
 Application Note

R12AN0055EU0106 Rev.1.06 Page 1 of 60
Mar.15.19

Renesas Synergy™ Platform

Getting Started with the Thermostat Application
for S7G2 and S5D9
Introduction
This application note describes a simulated Thermostat control application. The Thermostat application is
geared towards providing users with a quick out-of-box experience that demonstrates how complex multi-
threaded applications with a touch screen graphical Human Machine Interface (HMI) can be developed using
the Renesas Synergy™ Software Package (SSP).

The Thermostat application runs on several different development boards including the DK-S7G2, PK-S5D9,
SK-S7G2 and PE-HMI boards. These boards differ in screen resolution and have slightly different feature
sets. As an example, the more full-featured boards such as the DK-S7G2 and PE-HMI boards provide
backlight control of the LCD, while the lower cost PK-S5D9 and SK-S7G2 boards do not include this ability.
This application note covers the DK-S7G2 while noting changes required to run the Thermostat application
on other boards.

Figure 1. Thermostat Application on Several Development Boards
The Thermostat application was developed using the Synergy Software Package (SSP), version 1.5.0. The
SSP is a unified robust Application Framework that includes driver level support for peripherals in the
Synergy Arm® Cortex®-M4/M0+ Cores along with ThreadX®, Real Time Operating System (RTOS) from
Express Logic, Inc. In addition to ThreadX, full stack support is available through the X-Ware suite of stacks
such as NetX™, USBX™, GUIX™, and FileX™ from Express Logic. This powerful suite of tools provides a
comprehensive integrated framework for rapid development of complex embedded applications.

This application note assumes that you are familiar with the concepts associated with writing multi-threaded
applications under an RTOS such as ThreadX. While specific knowledge of ThreadX makes understanding
of the code even easier, you should be able to understand the information provided in this application note if
you have any previous experience with RTOS principles such as threads, message queues, semaphores,
and mutexes.

The Thermostat application was developed using the Renesas Synergy™ e2 studio Integrated Solution
Development Environment (ISDE). This eclipse-based ISDE can be freely downloaded from Renesas. While

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 2 of 60
Mar.15.19

e2 studio supports the use of multiple tool chains, this application note was built using the GCC compile tools
that come free with the e2 studio ISDE environment.

Building applications using the Renesas Synergy™ Platform is considerably faster than developing similar
applications in other environments, yet there is a learning curve to understand the required steps to construct
complex multi-threaded HMI applications quickly. This application note guides you through all the necessary
steps including the following:

• Board setup
• Loading and running the project
• Application overview
• Detailed explanation of the graphical screen uses
• GUIX Studio project integration
• SSP Application Framework configuration
• Application design highlights
• Inter-thread communication using the Synergy messaging framework
• Reading the internal temperature sensor of the MCU with the ADC unit
• Using the General-Purpose Timer (GPT) to drive a PWM backlight control signal
• Using the Audio Framework

Prerequisites
It is assumed that you have some experience with the Renesas Synergy e2 studio ISDE and SSP. For
example, before you perform the procedure in this application note, you should follow the procedure in the
Quick Start Guide of your board to build and run the Blinky project. By doing so, you will become familiar
with e2 studio and the SSP and ensure that the debug connection to your board is functioning properly.

Required Resources
The example application targets Renesas Synergy S7G2 and S5D9 MCU Groups. To build and run the
application, you will need:

• A Synergy DK-S7G2 board v3.0/3.1 with the included LCD module (see Figure 2).
• A PC running Microsoft® Windows® 7 with the following Renesas software installed:

 e2 studio ISDE v6.2.1 or later
 Synergy Software Package (SSP) v 1.5.0 or later
 IAR Embedded Workbench® for Renesas Synergy™ v8.23.1 or later
 SSC v6.2.1 or later
 GUIX Studio™ v5.4.0.0 or later

You can download the required Renesas software from the Renesas Synergy™ Gallery at
www.renesas.com/synergy/software.

