

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 1 of 38

H8/300H Tiny Series
Examples of Communications Operation Using the Built-in SSU

Introduction
This application note describes two examples of communications operation using the synchronous serial
communication unit (SSU) incorporated in the H8/36057.

Target Device
H8/36057

Contents

1. SSU Communication System Summary ... 2

2. Description of Functions ... 3

3. Description of Operation ... 5

4. Application Example (Specification 1: Standard Mode).. 9

5. Application Example (Specification 2: Bi-Directional Mode)... 21

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 2 of 38

1. SSU Communication System Summary
The synchronous serial communication unit (SSU) performs communication using four buses: chip select (SCS pin),
clock line (SSCK pin) and data lines (SSI and SSO pins).

1.1 Standard Mode
• In standard mode, the master device transmits the chip select signal via the SCS pin, transfer clock via the SSCK

pin, and data via the SSO pin to the slave device. The master device uses the SSI pin to receive data from the slave
device.

• In standard mode, the slave device receives the chip select signal via the SCS pin, transfer clock via the SSCK pin,
and data via the SSO pin from the master device. The slave device transmits data via the SSI pin synchronously
with the transfer clock provided from the master device.

SCS SCS

SSCK SSCK

SSO SSO

SSI SSI

H8/36057 (Master) H8/36057 (Slave)

Figure 1 Block Diagram of the SSU Communications between H8/36057 LSIs
(Master and Slave in Standard Mode)

1.2 Bi-Directional Mode
• In bi-directional mode, the master device transmits the chip select signal via the SCS pin and transfer clock via the

SSCK pin, and receives data via the SSO pin.
• In bi-directional mode, the slave device receives the chip select signal and transfer clock from the master device via

the SCS pin and the SSCK pin, respectively, and transmits and receives data via the SSO pin synchronously with
the transfer clock provided from the master device.

SCS SCS

SSCK SSCK

SSO SSO

SSI SSI

H8/36057 (Master) H8/36057 (Slave)

Figure 2 Block Diagram of the SSU Communications between H8/36057 LSIs
(Mater and Slave in Bi-Directional Mode)

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 3 of 38

2. Description of Functions

2.1 Transmitter
Figure 3 shows a block diagram of the SSU transmission functions used in this sample task.

SS Control register H

(SSCRH)

Sets whether it is a master or slave device.

Specifies use of two serial data I/O pins.

Selects the serial data open-drain output value.

Selects the serial data output value.

Sets the SSCK and SCS pin functions.

SS control register L

(SSCRL)

Sets module standby state.

Selects SSU mode.

Executes software reset.

Selects SSCK pin open-drain output.

Selects SCS pin open-drain output

SS mode register (SSMR)

Specifies LSB first or MSB first for transmit data.

Sets clock polarity, phase, and transfer rate.

SS enable register

(SSER)

Sets transmission mode and interrupts.

SS status register

(SSSR)

Indicates transmission start/end

and occurrence of errors.

Transmit data empty interrupt

Transmit end interrupt
(SSUI)

Transmission/reception

control circuit

SS shift register

(SSTRSR)

Serial output pin

 (SSO)

SS transmit data register

(SSTDR)

Figure 3 SSU Transmission Function Block Diagram

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 4 of 38

2.2 Receiver
Figure 4 shows a block diagram of the SSU reception functions used in this sample task.

SS control register H

(SSCRH)

Sets whether it is a master or slave device.

Specifies use of two serial data I/O pins.

Selects the serial data open-drain output value.

Selects the serial data output value.

Sets the SSCK and SCS pin functions.

SS control register L

(SSCRL)

Sets module standby state.

Selects SSU mode.

Executes software reset.

Selects SSCK pin open-drain output.

Selects SCS pin open-drain output

SS mode register (SSMR)

Specifies LSB first or MSB first for transmit data.

Sets clock polarity, phase, and transfer rate.

SS enable register

(SSER)

Sets reception mode and interrupts.

Reception end interrupt (SSUI)

SS shift register (SSTRSR)

Serial input pin

(SSI)

SS transmit data register

(SSTDR)

Transmission/reception

control circuit

Figure 4 SSU Reception Function Block Diagram

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 5 of 38

3. Description of Operation

3.1 Transmit Operation
1. Figure 5 is a block diagram of the case when the master H8/36057 transmits data to a slave H8/36057.

SCS SCS

SSCK SSCK

SSO SSO

SSI SSI

H8/36057 (Master) H8/36057 (Slave)

Figure 5 Block Diagram of the SSU Communications between H8/36057 LSIs
(When the master device transmits data)

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 6 of 38

2. Figure 6 shows the transmit operation in this sample task. Hardware and software processing is performed with the
timing shown in figure 6 to implement communications between the H8/36057 LSIs.
Figure 6 shows an example of transmit operation in which the polarity of the SSCK clock is specified to output high
during an idle state and output low during an active state (CPOS = 0), the SSCK clock phase is specified to change
data at the first edge (CPHS = 0), and 8-bit data (H'AA) is transmitted with LSB first.

SCS

SSCK

(CPOS = 0)

SSO

TDRE

TEND

Hardware processing

Software processing

None

Initialization:

(a) Set as the master device and

 use of two serial I/O pins, set

 the serial data output pin as

 CMOS output, set the SSCK

 pin as the serial clock pin and

 the SCS pin as an output pin.

(b) Set four-line bus

 communication mode, execute

 software reset, and set the

 SSCK and SCS pins as CMOS

 outputs.

(c) Set that serial data is

 transferred LSB first and

 select the clock polarity,

 phase, and transfer rate.

(d) Enable transmission (TE),

 transmit interrupts (TXI, TEI),

 and conflict error interrupt

 (CEI).

Hardware processing

Software processing

Generate a TXI interrupt.

(TIE = 1, TDRE = 1)

Start transmission:

(a) Disable a TXI

 interrupt.

