
 Application Note

R30AN0231EU0210 Rev.2.10 Page 1 of 39
Mar.21.19

Renesas Synergy™ Platform

Getting Started with the Weather Panel Application
Introduction
This application note describes a simulated Weather Panel application. The Weather Panel application is
geared towards providing you with a quick out-of-box experience that demonstrates how complex multi-
threaded applications with a touch screen graphical Human Machine Interface (HMI) may be developed
using the Renesas Synergy™ Software Package (SSP).
The Weather Panel application runs on several different development boards including the DK-S7G2,
SK-S7G2, PK-S5D9, and PE-HMI1, as shown in the following figure. These boards have different screen
resolutions and a slightly different feature set. For example, more full-featured boards like the DK-S7G2 and
PE-HMI provide backlight control of the LCD, while the lower cost SK-S7G2 and PK-S5D9 MCU boards do
not include this ability. This application note focuses on the PE-HMI1, while highlighting the key changes
required to make the application run on each of the different boards.

Figure 1. Weather Panel Application on Several Development Boards
This application was developed using the Synergy Software Package (SSP). The SSP is a unified, robust
framework that includes driver-level support for the peripherals in Synergy ARM Cortex M4/M0+ MCUs along
with ThreadX®, Express Logic’s Real Time Operating system (RTOS). In addition to ThreadX, full stack
support is available through Express Logic’s X-Ware suite of stacks (NetX™, USBX™, GUIX™, and FileX®).
This powerful suite of tools provides a comprehensive integrated framework for rapid development of
complex embedded applications.
This application note assumes that you are familiar with the concepts associated with writing multi-threaded
applications under an RTOS such as ThreadX. While specific knowledge of ThreadX makes understanding
the code easier, you should be able to easily understand the information provided in this application note if
you have any previous experience with RTOS principles such as threads, message queues, semaphores,

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 2 of 39
Mar.21.19

and mutexes. For more detailed information on ThreadX features, refer to the Synergy X-ware (ThreadX)
User Manual.
The Weather Panel application was developed using the Renesas Synergy e2 studio Integrated Solution
Development Environment (ISDE). This Eclipse based IDE is a free application that you can download from
Renesas. While e2 studio ISDE supports using multiple tools chains, this application note was built using the
GCC compile tools that also come free with the e2 studio ISDE environment.
While building applications under the Renesas Synergy™ Platform is considerably faster than developing
similar applications in other environments, there is still a learning curve to understand the steps necessary to
construct complex multi-threaded HMI applications quickly. This application note walks you through all the
steps necessary, including the following:
• Board setup
• Application overview
• Detailed explanation of the graphical screens uses
• GUIX Studio project integration
• Synergy framework configuration
• Application design highlights
• Inter-thread communication using the Synergy messaging framework
• Using the General Purpose Timer to drive a PWM backlight control signal
• Loading and running the project.

Required Resources
• e2 studio ISDE 7.3.0 or later
• Synergy Software Package (SSP) 1.6.0 or later
• IAR Embedded Workbench® for Renesas Synergy™ 8.23.3 and SSC v7.3.0
• GUIX Studio v5.4.0.0 or later

Target Devices
• Synergy PE-HMI 1 v2.0 or later board (S7G2 Synergy MCU Group)
• Synergy DK-S7G2 v3.1 or later development board (S7G2 Synergy MCU Group)
• Synergy PK-S5D9 v1.0 or later development board (S5D9 Synergy MCU Group)
• Synergy SK-S7G2 v3.1 or later development board (S7G2 Synergy MCU Group)

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 3 of 39
Mar.21.19

Contents

1. Board Setup ..4

2. Application Overview ...5
2.1 Synergy S7G2 and S5D9 MCU Peripherals used by the Weather Panel Application......................... 5
2.2 Human-Machine Interface (HMI) .. 7
2.3 Weather Panel Screens .. 7
2.3.1 Large Screen Design .. 8
2.3.2 Small Screen Design .. 9

3. GUIX Studio Overview ..9

4. Analyzing the Application ..14
4.1 Source Code Layout... 14
4.2 Thread Overview ... 15
4.2.1 HMI Thread... 16
4.2.2 Thread Layout and the SSP... 17

5. Framework Configuration ..19
5.1 Components Tab ... 20
5.2 Threads Tab ... 22
5.3 Thread Objects .. 23
5.4 Module Configuration ... 24
5.4.1 GLCD Configuration ... 24
5.4.2 TCON Configuration ... 25
5.4.3 Using External Memory for Frame Buffer ... 27
5.4.4 e2 studio Tricks .. 29

6. Application Code Highlights ...31
6.1 Threads and Main .. 31
6.1.1 GUIX Initialization .. 32
6.1.2 Events and GUIX Message ... 33
6.2 LCD control... 35

7. Importing and Building the Project ...36

8. Downloading the Executable to the Target Board...37

9. Known Issues ...37

10. References ...37

Revision History ...39

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 4 of 39
Mar.21.19

1. Board Setup
The PE-HMI1 board contains a few switch settings which must be configured prior to running the firmware
associated with this application note. In addition to these switch settings, the boards also contain a connector
to access the J-Link® programming interface.
Connect the supplied J-Link® LITE between J12 of the PE-HMI1 and the PC where you have loaded the
Synergy e2 studio ISDE software. J12 is marked as shown in the top left portion of Figure 2. To ensure the
proper operation of the application, make sure that the DIP switch, shown marked in the middle of Figure 2,
is configured as shown in Table 1.
Table 1. Switch settings for PE-HMI1
Switch Setting
232 OFF
SLW OFF
SPB OFF
HALF OFF
BOOT OFF

Figure 2. PE-HMI1 v2.0 Hardware Details for the Weather Panel Application
Follow the switch settings shown in Table 2 and Figure 2 for the S5 DIP switch on the DK-S7G2 V3.1 board.
Note: For the DK-S7G2 V4.1 board, the switch settings are spread across DIP switches S6, S7, S8, and S9.
For DK-S7G2 V4.1, JTAG, LCD, and SDRAM need to be ON, and rest are OFF.

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 5 of 39
Mar.21.19

Table 2. Switch Settings for DK-S7G2 V3.1 Board

Switch Setting
BOOT OFF
EXP OFF
JTAG ON
PBs OFF
PMOD OFF
ENET1 OFF
QSPI OFF
DRAM ON

Figure 3. DK-S7G2 V3.1 Synergy MCU Board Switch Setting
2. Application Overview
One of the key goals of the Weather Panel application is to demonstrate how to build applications employing
complex HMI screens using GUIX™ Studio. The following list highlights all the key features of the Weather
Panel application:
• Complex HMI design using GUIX Studio
• Multi-threaded applications using the ThreadX® RTOS

 Queue and Mutex Thread objects used
• Extensive use of Synergy Messaging framework for inter-thread communication
• GLCD configuration for various screen types/sizes

 Frame Buffer run from internal/external memory
 External Memory interface used
 SPI initialization of ILI9341 Graphics Controller (SK-S7G2 and PK-S5D9 boards).

• Touch Panel, I2C touch controller driver ft5x06
 External IRQ mapping required

In any software design, there are many ways to solve the same problem. The solution given in this
application note is one approach.

