To our customers,

Old Company Name in Catalogs and Other Documents

On April 1\(^{st}\), 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1\(^{st}\), 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

 “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
H8/300H Tiny Series
Reset Operation upon Detecting Low Voltage

Introduction
An internal low-voltage detection circuit is used for setting/canceling internal reset operations at low voltages.

Target Device
H8/3687G

Contents

1. Specifications .. 2
2. Description of Functions .. 3
3. Description of Operation .. 4
4. Description of Software ... 5
5. Flowcharts .. 7
6. Program Listing ... 8
1. Specifications

1. An internal low-voltage detection circuit is used, and when the voltage falls to 3.6 V or lower, an internal reset occurs.
2. While in low-voltage reset state, when the voltage rises to 3.6 V or higher, PSS starts counting upward, and the internal reset is cancelled after 131,072 states have passed.
3. In order to confirm the operating/reset state, connect an LED to pin P74. In the operating state, the LED is turned on (P74 = 0), and in the reset state the LED is turned off (P74 = 1).
4. If the IRQ switch is turned on, the low-voltage detection circuit is canceled.
5. A connection example for this task appears in figure 1.1.

![Connection example for this task](image-url)
2. Description of Functions

In this sample task, the optional internal low-voltage detection circuit is used to control the reset operation at low voltages. A block diagram of the low-voltage detection circuit appears in figure 2.1. Below, the block diagram of the low-voltage detection circuit is described.

- **System clock** (ϕ) is a 16 MHz clock which serves as the reference clock for operation of the CPU and peripheral functions.
- **Prescaler S (PSS)** is functions as a 13-bit counter when ϕ is input, counting up one each cycle.
- **Low-voltage detection control register (LVDCR)** is controls the low-voltage detection circuit. In this sample task, the low-voltage detection circuit is used, and sets the reset detection voltage to 2.3 V.

![Figure 2.1 Block diagram of the low-voltage detection circuit](image-url)
3. Description of Operation

Figure 3.1 shows the procedure for setting and canceling low-voltage detection reset circuit, and reset operation on low voltage detection.

Figure 3.1 Description of operation
4. Description of Software

4.1 Description of modules

Modules in this sample task are listed in table 4.1.

<table>
<thead>
<tr>
<th>Module name</th>
<th>Label name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main routine</td>
<td>main</td>
<td>Set low-voltage detection circuit, enable interrupts, control LED (P74), and judge switch connected to IRQ0</td>
</tr>
<tr>
<td>Switch on</td>
<td>irq1int</td>
<td>IRQ1 interrupt processing Set swonf to 1</td>
</tr>
</tbody>
</table>

4.2 Description of arguments

No arguments are used in this sample task.

4.3 Description of Internal Registers Used

Internal registers used in this sample task are indicated below.

- LVDCR Low-voltage detection control register Address: 0xF730

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit name</th>
<th>Setting</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>LVDE</td>
<td>1</td>
<td>LVD enable LVDE = 0: Low-voltage detection circuit is not used (standby state) LVDE = 1: Low-voltage detection circuit is used</td>
</tr>
<tr>
<td>3</td>
<td>LVDSEL</td>
<td>1</td>
<td>LVDR detection level selection LVDSEL = 0: Sets reset detection voltage to 2.3 V LVDSEL = 1: Sets reset detection voltage to 3.6 V</td>
</tr>
<tr>
<td>2</td>
<td>LVDRE</td>
<td>1</td>
<td>LVDR enable LVDRE = 0: disables reset by LVDR LVDRE = 1: Enables reset by LVDR</td>
</tr>
</tbody>
</table>

- PDR7 Port data register 7 Address: 0xFFDA

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit name</th>
<th>Setting</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>P74</td>
<td>0</td>
<td>Port data register 74 P74 = 0: Pin P74 output level Low P74 = 1: Pin P74 output level High</td>
</tr>
</tbody>
</table>

- PMR1 Port mode register 1 Address: 0xFFE0

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bit name</th>
<th>Setting</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>IRQ1</td>
<td>1</td>
<td>Selects function of pin P15/IRQ1/TMIB1 IRQ1 = 0: Sets pin P15/IRQ1/TMIB1 to P15 I/O pin function IRQ1 = 1: Sets pin P15/IRQ1/TMIB1 to /IRQ1/TMIB1 input pin</td>
</tr>
</tbody>
</table>
4.4 Description of RAM Used

The RAM used in this sample task is described in table 4.2.