(b) Set transmit data in

 SSTDR (TDRE = 0).

Hardware processing

Software processing

Set TEND.

(Generate a TEI interrupt)

Disable transmission:

(a) Clear TEND.

(b) Disable transmission

 and TEI interrupt.

Immediately after a reset

Figure 6 Transmit Operation

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 7 of 38

3.2 Receive Operation
1. Figure 7 shows a block diagram of the case when the slave H8/36057 receives data from the master H8/36057.

SCS SCS

SSCK SSCK

SSO SSO

SSI SSI

H8/36057 (Master) H8/36057 (Slave)

Figure 7 Block Diagram of the SSU Communications between H8/36057 LSIs
(When the slave device receives data)

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 8 of 38

2. Figure 8 shows the receive operation in this sample task. Hardware and software processing is performed with the
timing shown in figure 8 to implement communications between the H8/36057 LSIs.
Figure 8 shows an example of transmit operation in which the polarity of the SSCK clock is specified to output high
during an idle state and output low during an active state (CPOS = 0), the SSCK clock phase is specified to change
data at the first edge (CPHS = 0), and 8-bit data (H'AA) is received with LSB first.

SCS

SSCK

(CPOS = 0)

SSO

RDRF

Hardware processing

Software processing

None

Initialization:

(a) Set as a slave device and use

 of two serial I/O pins, set the serial

 data output pin as CMOS output,

 set the SSCK pin as the serial

 clock pin and the SCS pin as an

 input pin.

(b) Set four-line bus communication

 mode, execute software reset, and

 set the SSCK and SCS pins as

 CMOS outputs.

(c) Set so that serial data is transferred

 LSB first and select the clock

 polarity, phase, and transfer rate.

(d) Enable reception (RE),

 receive interrupt (RXI),

 conflict error interrupt (CEI), and

 overrun error interrupt (OEI).

Hardware processing

Software processing

Set RDRF.

(Generate an RXI interrupt)

Disable reception:

(a) Disable reception (RE)

 and RXI interrupt.

(b) Acquire the received data

 from SSRDR.

Immediately after a reset

Figure 8 Receive Operation

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 9 of 38

4. Application Example (Specification 1: Standard Mode)
As shown in figure 9, data transmission and reception are performed between H8/36057 LSIs (φ = 20 MHz) in standard
mode (master: transmission and reception; slave: transmission and reception).

• The transfer format is as follows: data length is 8 bits (data transmitted by the master = H'AA, data transmitted by
the slave = H'CC), data is transmitted with LSB first, and transfer rate is 1.25 Mbps.

• Two pins (SSO and SSI) are used as serial data I/O pins (standard mode).
• The clock polarity of the SSCK pin is specified to output high during an idle state and output low during an active

state (CPOS = 0). The SSCK clock phase is specified to change data at the first edge (CPHS = 0).

SCS SCS

SSCK SSCK

SSO SSO

SSI SSI

H8/36057 (Master) H8/36057 (Slave)

Figure 9 Block Diagram of the SSU Communications between H8/36057 LSIs
(Master and slave devices transmits/receives data in standard mode)

4.1 Function Assignment
4.1.1 Master
Table 1 shows the assignment of functions in this sample task.

In this sample task, master functions are assigned to the SSU of the H8/36057 to perform data transmission and
reception simultaneously.

Table 1 Assignment of Functions (Master Function)

Element Description
SCS pin Transmits a chip select signal.
SSCK pin Transmits a transfer clock.
SSO pin Transmits data to the H8/36057 (slave).
SSI pin Receives data from the H8/36057 (slave).
SSCRH Sets the master mode and use of two serial data I/O pins, sets that serial data is output as

CMOS output, sets the SCS pin as an output pin and the SSCK pin as the serial clock pin.
SSCRL Sets four-line bus communication mode, sets the SSCK and SCS pin s as CMOS outputs, and

executes software reset.
SSMR Sets LSB first serial data transfer, clock polarity, phase, and transfer rate.
SSER Sets transmission/reception mode, transmission/reception interrupts, and error interrupts.
SSSR Indicates the transmission/reception statuses via the TDRE, TEND, and RDRF bits, a conflict

error occurrence via the CE bit, and an overrun error occurrence via the ORER bit.
SSTDR Sets data to be transmitted to the H8/36057 (slave).
SSRDR Stores data received from the H8/36057 (slave).

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 10 of 38

4.1.2 Slave
Table 2 shows the assignment of functions in this sample task.

In this sample task, slave functions are assigned to the SSU of the H8/36057 to perform data transmission and reception
simultaneously.

Table 2 Assignment of Functions (Slave Function)

Element Description
SCS pin Receives a chip select signal.
SSCK pin Receives a transfer clock.
SSO pin Receives data from the H8/36057 (master).
SSI pin Transmits data to the H8/36057 (master).
SSCRH Sets the slave mode and use of two serial data I/O pins, sets that serial data is output as

CMOS output, sets the SCS pin as an input pin and the SSCK pin as the serial clock pin.
SSCRL Sets four-line bus communication mode, sets the SSCK and SCS pin s as CMOS outputs, and

executes software reset.
SSMR Sets LSB first serial data transfer, clock polarity, phase, and transfer rate.
SSER Sets transmission/reception mode, transmission/reception interrupts, and error interrupts.
SSSR Indicates the transmission/reception statuses via the TDRE, TEND, and RDRF bits, a conflict

error occurrence via the CE bit, and an overrun error occurrence via the ORER bit.
SSTDR Sets data to be transmitted to the H8/36057 (master).
SSRDR Stores data received from the H8/36057 (master).

4.2 Description of Operation (Data Transmission and Reception)
Figure 10 shows a block diagram of the case when data transmission and reception are performed between H8/36057s
(master and slave) (master: transmits and receives; slave: transmits and receives).

