To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software, and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depend on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. You may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics products and technology shall not be used for or incorporated into any products or systems where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-terrorism systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
H8/300H Tiny Series
Ammeter Implementation Example

Introduction
There are a variety of methods of detecting current levels. In this example the DC current levels are measured using a shunt resistor and the A/D converter built into the H8/36014, which is the simplest and most basic method. The voltage drop resulting from current flow through the shunt resistor is measured using the A/D converter, and the current value is calculated on the basis of Ohm’s law \(I = \frac{E}{R} \). To make use of the precision of the H8/36014’s 10-bit A/D converter, A/D conversion takes place after the shunt’s voltage change has been amplified by an op-amp.

Target Device
H8/300H Tiny Series H8/36014

Contents
1. Specifications .. 2
2. Functions Used .. 6
3. Principles of Operation ... 9
4. Description of Software .. 11
5. Flowcharts ... 16
6. Program Listing .. 21
1. Specifications

(1) The hardware configuration used to measure DC current levels is shown in figure 1.

(2) In this sample task the voltage drop caused by shunt resistor R4 is measured, and the current value is calculated based on Ohm’s law (I = E/R).

(3) Since the voltage drop is very small relative to the range of the H8/36014’s A/D converter, it is amplified by an op-amp before being input to analog input pin 0 (the AN0 pin) of the A/D converter, which performs A/D conversion.

(4) The current value is obtained from the A/D conversion result by calculation and displayed as a decimal number on 7-segment LEDs connected to the I/O ports.

(5) In this sample task the operating voltage (Vcc) and analog power supply voltage (AVcc) of the H8/36014 are 5 V, and the OSC clock frequency is 20 MHz, supplied as an external clock by a crystal oscillator.
(6) In this sample task the resistance value has been determined so as to allow accurate measurement of current levels up to a maximum of 200 mA. The design procedure is described below.

 (a) A 1-Ω resistor is used as shunt resistor R4 to allow measurement of current levels from 0 to 200 mA.
 (b) Based on Ohm’s law (I = E/R), the R4 voltage drop range is 0 to 200 mV.
 (c) The voltage drop range is very small relative to the 5-V range of the A/D converter, so an op-amp is used to amplify the maximum value of the measuring range from 200 mV to 5 V. The op-amp used in this sample task is a C-MOS rail-to-rail (some manufacturers use the term “full-swing”) operational amplifier. It can produce an output amplitude up to the power-supply voltage. The ideal amplifier gain, G, is 25×, as indicated below.

\[
G = \frac{5[V]}{200[mV]} = 25
\]

 (d) In this sample task the op-amp gain is set at 23× to allow some margin in the measuring range. Appropriate resistors are used for R1 (1 kΩ) and R2 (22 kΩ).

\[
G = \frac{R2}{R1} + 1 = 23
\]

 (e) For reference, it should be noted that it is not necessary to change the op-amp gain to change the measuring range. The measuring range can be changed easily by changing R4.

 Example: If R4 = 10 Ω the measuring range is 20 mA, and if R4 = 100 Ω the measuring range is 2 mA.

(7) The operations in this sample task are as follows.

 (a) Divide the circuit to be measured and connect the shunt resistors in series.
 (b) If, for example, a 100 mA (unknown) current is flowing through the circuit, the R4 (1 Ω) voltage drop will be 100 mV.
 (c) The R4 output voltage is amplified 23× by the op-amp to 2.3 V, and then input to analog input pin 0 (the AN0 pin) of the A/D converter.
 (d) From the voltage of 2.3 V measured using the A/D converter a current value of 100 mA is calculated as shown below, based on Ohm’s law (I = E/R) and the gain of the op-amp.

\[
I = \frac{2.3[V]}{23} \div 1[Ω] = 100[mA]
\]

 (e) The current value of 100 mA calculated from the measurement results from the A/D converter is displayed using the 7-segment LEDs as the decimal number 100.0.
Figure 2 7-Segment LED Control Method
(8) In this sample task the A/D conversion result is displayed using the 7-segment LEDs as a decimal number (000.0–999.9). The LED display method for the A/D conversion result is shown in figure 3.