See the Renesas Synergy™ Project Import Guide (r11an0023eu0121-synergy-ssp-import-guide.pdf),
included in the package, for instructions on importing the project into e2 studio and building/running the
project.

Target Devices
• DK-S7G2 v3.0/v3.1/V4.1 Development Kit (Synergy S7G2 MCU Group)
• PE-HMI 1 v2.0 Product Example Kit
• PK-S5D9 v1.0 Promotion Kit (Synergy S5D9 MCU Group)
• SK-S7G2 v2.0 Starter Kit (Synergy S7G2 MCU Group)

https://www.renesas.com/synergy/software
https://www.renesas.com/synergy/software

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 3 of 60
Mar.15.19

Contents

1. Board Setup .. 5

2. Application Overview ... 6
2.1 S7G2 and S5D9 Synergy MCU Group Peripherals Used by the Thermostat Application 6
2.2 HMI .. 7
2.3 Thermostat Screens .. 8
2.3.1 Large Screen Design ... 8
2.3.2 Small Screen Design ... 9

3. GUIX Studio Overview ... 9

4. Analyzing the Application ... 13
4.1 Source Code Layout .. 13
4.1.1 State Machine.. 14
4.2 Thread Overview ... 15
4.2.1 System Thread .. 16
4.2.2 Temperature Thread ... 17
4.2.3 Thread Layout and the SSP .. 19

5. Framework Configuration... 21
5.1 Components Tab ... 22
5.2 Threads Tab .. 23
5.2.1 Thread Objects .. 25
5.3 Module Configuration .. 26
5.3.1 GLCD Configuration .. 26
5.3.2 TCON Configuration .. 27
5.3.3 Using External Memory for Frame Buffer .. 30
5.3.4 SK-S7G2 LCD ... 32
5.3.5 e2 studio Tricks .. 33
5.4 Messaging Tab .. 34
5.4.1 Messaging ... 35
5.4.2 Event Classes.. 35
5.4.3 Events .. 38
5.4.4 Event Class Subscribers ... 39

6. Application Source Code Highlights ... 40
6.1 Threads and Main.. 40
6.1.1 GUIX Initialization .. 42
6.1.2 Events and GUIX Message ... 43
6.1.3 User defined GUIX messages ... 44
6.2 Handling Screen Events .. 46
6.3 Maintaining and Updating the System State ... 49

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 4 of 60
Mar.15.19

6.4 LCD Control ... 51
6.5 Backlight Control ... 52
6.6 Temperature Thread.. 54
6.6.1 Configuring the ADC ... 55
6.6.2 Accessing the ADC Unit .. 55
6.7 Weak Callback Functions and the g_adc .. 57

7. Importing a Project into e2 studio ... 58

8. Reloading the Demonstration Program .. 58

9. Known Issues .. 58

10. Reference Documents ... 58

Revision History .. 60

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 5 of 60
Mar.15.19

1. Board Setup
The DK-S7G2 kit contains three PCBs. The main board provides interconnects for the MCU board and the
LCD screen. The MCU main board and the daughter board have several switches that must be configured
prior to running the firmware associated with this application note. In addition to these switches, these boards
also contain multiple USB connectors, Ethernet connectors, and PMOD connectors. This application note
does not use Ethernet and uses only one of the micro USB connectors to access the SEGGER J-Link®
programming interface.

Connect the supplied USB cable between J17 of the DK-S7G2 and the PC on which you have loaded the
Synergy e2 studio software. Connector J17 is the upper right USB port as you look at the board from the
orientation shown in Figure 2. For proper operation of the application, use the following table to ensure that
the three DIP switches (S5, S101, S102) are set correctly.