SCS SCS

SSCK SSCK

SSO SSO

SSI SSI

H8/36057 (Master) H8/36057 (Slave)

Figure 10 Block Diagram of the SSU Communications between H8/36057 LSIs
(Master and slave devices transmits/receives data in standard mode)

Figure 11 shows the transmit and receive operations in this sample task. Hardware and software processing is
performed with the timing shown in figure 11 to implement the SSU communications between H8/36057 LSIs.

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 11 of 38

4.2.1 Master and Slave Operations

SCS

SSCK

(CPOS = 0)

SSO

SSI

TDRE

TEND

RDRF

Immediately after a reset

Hardware processing

Software processing

None

Initialization:

(a) Set as master/slave device and

 use of two serial I/O pins, set the

 serial data output pin as CMOS

 output, set the SSCK pin as the

 serial clock pin and the SCS pin

 as an output pin.

(b) Set four-line bus communication

 mode, execute software reset,

 and set the SSCK and SCS pins

 as CMOS outputs.

(c) Set so that serial data is

 transferred LSB first and select

 the clock polarity, phase, and

 transfer rate.

(d) Enable transmission/reception

 (TE, RE), set receive-single-byte-

 and-stop (RSSTP: master only),

 enable transmit/receive interrupts

 (TXI, TEI, RXI), conflict error

 interrupt (CEI), and overrun error

 interrupt (OEI).

Hardware processing

Software processing

Generate a TXI interrupt.

(TIE = 1, TDRE = 1)

Start transmission:

(a) Disable TXI interrupt.

(b) Set transmit data in

 SSTDR (TDRE = 0).

Hardware processing

Software processing

Set RDRF.

(Generate an RXI interrupt)

Disable reception:
(a) Disable reception (RE)

 and RXI interrupt.

(b) Acquire the received data

 from SSRDR.

Hardware processing

Software processing

Set TEND.

(Generate a TEI interrupt)

Disable transmission:

(a) Clear TEND.

(b) Disable transmission

 (TE) and TEI interrupt.

Figure 11 Transmit and Receive Operations

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 12 of 38

4.3 Description of Software (Master/Slave: Transmission and Reception
Functions)

4.3.1 Master
The modules used in this sample task are described below.

(1) Description of Modules

Module Name Label Name Function
Main routine main Sets mask levels.
Initialization SSU_init Initializes the SSU.

SSUI_int Started by a CEI interrupt and performs error processing. Error processing
 Started by an OEI interrupt and performs error processing.

Data transmission Started by a TXI interrupt and performs data transmission.
Transmission end Started by a TEI interrupt and ends data transmission.
Data reception Started by an RXI interrupt and performs data reception.

(2) Arguments

This sample task uses no arguments.
(3) Internal Registers

The following table describes the internal registers used in this sample task.

Register Name Function Setting Used in
SSCRH Sets the H8/36057 as the master device and use of two

serial data I/O pins and sets serial data output pin, SSCK
pin, and SCS pin functions.

H'8E Initialization
routine

SSCRL Sets bus communication mode, executes software reset,
and sets the SSCK and SCS pin functions.

H'60 Initialization
routine

SSMR Sets serial data transmission with LSB first, clock polarity,
phase, and transfer rate (φ clock input).

H'04 Initialization
routine

SSER Enables interrupts (CEI, OEI, RXI, TEI, and TXI) and
enables or disables the SSU transmission and reception.

H'EF Initialization
routine

SSTDR Sets data to be transmitted to the receiver H8/36057. H'AA Data
transmission

SSRDR Stores data received from the transmitter H8/36057. Data reception
SSSR Detects an error. Error

processing

(4) RAM Usage

Label Name Function Data Size Used in
Rxdata Stores received data. unsigned char Data reception

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 13 of 38

4.3.2 Slave
(1) Description of Modules

Module Name Label Name Function
Main routine main Sets mask levels.
Initialization SSU_init Initializes the SSU.

SSUI_int Started by a CEI interrupt and performs error processing. Error processing
 Started by an OEI interrupt and performs error processing.

Data reception Started by an RXI interrupt and performs data reception.
Transmission end Started by a TEI interrupt and ends data transmission.
Data transmission Started by a TXI interrupt and performs data transmission.

(2) Arguments

This sample task uses no arguments.
(3) Internal Registers

The following table describes the internal registers used in this sample task.

Label Name Function Setting Used in
SSCRH Sets the H8/36057 as a slave device and use of two serial

data I/O pins, and sets serial data output pin, SSCK pin,
and SCS pin functions.

H'0D Initialization
routine

SSCRL Sets bus communication mode, executes software reset,
set the SSCK and SCS pin functions.

H'60 Initialization
routine

SSMR Sets serial data transmission with LSB first, clock polarity,
phase, and transfer rate (φ clock input).

H'04 Initialization
routine

SSER Enables interrupts (CEI, OEI, RXI, TEI, and TXI) and
enables or disables the SSU transmission and reception.

H'CF Initialization
routine

SSRDR Stores data received from the transmitter H8/36057. Data reception
SSTDR Sets data to be transmitted the receiver H8/36057. H'CC Data

transmission
SSSR Detects an error. Error

processing

(4) RAM Usage

Label Name Function Data Size Used in
Rxdata Stores received data. unsigned char Data reception

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 14 of 38

4.4 Flowchart
4.4.1 Master
(1) Main Routine

main

Initialize the SSU.

Set interrupt mask levels.

(2) Initialization

SSU_init

RTS

Set as the master device and use of two serial

data I/O pins, set the serial data output pin as

CMOS output, set the SSCK pin as the serial

clock pin and the SCS pin as an output pin.

Set four-line bus communication mode, execute

software reset, and set the SSCK and SCS pins

as CMOS outputs.

Set that serial data is transferred LSB first and

select the clock polarity, phase, and transfer rate.