A/D conversion result (10-bit data): A/D data register A (ADDA: 2 bytes)

<table>
<thead>
<tr>
<th>AD9</th>
<th>AD8</th>
<th>AD7</th>
<th>AD6</th>
<th>AD5</th>
<th>AD4</th>
<th>AD3</th>
<th>AD2</th>
<th>AD1</th>
<th>AD0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Shift the contents of ADDRA 6 bits to the right and perform logical AND with H’03FF

Multiply by coefficient scale and store it in variable R

Coefficient scale (float, 4 bytes) = 150 / 700 * 10

Variable current (int, 2 bytes)

<table>
<thead>
<tr>
<th>LED4</th>
<th>LED3</th>
<th>LED2</th>
<th>LED1</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Coefficient scale

150: Current measurement value
700: A/D input value
10: 10× so that one decimal place is displayed

Example:
ADDRA = b’0010000000000000

\[((ADDRA >> 6 & 0x03FF) * scale) \to current (\approx 274)\]

\[\text{dig}_0 = \text{dsp_data}[\text{current} \% 10] = \text{H’66}\]

\[\text{dig}_1 = \text{dsp_data}[\text{current} \% 100]/10 = \text{H’27} | \text{H’80} (\text{Add decimal point})\]

\[\text{dig}_2 = \text{dsp_data}[\text{current} \% 1000]/100 = \text{H’5B}\]

\[\text{dig}_3 = \text{dsp_data}[\text{current} /1000] = \text{H’3F}\]

Figure 3 LED Display Method for A/D Conversion Result
2. Functions Used

(1) A block diagram of the H8/36014 functions used in this sample task is shown in figure 4, and the assignment of functions is shown in table 1.

![Block Diagram of Functions Used](image-url)

Table 1 Assignment of Functions

<table>
<thead>
<tr>
<th>Elements</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timer W</td>
<td>The free-running function of timer W is used to perform A/D conversion of the input to analog input pin 0 (AN0). The A/D conversion cycle is measured using the timer W overflow cycle of 32.768 ms.</td>
</tr>
<tr>
<td>Timer V</td>
<td>The free-running function of timer V is used to control switching of the 7-segment LEDs. Dynamic display is implemented by illuminating the four 7-segment LEDs sequentially each timer V overflow cycle of 2.048 ms.</td>
</tr>
<tr>
<td>A/D converter</td>
<td>The A/D converter performs A/D conversion of the shunt voltage, and the current value is calculated from the detected voltage value.</td>
</tr>
<tr>
<td>Port 2</td>
<td>Switching of the four 7-segment LEDs is performed based on the output from port 2 output pins P20 and P21. Output pins P20 and P21 are connected to the input pins of the 2-to-4-line decoder.</td>
</tr>
<tr>
<td>Port 5</td>
<td>The display of the 7-segment LEDs is based on the output from port 5 output pins P50 to P57. The 10-bit data obtained by A/D conversion of the input to AN0 is converted to 3-digit hexadecimal data and output to the LEDs.</td>
</tr>
</tbody>
</table>
(2) A connection diagram for the 7-segment LEDs used is shown in figure 5. As shown in figure 5, a high-level signal output from port 5 causes the corresponding LED segment to light. Table 2 shows the correspondence between port 5 output and 7-segment LED display data.

![7-Segment LED Connection and Internal Wiring Diagrams](image-url)
Table 2 Correspondence Between Port 5 Output and 7-Segment LED Display Data

<table>
<thead>
<tr>
<th>LED Display</th>
<th>Port 5 Output Data</th>
<th>LED Display</th>
<th>Port 5 Output Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P57 P56 P55 P54 P53 P52 P51 P50</td>
<td></td>
<td>P57 P56 P55 P54 P53 P52 P51 P50</td>
</tr>
<tr>
<td></td>
<td>0 0 1 1 1 1 1 1</td>
<td></td>
<td>1 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td></td>
<td>0 0 0 0 0 1 1 0</td>
<td></td>
<td>0 0 0 0 0 1 1 0</td>
</tr>
<tr>
<td></td>
<td>0 1 0 1 1 0 1 1</td>
<td></td>
<td>0 1 0 1 1 0 1 1</td>
</tr>
<tr>
<td></td>
<td>0 1 0 0 1 1 1 1</td>
<td></td>
<td>0 1 0 0 1 1 1 1</td>
</tr>
<tr>
<td></td>
<td>0 1 1 0 0 1 1 0</td>
<td></td>
<td>0 1 1 0 0 1 1 0</td>
</tr>
<tr>
<td></td>
<td>0 1 1 0 1 1 0 1</td>
<td></td>
<td>0 1 1 0 1 1 0 1</td>
</tr>
<tr>
<td></td>
<td>0 1 1 1 1 1 0 1</td>
<td></td>
<td>0 1 1 1 1 1 0 1</td>
</tr>
<tr>
<td></td>
<td>0 0 1 0 0 1 1 1</td>
<td></td>
<td>0 0 1 0 0 1 1 1</td>
</tr>
<tr>
<td></td>
<td>0 1 1 0 1 1 1 1</td>
<td></td>
<td>0 1 1 0 1 1 1 1</td>
</tr>
<tr>
<td></td>
<td>0 1 1 0 1 1 1 1</td>
<td></td>
<td>0 1 1 0 1 1 1 1</td>
</tr>
</tbody>
</table>
3. Principles of Operation

(1) The principles of operation whereby A/D conversion of the input to the AN0 pin is performed using timer W are illustrated in figure 6. As shown in figure 6, in this sample task measurement of the A/D conversion cycle (0.49152 seconds) using the timer W overflow flag and determination of the end of A/D conversion in the tmrw routine are accomplished without using A/D converter interrupts.