2.1 Synergy S7G2 and S5D9 MCU Peripherals used by the Weather Panel
Application

The Weather Panel application uses the Synergy S7G2 MCU or S5D9 MCU depending on the board being
used. This MCU is built around an ARM Cortex-M4 device. Developing complex embedded applications is
usually a multi-step process:
1. The first step usually involves gathering the application requirements and performing a high-level system

design that maps the requirements onto the set of hardware components. The components are necessary
to fulfill those including the target MCU that will be used in the design, the tool chains required to
build/debug the applications, and so forth.

2. The next step usually determines which on-board peripherals of the target MCU are used. In this step, it is
often necessary to spend a considerable amount of time understanding the register map of the on-board
peripherals, and writing lower level driver code necessary to expose the peripheral to the upper level
application code. As we will see, most of this work has already been done in the Synergy Framework,
considerably streamlining application development.

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 6 of 39
Mar.21.19

3. In addition to the on-board peripherals of the target MCU, the design often encompasses external
hardware and how it is controlled. As an example, the DK-S7G2 and PE-HMI boards have LCD screens,
that may be controlled directly by the on-board Graphics LCD Controller (GLCD) of the S7G2 MCU. The
SK-S7G2 and PK-S5D9 Synergy MCU boards use a smaller, lower cost LCD, that requires some
initialization, over a serial interface, before it can be controlled by the GLCD of the S7G2 MCU and S5D9
MCU respectively.

4. The last step usually details how an application will be structured on top of the selected hardware to
accomplish the initial requirements.
The Weather Panel application requirements were first mapped to the on-board peripherals of the S7G2
or S5D9 Synergy MCU boards. Figure 4 and Figure 5 show all the internal hardware peripherals used by
the Weather Panel application. This application note describes how each of these peripherals is
configured using the Synergy Framework, and the considerations that were used for each peripheral as
the application was being developed.

Figure 4. S7G2 Synergy MCU Peripherals used in the Weather Panel Application

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 7 of 39
Mar.21.19

Figure 5. S5D9 Synergy MCU Peripherals Used in the Weather Panel Application
2.2 Human-Machine Interface (HMI)
In many HMI applications, the most daunting task may be the GUI itself. In applications requiring a graphical
HMI, it is generally considered best practice to separate the business logic from presentation. This means
that the GUI generally does not make decisions about what to display. It is only concerned about how to
display it. It relies on external logic to tell it what to display and when to display it.
Once you have gathered the requirements, achieved a top-level design, and identified the hardware
necessary to implement that design, it is often beneficial to construct a GUI (Graphical User Interface) to help
quickly communicate the look and feel of the system to others. This is where the GUIX Studio comes into
play.
The SSP natively supports the use of GUIX from Express Logic. You may choose to use GUIX primitive calls
directly in your application or choose to use the GUIX Studio to design your screens. GUIX Studio is a stand-
alone tool that provides a point and click environment for generating all the screens necessary for your
embedded application. Once designed, the studio outputs .c and .h files, which you then integrate into your
application. All the application screens in the Weather Panel application were built using the GUIX Studio.

2.3 Weather Panel Screens
Screen designs are normally tailored to the size of the screen that they will be displayed on. This often
necessitates multiple graphical designs when porting an application to different boards with different sized
LCD screens. There are two ways to approach this problem. The first approach involves building separate
static display designs for each screen resolution. GUIX Studio allows you to do this quickly. This is the
approach used in this application note. The second approach involves building the screens dynamically, and
sizing the windows/widgets at run time, depending on the screen resolution available. GUIX has a rich API
that allows this type of dynamic screen generation, building screens dynamically.

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 8 of 39
Mar.21.19

The Weather Panel application has two different designs, one for large screens like the 4.3-inch screen
found on the DK-S7G2 MCU board or the 7-inch screen found on the PE-HMI MCU board, and one for
smaller screens like the one on the SK-S7G2 and PK-S5D9 Synergy MCU boards.

2.3.1 Large Screen Design

Figure 6. Screen Snapshots of the Weather Panel Application
For larger screens such as the DK-S7G2 or the PE-HMI Synergy MCU development boards, the Weather
Panel application contains two main screens as shown in Figure 6, named as follows:
Splash Page This is the first screen that appears on the HMI on boot up.
Main Page Adjust Weather Panel settings either by selecting day, or Increase/Decrease

Temperature.

While the same two screens are used for both the DK-S7G2 and PE-HMI boards, two separate graphical
designs exist since it was necessary to scale down the design for the smaller screen of the SK-S7G2 and
PK-S5D9 boards. A GUIX Studio project is made of various resource files (such as the fonts, images, and so
forth) but, as is the case of many IDEs, the project definition itself is maintained in a single xml file with
a .gxp extension. A separate.gxp file exists for all three board designs.

weather_GNU.gxp is the GUIX Studio project to be used for e2 studio.

weather_IAR.gxp is the GUIX Studio project to be used for IAR EW for Synergy.

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 9 of 39
Mar.21.19

2.3.2 Small Screen Design
Figure 7 shows the small screen design used for the SK-S7G2 Synergy MCU board. The key change in this
design is the elimination of weekday settings and limiting to only three days.

Figure 7. Screen Snapshots for the SK-S7G2 and PK-S5D9 Synergy MCU Boards

3. GUIX Studio Overview
This section provides an overview of how GUIX screens are designed and integrated into an SSP application
using GUIX Studio. It is not meant as a replacement for the GUIX or GUIX Studio documentation. When
designing graphical interfaces for the Renesas Synergy™ platform, you are encouraged to read the full
documentation for GUIX and GUIX Studio while studying the associated screen handling code in the
Weather Panel application.
GUIX Studio presents a graphical, point and click environment that allows you to quickly create all the
screens needed for your embedded application. You can specify the screen resolution, color depth, and
various other parameters such that what you see in GUIX Studio that is running on your desktop PC is what
you will get on your embedded screens.
GUIX comes as a standard with a few fonts and basic graphics for things like button controls. During your
screen creation phase, you may provide the GUIX with your own external images and font files to make your
displays as fancy as needed. GUIX Studio also provides for the use of multi-language displays using string
tables.
Note: The steps provided here are for weather_GNU.gxp for e2 studio. The same steps need to be

followed for weather_IAR.gxp if you are using IAR EW for Synergy.