Enable transmission and reception,

transmit and receive interrupts (TXI, TEI, RXI),

overrun error interrupt (OEI), and conflict error

interrupt (CEI).

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 15 of 38

(3) Error processing, data reception, and data transmission

SSUI_int

RTE

Execute software reset.

Conflict error?
No

Yes

Clear the overrun error

flag (ORER).

Overrun error?
No

Yes

Disable reception,
receive-single-byte-and-stop,
and receive data full (RXI)
interrupt.

Store received data in

Rxdata.

Receive data full?
No

Yes

Clear the transmission

end flag (TEND).

Disable transmission (TE)
and transmit end (TEI)
interrupt.

Transmission end?
No

Yes

Set transmit data in

SSTDR.

Disable transmit data

empty (TXI) interrupt.

Transmit data empty?
No

Yes

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 16 of 38

4.4.2 Slave
(1) Main Routine

main

Initialize the SSU

Set interrupt mask levels.

(2) Initialization

SSU_init

RTS

Set as the master device and use of two serial

I/O pins, set the serial data output pin as CMOS

output, set the SSCK pin as the serial clock pin

and the SCS pin as an input pin.

Set four-line bus communication mode, execute

software reset, and set the SSCK and SCS pins

as CMOS outputs.

Set that serial data is transferred LSB first and

select the clock polarity, phase, and transfer rate.

Enable transmission and reception,

transmit and receive interrupts (TXI, TEI, RXI),

overrun error interrupt (OEI), and conflict error

interrupt (CEI).

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 17 of 38

(3) Error processing, data reception, and data transmission

SSUI_int

RTE

Conflict error?
No

Yes

Clear the overrun error

flag (ORER).

Overrun error?
No

Yes

Disable reception,
receive-single-byte-and-stop,
and receive data full (RXI)
interrupt.

Store received data in

Rxdata.

Receive data full?
No

Yes

Clear the transmission

end flag (TEND).

Disable transmission (TE)
and transmit end (TEI)
interrupt.

Transmission end?
No

Yes

Set transmit data in

SSTDR.

Disable transmit data

empty (TXI) interrupt.

Transmit data empty?
No

Yes

Execute software reset.

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 18 of 38

4.5 Program Listing
4.5.1 Master
#include <machine.h>
#include "H8_36057.h"
void main (void);
void SSU_init (void);
unsigned char Rxdata;
/***/
/* Main Routine */
/***/
void main (void)
#pragma asm
 mov.l #H'FFFFFF7C,SP
#pragma endasm
{
 SSU_init();
 set_imask_ccr(0);
 while(1);
}
/***/
/* SSU Module Initialize Routine */
/***/
void SSU_init(void)
{
 SSU.SSER.BYTE = 0x00;
 SSU.SSCRL.BYTE = 0x00;
 SSU.SSCRH.BYTE = 0x8E;
 SSU.SSCRL.BYTE = 0x60;
 SSU.SSMR.BYTE = 0x04;
 SSU.SSSR.BYTE &= 0x04;
 SSU.SSER.BYTE = 0xEF;
}
/***/
#pragma interrupt (SSUI_int) /* Error, reception, and transmission interrupts */
/***/
void SSUI_int(void)
{
 if(SSU.SSSR.BIT.CE && SSU.SSER.BIT.CEIE){
 SSU.SSSR.BIT.CE = 0;
 SSU.SSCRL.BIT.SRES = 1;
 }
 else if(SSU.SSSR.BIT.ORER && SSU.SSER.BIT.RIE){
 SSU.SSSR.BIT.ORER = 0;
 }
 else if(SSU.SSSR.BIT.RDRF && SSU.SSER.BIT.RIE){
 SSU.SSER.BYTE &= 0x8D;
 Rxdata = SSU.SSRDR;
 }
 else if(SSU.SSSR.BIT.TEND && SSU.SSER.BIT.TEIE){
 SSU.SSSR.BIT.TEND = 0;
 SSU.SSER.BYTE &= 0x63;
 }
 else if(SSU.SSSR.BIT.TDRE && SSU.SSER.BIT.TIE){
 SSU.SSTDR = 0xAA;
 SSU.SSER.BIT.TIE = 0;
 }
}

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 19 of 38

4.5.2 Slave
#include <machine.h>
#include "H8_36057.h"
void main (void);
void SSU_init (void);
unsigned char Rxdata;
/***/
/* Main Routine */
/***/
void main (void)
#pragma asm
 mov.l #H'FFFFFF7C,SP
#pragma endasm
{
 SSU_init();
 set_imask_ccr(0);
 while(1);
}
/***/
/* SSU Module Initialize Routine */
/***/
void SSU_init(void)
{
 SSU.SSER.BYTE = 0x00;
 SSU.SSCRL.BYTE = 0x00;
 SSU.SSCRH.BYTE = 0x0D;
 SSU.SSCRL.BYTE = 0x60;
 SSU.SSMR.BYTE = 0x04;
 SSU.SSSR.BYTE &= 0x04;
 SSU.SSER.BYTE = 0xCF;
}
/***/
#pragma interrupt (SSUI_int) /* Error, reception, and transmission interrupts */
/***/
void SSUI_int(void)
{
 if(SSU.SSSR.BIT.CE && SSU.SSER.BIT.CEIE){
 SSU.SSSR.BIT.CE = 0;
 SSU.SSCRL.BIT.SRES = 1;
 }
 else if(SSU.SSSR.BIT.ORER && SSU.SSER.BIT.RIE){
 SSU.SSSR.BIT.ORER = 0;
 }
 else if(SSU.SSSR.BIT.RDRF && SSU.SSER.BIT.RIE){
 SSU.SSER.BYTE &= 0x8D;
 Rxdata = SSU.SSRDR;
 }
 else if(SSU.SSSR.BIT.TEND && SSU.SSER.BIT.TEIE){
 SSU.SSSR.BIT.TEND = 0;
 SSU.SSER.BYTE &= 0x63;
 }
 else if(SSU.SSSR.BIT.TDRE && SSU.SSER.BIT.TIE){
 SSU.SSTDR = 0xCC;
 SSU.SSER.BIT.TIE = 0;
 }
}

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 20 of 38

4.6 Program when the Master Transmits Data and the Slave Receives Data
4.6.1 Settings for the Master Device
A program for the master device to transmit 8-bit data only once should use the routines with the following label names,
as are shown in the master program listing in the preceding subsection: main, SSU_init (change the SSER setting to
H'8D), and SSUI_int (CEI, TEI, and TXI).