![Diagram showing the operation of timer W and A/D conversion cycle](image)

Note: In this application note the OVF flag of timer W is indicated as OVFW and the OVIE flag of timer W is indicated as OVIEW.

Figure 6 Operating Principle of Remote Control Reception Using Timer W

H'FFFF
TCNT
H'0000

TCNT

Timer W overflow cycle \times 15 = 0.49152 seconds

A/D conversion time

- 134 states (max.)
- 62.5 ns \times 134 = 8.375 \mu s (max.)

Hardware Processing

(a) Set OVFW to 1

(b) Set ADST to 1 to start A/D conversion

(b) Convert A/D conversion data to LED display data and store in RAM

software Processing

(a) Clear OVFW to 0

(a) Read A/D conversion data

Feedback

- Hardware Processing
- Software Processing

- Hardware Processing
- Software Processing
(2) The operation principles of 7-segment LED display control are shown below. Displaying “3210” using LED4 to LED1 is illustrated in figure 7. As shown in figure 7, dynamic 7-segment LED display is implemented by illuminating LED4 to LED1 sequentially each timer V overflow cycle.

![figure 7](operating-principle-of-7-segment-led-display-control.png)
4. Description of Software

4.1 Modules

Table 3 shows the modules used in this sample task.

Table 3 Modules

<table>
<thead>
<tr>
<th>Module Name</th>
<th>Label</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main routine</td>
<td>main</td>
<td>Performs initial settings, enables interrupts</td>
</tr>
<tr>
<td>Timer W interrupt handling</td>
<td>tmrw</td>
<td>Clears interrupt flag, converts A/D conversion data to LED display data and stores it in RAM</td>
</tr>
<tr>
<td>Timer V interrupt handling</td>
<td>tmrv</td>
<td>Clears interrupt flag, controls LED display data output and LED display switching</td>
</tr>
</tbody>
</table>

4.2 Arguments

No arguments are used in this sample task.

4.3 Internal Registers Used

The internal registers used in this sample task are shown in table 4.