Table 1. Configuration of S5, S101, and S102 Switches

S5 Switch 1 and 6 on, all others off
S101 All switches off
S102 All switches off

Figure 2. Items to Configure on the DK-S7G2 Board

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 6 of 60
Mar.15.19

2. Application Overview
One of the key objectives of the Thermostat application is to demonstrate how to build applications using
complex HMI screens with GUIX and GUIX Studio. The Thermostat application is one of the most complex
HMI designs among the Synergy application notes. The following list highlights all the key features of the
Thermostat application:

• Complex HMI design using GUIX Studio
• Multi-threaded applications using the ThreadX RTOS

 Queue and Mutex Thread objects used
• Extensive use of Synergy Messaging Framework for inter-thread communication
• GLCD configuration for various screen types and sizes

 Frame buffer run from internal and external memory
 External memory interface used
 Serial Peripheral Interface (SPI) initialization of ILI9341 Graphics Controller (SK-S7G2 board)

• Touch Panel, I2C touch controller driver ft5x06
 External IRQ mapping required

• Use of the Real Time Clock (RTC) driver for date/time
• PWM control of LCD backlight
• Audio Playback Framework used for LCD screen touch feedback
• ADC system used to read on-board temperature sensor.

In any software design, there are many ways to solve the same problem. The solution given in this
application note is one approach.

2.1 S7G2 and S5D9 Synergy MCU Group Peripherals Used by the Thermostat
Application

At the time of the writing of this application note, all the development boards that run the Thermostat
application use the S7G2 and S5D9 Synergy MCU Groups. The MCU is built around an Arm® Cortex®-M4
core. Developing complex embedded applications is usually a multi-step process.

1. The first step usually involves gathering the application requirements and performing a high-level system
design that maps the requirements onto the set of hardware components that are necessary, including
the target MCU that is to be used in the design, the tool chains required to build and debug the
applications.

2. The next step is to determine which on-board peripherals of the target MCU are to be used. In this step,
it is often necessary to spend a considerable amount of time to understand the register map of the on-
board peripherals and to write lower level driver code required to expose the peripheral to the upper level
application code. However, most of this work has already been done in the SSP Application Framework
to considerably streamline the application development.

3. In addition to the on-board peripherals of the target MCU, the design often includes external hardware
that specify how it can be controlled. As an example, the DK-S7G2 and PE-HMI boards have LCD
screens that may be controlled directly by the on-board Graphics LCD Controller (GLCD) of the S7G2,
S5D9 Synergy MCU Groups. The PK-S5D9 and SK-S7G2 boards use a smaller, lower cost LCD over a
serial interface that requires some initialization, before it can be controlled by the GLCD of the S7G2
MCU Group.

4. The last step details how an application should be structured on top of the selected hardware to satisfy
the initial requirements.

To follow the specified process, the Thermostat application requirements were first mapped to the on-board
peripherals of the S7G2 and S5D9 Synergy MCU Groups. The following illustration shows all the internal
hardware peripherals utilized by the Thermostat application. This application note describes how each of
these peripherals is configured using the SSP Application Framework, and considered for each peripheral
when the application was being developed.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 7 of 60
Mar.15.19

Figure 3. S7G2 Synergy MCU Group Peripherals used in the Thermostat Application

2.2 HMI
The most daunting task in many HMI applications is possibly the GUI itself. In applications requiring a
graphical HMI, it is best practice to separate the business logic from the presentation. This simply means that
the GUI does not make decisions about what to display but rather how to display it. The GUI relies on
external logic for what to display and when to display it.

After you have gathered all the requirements, performed a top-level design, and identified the hardware
necessary to implement the design, it is useful to design a GUI.

The SSP natively supports the use of GUIX from Express Logic. You may choose to use GUIX primitive calls
directly from Express Logic, or you may choose to use GUIX Studio to design the screens. GUIX Studio is a
standalone tool that provides a point and click environment for generating all the screens necessary for your
embedded application. Once designed, the studio outputs .c and .h files that you can integrate into your
application. All the application screens in the Thermostat application were built using GUIX Studio.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 8 of 60
Mar.15.19

2.3 Thermostat Screens
Screen designs are normally tailored to the size of the screen they are displayed on. This often requires
multiple graphical designs when porting an application to different boards with different sized LCD screens.
There are two approaches to this problem. The first approach is to build separate static display designs for
each screen resolution. GUIX Studio allows you to do this very quickly and this is the approach used for this
application note. The second approach is to build the screens dynamically and to size the windows and
widgets at run time depending on the screen resolution available. GUIX has a rich API that allows this type of
dynamic screen generation, but building screens dynamically using this interface is beyond the scope of this
application note.