4.6.2 Settings for the Slave Device
A program for the slave device to receive 8-bit data only once should use the routines with the following label names,
as are shown in the slave program listing in the preceding subsection: main, SSU_init (change the SSER setting to
H'43), and SSUI_int (CEI, OEI, and RXI).

4.7 Program when the Master Transmits SCS and SSCK and Receives Data, and
the Slave Transmits Data

4.7.1 Settings for the Master Device
A program for the master device to transmit only SSCK and SCS (for receiving 8-bit data once) should use the routines
with the following label names, as are shown in the master program listing in the preceding subsection: main, SSU_init
(change the SSER setting to H'63), and SSUI_int (CEI, OEI, and RXI).

4.7.2 Settings for the Slave Device
A program for the slave device to only transmit data (8-bit data) should use the routines with the following label names,
as are shown in the slave program listing in the preceding subsection: main, SSU_init (change the SSER setting to
H'8D), and SSUI_int (CEI, TEI, and TXI).

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 21 of 38

5. Application Example (Specification 2: Bi-Directional Mode)
As shown in figure 12, data transmission and reception are performed between H8/36057 LSIs (φ = 20 MHz) in bi-
directional mode (master: transmission and reception; slave: transmission and reception).

• The transfer format is as follows: data length is 16 bits (data transmitted by the master/slave = H'AA, H'55), data is
transmitted with MSB first, and transfer rate is 0.08 Mbps.

• A single pin (SSO) is used for serial data I/O (bi-directional mode).
• The clock polarity of the SSCK pin is specified to output low during an idle state and output high during an active

state (CPOS = 1). The SSCK clock phase is specified to latch data at the first edge (CPHS = 1).

SCS SCS

SSCK SSCK

SSO SSO

SSI SSI

H8/36057 (Master) H8/36057 (Slave)

Figure 12 Block Diagram of the SSU Communications between H8/36057 LSIs
(Master and slave devices transmits/receives data in bi-directional mode)

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 22 of 38

5.1 Function Assignment
5.1.1 Master
Table 3 shows the assignment of functions in this sample task.

In this sample task, master functions are assigned to the SSU of the H8/36057 to perform data transmission and
reception.

Table 3 Assignment of Functions (Master Function)

Element Description
SCS pin Transmits a chip select signal.
SSCK pin Transmits a transfer clock.
SSO pin Transmits/receives data to/from the H8/36057 (slave).
SSCRH Sets the master mode and use of one serial data I/O pin, sets that serial data is output as

CMOS output, sets the SCS pin as an output pin and the SSCK pin as the serial clock pin.
SSCRL Sets four-line bus communication mode, sets the SSCK and SCS pin s as CMOS outputs, and

executes software reset.
SSMR Sets MSB first serial data transfer, clock polarity, phase, and transfer rate.
SSER Sets transmission/reception mode, transmission/reception interrupts, and error interrupts.
SSSR Indicates the transmission/reception statuses via the TDRE, TEND, and RDRF bits, a conflict

error occurrence via the CE bit, and an overrun error occurrence via the RER bit.
SSTDR Sets data to be transmitted to the H8/36057 (slave).
SSRDR Stores data received from the H8/36057 (slave).

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 23 of 38

5.1.2 Slave
Table 4 shows the assignment of functions in this sample task.

In this sample task, slave functions are assigned to the SSU of the H8/36057 to perform data transmission and reception.

Table 4 Assignment of Functions (Slave Function)

Element Description
SCS pin Receives a chip select signal.
SSCK pin Receives a transfer clock.
SSO pin Transmits/receives data to/from the H8/36057 (master).
SSCRH Sets the slave mode and use of one serial data I/O pin, sets that serial data is output as CMOS

output, sets the SCS pin as an input pin and the SSCK pin as the serial clock pin.
SSCRL Sets four-line bus communication mode, sets the SSCK and SCS pin s as CMOS outputs, and

executes software reset.
SSMR Sets MSB first serial data transfer, clock polarity, phase, and transfer rate.
SSER Sets transmission/reception mode, transmission/reception interrupts, and error interrupts.
SSSR Indicates the transmission/reception statuses via the TDRE, TEND, and RDRF bits, a conflict

error occurrence via the CE bit, and an overrun error occurrence via the ORER bit.
SSTDR Sets data to be transmitted to the H8/36057 (master).
SSRDR Stores data received from the H8/36057 (master).

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 24 of 38

5.2 Description of Operation (Data Transmission and Reception)
Figure 13 shows a block diagram of the case when data transmission and reception are performed between H8/36057
LSIs (master and slave) (master: transmits and receives; slave: transmits and receives).

SCS SCS

SSCK SSCK

SSO SSO

SSI SSI

H8/36057 (Master) H8/36057 (Slave)

Figure 13 Block Diagram of the SSU Communications between H8/36057 LSIs
(Master and slave devices transmits/receives data in bi-directional mode)

Figures 14 and 15 show the transmit and receive operations in this sample task. Hardware and software processing is
performed with the timings shown in figures 14 and 15 to implement the SSU communications between H8/36057 LSIs.

