To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

 “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
H8S Family
Multiprocessor Communication

Introduction
Uses the H8S/2339 multiprocessor function to transmit and receive data asynchronously, sharing a serial communication line with an H8S/2339 and an H8/2215 units.

Target Device
H8S/2339, H8S/2215

Contents

1. Specifications.. 2
2. Description of Functions .. 3
3. Principles of Operation... 5
4. Description of Software... 7
5. PAD... 9
1. Specifications

1. As shown in figure 1, this sample task transmits and receives data between an H8S/2339 and an H8S/2215 units, sharing the serial communication line.

2. When H8S/2339 transmits data to H8S/2215, the H8S/2215 only receives data oriented to the main station. In a receiving station, data matching the main station ID is received.

3. 8-bit data is transmitted and received at 38400 bps with 1-stop bit and non-parity.

![Diagram](image-url)
Figure 1 Block Diagram of Asynchronous SCI Using Multiprocessor Function
2. Description of Functions

1. This sample task uses the SCI multiprocessor communication function to perform multiprocessor communication.
 A. The block diagram of the transmitting station SCI used by the sample task is shown in figure 2.
 This sample task uses the following SCI functions for transmission:
 - Function that performs data communication in the asynchronous mode in 8-bit data units for synchronization (asynchronous mode).
 - Function that performs data communication in which a multiprocessor bit is added (multiprocessor communication function).
 - Function that generates an interrupt at start of transmission (TXI interrupt).

![Figure 2 Block Diagram of Transmitting Station SCI](image-url)
B. The block diagram of the receiving station SCI used by the sample task is shown in figure 3. This sample task uses the following SCI functions for reception:

- Function that performs data communication in the asynchronous mode in 8-bit data units for synchronization (asynchronous mode).
- Function that performs data communication in which a multiprocessor bit is added (multiprocessor communication function).
- Function that generates an interrupt at reception of a multiprocessor bit (multiprocessor interrupt).
- Function that generates an interrupt at completion of reception (RXI interrupt).

![Block Diagram of Receiving Station SCI](image)

Figure 3 Block Diagram of Receiving Station SCI
3. Principles of Operation

1. Transmission

The principles of transmission operations used of this task are shown in figure 4. This task performs software and hardware processing at timing in figure 4 to transmit data to the receiving station, H8S/2215.

![Diagram of Principles of Operations Used for Multiprocessor Communication (Transmitting Station)](image)

Figure 4 Principles of Operations Used for Multiprocessor Communication (Transmitting Station)
2. Reception

The principles of reception operations used by this sample task are shown in figure 5. This task performs software and hardware processing at timing in figure 5 to receive data from the transmitting station.

![Diagram](image)

Figure 5 Principles of Operations Used of Multiprocessor Communication (Receiving Station)
4. Description of Software

1. Description of Sending Station Software
 A. Description of Modules

<table>
<thead>
<tr>
<th>Module Name</th>
<th>Label Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main routine</td>
<td>MPMASMN</td>
<td>Performs initial setting of SCI.</td>
</tr>
<tr>
<td>Data transmission</td>
<td>MPSCITX</td>
<td>Starts up by a TXI interrupt and transmits the ID and data.</td>
</tr>
</tbody>
</table>

B. Description of Arguments

<table>
<thead>
<tr>
<th>Label Name</th>
<th>Function</th>
<th>Data Length</th>
<th>Used in</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>txdata</td>
<td>Buffer storing the ID and data to be transmitted to the receiving station H8S/2215.</td>
<td>unsigned char</td>
<td>Main routine</td>
<td>Output</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Data transmission</td>
<td>Input</td>
</tr>
<tr>
<td>txendf</td>
<td>Indicates transmission end.</td>
<td>unsigned char</td>
<td>Main routine</td>
<td>Input</td>
</tr>
<tr>
<td></td>
<td>1: Transmission ended</td>
<td></td>
<td>Data transmission</td>
<td>Output</td>
</tr>
<tr>
<td></td>
<td>0: Transmission in progress</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Description of Internal Registers Used

<table>
<thead>
<tr>
<th>Register Name</th>
<th>Function</th>
<th>Used in</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMR1</td>
<td>Sets the SCI mode (asynchronous), the transfer format, and selected clock to the baud rate generator (φ clock input).</td>
<td>Main routine</td>
</tr>
<tr>
<td>SCR1</td>
<td>Set the multiprocessor mode. Enables interrupt (TXI) and sets SCI enable/disable transmission.</td>
<td>Main routine</td>
</tr>
<tr>
<td>SSR1</td>
<td>Clears TDRE (b7) to instruct transmission to start.</td>
<td>Main routine</td>
</tr>
<tr>
<td>TDR1</td>
<td>Sets the ID and data to be transmitted to the receiving station H8S/2215.</td>
<td>Main routine</td>
</tr>
<tr>
<td>BRR1</td>
<td>Sets the transfer rate.</td>
<td>Main routine</td>
</tr>
<tr>
<td>MSTPCR</td>
<td>Cancels the SCI module stop mode.</td>
<td>Main routine</td>
</tr>
</tbody>
</table>

D. RAM Usage

Table below describes RAM usage in this sample task.