Table 4 Internal Registers Used

<table>
<thead>
<tr>
<th>Register</th>
<th>Description</th>
<th>Address</th>
<th>Set Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCRV0</td>
<td>Timer control register V0</td>
<td>H'FFA0</td>
<td>H'03 (initial setting)</td>
</tr>
<tr>
<td>CMIEB</td>
<td>Compare match interrupt enable B</td>
<td>Bit 7</td>
<td>0</td>
</tr>
<tr>
<td>CMIEA</td>
<td>Compare match interrupt enable A</td>
<td>Bit 6</td>
<td>0</td>
</tr>
<tr>
<td>OVIE</td>
<td>Timer overflow interrupt enable</td>
<td>Bit 5</td>
<td>0/1</td>
</tr>
<tr>
<td>Register</td>
<td>Description</td>
<td>Address</td>
<td>Set Value</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>TCRV0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCLR1</td>
<td>Counter clear 1 and 0</td>
<td>Bit 4</td>
<td>0</td>
</tr>
<tr>
<td>CCLR0</td>
<td>These bits specify the clearing conditions of TCNTV. Clearing is disabled when CCLR1 = 0 and CCLR0 = 0.</td>
<td>Bit 3</td>
<td>0</td>
</tr>
<tr>
<td>CKS2</td>
<td>Clock select 2 to 0</td>
<td>Bit 2</td>
<td>0</td>
</tr>
<tr>
<td>CKS1</td>
<td>These bits select the clock signals input to TCNTV and the counting condition in combination with ICKS0 in TCRV1. When CKS2 = 0, CKS1 = 1, CKS0 = 1, and ICKS0 = 1, TCNTV counts on internal clock $\phi/128$, falling edge.</td>
<td>Bit 1</td>
<td>1</td>
</tr>
<tr>
<td>CKS0</td>
<td>Bit 0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TCSRv</td>
<td>Timer control/status register V</td>
<td>H'FFA1 H'10</td>
<td></td>
</tr>
<tr>
<td>CMFB</td>
<td>Compare match flag B</td>
<td>Bit 7</td>
<td>0</td>
</tr>
<tr>
<td>CMFA</td>
<td>Compare match flag A</td>
<td>Bit 6</td>
<td>0</td>
</tr>
<tr>
<td>OVF</td>
<td>Timer overflow flag</td>
<td>Bit 5</td>
<td>0</td>
</tr>
<tr>
<td>OS3</td>
<td>Output select 3 and 2</td>
<td>Bit 3</td>
<td>0</td>
</tr>
<tr>
<td>OS2</td>
<td>These bits set the output level of the TMOV pin by compare match B. No change when OS3 = 0 and OS2 = 0.</td>
<td>Bit 2</td>
<td>0</td>
</tr>
<tr>
<td>OS1</td>
<td>Output select 3 and 2</td>
<td>Bit 1</td>
<td>0</td>
</tr>
<tr>
<td>OS0</td>
<td>These bits set the output level of the TMOV pin by compare match A. No change when OS1 = 0 and OS0 = 0.</td>
<td>Bit 0</td>
<td>0</td>
</tr>
<tr>
<td>TCRV1</td>
<td>Timer control register V1</td>
<td>H'FFA5 H'E3</td>
<td></td>
</tr>
<tr>
<td>TVEG1</td>
<td>TRGV input edge select 1 and 0</td>
<td>Bit 4</td>
<td>0</td>
</tr>
<tr>
<td>TVEG0</td>
<td>These bits select the TRGV input edge. TRGV trigger input is disabled when TREG1 = 0 and TREG0 = 0.</td>
<td>Bit 3</td>
<td>0</td>
</tr>
<tr>
<td>TRGE</td>
<td>TRGV input enable</td>
<td>Bit 2</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: The table entries include the register name, description, address bit, and set value for each register.
<table>
<thead>
<tr>
<th>Register</th>
<th>Description</th>
<th>Address</th>
<th>Set Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCRV1</td>
<td>ICKS0</td>
<td>Bit 0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Internal clock select 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This bit selects the clock signals input to TCNTV and the counting condition in combination with CKS2 to CKS0 in TCRV0. When CKS2 = 0, CKS1 = 1, CKS0 = 1, and ICKS0 = 1, TCNTV counts on internal clock $\phi/128$, falling edge.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMRW</td>
<td>Timer mode register W</td>
<td>H'FF80</td>
<td>H'C8</td>
</tr>
<tr>
<td></td>
<td>Selects the general register functions and the timer output mode.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTS</td>
<td>Counter start</td>
<td>Bit 7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>When CTS = 1, TCNT counter operation starts. When CTS = 0, TCNT counter operation stops.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCRW</td>
<td>Timer control register W</td>
<td>H'FF81</td>
<td>H'30</td>
</tr>
<tr>
<td></td>
<td>Selects the counter clock source, selects a clearing condition, and specifies the timer output levels.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CKS2</td>
<td>Clock select</td>
<td>Bit 6</td>
<td>0</td>
</tr>
<tr>
<td>CKS1</td>
<td>When CKS2 = 0, CKS1 = 1, and CKS0 = 1, the TCNT input clock is set as 1/8 the system clock.</td>
<td>Bit 5</td>
<td>1</td>
</tr>
<tr>
<td>CKS0</td>
<td></td>
<td>Bit 4</td>
<td>1</td>
</tr>
<tr>
<td>TIERW</td>
<td>Timer interrupt enable register W</td>
<td>H'FF82</td>
<td>H'00</td>
</tr>
<tr>
<td></td>
<td>Controls timer W interrupt requests.</td>
<td></td>
<td>(initial setting)</td>
</tr>
<tr>
<td>OVIE</td>
<td>Timer overflow interrupt enable</td>
<td>Bit 7</td>
<td>0/1</td>
</tr>
<tr>
<td></td>
<td>When OVIE = 0, FOVI interrupt requests by the OVF flag are disabled. When OVIE = 1, FOVI interrupt requests by the OVF flag are enabled.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSRW</td>