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 10 of 39
Mar.21.19

Figure 8. Screenshot of the Weather Panel Page being Designed in GUIX Studio
The organization of the GUIX Studio IDE is straightforward. The center screen, known as the Target View,
contains the screen being designed. On the upper left corner, you will find the Project View. This pane
shows the widgets contained in your project. The order that you add items to the project determines the
order that they are drawn in the final screens, so some planning is necessary. As is the case with most
graphical design environments, screens are laid out in a hierarchy where the main window is usually the
parent and all graphical objects contained in the window are children of that parent. The Properties View
(lower left) displays properties associated with a selected object. You may select objects from the Project
View or from the Target View.
The far-right side of the GUIX Studio screen contains drop down menus for all the various resources such as
Colors, Fonts, Images, Pixel maps, and Strings you used to create the screens. GUIX supports multi-
language designs using string tables.
The key to making any graphical design interactive is to associate events like screen touches with the event
handling code that implements the appropriate functionality. As you design your screens, you associate
callback functions with your widgets. These callback functions provide the hooks necessary in your
application to respond to GUI events.
GUIX Studio provides both Draw and Event callbacks. Event functions allow you to respond to typical events
like touch events. Draw functions allow you to add customized drawing. The Weather Panel application only
defines Event Function callbacks and then, only on the top-level windows. The callback function names are
entered into the Event function field of the Properties View as shown in the following figure.
The Weather Panel GUIX design has two defined Event Functions, named as follows:
• mainpage_event
• splashscreen_event

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 11 of 39
Mar.21.19

Figure 9. GUIX Studio Screen Properties View

Figure 10. GUIX Studio Project Configuration View
This presents you with the Configure Project dialog box as shown in Figure 11 for e2 studio and Figure 12 for
IAR EW for Synergy. This dialog box is where you specify the project specific information such as the basic
display settings as well as the path information for where GUIX locates the files that result from the build
process.
When you build your project, GUIX Studio creates .c and .h files that contain all the information necessary
to render the screens you built with GUIX Studio on the LCD in your embedded Synergy application. The

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 12 of 39
Mar.21.19

Directories group is where you specify the default output directories for the source and header files. You
may also specify a directory location where all the resource files, such as images are saved.

Figure 11. GUIX Project Settings Window for e2 studio

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 13 of 39
Mar.21.19

Figure 12. GUIX Project Settings Window for IAR EW for Synergy
It is a good practice to save the Source, Header, and Resource files relative to the project location. This
makes it easy to move projects from one location to another or from one PC to another. In the case of the
Weather Panel application, you can see that all the directories are located under the src\guix_gen\GNU
directory for e2 studio src\guix_gen\IAR for IAR EW for Synergy.

Figure 13. GUIX Project Generate Source Files
When you are finished with your GUIX Studio design, you instruct GUIX Studio to generate all the output files
by selecting Project > Generate All Output Files as shown in Figure 13.
The Weather Panel application has a guix_studio directory containing the original resource files and the
weather_GNU.gxp (weather_IAR.gxp for IAR EW) file as shown in Figure 14. If you have GUIX Studio
installed, you simply click the weather_GNU.gxp file to launch GUIX Studio.

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 14 of 39
Mar.21.19

Figure 14. GUIX Project File View in the Weather Panel Application
As mentioned earlier, the outputs of GUIX Studio are simple .c and .h source files that need to be compiled
into your project. The GUIX project for the PE-HMI1 Weather Panel application contains two Event Handler
functions, one for each top-level screen. GUIX automatically builds function prototypes for these callback
functions in the weather_GNU_specifications.h for e2 studio and
weather_IAR_specifications.h for IAR EW file as follows:
/* Declare event process functions, draw functions, and callback functions
*/
UINT MainScreenEventHandler (GX_WINDOW *widget, GX_EVENT *event_ptr);
UINT SplashScreenEventHandler (GX_WINDOW *widget, GX_EVENT *event_ptr);

While GUIX Studio defines function prototypes for event handlers, you must create the file that contains the
actual code for each of these handlers. The next section details the actual source code layout of the Weather
Panel application, as also shown in Figure 15. The event handler code resides in the
hmi_event_handler.c file.

4. Analyzing the Application
While the HMI is certainly a large part of understanding any HMI application, there are many other areas that
you must understand while developing with the Renesas Synergy™ Platform applications. These include
how the project is physically structured in Synergy e2 studio, how threads and thread resources are added to
the project, how threads communicate, the state machine design, and how state data is shared among
cooperating threads.

4.1 Source Code Layout
Prior to diving into the actual application code, it is best to first understand the overall source code layout of a
Synergy project. The Renesas Synergy™ Platform applications generally consist of two different types of
code, your generated code, and auto-generated code. The auto-generated code can be further broken down
into two sub-categories, code that is auto-generated by the Synergy Framework, and code that is auto-
generated by GUIX Studio.

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 15 of 39
Mar.21.19

Figure 15. Weather Panel Project Source File Layout
The figure above shows the source code layout for the PE-HMI1 board. Framework auto-generated code is
highlighted in red, GUIX auto-generated code is highlighted in yellow, and the code you generated is
highlighted in green.
Note: Most of your generated code resides in the src directory except for the GUIX Studio project file,

weather_GNU.gxp (weather_IAR.gxp in case of IAR EW for Synergy), and the
hmi_event_handler.c file, that contains the event handlers for the HMI.

4.2 Thread Overview
As mentioned in the introduction, the Weather Panel application is a multi-threaded application, running
under ThreadX®. There are two origins of threads in a Synergy application, those created by you, and those
created by the Framework. While it is obvious as to what threads you created, it is not always obvious as to
what threads are created by the Framework. As explained in the SSP User’s Manual, there are two principle
types of modules that you add to a Synergy application, namely, Driver modules and Framework modules.
Driver modules are described as RTOS aware but do not generally use any RTOS objects. Framework layer
modules are free to use RTOS objects, such as semaphores or mutexes and may also create their own
threads as needed.
The Weather Panel application uses a user-created thread, the HMI Thread. Threads communicate through
the Synergy messaging framework, that is layered on top of the standard ThreadX message queues. The
HMI Thread processes touch messages and GUIX events. The Framework Configuration section details how
to add your threads to your application. The following figure shows a high-level design of the threads and
messaging running on the Weather Panel application. Notice the distinction between your threads and
Framework threads. As you can see from the following figure, in addition to the HMI thread, there are threads
associated with GUIX and the touch controller.

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 16 of 39
Mar.21.19

Figure 16. Weather Panel Application Message Sequence Flow
In addition to the software components, various hardware components are also accessed through the
hardware drivers provided by the Synergy Framework. These include the clock generation circuit, touch
screen controller (I2C), and external interrupts unit of the Arm core processor.

4.2.1 HMI Thread
The HMI thread initializes various services used by the Weather Panel application, including GUIX. On the
SK-S7G2 and PK-S7G2 Synergy MCU boards, the HMI thread must also initialize the LCD screen to place it
into the proper RGB mode so that it may be controlled by the GLCD peripheral of the processor.
Once this initialization is complete, the HMI thread processes touch messages, and GUIX events. If any of
these inputs result in a change to the system state, the HMI Thread sends the appropriate update messages
to the GUIX thread, resulting in changes to the graphical HMI. The flow chart in Figure 17 illustrates the high-
level design of the HMI Thread and the message flow.

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 17 of 39
Mar.21.19

Figure 17. HMI Thread Flow
4.2.2 Thread Layout and the SSP
For those new to Synergy, one of the most difficult aspects of learning how to develop complex applications
will be learning the various Modules defined under the Synergy Framework, how to add them to your
application, and more specifically, how these Modules are layered on top of each other to form SSP stacks.
As described in the SSP User Manual, Modules are the core building blocks of the SSP. Modules provide
functionality upwards and may require functionality from below. The SSP comes with two predefined layers,
the Driver layer, and the Framework layer. The principle difference between the two is that the Driver layer
modules are peripheral drivers that are RTOS aware but do not use any RTOS objects or make any RTOS
API calls, which means that the Driver layer modules may be used in applications with or without a RTOS.
Framework layer modules are free to use RTOS objects such as semaphores, make RTOS API calls, or
even create threads as necessary.
Note: Understanding SSP naming conventions will help you understand Synergy applications. Driver layer

module names always start with an r_ prefix, while framework modules always start with a sf_
prefix.