Table 4.2 Description of RAM used

<table>
<thead>
<tr>
<th>Label name</th>
<th>Function</th>
<th>Size</th>
<th>Used in</th>
</tr>
</thead>
<tbody>
<tr>
<td>swonf</td>
<td>Flag determining switch input on/off status</td>
<td>1 byte</td>
<td>Main routine</td>
</tr>
</tbody>
</table>
<pre><code> | | Switch on |
</code></pre>

- **PCR7 Port control register 7**
 - **Address:** 0xFFEA
 - Bit 4: PCR74
 - Setting: 0
 - Function: Port control register 74
 - PCR74 = 0: Sets pin P74 to P74 input pin function
 - PCR74 = 1: Sets pin P74 to P74 output pin function

- **IEGR1 Interrupt edge select register 1**
 - **Address:** 0xFFF2
 - Bit 0: IEG1
 - Setting: 1
 - Function: IRQ1 edge select
 - IEG1 = 0: Selects falling edge as IRQ1 pin input detection edge
 - IEG1 = 1: Selects rising edge as IRQ1 pin input detection edge

- **IENR1 Interrupt enable register 1**
 - **Address:** 0xFFF4
 - Bit 1: IEN1
 - Setting: 1
 - Function: IRQ1 interrupt request enable
 - IEN1 = 0: Disables interrupt requests at pin IRQ1
 - IEN1 = 1: Enables interrupt requests at pin IRQ1

- **IRR1 Interrupt flag register 1**
 - **Address:** 0xFFF6
 - Bit 1: IRR1
 - Setting: 0
 - Function: IRQ1 interrupt request flag
 - IRR1 = 0: IRQ1 pin interrupt not requested
 - IRR1 = 1: IRQ1 pin interrupt requested
5. Flowcharts

1. Main routine

```
main*

I = 1
Disable interrupts.

IEG1 = 1
Set IRQ1 input pin detection
edge to rising edge.

IRQ1 = 1
Set P15/IRQ1 pin to IRQ1
input pin function.

IEN1 = 1
Enable interrupt requests
at IRQ1 pin.

IRR11 = 0
Clear IRQ1 interrupt request flag.

LVDE = 1
Use low-voltage detection circuit.

i = 0

i < 800

I = 0
Enable interrupts.

LVDCR = 0xF0
LVDE = 0
Cancel low-voltage detection circuit
setting.

Yes

swonf == 0

No

Note: * The stack pointer is set using INIT.SRC (assembly language).
```

2. Switch-on

```
irq1int

I = 0

irr11 = 0
Clear IRQ1 interrupt request flag.

swonf = 1
Set switch input judgment flag to on.

END
```

REJ06B0117-0200Z/Rev.2.00 May 2004 Page 7 of 12
6. Program Listing

/**
/* */
/* H8/300HN Series -H8/3687G- */
/* Application Note */
/* 'Reset by lowvoltage' */
/* Function */
/* : Low-voltage detection circuit */
/* */
/* External Clock : 16MHz */
/* Internal Clock : 16MHz */
/* Sub Clock : 32.768kHz */
/* */
/**

#include <machine.h>

/**
/* Symbol Definition */
/**

struct BIT {
 unsigned char b7:1; /* bit7 */
 unsigned char b6:1; /* bit6 */
 unsigned char b5:1; /* bit5 */
 unsigned char b4:1; /* bit4 */
 unsigned char b3:1; /* bit3 */
 unsigned char b2:1; /* bit2 */
 unsigned char b1:1; /* bit1 */
 unsigned char b0:1; /* bit0 */
};