<td>Timer status register W</td>
<td>H'FF83</td>
<td>H'00</td>
</tr>
<tr>
<td></td>
<td>Shows the status of interrupt requests.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVF</td>
<td>Timer overflow</td>
<td>Bit 7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>OVF = 0 when TCNT has not overflowed. OVF = 1 when TCNT overflows.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCNT</td>
<td>Timer counter</td>
<td>H'FF86</td>
<td>H'00</td>
</tr>
<tr>
<td></td>
<td>16-bit up-counter that accepts a source 1/8 the system clock as input.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADCSR</td>
<td>A/D control/status register</td>
<td>H'FFB8</td>
<td>H'00</td>
</tr>
<tr>
<td></td>
<td>Consists of the control bits and conversion status bits for the A/D converter.</td>
<td></td>
<td>(initial setting)</td>
</tr>
<tr>
<td>ADF</td>
<td>A/D end flag</td>
<td>Bit 7</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Set to 1 when A/D conversion ends in single mode. Cleared to 0 when 0 is written after reading ADF = 1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADIE</td>
<td>A/D interrupt enable</td>
<td>Bit 6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>When this bit is cleared to 0, A/D conversion end interrupt requests are disabled.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Register</td>
<td>Description</td>
<td>Address</td>
<td>Set Value</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>ADST</td>
<td>A/D start</td>
<td>Bit 5</td>
<td>0/1</td>
</tr>
<tr>
<td>SCAN</td>
<td>Scan mode</td>
<td>Bit 4</td>
<td>0</td>
</tr>
<tr>
<td>CKS</td>
<td>Clock select</td>
<td>Bit 3</td>
<td>0</td>
</tr>
<tr>
<td>CH2</td>
<td>Channel select</td>
<td>Bit 2</td>
<td>0</td>
</tr>
<tr>
<td>CH1</td>
<td>Selects the analog input channels.</td>
<td>Bit 1</td>
<td>0</td>
</tr>
<tr>
<td>CH0</td>
<td>AN0 is selected when CH2 = 0, CH1 = 0, and CH0 = 0 (when SCAN = 0).</td>
<td>Bit 0</td>
<td>0</td>
</tr>
<tr>
<td>ADCR</td>
<td>A/D control register</td>
<td>H'FFB9</td>
<td>H'7E</td>
</tr>
<tr>
<td>TRGE</td>
<td>Trigger enable</td>
<td>Bit 7</td>
<td>0</td>
</tr>
<tr>
<td>ADDRC</td>
<td>A/D data register C</td>
<td>H'FFB4</td>
<td>—</td>
</tr>
<tr>
<td>PCR2</td>
<td>Port control register 2</td>
<td>H'FFE5</td>
<td>H'03</td>
</tr>
<tr>
<td>PDR2</td>
<td>Port data register 2</td>
<td>H'FFD5</td>
<td>H'F8</td>
</tr>
<tr>
<td>PMR5</td>
<td>Port mode register 5</td>
<td>H'FFE1</td>
<td>H'00</td>
</tr>
<tr>
<td>POF57</td>
<td>P57 pin function switch</td>
<td>Bit 7</td>
<td>0</td>
</tr>
<tr>
<td>POF56</td>
<td>P56 pin function switch</td>
<td>Bit 6</td>
<td>0</td>
</tr>
<tr>
<td>WKP5</td>
<td>P55/WKP5/ADTRG pin function switch</td>
<td>Bit 5</td>
<td>0</td>
</tr>
<tr>
<td>WKP4</td>
<td>P54/WKP4 pin function switch</td>
<td>Bit 4</td>
<td>0</td>
</tr>
<tr>
<td>Register</td>
<td>Description</td>
<td>Address</td>
<td>Set Value</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>PMR5</td>
<td>WKP3 P53/WKP3 pin function switch</td>
<td>Bit 3 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>When this bit is cleared to 0, P53 functions as a general I/O port.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WKP2</td>
<td>P52/WKP2 pin function switch</td>
<td>Bit 2 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>When this bit is cleared to 0, P52 functions as a general I/O port.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WKP1</td>
<td>P51/WKP1 pin function switch</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>When this bit is cleared to 0, P51 functions as a general I/O port.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WKP0</td>
<td>P50/WKP0 pin function switch</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>When this bit is cleared to 0, P50 functions as a general I/O port.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PUCR5</td>
<td>Port pull-up control register 5</td>
<td>H'FFD1 H'00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Controls the pull-up MOS in bit units of the port 5 pins set as the input ports.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>When PUCR2 = H'00, pull-up MOS is off for pins P57 to P50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDR5</td>
<td>Port data register 5</td>
<td>H'FFD8 H'00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>General I/O port data register of port 5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR5</td>
<td>Port Control Register 5 (PCR5)</td>
<td>H'FFE8 H'FF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selects input or output status in bit units for pins to be used as general I/O ports of port 5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>When PCR5 = H'FF, pins P57 to P50 function as general output pins.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.4 RAM Usage