<table>
<thead>
<tr>
<th>Label Name</th>
<th>Function</th>
<th>Data Length</th>
<th>Used in</th>
</tr>
</thead>
<tbody>
<tr>
<td>txcnt</td>
<td>Counts transmitted data items.</td>
<td>unsigned char</td>
<td>Main routine (initial setting)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Data transmission</td>
</tr>
<tr>
<td>txdata</td>
<td>Sets the ID and data to be transmitted [0] to [3] = H'02, H'FF, H'03, and H'48</td>
<td>unsigned char</td>
<td>Main routine</td>
</tr>
</tbody>
</table>
2. Description of Receiving Station Software
 A. Description of Modules

<table>
<thead>
<tr>
<th>Module Name</th>
<th>Label Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main routine</td>
<td>MPSRVMN</td>
<td>Performs initial setting of SCI.</td>
</tr>
<tr>
<td>Data reception</td>
<td>MPSCIRX</td>
<td>Starts up by an RXI interrupt and receives the ID and data.</td>
</tr>
</tbody>
</table>

B. Description of Arguments

<table>
<thead>
<tr>
<th>Elements</th>
<th>Function</th>
<th>Data Length</th>
<th>Used in</th>
<th>I/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>rcv_data</td>
<td>Sets the received ID and data.</td>
<td>unsigned char</td>
<td>Data reception</td>
<td>Output</td>
</tr>
<tr>
<td>idrcvf</td>
<td>Flag indicating reception of the main station ID.</td>
<td>unsigned char</td>
<td>Main routine</td>
<td>Input</td>
</tr>
<tr>
<td></td>
<td>1: ID received 0: ID not received</td>
<td></td>
<td>Data reception</td>
<td>Output</td>
</tr>
<tr>
<td>dtrcvf</td>
<td>Flag indicating data reception</td>
<td>unsigned char</td>
<td>Data reception</td>
<td>Output</td>
</tr>
<tr>
<td></td>
<td>1: Data received 0: Data not received</td>
<td></td>
<td>Main routine</td>
<td>Input</td>
</tr>
</tbody>
</table>

C. Description of Internal Registers Used

<table>
<thead>
<tr>
<th>Register Name</th>
<th>Function</th>
<th>Used in</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMR1</td>
<td>Sets the SCI mode (asynchronous), the transfer format, and selected</td>
<td>Main routine</td>
</tr>
<tr>
<td></td>
<td>clock to the baud rate generator (φ clock input).</td>
<td></td>
</tr>
<tr>
<td>SCR1</td>
<td>Set the multiprocessor mode.</td>
<td>Main routine</td>
</tr>
<tr>
<td></td>
<td>Enables an interrupt (RXI) and sets SCI reception enabled.</td>
<td></td>
</tr>
<tr>
<td>RDR1</td>
<td>Sets the ID and data received from the transmitting station H8S/2215.</td>
<td>Data reception</td>
</tr>
<tr>
<td>BRR1</td>
<td>Sets the transfer rate.</td>
<td>Main routine</td>
</tr>
<tr>
<td>MSTPCR</td>
<td>Cancels the SCI module stop mode.</td>
<td>Main routine</td>
</tr>
</tbody>
</table>

D. RAM Usage

Table below describes RAM usage in this sample task.

<table>
<thead>
<tr>
<th>Label Name</th>
<th>Function</th>
<th>Data Length</th>
<th>Used in</th>
</tr>
</thead>
<tbody>
<tr>
<td>rxid</td>
<td>Sets the received ID.</td>
<td>unsigned char</td>
<td>Main routine</td>
</tr>
<tr>
<td>rxdata</td>
<td>Sets received data.</td>
<td>unsigned char</td>
<td>Main routine</td>
</tr>
<tr>
<td>myid</td>
<td>Sets the main station ID.</td>
<td>unsigned char</td>
<td>Data reception</td>
</tr>
</tbody>
</table>
5. PAD

1. Transmitting Station
 A. Main Routine

 Main routine

 MPMASMN

   ```
   while (1)
   
   Cancel the SCI module stop mode.
   
   Set the asynchronous mode, transfer format, and multiprocessor communication mode.
   
   Set the transfer rate to 38400 bps.
   
   If i < 550, increment i.
   
   Set MPBT.
   
   Clear transmission end flag.
   
   Clear transmission counter.
   
   Set ID in TDR1.
   
   Enable transmission.
   
   Clear TDRE and start transmission.
   
   Enable transmission interrupt (TXI).
   
   Clear I flag and enable interrupt.
   
   UNTIL transmission ended?
   
   while (1)
   ```

 B. Data Transmission

 MPSCITX

   ```
   Invert MPBT.
   
   Increment transmission counter by 1. (txcnt)
   
   Set next transmit data in TDR1.
   
   Clear TDRE.
   
   Transmission counter < 4?
   
   Yes
   
   Set transmission end flag.
   
   No
   
   Disable transmission interrupt (TXI).
   ```
2. Receiving Station
 A. Main Routine

 Main routine
 - MPSRVMN
 - Cancel the SCI module stop mode.
 - Set the asynchronous mode, transfer format, and multiprocessor communication mode.
 - Set the transfer rate to 38400 bps.
 - If i < 550, increment i.
 - Enable multiprocessor interrupts.
 - Enable reception interrupt (RXI).
 - Enable reception.
 - Clear I flag and enable interrupt.
 - While (1)

 Standby when idrcvf == 0
 - rxid = rcv_data
 - idrcvf = 0
 - Standby when dtrcvf == 0
 - rxdata = rcv_data
 - dtrcvf = 0

 B. Data Reception

 Data reception
 - MPSCIRX
 - Acquire received data from RDR1.
 - Clear RDRF.
 - MPB = 1?
 - Yes
 - cv_data = myid?
 - Yes
 - Clear MPIE.
 - Set idrcvf.
 - No
 - Set dtrcvf.
 - Set MPIE.
 - No
Revision Record

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Feb.17.05</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer’s application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.