#define LVDCR *(volatile unsigned char *)0xF730 /* Low-voltage-detection control register */
#define LVDCR_BIT (*(struct BIT *)0xF730) /* Low-voltage-detection control register */
#define LVDE LVDCR_BIT.b7 /* LVD Enable */
#define LVDESEL LVDCR_BIT.b3 /* LVDI Detection Level Select */
#define LVDEOK LVDCR_BIT.b2 /* LVDR Enable */
#define PDR7_BIT (*(struct BIT *)0xFFDA) /* Port Data Register 7 */
#define P74 PDR7_BIT.b4 /* Port Data Register 7 bit4 */
#define PMR1_BIT (*(struct BIT *)0xFFE0) /* Port mode register 1 */
#define PMR1_B5 PMR1_BIT.b5 /* P15/IRQ1 Pin Function Switch */
#define PCR7_BIT (*(struct BIT *)0xFFF8) /* Port Control Register 7 */
#define PCR74 PCR7_BIT.b4 /* Port Control Register 7 bit4 */
#define IERG1_BIT (*(struct BIT *)0xFFF2) /* Interrupt Edge Select Register 1 */
#define IERG1 IERG1_BIT.b1 /* IRQ1 Edge Select */
#define IENR1_BIT (*(struct BIT *)0xFFF4) /* Interrupt Enable Register 1 */
#define IENR1 IENR1_BIT.b1 /* IRQ1 Enable Register */
#define IRR1_BIT (*(struct BIT *)0xFFF6) /* Interrupt Request Register 1 */
#define IRR1 IRR1_BIT.b1 /* IRQ1 Interrupt Request Flag */

#pragma interrupt (irq1int)
/** Function define */

extern void INIT (void);

void main (void);

void irqlnt (void);

/** RAM define */

volatile unsigned char swonf;

/** Vector Address */

#pragma section V1 /* VECTOR SECTION SET */
void (*const VEC_TBL1[])(void) = { /* 0x00 - 0x0f */
 INIT /* 00 Reset */
};
#pragma section V2 /* VECTOR SECTION SET */
void (*const VEC_TBL2[])(void) = {
 irqlnt /* 1E IRQ1 Interrupt */
};

#pragma section /* P */

/** Main Program */

void main (void)
{
 unsigned short i;

 set_imask_ccr(1); /* Interrupt Disable */

 IEG1 = 1; /* IRQ1 pin input is Rising edge */
 IRQ1 = 1; /* Select IRQ1 pin */
 IEN1 = 1; /* IRQ1 Interrupt Enable */
 IRRI1 = 0; /* IRQ1 Flag Clear */
 LVDE = 1; /* LVD Enable */
 for(i=0; i<800; i++);
 LVDCR = 0xFC; /* LVD = 3.6V LVD Reset Enable */
 PCR74 = 1; /* P74 Output Pin */
 P74 = 0; /* P74 is Low */
 swonf = 0; /* Initialize swonf */
 set_imask_ccr(0); /* Interrupt Enable */
 while(swonf == 0);
 LVDCR = 0xF0; /* clearing LVDRE, LVDDE, LVDUE to 0 */
 LVDE = 0; /* clear LVDE 0 */
 while(1);
}
/***/
/* IRQ1 Interrupt */
/***/

void irq1int (void)
{
 IRRI1 = 0; /* Clear IRRI1 */
 swonf = 1; /* Set swonf */
}

Link address specifications

<table>
<thead>
<tr>
<th>Section Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV1</td>
<td>0x0000</td>
</tr>
<tr>
<td>CV2</td>
<td>0x001E</td>
</tr>
<tr>
<td>P</td>
<td>0x0100</td>
</tr>
<tr>
<td>B</td>
<td>0xFB80</td>
</tr>
</tbody>
</table>
Revision Record

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
<th>Page</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Sep.29.03</td>
<td>—</td>
<td>—</td>
<td>First edition issued</td>
</tr>
<tr>
<td>2.00</td>
<td>May.07.04</td>
<td>—</td>
<td>—</td>
<td>Clerical error correction</td>
</tr>
</tbody>
</table>
Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.