The RAM usage in this sample task is shown in table 5.

Table 5 RAM Usage

<table>
<thead>
<tr>
<th>Label</th>
<th>Description</th>
<th>Address</th>
<th>Used in</th>
</tr>
</thead>
<tbody>
<tr>
<td>dig_0</td>
<td>Stores LED1 display data (1 byte)</td>
<td>H'FB86</td>
<td>main, tmrw</td>
</tr>
<tr>
<td>dig_1</td>
<td>Stores LED2 display data (1 byte)</td>
<td>H'FB87</td>
<td>main, tmrw</td>
</tr>
<tr>
<td>dig_3</td>
<td>Stores LED3 display data (1 byte)</td>
<td>H'FB88</td>
<td>main, tmrw</td>
</tr>
<tr>
<td>dig_4</td>
<td>Stores LED4 display data (1 byte)</td>
<td>H'FB89</td>
<td>main, tmrw</td>
</tr>
<tr>
<td>cnt</td>
<td>8-bit counter for display switching of LED1 to LED4 (1 byte)</td>
<td>H'FB8A</td>
<td>main, tmrw</td>
</tr>
<tr>
<td>counter_sub</td>
<td>8-bit counter for adjusting the A/D acquisition interval (1 byte)</td>
<td>H'FB8B</td>
<td>main, tmrw</td>
</tr>
<tr>
<td>current</td>
<td>For displaying the current value (2 bytes)</td>
<td>H'FB80</td>
<td>tmrw</td>
</tr>
<tr>
<td>scale</td>
<td>Coefficient (4 bytes)</td>
<td>H'FB82</td>
<td>main, tmrw</td>
</tr>
</tbody>
</table>
5. Flowcharts

5.1 Main Routine (main)

```
main

* Set CCR interrupt mask bit (I) to 1 to mask interrupt requests

CCR I-bit ← 1

dig_0 ← H'40

dig_1 ← H'40

dig_2 ← H'40

dig_3 ← H'40

cnt ← H'00

Initial settings for port 2
P20/SCK3: P20 output pin (output data = 0)
P21/RXD: P21 output pin (output data = 0)
P22/TXD: P22 input pin

Initial settings for port 5
P50/WKP0: P50 output pin (output data = 0)
P51/WKP1: P51 output pin (output data = 0)
P52/WKP2: P52 output pin (output data = 0)
P53/WKP3: P53 output pin (output data = 0)
P54/WKP4: P54 output pin (output data = 0)
P55/WKP5: P55 output pin (output data = 0)
P56: P56 output pin (output data = 0)
P57: P57 output pin (output data = 0)

Note: * In this sample task, task pointer settings are performed by INIT.SCR (assembly language).
```
Initial settings for timer W
TCNT input clock: Internal clock $\phi/8$
Clear timer overflow (OVF) to 0
Start timer counter count-up operation
Disable interrupt requests using OVF flag in TSRW
Initialize 8-bit counter_sub to 15

Initial settings for timer V
Operating mode: Free-running
TCNTV input clock: Internal clock $\phi/128$
Counting condition: Falling edge
Initial settings for A/D converter
Scan mode: Single mode
Analog input channel: AN0
A/D conversion time: 134 states (max.)

Clear timer overflow flag (OVF) to 0
Clear timer overflow flag (OVFW) to 0
Enable timer overflow interrupts for timer V
Enable timer overflow interrupts for timer W
Calculate resistance value corresponding to A/D input "1"
(Multiply by 10 to calculate value to first decimal place)
Clear CCR interrupt mask bit (I) to 0

Note: In this application note the OVF flag of timer W is indicated as OVFW and the OVIE flag of timer W is indicated as OVIEW.
5.2 Timer W Interrupt Handling Routine (tmrw)

![Diagram](image)

- **OVFW = 1?**
 - Yes: Clear timer overflow flag (OVFW) to 0
 - No: Decrement counter_sub
- **counter_sub = 0?**
 - Yes: Initialize 8-bit counter_sub to 15
 - No: Set A/D start (ADST) to 1 to begin A/D conversion of AN0
- **ADST = 1?**
 - Yes: Calculate current value
- **current = (ADDR >> 6 & H'3FF) * scale**
- **dig_0 = dsp_data[x0]**
 - Reference first digit after decimal point of current value from dsp_data and store it in dig_0
- **dig_1 = dsp_data[x1] | H'80**
 - Reference first digit of current value from dsp_data and store it in dig_1
 - Add decimal point (H'80)
- **dig_2 = dsp_data[x2]**
 - Reference second digit of current value from dsp_data and store it in dig_2
- **dig_3 = dsp_data[x3]**
 - Reference third digit of current value from dsp_data and store it in dig_3