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 25 of 38

5.2.1 Master Operation (*Processing in Slave Device)

*Hardware processing

 (in slave device)

Software processing

Set RDRF.

(Generate an RXI interrupt)

(a) Set receive-single-byte-

 and-stop (RSSTP = 1).

(b) Acquire received data

 from SSRDR.

SCS

SSCK

(CPOS = 1)

SSO

TDRE

TEND

RDRF

Immediately after a reset

Hardware processing

Software processing

Generate a TXI interrupt.

(TIE = 1, TDRE = 1)

First transmit interrupt:

(a) Set transmit data in

 SSTDR (TDRE = 0).

Second transmit interrupt:

(a) Set transmit data in

 SSTDR (TDRE = 0).

(b) Disable TXI interrupt.

*Hardware processing

 (in slave device)

Software processing

Set RDRF.

(Generate an RXI interrupt)

(a) Disable reception (RE)

 and RXI interrupt.

(b) Acquire received data

 from SSRDR.

Hardware processing

Software processing

Set TEND.

(Generate a TEI interrupt)

Disable transmission:

(a) Clear TEND.

(b) Disable transmission

 (TE) and TEI interrupt.

(c) Enable reception (RE)

 and receive interrupt

 (RXI).

Hardware processing

Software processing

None

Initialization:

(a) Set as the master device and

 use of one serial I/O pin, set the

 serial data output pin as CMOS

 output, set the SSCK pin as the

 serial clock pin and the SCS pin

 as an output pin.

(b) Set four-line bus communication

 mode, execute software reset,

 and set the SSCK and SCS pins

 as CMOS outputs.

(c) Set so that serial data is

 transferred MSB first and select

 the clock polarity, phase, and

 transfer rate.

(d) Enable transmission (TE),

 enable transmit interrupts

 (TXI, TEI), and conflict error

 interrupt (CEI).

Figure 14 Transmit and Receive Operations in Master Device (Bi-Directional Mode)

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 26 of 38

5.2.2 Slave Operation (*Processing in Master Device)

*Hardware processing

 (in master device)

Software processing

Set RDRF.

(Generate an RXI interrupt)

Acquire received data from

SSRDR.

SCS

SSCK

(CPOS = 1)

SSO

TDRE

TEND

RDRF

Immediately after a reset

Hardware processing

Software processing

None

Initialization:

(a) Set as a slave device and

 use of one serial I/O pin, set the

 serial data output pin as CMOS

 output, set the SSCK pin as the

 serial clock pin and the SCS pin

 as an input pin.

(b) Set four-line bus communication

 mode, execute software reset,

 and set the SSCK and SCS

 pins as CMOS outputs.

(c) Set so that serial data is

 transferred MSB first and select

 the clock polarity, phase, and

 transfer rate.

(d) Enable reception (RE),

 receive interrupt (RXI), conflict

 error interrupt (CEI), and

 overrun error (OEI) interrupt.

*Hardware processing

 (in master device)

Software processing

Set RDRF.

(Generate an RXI interrupt)

(a) Disable reception (RE)

 and RXI interrupt.

(b) Acquire received data

 from SSRDR.

(c) Enable transmission

 (TE) and TEI interrupt.

Hardware processing

Software processing

Set TEND.

(Generate a TEI interrupt)

Disable transmission:

(a) Clear TEND.

(b) Disable transmission

 (TE) and TEI interrupt.

Hardware processing

Software processing

Generate a TXI interrupt.

(TIE = 1, TDRE = 1)

First transmit interrupt:

(a) Set transmit data in

 SSTDR (TDRE = 0).

Second transmit interrupt:

(a) Set transmit data in

 SSTDR (TDRE = 0).

(b) Disable TXI interrupt.

Figure 15 Transmit and Receive Operations in Slave Device (Bi-Directional Mode)

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 27 of 38

5.3 Description of Software (Master/Slave: Transmission and Reception
Functions)

5.3.1 Master
The modules used in this sample task are described below.

(1) Description of Modules

Module Name Label Name Function
Main routine main Sets mask levels.
Initialization SSU_init Initializes the SSU.
Variable
initialization

SSU_counter_init Counts the length of transmit/receive data.

SSUI_int Started by a CEI interrupt and performs error processing. Error processing
 Started by an OEI interrupt and performs error processing.

Data reception Started by an RXI interrupt and performs data reception.
Transmission end Started by a TEI interrupt and ends data transmission.
Data transmission Started by a TXI interrupt and performs data transmission.

(2) Arguments

This sample task uses no arguments.
(3) Internal Registers

The following table describes the internal registers used in this sample task.

Label Name Function Setting Used in
SSCRH Sets the H8/36057 as the master device and use of one

serial data I/O pin and sets serial data output pin, SSCK
pin, and SCS pin functions.

H'CE Initialization
routine

SSCRL Sets bus communication mode, executes software reset,
and sets the SSCK and SCS pin functions.

H'60 Initialization
routine

SSMR Sets serial data transmission with MSB first, clock polarity,
phase, and transfer rate (φ clock input).

H'E0 Initialization
routine

SSER Enables interrupts (CEI, OEI, RXI, TEI, and TXI) and
enables or disables the SSU transmission and reception.

H'8D

Initialization
routine

SSTDR Sets data to be transmitted to the receiver H8/36057. H'AA, H'55 Data
transmission

SSRDR Stores data received from the transmitter H8/36057. Data reception
SSSR Detects an error. Error

processing

(4) RAM Usage

Label Name Function Data Size Used in
Rxdata [0,1] Stores received data. unsigned char Data reception
T_counter Counts the length of transmit data. unsigned char Data

transmission
R_counter Counts the length of received data. unsigned char Data reception

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 28 of 38

5.3.2 Slave
(1) Description of Modules

Module Name Label Name Function
Main routine main Sets mask levels.
Initialization SSU_init Initializes the SSU.
Variable
initialization

SSU_
counter_init

Counts the length of transmit/receive data.

