To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

 “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
H8/38076R

Measuring Number of Input Pulses Using 16-Bit Event Counter Function of Timer F

Introduction
The 16-bit event counter function of timer F is used to count the rising edges of pulses input to the timer F event input (TMIF) pin.

Target Device
H8/38076R

Contents

1. Specifications .. 2
2. Description of Functions .. 2
3. Principles of Operation .. 4
4. Description of Software .. 5
5. Flowchart ... 8
1. Specifications

In this sample task timer counter F (TCF) is set to count the rising edges of an external clock input to the timer F event input (TMIF) pin. Timer counter F continues counting up until the rising edge count reaches 1,024.

2. Description of Functions

2.1 Functions

When the rising edge count reaches 1,024 the external clock input to TCF is halted and the sample task ends. In this sample task the 16-bit event counter function of timer counter F is used to measure the number of pulses input to the TMIF pin. A block diagram of the 16-bit event counter function of timer F is shown in figure 1. The 16-bit event counter function of timer F is described below.

1. Timer F Functions

This 16-bit timer has an output compare function. It can be used for external event counting or as a multifunction timer for a variety of applications, including counter resetting, interrupt request, and toggle output using compare match signals. It can also be used as two independent 8-bit timers (timer FH and timer FL).

- Timer counter F (TCF)
 TCF is a 16-bit readable/writeable up-counter that is incremented by input of an internal or an external clock. Five input clock options are available: the system clock divided by 4, 16, or 32; the subclock divided by 4; or an external clock.
 In this sample task external clock is selected as the TCF input clock.
- Timer control register F (TCRF)
 TCRF is an 8-bit readable/writeable register used for switching between 16-bit mode and 8-bit mode and for selecting among the four internal clocks and an external event.
- Timer control/status register F (TCSRF)
 TCSRF is an 8-bit register used for counter clear selection, overflow flag and compare match flag settings, and controlling the enabling of overflow interrupt requests.

2. I/O Port Functions

The following port setting is performed.

- Port mode register 4 (PMR4)
 PMR4 is used to set the P40/SCK31/TMIF pin as a TMIF pin.

3. Interrupt Controller Functions

The following registers are used to control interrupts.

- Interrupt enable register 2 (IENR2)
 IENR2 controls timer F interrupts.
- Interrupt request register 2 (IRR2)
 IRR2 is the interrupt request status register for timer F interrupts.
2.2 Assignment of Functions

Table 1 shows the assignment of functions in this sample task. With functions assigned as shown in table 1 the 16-bit event counter function of timer F is used to measure the number of input pulses.

Table 1 Assignment of Functions

<table>
<thead>
<tr>
<th>Elements</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCF</td>
<td>16-bit counter using external clock input</td>
</tr>
<tr>
<td>TCRF</td>
<td>Sets TCF to 16-bit mode, selects external clock as TCF input clock</td>
</tr>
<tr>
<td>TCSRF</td>
<td>Timer F status register, enables TCF overflow interrupts, disables clearing TCF by compare match</td>
</tr>
<tr>
<td>IENTFH</td>
<td>Enables interrupt requests at timer F overflow</td>
</tr>
<tr>
<td>IRRTFH</td>
<td>Interrupt flag set by timer F overflow</td>
</tr>
<tr>
<td>TMIF</td>
<td>Input pin for external event input to TCFL</td>
</tr>
</tbody>
</table>
3. **Principles of Operation**

The principles of operation of this sample task are illustrated in figure 2. Using the hardware and software processing shown in figure 2 the 16-bit event counter function of timer F is used to measure the number of input pulses.

![Figure 2 Principles of Operation](image-url)

Figure 2 Principles of Operation
4. Description of Software

4.1 Description of Modules

Table 2 shows the modules used in this sample task.

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>main</td>
<td>Settings for timer F 16-bit event counter function, selects external clock the TCF input clock source, enables interrupts, ends when TCF input clock rising edge count reaches 1,024</td>
</tr>
<tr>
<td>tfint</td>
<td>During timer F overflow interrupt handling, sets 1 to ENDF and disables timer F interrupt requests</td>
</tr>
</tbody>
</table>

4.2 Arguments

No arguments are used in this sample task.

4.3 Description of Internal Registers

The internal registers used in this sample task are shown below.