The Thermostat application has two different designs, one for large screens like the 4.3-inch screen found on
the DK-S7G2 board or the 7-inch screen found on the PE-HMI board, and one for smaller screens like the
one found on the SK-S7G2 board.

Figure 4. Screen Snapshots for PE-HMI, and DK-S7G2 Boards

2.3.1 Large Screen Design
For larger screens such as the DK-S7G2 or the PE-HMI development boards, the Thermostat application
contains five main screens as shown in Figure 4, that are named as follows:
Splash Page The initial screen that is displayed when the application is first run.

Main Page The main page displayed after the user touches the splash screen.

Settings Page Accessed from the main page, this screen allows user to change various system settings.

Thermostat Page Screen to adjust thermostat settings such as set point, heat/cool mode, and fan state
(auto/on).

Help Page Screen that highlights what each thermostat control button does.

While the same five screens apply to both the DK-S7G2 and the PE-HMI boards, two separate graphical
designs exist because it was necessary to scale down the design for the smaller screen of the DK-S7G2
board. A GUIX Studio project includes various resource files such as fonts and images, but as is the case

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 9 of 60
Mar.15.19

with many IDEs, the project definition itself is actually maintained in a single xml file with a .gxp extension. A
separate .gxp file exists for all three board designs.

2.3.2 Small Screen Design
Figure 5 shows a small screen design used for the SK-S7G2 board. The key change in this design is the
separation of the various settings screens from the Settings menu and the elimination of the Help Page.

Figure 5. Screen Snapshots for the SK-S7G2 Board
In addition to these main pages, additional settings screens exist for changing the units from Fahrenheit to
Celsius, adjusting the screen brightness, setting the time and date, and adjusting the sound volume. You can
easily see how these screens look by running the application or examining the thermostat.gxp file using
GUIX Studio.

3. GUIX Studio Overview
This section provides an overview of how GUIX screens are designed and integrated into an SSP application
using GUIX Studio. It is not meant as a replacement for the GUIX or GUIX Studio documentation. When
designing graphical interfaces for the Renesas Synergy Platform, you are encouraged to read the full
documentation for GUIX and the GUIX Studio while learning the associated screen handling code in the
Thermostat application.

GUIX Studio presents a graphical, point-and-click environment that allows you to quickly create all the
required screens for your embedded application. You can specify the screen resolution, color depth, and
various other parameters such that what you see in GUIX Studio, running on your desktop PC, is what you
get on your embedded screens.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 10 of 60
Mar.15.19

GUIX comes standard with a few fonts and basic graphics for things like button controls. During your screen
creation phase, you may provide GUIX with your own external images and font files to make your displays as
fancy as needed. GUIX Studio also provides the use of multi-language displays using string tables.

Figure 6 is a screen shot of the Thermostat page designed in GUIX Studio.

Figure 6. Thermostat Page Design using GUIX Studio
The organization of the GUIX Studio IDE is straightforward. The center screen, known as the Target View,
contains the screen being designed. The upper left shows the Project View. This pane shows the widgets
contained in your project. The order you add items to the project determines the order they are drawn in the
final screens, and therefore some planning is necessary. As is the case with most graphical design
environments, screens are laid out in a hierarchy where the main window is normally the parent window, and
all graphical objects contained in the window are children of that parent. The Properties View (lower left)
displays properties associated with a selected object. You may select objects from the Project or Target
View.

The far right-side of the GUIX Studio screen contains drop-downs for all the various resources such as
colors, fonts, images (pixel maps) and strings used to create the screens. GUIX supports multi-language
designs using string tables.

The key to making any graphical design interactive is to associate events such as screen touches, with the
event handling code that implements the appropriate functionality. As you design your screens, you can
associate callback functions with your widgets. These callback functions provide the hooks necessary in your
application to respond to GUI events.