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 18 of 39
Mar.21.19

The simplest SSP application consists of one Module with your application on top.

Figure 18. SSP Application and Module Layer
For example, in SSP, all driver instances have a name such as g_gpt attached to the instance of the driver,
such as the r_gpt driver in this case. The first thing to recognize is that r_gpt is a driver level module due
to the r_ prefix. You will see in the section about Framework Configuration, how these names are
assigned to a specific instance of a driver.

Figure 19. HMI Thread Modules Representation
These diagrams can become complicated depending on the Modules necessary to accomplish the
application’s goals. Here you see that the HMI Thread relies on numerous Modules, some of which are
layered on top of each other, forming SSP stacks. In the above figure, Framework Modules are represented
with a dark blue color, and Driver Modules are represented with a light green color.
The touch controller on most of the development boards generates an IRQ when a touch occurs. The
coordinates of the touch are then communicated over the I2C bus. In the above figure, the HMI Thread uses
the sf_touch_panel_i2c module. For interrupt processing, this module requires the sf_external_irq
module, that in turn requires the r_icu module. For the I2C communication, the sf_touch_panel_i2c
module requires the r_iic module.

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 19 of 39
Mar.21.19

Figure 20. GUIX Thread Module Representation
Figure 20 highlights some of the internal threads to fully understand your application architecture under the
SSP. Even though it shows a GUIX thread, you never actually create a GUIX thread in your application. The
reason is that the sf_el_gx module automatically creates this thread when you add the module to your
application. The main reason for the GUIX thread box is to have a place holder for the modules you add to
your application.
A possible shortcoming of the HMI Thread diagram, as described in the next section, is that the
sf_touch_panel_i2c module is added under the HMI Thread.
The GUIX Thread utilizes several modules including the r_glcd driver module. The S7G2 and S5D9
Synergy MCU Groups include a Graphics LCD (GLCD) controller. This driver module controls that
peripheral. It is also one of the more complex modules to understand. This module allows you to define many
properties including the screen resolution, where the frame buffer resides, for example, internal versus
external memory, the assignment of video sync signals, and so on. If your team designs embedded systems
with graphical displays, you will want to have a complete understanding of this module.

5. Framework Configuration
One of the first things you must to do when writing a Synergy application, is to configure the framework. To
properly configure the framework, you must have detailed knowledge of both the software design that you
will be implementing, along with the specific hardware it will be running on. For the hardware, this includes
the types of peripherals to be used on the hardware, the pins they are mapped to, if they are internal or
external to the MCU, and so on. From the software perspective, you need to decide how many threads will
be used, which threads need access to what hardware components, and what additional software objects
like semaphores, queues, and so on that each thread will require. Once you have this information, you will be
set to successfully configure the framework for your specific application needs.
In the Weather Panel application, the framework configuration is stored in a file named configuration.xml.
Double clicking on this file brings up the Synergy Configuration tab for the project. It may take a few
seconds for e2 studio to process the xml file.

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 20 of 39
Mar.21.19

Figure 21. Snapshot Showing configuration.xml on the Project Pane
When building a project from scratch, this configuration tab is where you will perform the initial configuration
of the Synergy framework. As you can see from the following figure, the Synergy Configuration
WeatherPanel pane contains a Summary screen highlighting the items you may configure, along with a
scrolling window that lists all the software components currently selected for this project. Below this scrolling
window are tabs that allow you to tailor the framework to the needs of your specific application.
For the purposes of this application note, we will highlight a few of the details of the framework configuration
as it pertains to the Weather Panel application. For additional details, refer to the appropriate Synergy
Framework documentation, the SSP User’s Manual, and application notes on how to configure the Synergy
Framework.
When you have configured the project appropriately, click the Generate Project Content, the green arrow
button above the summary screen, to build all the auto-generated files necessary to implement the
components you defined.

Figure 22. Summary of the Weather Panel Application Configuration
5.1 Components Tab
Even though the Components tab is the last tab showing, it is one of the first things you should configure.
Selecting components first makes them available in subsequent operations such as mapping hardware
resources to specific threads in the Threads tab. One of the advantages of the Synergy framework is that it
will only compile in the components you choose, thereby reducing the size of your overall application. As
shown in the following figure, components are broken down into seven categories.

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 21 of 39
Mar.21.19

Figure 23. Components Tab Categories
You may expand any of the categories by clicking the arrow to the left of the category name.
The following table highlights the selections used for the Weather Panel application. One of the nice features
of the Components tab is it gives you a description of the component and shows dependencies for each
component. As an example, notice that the sf_message (Messaging Framework) component requires
ThreadX. This dependency listing helps eliminate compile time errors that would result from failing to choose
the proper dependent components when making your component selections.

Table 3. Components Used in the Weather Panel Application
Category Component Version Description
BSP s7g2_pe_hmi1 1.6.0 Board Support Package for S7G2_PE_HMI1
Express
Logic

gx 1.6.0 Express Logic GUIX: Provides=[GUIX],
Requires=[ThreadX]

tx 1.6.0 Express Logic ThreadX: Provides=[ThreadX]
Framework
Services

sf_el_gx 1.6.0 SF_EL_GX GUIX Adaption Framework:
Provides=[SSP GUIX Adaptation Framework] ,
Requires=[ThreadX, GUIX]

sf_external_irq 1.6.0 Framework External IRQ: Provides=[Framework
External IRQ] , Requires=[External IRQ ,
ThreadX]

sf_jpeg_decode 1.6.0 Framework JPEG Decode: Provides=[SF JPEG
Decode] , Requires=[ThreadX ,JPEG Decode]

sf_message 1.6.0 Messaging Framework: Provides=[Message] ,
Requires=[ThreadX]

sf_tes_2d_drw 1.6.0 TES Dave/2d(DRW) Framework:
Provides=[SF_TES_2D_DRW] ,
Requires=[ThreadX ,TES Dave/2d]

sf_touch_panel_i2c 1.6.0 Framework Touch Panel using I2C:
Provides=[Framework Touch Panel] ,
Requires=[ThreadX ,Message ,I2C , Framework
External IRQ]

HAL
Drivers

r_cgc
r_dtc
r_fmi
r_riic

1.6.0
1.6.0
1.6.0
1.6.0

Clock Generation Circuit: Provides=[CGC]
Data Transfer Controller: Provides=[Transfer]
Factory MCU Information Module:
Provides=[FMI]
RIIC: Provides=[I2C Slave]

r_elc 1.6.0 Event Link Controller: Provides=[ELC]
r_glcd 1.6.0 Graphics LCD: Provides=[Display]
r_gpt 1.6.0 General Purpose Timer: Provides=[Timer ,GPT]
r_icu 1.6.0 External IRQ: Provides=[External IRQ]
r_ioport 1.6.0 I/O Port: Provides=[IO Port]
r_jpeg_decode
touch_panel_i2c_ft5x06

1.6.0
1.6.0

JPEG Decode: Provides=[Key Matrix]
Touch panel i2c ft5x06 driver

TES dave2d 1.6.0 TES Dave/2d: Provides=[Dave/2d]

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 22 of 39
Mar.21.19

5.2 Threads Tab
The Threads tab is where you can add and review the threads that the framework automatically creates for

your application. You define a new thread by clicking the button and then entering a unique name for
your new thread. Once you add a new thread, you must define the Modules that the thread will use along
with any thread objects that will be used by your thread.
As an example, if you click the Threads and then single click on the HMI Thread, you should see something
like the screen capture shown in the next figure. This shows that the HMI thread requires multiple modules,
the I2C driver which is used to read the on-touch sensor of the PE-HMI1.