SSUI_int Started by a CEI interrupt and performs error processing. Error processing
 Started by an OEI interrupt and performs error processing.

Data reception Started by an RXI interrupt and performs data reception.
Transmission end Started by a TEI interrupt and ends data transmission.
Data transmission Started by a TXI interrupt and performs data transmission.

(2) Arguments

This sample task uses no arguments.
(3) Internal Registers

The following table describes the internal registers used in this sample task.

Label Name Function Setting Used in
SSCRH Sets the H8/36057 as a slave device and use of one serial

data I/O pin and sets serial data output pin, SSCK pin, and
SCS pin functions.

H'4D Initialization
routine

SSCRL Sets bus communication mode, executes software reset,
and sets the SSCK and SCS pin functions.

H'60 Initialization
routine

SSMR Sets serial data transmission with MSB first, clock polarity,
phase, and transfer rate (φ clock input).

H'E0 Initialization
routine

SSER Enables interrupts (CEI, OEI, and RXI) and enables or
disables the SSU transmission and reception.

H'43

Initialization
routine

SSRDR Sets data received from the transmitter H8/36057. Data reception
SSTDR Sets data to be transmitted the receiver H8/36057. H'AA, H'55 Data

transmission
SSSR Detects an error. Error

processing

(4) RAM Usage

Label Name Function Data Size Used in
Rxdata [0,1] Stores received data. unsigned char Data reception
T_counter Counts the length of transmit data. unsigned char Data

transmission
R_counter Counts the length of receive data. unsigned char Data reception

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 29 of 38

5.4 Flowchart
5.4.1 Master
(1) Main Routine

main

Yes

No

Initialize SSU.

(SSU_init)

Initialize SSU_counter.

(SSU_counter_init)

Set interrupt mask levels.

Wait for transmit data preparation

in the slave device.

Transmission end?

Start receive operation

(dummy read of SSRDR).

(2) Initialization

SSU_init

RTS

Set as the master device and use of one serial

data I/O pin, set the serial data output pin as

CMOS output, set the SSCK pin as the serial

clock pin and the SCS pin as an output pin.

Set four-line bus communication mode, execute

software reset, and set the SSCK and SCS pins

as CMOS outputs.

Set that serial data is transferred MSB first and

select the clock polarity, phase, and transfer rate.

Enable transmission, transmit interrupts (TXI,

TEI), overrun error interrupt (OEI), and conflict

error interrupt (CEI).

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 30 of 38

(3) Variable initialization

SSU_counter_init

Clear T_counter to 0.

Clear R_counter to 0.

RTS

(4) Error processing, data reception, and data transmission

SSUI_int

RTE

Conflict error?

No

Yes

Clear overrun error

flag (ORER).

Overrun error?

No

Yes

Clear transmission

end flag (TEND).

Disable transmission

(TE) and transmit end

(TEI) interrupt.

Enable reception (RE)

and receive data full

(RXI) interrupt.

Transmission end?

No

Yes Transmit data empty?

No

Yes

Set transmit data

in SSTDR.

T_counter = 1?

No

Yes

Receive data full?

No

Yes

Set RSSTP to 1.

Store received data

to Rxdata[0].

R_counter = 1?

No

Yes

Disable transmit data

empty (TXI) interrupt.

T_counter = 2?

No

Yes

Disable reception,

receive-single-byte-

and-stop, and

receive data full (RXI)

interrupt.

R_counter = 2?

No

Yes

Store received data

to Rxdata[1].

Execute software reset.

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 31 of 38

5.4.2 Slave
(1) Main Routine

Set interrupt mask levels.

main

Initialize SSU.

(SSU_init)

Initialize SSU_counter.

(SSU_counter_init)

(2) Initialization

main

RTS

Dummy-write to SSRDR.

Set as a slave device and use of one serial

data I/O pin, set the serial data output pin as

CMOS output, set the SSCK pin as the serial

clock pin and the SCS pin as an input pin.

Set four-line bus communication mode, execute

software reset, and set the SSCK and SCS pins

as CMOS outputs.

Set that serial data is transferred MSB first and

select the clock polarity, phase, and transfer rate.

Enable reception, receive interrupt (RXI),

overrun error interrupt (OEI), and conflict

error interrupt (CEI).

(3) Variable initialization

SSU_counter_init

RTS

Clear R_counter to 0.

Clear T_counter to 0.

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 32 of 38

(4) Error processing, data reception, and data transmission

SSUI_int

RTE

Conflict error?

No

Yes

Clear overrun error

flag (ORER).

Overrun error?

No

Yes

Clear transmission

end flag (TEND).

Disable transmission

(TE) and transmit end

(TEI) interrupt.

Transmission end?

No

Yes Transmit data empty?

No

Yes

Set transmit data

in SSTDR.

T_counter = 1?

No

Yes

Receive data full?

No

Yes

Set RSSTP to 1.

Store received data

to Rxdata[0].

R_counter = 1?

No

Yes

Disable transmit data

empty (TXI) interrupt.

T_counter = 2?

No

Yes

Disable reception,

receive-single-byte-

and-stop, and

receive data full (RXI)

interrupt.

Enable transmission

(TE), transmit end

(TEI) interrupt, and

transmit data empty

interrupt.

R_counter = 2?

No

Yes

Store received data

to Rxdata[1].

Execute software reset.