GUIX Studio provides both Draw and Event callbacks. Event functions allow you to respond to typical events
such as touch events. Draw functions allow you to add customized drawing. The Thermostat application only
defines Event function callbacks and only on the top-level windows. The callback function names are entered
into the Event function field of the Properties View as shown in Figure 7.

For development boards with larger screens, the Thermostat GUIX design has five defined Event functions
and are named as follows:

• help_screen_event
• thermostat_screen_event
• settings_screen_event
• mainpage_event
• splashscreen_event

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 11 of 60
Mar.15.19

Development boards with smaller screens such as the SK-S7G2, simply omit the help screen and associated
Event function.

Figure 7. Main Page Event Function Defined
When you are finished with your GUIX Studio design, you can instruct GUIX Studio to generate all the output
files by selecting Configure -> Project/Displays from the top menu ribbon as shown in Figure 8.

Figure 8. Configure Project/Displays Selection
The Configure Project dialog box is displayed as shown in Figure 9. This dialog box is where you specify
project-specific information such as the basic display settings in addition to the path information where GUIX
locates the files that result from the build process.

When you build your project, GUIX Studio creates .c and .h files that contain all the information required to
render the screens built with GUIX Studio on the LCD of your embedded Synergy application. The
Directories group is where you specify the default output directories for the source and header files.
Additionally, you may also specify a directory location where all the resource files such as images are saved.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 12 of 60
Mar.15.19

Figure 9. Define Project Paths
It is good practice to save the source, header, and resource files relative to the project location. This makes it
easy to move projects from one location to another or from one PC to another. For the Thermostat
application, all directories are located in the src/s7g2_dk directory.

Initially, the Thermostat application has a guix_studio directory containing the original resource files and
the thermostat.gxp file as shown in Figure 10. If you have GUIX Studio installed, you can click on the
thermostat.gxp file to launch GUIX Studio.

Figure 10. GUIX Resources Folder
As specified earlier, the outputs of the GUIX Studio are .c and .h source files that must be compiled into
your project. The GUIX project for the DK-S7G2 Thermostat application contains five Event Handler
functions, one for each top-level screen. GUIX automatically builds function prototypes for these callback
functions in the thermostat_specifications.h file as shown below:

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 13 of 60
Mar.15.19

/* Declare event process functions, draw functions, and callback functions */

UINT help_screen_event(GX_WINDOW *widget, GX_EVENT *event_ptr);
UINT thermostat_screen_event(GX_WINDOW *widget, GX_EVENT *event_ptr);
UINT settings_screen_event(GX_WINDOW *widget, GX_EVENT *event_ptr);
UINT mainpage_event(GX_WINDOW *widget, GX_EVENT *event_ptr);
UINT splashscreen_event(GX_WINDOW *widget, GX_EVENT *event_ptr);

In addition, the smaller GUIX Studio designs used for the SK-S7G2 boards do not include a Help page,
therefore the help_screen_event() handler is not present in these applications.

While GUIX Studio defines function prototypes for event handlers, you can create files that contain the code
for each of these handlers. The next section details the source code layout for the Thermostat application.

4. Analyzing the Application
While understanding the HMI is important, there are many other areas that you should understand while
developing the Synergy applications. These areas include how the project is physically structured in e2
studio, how threads and thread resources are added to the project, how threads communicate, how the state
machine is designed, and how state data is shared among cooperating threads.

4.1 Source Code Layout
Before diving into the application code, it is best to first understand the overall source code layout of a
Synergy project. Synergy applications generally consist of two different types of code, user-generated and
auto-generated. The auto-generated code can be further broken down into two sub-categories, code that is
auto-generated by the Synergy Framework versus code that is auto-generated by GUIX Studio.

Figure 11. Source Code Layout
Figure 11 shows the source code layout for the DK-S7G2 board. The Application Framework auto-generated
code is highlighted in red, GUIX auto-generated code is highlighted in yellow, and user-generated code is
highlighted in green.