Notes: In this application note the OVF flag of timer W is indicated as OVFW and the OVIE flag of timer W is indicated as OVIEW.
1. $x0 = \text{current} \% 10$
2. $x1 = (\text{current} \% 100) / 10$
3. $x2 = (\text{current} \% 1000) / 100$
4. $x3 = \text{current} / 1000$
5.3 Timer V Interrupt Handling Routine (tmrv)

```
5.3 Timer V Interrupt Handling Routine (tmrv)

ptr ← &dig_0

OVF = 1?

Yes

OVF ← 0

ptr ← ptr + cnt

PDR5 ← *ptr

PDR2 ← cnt

cnt ← cnt + 1

cnt >= 4?

No

Yes

cnt ← 0

rte

ptr ← &dig_0

Store dig_0 address in ptr

Timer overflow interrupt request for timer V?

Clear timer overflow flag (OVF) to 0

At cnt value to dig_0 address and store result in ptr

Store contents of address indicated by ptr in PDR5

Store cnt value in PDR2

Increment cnt

cnt >= 4?

No

Initialize cnt
```
6. Program Listing

Note: In this application note the OVF flag of timer W is indicated as OVFW and the OVIE flag of timer W is indicated as OVIEW.

INIT.SRC (program listing)

```
.export _INIT
.import _main

.section P, CODE
_INIT:
  mov.w #h'ff80,r7
  ldc.b #b'10000000, ccr
  jmp @_main

.end
```

/* H8/300H tiny Series -H8/36014- Application note */
/* Application */
/* Current value measurement example */

#include <machine.h>

/* Symbol definition */
struct BIT {
 unsigned char b7:1; /* bit 7 */
 unsigned char b6:1; /* bit 6 */
 unsigned char b5:1; /* bit 5 */
 unsigned char b4:1; /* bit 4 */
 unsigned char b3:1; /* bit 3 */
 unsigned char b2:1; /* bit 2 */
 unsigned char b1:1; /* bit 1 */
 unsigned char b0:1; /* bit 0 */
};

#define PDR2 *(volatile unsigned char *)0xFFD5 /* Port data register 2 */
#define PCR2 *(volatile unsigned char *)0xFFE5 /* Port control register 2 */

#define PMR5 *(volatile unsigned char *)0xFFE1 /* Port mode register 5 */
#define PUCR5 *(volatile unsigned char *)0xFFD1 /* Port pull-up control register 5 */
#define PDR5 *(volatile unsigned char *)0xFFD8 /* Port data register 5 */
#define PCR5 *(volatile unsigned char *)0xFFE8 /* Port control register 5 */

#define TMRW *(volatile unsigned char *)0xFF80 /* Timer mode register W */
#define TCRW *(volatile unsigned char *)0xFF81 /* Timer control register W */
#define TCRW_BIT (*(struct BIT *)0xFF81) /* Timer Control Register W */
#define TIERW *(volatile unsigned char *)0xFF82 /* Timer interrupt enable register W */
#define TIERW_BIT (*(struct BIT *)0xFF82) /* Timer Interrupt Enable Register */
#define OVIEW TIERW_BIT.b7 /* Timer Overflow Interrupt Enable W */
#define TSRW *(volatile unsigned char *)0xFF83 /* Timer status register W */
#define TSRW_BIT (*(struct BIT *)0xFF83) /* Timer Status Register W */
#define OVFW TSRW_BIT.b7 /* Timer Overflow W */
#define TCRV0 *(volatile unsigned char *)0xFFA0 /* Timer control register V0 */
#define OVFIE TCRV0_BIT.b5 /* Timer overflow interrupt enable */
#define TCSRV *(volatile unsigned char *)0xFFA1 /* Timer control/status register V */
#define OVIE TCSRV_BIT.b5 /* Timer overflow flag */
#define TCRV1 *(volatile unsigned char *)0xFFA5 /* Timer control register V1 */
#define ADCSR *(volatile unsigned char *)0xFFB8 /* A/D control/status register */
#define ADCSR_BIT (*(struct BIT *)0xFFB8)
#define ADST ADCSR_BIT.b5 /* A/D start */
#define ADCR *(volatile unsigned char *)0xFFB9 /* A/D control register */
#define ADDR0 *(volatile unsigned int *)0xFFB0 /* A/D data register A */
#define ADDR1 *(volatile unsigned int *)0xFFB2 /* A/D data register A */
#define ADDR2 *(volatile unsigned int *)0xFFB4 /* A/D data register A */
#define ADDR3 *(volatile unsigned int *)0xFFB6 /* A/D data register A */

#pragma interrupt (tmrw)
#pragma interrupt (tmrv)

/* Function definition */
extern void INIT(void); /* Stack pointer set */
void main(void); /* main routine */
void tmrw(void); /* Timer W interrupt routine */
void tmrv(void); /* Timer V interrupt routine */