Figure 24. HMI Thread Properties

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 23 of 39
Mar.21.19

Figure 25. HMI Thread Modules for the Weather Panel Application

You can add additional Modules to any thread by clicking the (+) button. If you have chosen the
appropriate components prior to adding Modules to your threads, you should not receive any errors. As an
example, the figure below shows you how to add a timer to the HMI Thread. The timer is added by choosing
Driver > Timers > r_gpt.
If you pick a Module that you have not preselected, the appropriate component for first, the Framework
automatically selects the component for you. If the framework detects errors with the Module addition, it
prefaces the Module with an error. You may examine the errors by hovering over the Module name.

Figure 26. Adding PWM Timer to HMI Thread

5.3 Thread Objects
ThreadX supports various objects such as Event Flags, Mutexes, Queues, and Semaphores. If you click on
HMI Thread in the Threads window, you will see that there is one Queue object, g_hmi_queue, allocated
for this thread.
You can allocate additional thread objects for any thread by selecting the thread from the left-hand Threads
window and then clicking on the button next to the Thread Objects window. As you can see from the

following figure, after clicking the button in the Thread Objects window, you are presented with a drop-
down list that allows you to add the standard thread objects supported by ThreadX.

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 24 of 39
Mar.21.19

Figure 27. Adding Thread Objects and Objects Supported by ThreadX
When adding, or reviewing threads, thread modules, or thread objects, you will want the Properties tab
enabled so you can examine or change the properties associated with the item. If your Properties tab is not
showing, you can show it by going to Window > Show View > Other… > General and then selecting
Properties. As an example, Figure 28 shows that the System Queue has a message size of 1 word and a
Queue size of 20 bytes. To change these values, simply update them in the Properties view and then click
the Generate Project Content button to update your project code with the new value.

Figure 28. HMI Thread Object g_hmi Queue Properties

5.4 Module Configuration
Once you have added Driver or Framework Modules to your project, you need to configure their properties.
The properties are dependent on the driver(s) that you have added. Use the Properties tab to configure
them. The Weather Panel application adds the r_glcd driver module. This module is used to configure the
GLCD peripheral of the ARM Cortex®-M4 MCU. While the properties of each development board may differ
slightly, the process of configuring these properties is generally the same on all the development boards.
5.4.1 GLCD Configuration
As you can see from Figure 29, selecting the g_display Display Driver on the g_glcd module under
the HMI Thread Modules dialog brings up the associated properties under the Properties tab. The first thing
you will notice is that it is a lengthy list of properties within Module grouping.
The Module group is where you configure the GLCD controller. These properties can be a bit daunting at
first, but can be broken down. First, you will notice a few broad categories inside the Module grouping.

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 25 of 39
Mar.21.19

• Name: The name given to this instance of the module g_display by default and the name of a user
defined callback function if used. The Weather Panel application does not use a callback.

• Input: This block of module properties defines the input to the graphics controller, most notably, the size
of the frame buffer, source of the dot clock, where the frame buffer is located, and others. This section
allows you to define two graphics screens. The Weather Panel application only uses one screen, the
Input-Graphics Screen 1 is set to be used.

• Output: This is the area where you define the output properties of the GLCD. This includes properties
such as the total Horizontal and Video Cycles, the active video cycles, both horizontal and vertical, front
and back porch duration, and so on.

• TCON: You use these lines in conjunction with the Pins tab, to map the Horizontal Sync (Hsync), Vertical
Sync (Vsync), and Data Enable signals. You can specify the LCD Panel clock divisor that divides the
clock input to the GCLD. This divisor ratio currently ranges from 1/1 to 1/32.

• Color Correction: This is where you can add various levels of color correction, for example, brightness,
contrast and gamma to your display. Color, contrast, and gamma correction of LCD screens are outside
the scope of this application note, but this is the area where you would do that type of adjustment.

Figure 29. GLCD Properties Configuration using the Properties Tab
5.4.2 TCON Configuration
If you scroll down a little farther in the Properties tab, you will see four TCON properties. One of these is
associated with the Panel clock division ratio. This allows additional division of the dot clock that is driven
directly from the PLLOUT branch of the clock tree. The other three are associated with the LCD sync signals.
These three signals can be confusing to new users, so how these signals map to the physical pins they are
connected to, is discussed here.

Figure 30. TCON Configuration for PPE-HMI1 Board LCD
To provide some flexibility, the GLCD controller of the S7G2 MCU provides two pin grouping options. Each
option uses different pins on the MCU to drive the data lines connected to the LCD display. It is up to the
hardware designer to pick the group of pins they want to use. Picking one or the other may free up MCU pins
that are necessary in some other part of the hardware design.
If you look at the schematics for the PE-HMI1 board, you can see all the pins connected to the LCD data
lines. You will also notice the four pins connected to the sync signals, that are highlighted in red. The data

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 26 of 39
Mar.21.19

lines chosen by the hardware designer must match one of the two pin groupings available under the GLCD
module. A little extra flexibility is provided for the LCD sync signals.

Figure 31. PE-HMI1 LCD-specific Signals from the Schematics
The easiest way to understand this is to go to the Pins tab in the Synergy Configuration window. You will see
selections for Ports, Peripherals, Analog Pins, and Other Pins, as shown in Figure 31. If you expand the
Peripherals dialog, you will see all the various ARM core peripherals that can be configured from this
screen.
If you scroll down to the LCD_GRAPHICS entry and click the small plus sign next to it, you will see two
options GLCD_Controller_Pin_Option_A and GLCD_Controller_Pin_Option_B. There should be a
green check mark next to GLCD_Controller_Pin_Option_B indicating that this is the pin group
associated with driving the LCD display.
Notice that TCON0 is associated with the Port 3 Pin 15 (P315). On the schematic (P3_15) we see that it is
connected to LCD_DE, which is the data enable pin for this screen. Referring back to Figure 30, we see
TCON0 has been selected to drive the DataEnable signal.

Figure 32. PE-HMI1 Pin Configuration Tab
If you look at all the LCD data lines such as LCD_DATA_DATA00, and the pins they are connected to, they
should match the pins they are connected to on the schematic. Clicking on the arrow to the right of the pin
brings you directly to the associated Pin Configuration dialog just as if you had selected the Ports Group,
and then the specific port and pin that you are interested in.