- **TCRF**
 Timer Control Register F
 Address: H'FFB6

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit Name</th>
<th>Set Value</th>
<th>R/W</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>CKSH2</td>
<td>0</td>
<td>W</td>
<td>Clock Select H</td>
</tr>
<tr>
<td>5</td>
<td>CKSH1</td>
<td>0</td>
<td>W</td>
<td>Selects the clock input to TCFH from among internal clock sources or TCFL overflow.</td>
</tr>
<tr>
<td>4</td>
<td>CKSH0</td>
<td>0</td>
<td>W</td>
<td>000: 16-bit mode, counting on TCFL overflow signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>001: 16-bit mode, counting on TCFL overflow signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>010: 16-bit mode, counting on TCFL overflow signal</td>
</tr>
<tr>
<td>2</td>
<td>CKSL2</td>
<td>0</td>
<td>W</td>
<td>Clock Select L</td>
</tr>
<tr>
<td>1</td>
<td>CKSL1</td>
<td>0</td>
<td>W</td>
<td>Select the clock input to TCFL from among internal clock sources or external event input.</td>
</tr>
<tr>
<td>0</td>
<td>CKSL0</td>
<td>0</td>
<td>W</td>
<td>000: Counting on rising or falling edge of an external event (TMIF pin)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>001: Counting on rising or falling edge of an external event (TMIF pin)*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>010: Counting on rising or falling edge of an external event (TMIF pin)*</td>
</tr>
</tbody>
</table>

Note: * The TMIFEG bit in IEGR selects which edge of an external event is used for counting.
Measuring Number of Input Pulses Using 16-Bit Event Counter Function of Timer F

TCSRF
Timer Control/Status Register F
Address: H'FFB7

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit Name</th>
<th>Set Value</th>
<th>R/W</th>
<th>Description</th>
</tr>
</thead>
</table>
| 7 | OVFH | Undefined | R/W | Timer Overflow Flag H
[Setting condition]
• When TCFH overflows from H'FF to H'00
[Clearing condition]
• When 0 is written to this bit after reading it as 1 |
| 5 | OVIEH | 1 | R/W | Timer Overflow Interrupt Enable H
Enables or disables interrupt generation when TCFH overflows.
1: TCFH overflow interrupt requests enabled |
| 4 | CCLRH | 0 | R/W | Counter Clear H
In 16-bit mode this bit selects whether TCF is cleared when TCF and OCRF match.
In 16-bit mode:
0: TCF clearing by compare match disabled |

Note: * Only 0 can be written to clear the flag.

TCF
Timer Counter F
Address: H'FFB8

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit Name</th>
<th>Set Value</th>
<th>R/W</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Bit 15</td>
<td>Undefined</td>
<td>R/W</td>
<td>Output Compare Register F</td>
</tr>
<tr>
<td>14</td>
<td>Bit 14</td>
<td>Undefined</td>
<td>R/W</td>
<td>When CKSH2 in TCRF is set to 0 TCF operates as a 16-bit counter. The TCF input clock is selected by bits CKSL2 to CKSL0 in TCF.</td>
</tr>
<tr>
<td>13</td>
<td>Bit 13</td>
<td>Undefined</td>
<td>R/W</td>
<td>TCF can be cleared in the event of a compare match by CCLRH in TCSR F.</td>
</tr>
<tr>
<td>12</td>
<td>Bit 12</td>
<td>Undefined</td>
<td>R/W</td>
<td>When TCF overflows from H'FFFF to H'0000, OVFH in TCSR F is set to 1. If the value of OVIEH in TCSR F is 1 at this time, IRTF in IRR2 is set to 1, and if in addition the value of IENF in IENR2 is 1, an interrupt request is sent to the CPU.</td>
</tr>
<tr>
<td>9</td>
<td>Bit 9</td>
<td>Undefined</td>
<td>R/W</td>
<td>When TCF overflows from H'FFFF to H'0000, OVFH in TCSR F is set to 1. If the value of OVIEH in TCSR F is 1 at this time, IRTF in IRR2 is set to 1, and if in addition the value of IENF in IENR2 is 1, an interrupt request is sent to the CPU.</td>
</tr>
<tr>
<td>8</td>
<td>Bit 8</td>
<td>Undefined</td>
<td>R/W</td>
<td>TCF can be cleared in the event of a compare match by CCLRH in TCSR F.</td>
</tr>
<tr>
<td>7</td>
<td>Bit 7</td>
<td>Undefined</td>
<td>R/W</td>
<td>When TCF overflows from H'FFFF to H'0000, OVFH in TCSR F is set to 1. If the value of OVIEH in TCSR F is 1 at this time, IRTF in IRR2 is set to 1, and if in addition the value of IENF in IENR2 is 1, an interrupt request is sent to the CPU.</td>
</tr>
<tr>
<td>6</td>
<td>Bit 6</td>
<td>Undefined</td>
<td>R/W</td>
<td>TCF can be cleared in the event of a compare match by CCLRH in TCSR F.</td>
</tr>
<tr>
<td>5</td>
<td>Bit 5</td>
<td>Undefined</td>
<td>R/W</td>
<td>TCF can be cleared in the event of a compare match by CCLRH in TCSR F.</td>
</tr>
<tr>
<td>4</td>
<td>Bit 4</td>
<td>Undefined</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Bit 3</td>
<td>Undefined</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Bit 2</td>
<td>Undefined</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Bit 1</td>
<td>Undefined</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Bit 0</td>
<td>Undefined</td>
<td>R/W</td>
<td></td>
</tr>
</tbody>
</table>