/* Data table */
const unsigned char dsp_data[16] =
{
 0x3f, /* LED display data - "0" */
 0x06, /* LED display data - "1" */
 0x5b, /* LED display data - "2" */
 0x4f, /* LED display data - "3" */
 0x66, /* LED display data - "4" */
 0x6d, /* LED display data - "5" */
 0x7d, /* LED display data - "6" */
 0x27, /* LED display data - "7" */
 0x7f, /* LED display data - "8" */
 0x6f, /* LED display data - "9" */
 0x77, /* LED display data - "A" */
 0x7c, /* LED display data - "B" */
 0x39, /* LED display data - "C" */
 0x5e, /* LED display data - "D" */
 0x79, /* LED display data - "E" */
 0x71 /* LED display data - "F" */
};

/* RAM define */
unsigned char dig_0; /* Dig-0 LED display data store */
unsigned char dig_1; /* Dig-1 LED display data store */
unsigned char dig_2; /* Dig-2 LED display data store */
unsigned char dig_3; /* Dig-3 LED display data store */
unsigned char cnt; /* LED enable counter */
unsigned char counter_sub; /* sub counter */
int current; /* current */
float scale; /* scale */

/* Vector address */
#pragma section V1 /* Vector section set */
void (*const VEC_TBL1[])(void) = {
 INIT /* H'0000 Reset vector */
};
#pragma section V2 /* Vector section set */
void (*const VEC_TBL2[])(void) = {
 tmrw /* H'002a Timer W interrupt vector */
};
#pragma section V3 /* Vector section set */
void (*const VEC_TBL3[])(void) = {
 tmrv /* H'002c Timer V interrupt vector */
};
#pragma section P /* P */

/**/
/* Main program */
/**/
void main(void)
{
 set_imask_ccr(1); /* CCR I-bit = 1 */

dig_0 = 0x40; /* Used RAM area initialize */
dig_1 = 0x40; /* Used RAM area initialize */
dig_2 = 0x40; /* Used RAM area initialize */
dig_3 = 0x40; /* Used RAM area initialize */
cnt = 0x00; /* Used RAM area initialize */

PCR2 = 0x03; /* Port 2 initialize */
PMR5 = 0x00; /* Port 5 initialize */
PUCR5 = 0x00;
PDR5 = 0x00;
PCR5 = 0xff;

/* Timer W initialize */
TCRW = 0x30; /* Clock Select */
TSRW = 0x00; /* Clear OVF */
TMRW = 0xc8; /* Timer Counter Count Start */
TIERW = 0x00; /* OVF Interrupt Disable */
counter_sub = 15;

/* Initialize 8bit Counter_sub */

TCRV0 = 0x03; /* Timer V initialize */
TCRV1 = 0xe3; /* Internal clock select */
TCSRV = 0x10; /* Clear OVF to 0 */
ADCSR = 0x00; /* A/D converter initialize */
ADCR = 0x7e;
OVF = 0; /* Clear OVF to 0 */
OVFW = 0; /* Clear OVF to 0 */
OVIE = 1; /* Timer V OVF interrupt enable */
OVIEW = 1; /* Timer W OVF interrupt enable */

scale = 150.0 / 700.0 * 10.0; /* get scale */

set_imask_ccr(0); /* CCR I-bit = 0 */

while(1);
}

/**
/* Timer W Interrupt */
/**
void tmrw(void)
{
 if (OVFW == 1) {
 OVFW = 0; /* Clear OVF */
 counter_sub--; /* Decrement 8bit Counter */
 if (counter_sub == 0x00){
 counter_sub = 15; /* Initialize 8bit Counter_sub */
 ADST = 1; /* A/D converter start */
 while(ADST == 1); /* A/D converter end ? */
 current = (ADTRA >> 6 & 0x03ff) * scale; /* get current */
 dig_0 = dsp_data[current % 10]; /* Dig-0 LED display data set */
 dig_1 = dsp_data[(current % 100)/10] | 0x80; /* Dig-1 LED display data set */
 dig_2 = dsp_data[(current % 1000)/100]; /* Dig-2 LED display data set */
 dig_3 = dsp_data[current / 1000]; /* Dig-3 LED display data set */
 }
 }
}

/**
/* Timer V Interrupt */
 **
void tmrv(void)
{
 unsigned char *ptr; /* Pointer set */
 ptr = &dig_0; /* LED display data store address set */

 while(OVF == 1){ /* OVF = 1 ? */
 OVF = 0; /* Clear OVF to 0 */
 ptr += cnt; /* LED display data read */
 PDR5 = *ptr; /* LED display data output */
 PDR2 = cnt; /* LED enable output */
 cnt++;
 if (cnt >= 4){ /* 4 times end ? */
 cnt = 0; /* "cnt" initialize */
 }
 }
}
Revision Record

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Page</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Dec.20.04</td>
<td>—</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>
Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
4. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
5. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
6. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
7. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
8. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
9. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.