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 27 of 39
Mar.21.19

Figure 33. LCD Pin Configuration Using Configurator
For example, clicking on this arrow next to the LCD_TCON0 pin should bring you to the Pin Selection
Screen that looks like Figure 34. Notice that the Pin is appropriately set to the Peripheral mode. At the time
of writing this application note, the pins default to no Pull Up, Low Drive Capacity, and CMOS output type.
Clicking on the arrow button to the right of this screen brings you back to the associated peripheral screen.
Note: At the time of writing this application note, when you select option A or B of the LCD_GRAPHICS

peripheral, you must manually enable each pin connected to your display. Using the arrow button to
toggle back and forth between the Peripheral screen and the Pin Configuration screen makes this
process easier.

Figure 34. Pin Configuration Tab
5.4.3 Using External Memory for Frame Buffer
One of the differences between a lower cost development board, like the SK-S7G2 Synergy MCU board, and
the more expensive PE-HMI Synergy MCU board, is the availability of an external memory area for the
screen buffer. As the screen size and color depth increases, or a more sophisticated display strategy is used
(such as ping pong frame buffering), the available internal memory of the microcontroller may not be
sufficient. In this case, an external memory device is usually added to the board.
The SK-S7G2 Synergy MCU directly supports the use of an external SDRAM. Figure 35 shows an excerpt
from the SK-S7G2 Synergy MCU memory map found in Chapter 4 of the S7 Series MCU User’s Manual.
You can see here that the SDRAM address space is associated with address 9000 0000h to 9800 0000h.

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 28 of 39
Mar.21.19

Figure 35. SDRAM Memory Area of the PE-HMI1 Board
Two steps are required to use the external SDRAM for your frame buffer. The first is to locate the following
property under the Properties tab for the GLCD controller, and change it from bss to sdram. By convention,
the bss abbreviation instructs the SSP to place the frame buffer in internal memory in a section named bss.

Figure 36. Selecting the SDRAM for the Frame Buffer
The second step is to configure the External Memory Interface. This is like configuring the GLCD controller
that we just discussed above. Return to the Pins tab of the Synergy Configuration window, expand the
Peripherals selection, and then expand the bus selection. Change the Operation Mode to Enabled and
then manually enable each line used by your SDRAM by switching back and forth between the Peripheral
view and the Pin Configuration view, using the arrow to the right of the pin name.

Figure 37. Configuring External Memory Interface

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 29 of 39
Mar.21.19

Once you have configured the External Memory Bus correctly and changed the GLCD property to point to
SDRAM, you may not see any difference on your display. This may be because your current screen
resolution fits fine inside the internal memory. When you change to external memory, your GLCD continues
to drive the screen, just as it did before, only now, it is pulling the frame buffer from your external SDRAM.
How do you know the screens are really being driven from external memory?

5.4.4 e2 studio Tricks
The e2 studio IDE has a handy feature that you can use to ensure that the images you are seeing on your
LCD screen are coming from your external SDRAM. To use this feature, make sure to connect the e2 studio
to your board and run the program under the debugger. Ensure that your Memory tab is open in the
Console window, normally located to the bottom of the screen in Debug view. Click the small green plus (+)
sign to add a memory monitor. You should see a Monitor Memory dialog as shown in Figure 38. From the
ARM memory map above, enter the External Address Space associated with the SDRAM area in hex format
(0x90000000) and click the OK key.
A new tab should now appear under the Memory tab, that displays the contents of the memory area you
specified for the memory monitor.

Figure 38. Using the Memory Monitor to Display the SDRAM Contents
You should now see the contents of the SDRAM memory area displayed in the memory monitor you just
created. If you know what the hex value of every pixel should be on your display, you would be able to use
this memory monitor to definitively say that your image is being stored in the external SDRAM. However, as
most of us do not know the hex values associated with our pixels, we will let the memory monitor do the work
for us.

Figure 39. SDRAM Contents
Select the New Renderings tab next to the memory monitor you just created, select Raw Image type from
the list of options, and press the Add Rendering(s) button off to the right side of the screen.

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 30 of 39
Mar.21.19

Figure 40. GUIX Rendering Format Selection
The Raw Image Format dialog box appears, that lets you enter the screen resolution Width and Height,
along with the Encoding that is 16 bpp (5:6:5), in our case.

Figure 41. Raw Image Format for Weather Application on PE-HMI1
Once you press the OK key, the memory monitor presents you with the image that would be displayed at
that memory address, based on the parameters you entered. You can switch back to the memory monitor
tab, modify memory locations, and see the image change on both the memory monitor and the actual LCD
screen. You could perform these same steps when running out of internal memory, but first, you must
reference the linker map to determine where in the.bss section the screen memory was mapped, open a
memory monitor on that location, and repeat the steps above.

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 31 of 39
Mar.21.19

Figure 42. GUIX Rendering Seen Using e2 studio Memory Monitor

Figure 43. GUIX Rendering Seen Using e2 studio Memory Monitor

6. Application Code Highlights
This section details the highlights of the Weather Panel application. The goal of the Weather Panel
application is to show you how to develop more complex multi-threaded HMI applications using ThreadX and
GUIX with the SSP.
The key goal of the SSP is to abstract much of the complexity of interfacing with various ARM peripherals
and to quickly get you to the point where you can simply focus on constructing more complex applications,
as quickly as possible.

6.1 Threads and Main
There are a few subtle differences when using ThreadX with the SSP environment. In a typical ThreadX
application, main() calls tx_kernal_enter(), which then calls tx_application_define(). If you
have written ThreadX applications prior to working with Synergy, you may be used to creating the main
application threads and defining other resources used by the application such as queues and semaphores in
tx_application_define().

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 32 of 39
Mar.21.19

With the Synergy framework, main() is an auto-generated file which looks like the following code. In this
case, tx_application_define() calls thread entry functions for the threads specified during the
framework configuration.
void tx_application_define(void* first_unused_memory)
{
 hmi_thread_create ();

#ifdef TX_USER_ENABLE_TRACE
 TX_USER_ENABLE_TRACE;
#endif

 g_hal_init ();

 tx_application_define_user (first_unused_memory);
}

void main(void)
{
 __disable_irq ();
 tx_kernel_enter ();
}

When you create a thread using the Threads tab, the framework creates several files. As an example, when
the HMI Thread was added, the framework created three files for you: hmi_thread.h, hmi_thread.c,
and hmi_thread_entry.c, as shown in the following figure.
The first two files are auto-generated and therefore put into the synergy_gen folder. The
hmi_thread_entry.c file is the entry point for the HMI Thread, and this is where you put your application
code. Auto-generated files should not be updated by the user since they will be re-generated every time you
build the project or click the Generate Project Content button. Auto-generated files always contain some
form of do not edit message at the top of the file.

