecutive read) can be connected to the external address space of area 0. For details, see section 6.7, Burst ROM Interface, of the H8S/2215 Series Hardware Manual. The burst ROM mode can be easily set with the subroutine com_bus_burst_rom_mode provided in this Application Note.

3.5.5 WAIT Pin Function


The bus cycle can be extended by inserting program wait states with the subroutine com_bus_area_control. When the bus cycle is not stable due to external factors, wait states must be controlled externally. For example, in the case of the shared memory with the following configuration, the microcomputer A must wait if the microcomputer B is accessing the memory. In such case, the microcomputer A is set to wait state by holding the WAIT pin at low level until the microcomputer B finishes its access. The WAIT pin can be easily enabled/disabled with the subroutine com bus hw wait control provided in this Application Note.



3.5.6 Bus Release Function

The bus can be released in response to a bus release request from the external device. When the \overline{BREQ} pin is driven low, the \overline{BACK} pin is driven low at the end of the bus cycle, and the address bus, the data bus, and the bus control signal are placed in the high-impedance state, establishing the external bus released state. In the external bus released state, external bus access by the microcomputer is suspended. When the \overline{BREQ} pin is driven high, the \overline{BACK} pin is driven high at the end of the bys cycle to cancel the external bus released state, and the suspended bus access is resumed.

With this function, simple memory sharing can be implemented. For example, in the case of the shared memory with the following configuration, the microcomputer A must wait if the microcomputer B is accessing the memory. In such case, the microcomputer B must drive the BREQ pin in the microcomputer A to be low and confirm that the BACK pin is driven low prior to memory access, and the microcomputer B then accesses memory, and drives the BREQ pin in the microcomputer A back to high after the access ends. This allows prevention of memory access conflicts between the microcomputers A and B. The BREQ and BACK pins can be easily enabled/disabled with the subroutine com_bus_release_control provided in this Application Note.

RENESAS

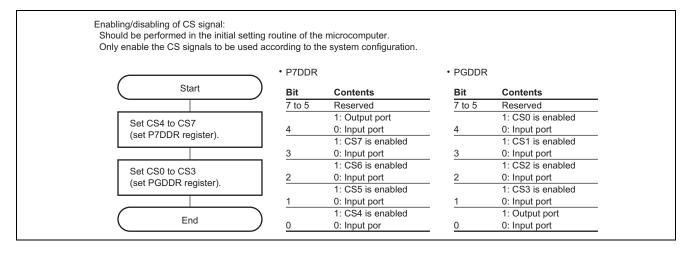
3.5.7 USB Area

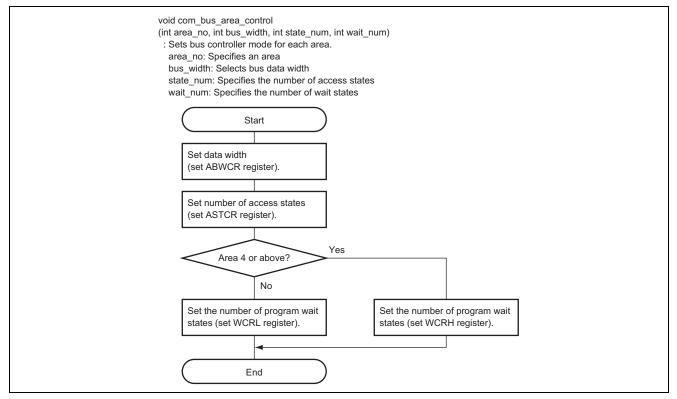
The area 6 of the H8S/2215 is for the USB in operating modes 4 to 6. Therefore, the bus controller must be set as follows for area 6.

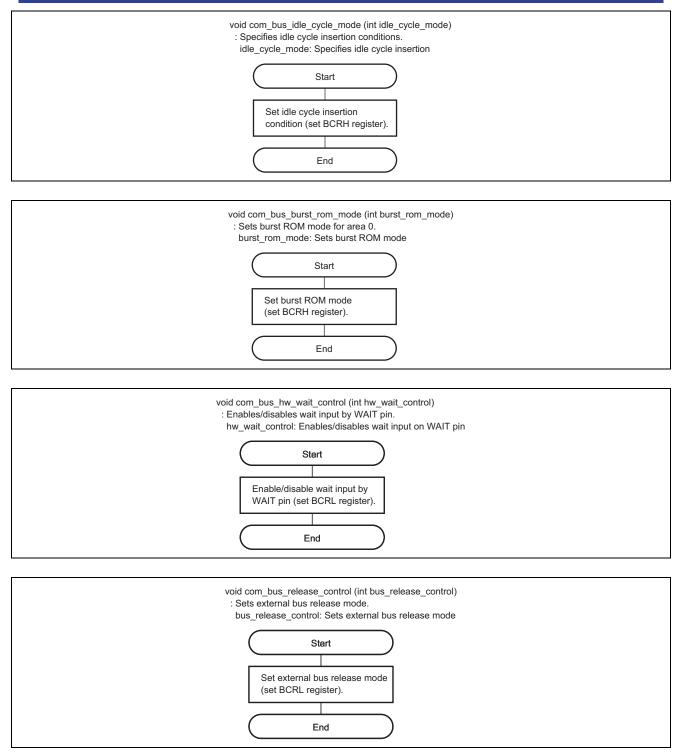
To use the USB, the following setting is necessary since the microcomputer is not set as follows after a reset.

Item	Setting	Setting
Bus width	8 bits	com_bus_area_control
Number of access states	3 states	(BUS_AREA_0, BUS_8BIT,
Number of program wait states	0 state	BUS_STATE_3, BUS_WAIT_0)

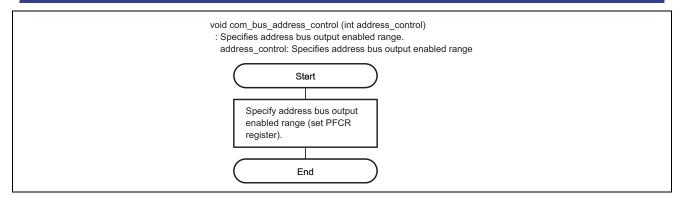
3.6 List of Registers Used

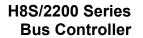

The internal registers of the H8 microcomputer used in the sample program are listed below. For detailed information, refer to the H8S/2215 Hardware Manual.


Name	Summary
Bus width control register (ABWCR)	Specifies bus width (8/16 bits) for areas 0 to 7
Access state control register (ASTCR)	Specifies the number of access states (2/3 states) for areas 0 to 7
Wait control register (WCRH, WCRL)	Selects the number of program wait states to be inserted
Bus control register H (BCRH)	Selects idle cycle insertion conditions
	Selects burst ROM mode for area 0
Bus control register L (BCRL)	Enables/disables external bus release
	Enables/disables wait input on the WAIT pin
Pin control register (PFCR)	Sets address bus output enabled range


3.7 Flowchart

Processing flow of the sample program is shown below.




4. Reference Documents

• H8S/2215 Series Hardware Manual (published by Renesas Technology Corp.)

Revision Record

	Date	Description		
Rev.		Page	Summary	
1.00	Mar.16, 2004		First edition issued	

Keep safety first in your circuit designs!

(ENESAS

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any thirdparty's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.