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 33 of 38

5.5 Program Listing
5.5.1 Master
#include <machine.h>
#include "H8_36057.h"

void main (void);
void SSU_init (void);
void SSU_counter_init(void);

unsigned char T_counter;
unsigned char R_counter;
unsigned char Rxdata[2];
/***/
/* Main Routine */
/***/
void main (void)
#pragma asm
 mov.l #H'FFFFFF7C,SP
#pragma endasm
{
 signed int lp;
 signed int A;
 SSU_init();
 SSU_counter_init();
 set_imask_ccr(0);

 while(SSU.SSER.BIT.TE);
 for(lp=50;lp>0;lp--);
 A = SSU.SSRDR;
 while(1);
}
/***/
/* SSU_counter Initialize Routine */
/***/
void SSU_counter_init(void)
{
 T_counter = 0;
 R_counter = 0;
}
/***/
/* SSU Module Initialize Routine */
/***/
void SSU_init(void)
{
 SSU.SSER.BYTE = 0x00;
 SSU.SSCRL.BYTE = 0x00;
 SSU.SSCRH.BYTE = 0xCE;
 SSU.SSCRL.BYTE = 0x63;
 SSU.SSMR.BYTE = 0xE0;
 SSU.SSSR.BYTE &= 0x04;
 SSU.SSER.BYTE = 0x8D;
}

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 34 of 38

/***/
#pragma interrupt (SSUI_int) /* Error, reception, and transmission interrupts */
/***/
void SSUI_int(void)
{
 if(SSU.SSSR.BIT.CE && SSU.SSER.BIT.CEIE){
 SSU.SSSR.BIT.CE = 0;
 SSU.SSCRL.BIT.SRES = 1;
 }
 else if(SSU.SSSR.BIT.ORER && SSU.SSER.BIT.RIE){
 SSU.SSSR.BIT.ORER = 0;
 }
 if(SSU.SSSR.BIT.RDRF && SSU.SSER.BIT.RIE){
 R_counter++;
 if(R_counter == 1){
 SSU.SSER.BIT.RSSTP = 1;
 Rxdata[0] = SSU.SSRDR;
 }
 else if(R_counter == 2){
 SSU.SSER.BYTE &= 0x8D;
 Rxdata[1] = SSU.SSRDR;
 }
 }
 else if(SSU.SSSR.BIT.TEND && SSU.SSER.BIT.TEIE){
 SSU.SSSR.BIT.TEND = 0;
 SSU.SSER.BYTE &= 0x63;
 SSU.SSER.BYTE = 0x43;
 }
 else if(SSU.SSSR.BIT.TDRE && SSU.SSER.BIT.TIE){
 T_counter++;
 if(T_counter == 1){
 SSU.SSTDR = 0xAA;
 }
 else if(T_counter == 2){
 SSU.SSTDR = 0x55;
 SSU.SSER.BIT.TIE = 0;
 }
 }
}

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 35 of 38

5.5.2 Slave
#include <machine.h>
#include "H8_36057.h"

void main (void);
void SSU_init (void);
void SSU_counter_init(void);

unsigned char T_counter;
unsigned char R_counter;
unsigned char Rxdata[2];
/***/
/* Main Routine */
/***/
void main (void)
#pragma asm
mov.l #H'FFFFFF7C,SP
#pragma endasm
{
 SSU_init();
 SSU_counter_init();
 set_imask_ccr(0);
 while(1);
}
/***/
/* SSU_counter Initialize Routine */
/***/
void SSU_counter_init(void)
{
 R_counter = 0;
 T_counter = 0;
}
/***/
/* SSU Module Initialize Routine */
/***/
void SSU_init(void)
{
 unsigned char A;
 SSU.SSER.BYTE = 0x00;
 SSU.SSCRL.BYTE = 0x00;
 SSU.SSCRH.BYTE = 0x4D;
 SSU.SSCRL.BYTE = 0x63;
 SSU.SSMR.BYTE = 0xE0;
 SSU.SSSR.BYTE &= 0x04;
 SSU.SSER.BYTE = 0x43;
 A = SSU.SSRDR;
}

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 36 of 38

/***/
#pragma interrupt (SSUI_int) /* Error, reception, and transmission interrupts */
/***/
void SSUI_int(void)
{
 if(SSU.SSSR.BIT.CE && SSU.SSER.BIT.CEIE){
 SSU.SSSR.BIT.CE = 0;
 SSU.SSCRL.BIT.SRES = 1;
 }
 else if(SSU.SSSR.BIT.ORER && SSU.SSER.BIT.RIE){
 SSU.SSSR.BIT.ORER = 0;
 }
 else if(SSU.SSSR.BIT.RDRF && SSU.SSER.BIT.RIE){
 R_counter++;
 if(R_counter == 1){
 Rxdata[0] = SSU.SSRDR;
 }
 else if(R_counter == 2){
 SSU.SSER.BYTE &= 0x8D;
 Rxdata[1] = SSU.SSRDR;
 SSU.SSER.BYTE = 0x8D;
 }
 }
 else if(SSU.SSSR.BIT.TEND && SSU.SSER.BIT.TEIE){
 SSU.SSSR.BIT.TEND = 0;
 SSU.SSER.BYTE &= 0x63;
 }
 else if(SSU.SSSR.BIT.TDRE && SSU.SSER.BIT.TIE){
 T_counter++;
 if(T_counter == 1){
 SSU.SSTDR = 0xAA;
 }
 else if(T_counter == 2){
 SSU.SSTDR = 0x55;
 SSU.SSER.BIT.TIE = 0;
 }
 }
}

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 37 of 38

Revision Record
Description

Rev.

Date Page Summary

1.00 Jul.28.04 � First edition issued

H8/300H Tiny Series
Communications Operation Using the Built-in SSU

REJ06B0379-0100Z/Rev.1.00 July 2004 Page 38 of 38

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corp. product best suited to the customer's application; they do not convey any license
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corp. without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or
an authorized Renesas Technology Corp. product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising
from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means,
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

	Cover
	1. SSU Communication System Summary
	2. Description of Functions
	3. Description of Operation
	4. Application Example (Specification 1: Standard Mode)
	5. Application Example (Specification 2: Bi-Directional Mode)
	Revision Record
	Keep safety first in your circuit designs!
	Notes regarding these materials