Figure 44. Framework Generated Source File Organization
6.1.1 GUIX Initialization
This section details the GUIX initialization. The GUIX system is not automatically initialized by the framework.
Several calls are required to initialize GUIX and create the initial canvas where the drawing takes place. You

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 33 of 39
Mar.21.19

will find this initialization code at the top of the hmi_thread_entry() function located in the
hmi_thread_entry.c file.
 status = gx_system_initialize();
 if(TX_SUCCESS != status)
 {
 while(1);
 }
 /* Initializes GUIX drivers. */
 err = g_sf_el_gx0.p_api->open (g_sf_el_gx0.p_ctrl, g_sf_el_gx0.p_cfg);
 if(SSP_SUCCESS != err)
 {
 while(1);
 }
 gx_studio_display_configure (MAIN_DISPLAY,
 g_sf_el_gx0.p_api->setup,
 LANGUAGE_ENGLISH,
 MAIN_DISPLAY_THEME_1,
 &p_window_root);
 err = g_sf_el_gx0.p_api->canvasInit(g_sf_el_gx0.p_ctrl, p_window_root);
 if(SSP_SUCCESS != err)
 {
 while(1);
 }

6.1.2 Events and GUIX Message
Touching the screen in the Weather Panel application causes GUIX to invoke the specific callback function
that we defined for that screen in GUIX Studio. GUIX provides the callback function with specific information
about the window that caused the event, and the actual event that occurred. There are currently 46 different
event types recognized by GUIX. They are defined in the gx_api.h file and reproduced here for
convenience.

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 34 of 39
Mar.21.19

/* Define the pre-defined Widget event types. */

#define GX_EVENT_TERMINATE 1
#define GX_EVENT_REDRAW 2
#define GX_EVENT_SHOW 3
#define GX_EVENT_HIDE 4
#define GX_EVENT_RESIZE 5
#define GX_EVENT_SLIDE 6
#define GX_EVENT_FOCUS_GAINED 7
#define GX_EVENT_FOCUS_LOST 8
#define GX_EVENT_HORIZONTAL_SCROLL 9
#define GX_EVENT_VERTICAL_SCROLL 10
#define GX_EVENT_TIMER 11
#define GX_EVENT_PEN_DOWN 12
#define GX_EVENT_PEN_UP 13
#define GX_EVENT_PEN_DRAG 14
#define GX_EVENT_KEY_DOWN 15
#define GX_EVENT_KEY_UP 16
#define GX_EVENT_CLOSE 17
#define GX_EVENT_DESTROY 18
#define GX_EVENT_SLIDER_VALUE 19
#define GX_EVENT_TOGGLE_ON 20
#define GX_EVENT_TOGGLE_OFF 21
#define GX_EVENT_RADIO_SELECT 22
#define GX_EVENT_RADIO_DESELECT 23
#define GX_EVENT_CLICKED 24
#define GX_EVENT_LIST_SELECT 25
#define GX_EVENT_VERTICAL_FLICK 26
#define GX_EVENT_HORIZONTAL_FLICK 28
#define GX_EVENT_MOVE 29
#define GX_EVENT_PARENT_SIZED 30
#define GX_EVENT_CLOSE_POPUP 31
#define GX_EVENT_ZOOM_IN 32
#define GX_EVENT_ZOOM_OUT 33
#define GX_EVENT_LANGUAGE_CHANGE 34
#define GX_EVENT_RESOURCE_CHANGE 35
#define GX_EVENT_ANIMATION_COMPLETE 36
#define GX_EVENT_SPRITE_COMPLETE 37
#define GX_EVENT_TEXT_EDITED 40
#define GX_EVENT_TX_TIMER 41
#define GX_EVENT_FOCUS_NEXT 42
#define GX_EVENT_FOCUS_PREVIOUS 43
#define GX_EVENT_FOCUS_GAIN_NOTIFY 44
#define GX_EVENT_SELECT 45
#define GX_EVENT_DESELECT 46

The Weather Panel application uses just a few of these events such as GX_EVENT_CLICKED. GUIX
passes these events as a GX_EVENT structure. The first element of the structure is the event type. A
GX_EVENT allows data to be sent as part of the message. The final field, gx_event_payload, is a union
of various data types. The Weather Panel application uses this payload to send a pointer to the current state
data structure.

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 35 of 39
Mar.21.19

/* Define Event type. Note: the size of this structure must be less than or
equal to the constant
 GX_EVENT_SIZE defined previously. */

typedef struct GX_EVENT_STRUCT
{
 ULONG gx_event_type; /* Global event type
*/
 USHORT gx_event_sender; /* ID of the event sender
*/
 USHORT gx_event_target; /* ID of event destination
*/
 ULONG gx_event_display_handle;
 union
 {
 UINT gx_event_timer_id;
 GX_POINT gx_event_pointdata;
 GX_UBYTE gx_event_uchardata[4];
 USHORT gx_event_ushortdata[2];
 ULONG gx_event_ulongdata;
 GX_BYTE gx_event_chardata[4];
 SHORT gx_event_shortdata[2];
 INT gx_event_intdata[2];
 LONG gx_event_longdata;
 } gx_event_payload;
} GX_EVENT;

6.2 LCD control
The PE-HMI1 display has a couple of digital controls that must be driven from the Weather Panel application.
As is the case with most embedded applications, the first thing you must do is to identify the hardware
dependencies and setup the appropriate drivers.
The two signals of interest in this section are the LCD_ON and LCD_BLEN (Blanking Enable). Figure 45
shows an excerpt from the PE-HMI1 v2.0 schematic, which shows the J5 connector. This is the connector
that the LCD Screen plugs into. You will notice that the two signals list the associated MCU pins, PA 5 and
PA 3. The LCD_ON signal requires a simple Hi/Lo state that turns the LCD on and off, and the LCD_BLEN
signal requires a PWM signal, which modulates the display intensity.

Figure 45. LCD On and Backlight Pin Details for PE-HMI1
Figure 46 shows the Pins tab for the PE-HMI1 Weather Panel application. The first thing you do when
configuring a pin is to select the port from the Pin Selection dialog box on the left-hand side of the screen, in
this case, PA (port A). The port selection expands to show the pins associated with the I/O port.

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 36 of 39
Mar.21.19

Figure 46. LCD ON Pin Configuration for PE-HMI1
In this case, we have the simplest configuration that you can have for a GPIO pin. The mode is set to Output
mode, and the Chip input/output is set to GPIO. Notice that the module name is PA03, which is the naming
convention that you will see in Synergy Pins configuration. Declaring an I/O pin in this manner causes the
Synergy framework to create an instance of the pin in the hal_data.c file, that is an auto-generated file.

const ioport_instance_t g_ioport =
{ .p_api = &g_ioport_on_ioport, .p_cfg = NULL };

This provides driver-level access to the pin but it is up to the user to write the code that sets the state of the
pin. In this case, all that is required for the Weather Panel application is to set the pin high to turn the LCD
display on. This is accomplished during the initialization code in the hmi_thread_entry.c file.
 /* Controls the GPIO pin for LCD ON. */
 err = g_ioport.p_api->pinWrite(IOPORT_PORT_10_PIN_03, IOPORT_LEVEL_HIGH);
 if (err)
 {
 while(1);
 }

For this demonstration application, the error handling simply loops with a while (1) condition if an error is
returned from the g_ioport.p_api->pinWrite() call. This causes the HMI Thread to stop responding
should an error be returned from the pinWrite call.