Note: Most of the user-generated code resides in the src directory with the exception of the GUIX Studio
project files, thermostat.gxp, and hmi_event_handler.c which contain the event handlers for
the HMI.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 14 of 60
Mar.15.19

4.1.1 State Machine
The cornerstone of most embedded applications is the state machine. This is the part of the code that
dictates the overall functionality of the machine. The key feature of the Thermostat application centers
around system control based on the indoor temperature versus the set to temperature (set point)
programmed into the Thermostat as seen in Figure 12.

In a real thermostat, a separate temperature sensor, perhaps connected to the SPI or I2C bus of the
processor, is most likely used to accurately reflect the indoor temperature. Because most of the currently
available Renesas Synergy development boards do not contain a separate external temperature sensor, the
decision was made early on to use the on-board temperature sensor of the Synergy MCU to provide a
simulated indoor temperature reading.

Note: Some of the development boards have external PMOD connectors. The SK-S7G2 board can also
accept an Arduino, which can accommodate an external temperature sensor. If you want to replace
the on-board temperature sensor with an external sensor, read an external sensor with either the SPI
or I2C bus.

In separating presentation from business logic, the Thermostat application divides the application into
separate parts, the GUI which is responsible for displaying the current state of the machine, and the state
machine which maintains the system state and is responsible for determining when changes to that system
state are permitted.

Figure 12. Touch Control for Screen Changes
Touching the Thermostat section of the Main Page display brings you to the Thermostat Control Screen
page that should look like the one shown in Figure 12. The controls on this screen are the principle means in
which you can change the Thermostat state machine. The flowchart in Figure 13 details the basic operation
of the Thermostat system.

When you press the Auto button in the lower left-hand corner, the state of the button toggles from auto with
a black background to on with a green background. Whenever the fan state is on, the small fan icon in the
notification bar appears. When the system is in the auto mode, the fan icon appears and disappears
whenever the indoor temperature is above or below the set point temperature depending on the system
mode (heat or cool).

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 15 of 60
Mar.15.19

Figure 13. Thermostat Control Flowchart

4.2 Thread Overview
As described in the introduction, the Thermostat application is a multi-threaded application, running in
ThreadX. There are two origins of threads in a Synergy application, those created by the programmer, and
those created by the SSP Application Framework. While it is obvious what threads you created as a
programmer, it is not always obvious what threads are created by the Application Framework. As explained
in the SSP User’s Manual, there are two principle types of modules you add to a Synergy application, the
Driver module, and the Framework module. Driver modules are described as RTOS-aware but generally do
not use any RTOS objects. Framework modules can use RTOS objects, such as semaphores or mutexes,
and can also create their own threads as needed.

The Thermostat application uses two user-created threads, the System thread and the Temperature thread.
The two threads communicate through the Synergy messaging framework that is layered on top of the
standard ThreadX message queues. The System thread processes touch messages, GUIX events, and
maintains the system state data. The Temperature thread periodically reads the on-board temperature
sensor of the ARM core and, if it has changed, posts a message to the System thread. The Framework
Configuration section that follows provides details on how to add user threads to your application.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 16 of 60
Mar.15.19

Figure 14 shows a high-level design of the threads and messaging running on the Thermostat application.
Notice the distinction between user threads and framework threads. From this diagram, in addition to the
System thread and Temperature thread, there are also threads associated with GUIX and the touch
controller.

Note: Not shown in the diagram is the thread created by the Audio Framework to process the click sound
that is played whenever the user touches the screen. Threads created by the SSP Application
Framework modules are not always apparent and can generally be disregarded by the application
programmer.

Figure 14. Thermostat threads
In addition to the software component, various hardware components are also accessed through the
hardware drivers provided by the SSP Application Framework. These include the clock generation circuit,
touch screen controller (I2C), external interrupts, and the ADC (analog to digital converter) unit of the ARM
core.

4.2.1 System Thread
The system thread initializes various services used by the Thermostat application including GUIX, the Audio
Playback Framework, and the RTC. On the SK-S7G2 board, the system thread must also initialize the LCD
screen to place it into the proper RGB mode so it can be controlled by the GLCD peripheral of the S7G2
Synergy MCU.