PMR4
Port Mode Register 4
Address: H'FFC3

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit Name</th>
<th>Set Value</th>
<th>R/W</th>
<th>Description</th>
</tr>
</thead>
</table>
| 0 | TMIF | 1 | R/W | P40/SCK31/TMIF pin function switch
Selects whether pin P40/SCK31/TMIF is used as P40/SCK31 or as TMIF.
0: Functions as P40/SCK31 I/O pin
1: Functions as TMIF input pin |
• **IEGR**
 Interrupt Edge Select Register
 Address: H'FFF2

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit Name</th>
<th>Set Value</th>
<th>R/W</th>
<th>Description</th>
</tr>
</thead>
</table>
| 6 | TMIFEG | 1 | R/W | TMIF Edge Select
 0: Detects the falling edge of the TMIF pin input
 1: Detects the rising edge of the TMIF pin input |

• **IENR2**
 Interrupt Enable Register 2
 Address: H'FFF4

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit Name</th>
<th>Set Value</th>
<th>R/W</th>
<th>Description</th>
</tr>
</thead>
</table>
| 3 | IENTFH | 1 | R/W | Timer FH Interrupt Enable
 Timer FH interrupt requests are enabled when this bit is set to 1.
 1: Timer FH interrupt requests enabled |

• **IRR2**
 Interrupt Request Register 2
 Address: H'FFF7

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit Name</th>
<th>Set Value</th>
<th>R/W</th>
<th>Description</th>
</tr>
</thead>
</table>
| 3 | IRRTFH | Undefined | R/W | Timer FH Interrupt Request Flag
 [Setting condition]
 • When timer FH compare match or overflow occurs
 [Clearing condition]
 • When 0 is written to this bit |

4.4 RAM Usage

The RAM usage in this sample task is shown in table 3.

Table 3 RAM Usage

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit Name</th>
<th>Description</th>
<th>Amount of Memory Used</th>
<th>Used in</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ENDF</td>
<td>Flag indicating that rising edge of input pulse has been detected 1,024 times</td>
<td>1 bit</td>
<td>main tflint</td>
</tr>
</tbody>
</table>
5. Flowchart

5.1 main

```
main

   SP = H'FF80
   CCR I-bit = 1
   ENDF = 0
   TMIF = 1
   TMIFEG = 1
   TCRF = H'00
   tmp = TCSRFF
   TCSRFF = H'20
   TCF = H'FC00
   IRRTFH = 0
   IENTFH = 1
   CCR I-bit = 0
   ENDF != 1 ?
      Yes
      TCRF = H'06
      No

```

- Initialize stack pointer
- Set 1 to I bit in CCR, disable interrupts
- Initialize RAM area to be used
- Set as timer F event input pin (TMIF pin)
- Select rising edge detection of TMIF pin input
- Set TCF to 16-bit mode, count TCF on rising edge of external input (TMIF pin)
- Enable interrupt requests at TCF overflow, clear OVFH and CMFH, disable clearing of TCF at compare match of TCF and OCRF
- Initialize TCF
- Clear IRRTFH
- Enable TCFH interrupt requests (compare match, overflow)
- Set 1 to I bit in CCR, enable interrupts
- Event count finished?
- Disable external event clock input to TCF

5.2 tfint

```

```
5.3 Link Address Specifications

<table>
<thead>
<tr>
<th>Section Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVECT</td>
<td>H'0000</td>
</tr>
<tr>
<td>P</td>
<td>H'0100</td>
</tr>
<tr>
<td>B</td>
<td>H'F780</td>
</tr>
</tbody>
</table>
Revision Record

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
<th>Page</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Mar.18.05</td>
<td></td>
<td>—</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>
Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.