7. Importing and Building the Project
To bring the Weather Panel application into the e2 studio ISDE, follow these steps:
Refer to the Renesas Synergy™ Project Import Guide (r11an0023eu0121-synergy-ssp-import-guide.pdf)
included in this package for information on how to import a Synergy project.

1. Launch e2 studio ISDE.
2. In the workspace launcher, browse to the workspace location of your choice.
3. Close the Welcome window.
4. In the ISDE go to File > Import.
5. In the Import Dialog Box pick Existing Projects into Workspace.
6. Select the Root directory of your workspace (where you placed the project).
7. Select the project you wish to import and click Finish.

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 37 of 39
Mar.21.19

8. Generate output files as mentioned in the GUIX Studio Overview.
 For e2 studio ISDE:

Run weather_GNU.gxp from <project workspace>\guix_studio folder before building the
project. Refer to Figure 10 and Figure 12.

 For IAR Embedded Workbench:
Run weather_IAR.gxp from <project workspace>\guix_studio folder before building the
project. Refer to Figure 11 and Figure 12.

9. Click on Generate Project Content on the Synergy configurator window.
10. Now build the project.

8. Downloading the Executable to the Target Board
To connect and run the code, follow these steps:
1. Refer to the Quick Start Guide for PE-HMI1 to setup the J-Link debugger connection from your PC to the

JTAG connector on the target board.
2. Go to Run > Debug configurations.
3. Click Debug. The program will break at the reset handler.
4. Click Yes to switch to the Debug perspective when prompted by the ISDE.
5. Click Resume twice.

9. Known Issues
Each GX_EVENT_CLICKED sends GX_EVENT_KEY_DOWN event to the parent (and the parent then routes it
to the selected single line text input widget). With GUIX 5.4.0.0, if a user presses a button with auto-repeat,
then moves their finger outside of button boundaries (while still holding their finger pressed on the screen)
and then releases it, the button will stay locked in the auto-repeat state (that is, generating
GX_EVENT_CLICKED periodically) despite the screen being released. The only way to restore proper
behavior is to press and release the button again.

10. References
1. PE-HMI1 v2.0 User’s Manual: Hardware
2. PE-HMI1-v2.0 Schematics
3. Renesas Synergy Software Package Datasheet
4. Synergy X-ware-Documents (GUIX, ThreadX)
5. Synergy™ Software Package SSP User's Manual v1.5.0 or later
6. Renesas Synergy™ Project Import Guide (r11an0023eu0120-synergy-ssp.pdf)

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 38 of 39
Mar.21.19

Website and Support
Visit the following vanity URLs to learn about key elements of the Synergy Platform, download components
and related documentation, and get support.

Synergy Software www.renesas.com/synergy/software
 Synergy Software Package www.renesas.com/synergy/ssp
 Software add-ons www.renesas.com/synergy/addons
 Software glossary www.renesas.com/synergy/softwareglossary

Development tools www.renesas.com/synergy/tools

Synergy Hardware www.renesas.com/synergy/hardware
 Microcontrollers www.renesas.com/synergy/mcus
 MCU glossary www.renesas.com/synergy/mcuglossary
 Parametric search www.renesas.com/synergy/parametric

Kits www.renesas.com/synergy/kits

Synergy Solutions Gallery www.renesas.com/synergy/solutionsgallery
 Partner projects www.renesas.com/synergy/partnerprojects

Application projects www.renesas.com/synergy/applicationprojects

Self-service support resources:

Documentation www.renesas.com/synergy/docs
Knowledgebase www.renesas.com/synergy/knowledgebase
Forums www.renesas.com/synergy/forum
Training www.renesas.com/synergy/training
Videos www.renesas.com/synergy/videos
Chat and web ticket www.renesas.com/synergy/resourcelibrary

https://www.renesas.com/synergy/software
https://www.renesas.com/synergy/ssp
https://www.renesas.com/synergy/addons
https://www.renesas.com/synergy/softwareglossary
https://www.renesas.com/synergy/tools
https://www.renesas.com/synergy/hardware
https://www.renesas.com/synergy/mcus
https://www.renesas.com/synergy/mcuglossary
https://www.renesas.com/synergy/parametric
https://www.renesas.com/synergy/kits
https://www.renesas.com/synergy/solutionsgallery
https://www.renesas.com/synergy/partnerprojects
https://www.renesas.com/synergy/applicationprojects
https://www.renesas.com/synergy/docs
https://www.renesas.com/synergy/knowledgebase
https://www.renesas.com/synergy/forum
https://www.renesas.com/synergy/training
https://www.renesas.com/synergy/videos
https://www.renesas.com/synergy/resourcelibrary

Renesas Synergy™ Platform Getting Started with the Weather Panel Application

R30AN0231EU0210 Rev.2.10 Page 39 of 39
Mar.21.19

Revision History

Rev. Date
Description
Page Summary

1.0 Oct.9.15 - Initial version
1.10 Dec.4.15 - In section “Create and Build the Project,” deleted the step to

change the optimization level. This step is obsolete for SSP
version 1.0.0-beta.3 and higher.

1.11 Jan.11.16 - Update to remove template references
2.00 Aug.23.16 - Update with reference to PE-HMI and ISDE 5.0.0.43
2.01 Nov.18.16 - Minor formatting changes
2.02 Jan.10.17 - Updated for SSP v1.2.0.b.1
2.03 Mar.21.17 - Updated for SSP v1.2.0.

Added support for PK-S5D9.
2.04 Aug.17.17 - Updated for SSP v1.4.0
2.05 Sep.7.17 - Final release edit
2.06 Oct.27.17 37 Known Issue added
2.07 Mar.5.18 - Updated for SSP v1.4.0
2.08 Jun.18.18 - Sample codes updated
2.09 Sep.21.18 - Updated to SSP 1.5.0
2.10 Mar.21.19 - Updated to SSP 1.6.0

© 2019 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or sy stem. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality ": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

f inancial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human lif e or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
sy stem; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specif ied ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury , injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
saf ety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible f or evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transf ers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.
(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.
(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev .4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For f urther information on a product, technology, the most up-to-date
v ersion of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Board Setup
	2. Application Overview
	2.1 Synergy S7G2 and S5D9 MCU Peripherals used by the Weather Panel Application
	2.2 Human-Machine Interface (HMI)
	2.3 Weather Panel Screens
	2.3.1 Large Screen Design
	2.3.2 Small Screen Design

	3. GUIX Studio Overview
	4. Analyzing the Application
	4.1 Source Code Layout
	4.2 Thread Overview
	4.2.1 HMI Thread
	4.2.2 Thread Layout and the SSP

	5. Framework Configuration
	5.1 Components Tab
	5.2 Threads Tab
	5.3 Thread Objects
	5.4 Module Configuration
	5.4.1 GLCD Configuration
	5.4.2 TCON Configuration
	5.4.3 Using External Memory for Frame Buffer
	5.4.4 e2 studio Tricks

	6. Application Code Highlights
	6.1 Threads and Main
	6.1.1 GUIX Initialization
	6.1.2 Events and GUIX Message

	6.2 LCD control

	7. Importing and Building the Project
	8. Downloading the Executable to the Target Board
	9. Known Issues
	10. References
	Revision History