Once this initialization is complete, the system thread processes various system inputs including touch
messages, GUIX events, RTC interrupt, and temperature update messages from the Temperature thread. If
any of these inputs results in a change to the system state, the system thread updates the state data
structure, and sends the appropriate update messages to the GUIX thread, resulting in changes to the
graphical HMI. The flowchart in the following figure shows the high-level design of the system thread.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 17 of 60
Mar.15.19

Figure 15. System Thread Flowchart

4.2.2 Temperature Thread
The Temperature thread reads the internal temperature sensor of the S7G2 MCU using the on-board analog
to digital converter (ADC). It averages the data, converts the raw ADC value to a temperature reading in
Celsius degrees, and sends a message to the system thread anytime the temperature reading changes.

The internal ADC of the S7G2 MCU supports numerous modes including the ability to continuously scan
channels and automatically average data read from the ADC before returning the reading. The continuous
scan mode is useful for reducing overhead in applications that must read analog channels at a high-speed
rate. Because it is generally not necessary to read temperature measurements at a high rate, the single scan
mode was selected as the simplest option for reading the internal temperature sensor. The normal thread
sleep mechanism of ThreadX is used to determine the rate at which the temperature readings are made. The
flowchart in the following figure shows a high-level design of the Temperature thread.

A key issue in multi-threaded applications is thread-safe access to shared data. In the Thermostat
application, the system thread owns the state data, however, the GUIX thread needs access to this data
when it has to update the screen. It is important to ensure that the data does not change when the GUIX
thread accesses this shared memory. To facilitate exclusive access to the state data, a mutex lock is used.

The flowchart in Figure 16 shows how the system thread and the GUIX thread use this mutex to gain
exclusive access to shared state data.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 18 of 60
Mar.15.19

Figure 16. Temperature Thread Flowchart

Figure 17. Mutex Lock for System State Data

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 19 of 60
Mar.15.19

4.2.3 Thread Layout and the SSP
For those new to the Renesas Synergy Platform, one of the most difficult aspects of learning how to develop
complex applications is to learn the various modules defined in the SSP Application Framework, how to add
them to your application, and more specifically how to layer these modules on top of each other to form the
SSP stacks.

As described in Chapter 2 of the SSP User’s Manual, Modules are the core building blocks of the SSP.
Modules provide functionality upwards and may require downward functionality. The SSP comes with two
predefined layers, the Driver layer and the Framework layer. The principle difference between the two is that
the Driver layer Modules are peripheral drivers that are RTOS-aware but do not use any RTOS objects or
make any RTOS API call. This means the Driver layer Modules can be used in applications with or without
an RTOS. Framework layer Modules however, can use RTOS objects such as semaphores, make RTOS
API calls, or even create threads as necessary.

Note: Understanding SSP naming conventions early on can help you understand Synergy applications.
Driver layer module names always start with an r_ prefix while framework modules always start with
a sf_ prefix.

The simplest SSP application consists of one module with user application on top.

Figure 18. Simple SSP Application
The Temperature thread layout best represents this simple concept and in this case, the Temperature thread
requires only the r_adc module. Figure 19 shows two ways to represent this. The representation on the right
side of the diagram shows the Temperature thread sitting on top of the ADC module. The representation on
the right side of the diagram is how you might typically see this concept represented in this document. This
can be read as the Temperature thread requiring g_adc on r_adc.

Figure 19. Different Ways to Represent Thread Structure
In SSP, all driver instances have names such as g_adc attached to the instance of the driver, in this case
the r_adc driver. The first thing to recognize is that the r_ prefix indicates r_adc is a driver-level module.
The Framework Configuration section shows how to assign these names to a specific instance of a driver.

As shown in Figure 20, the complexity depends on the modules required to accomplish the objectives of the
application. The system thread relies on numerous modules, some of which are layered on top of each other
to form the SSP stacks. Framework modules are represented with a dark blue color, Driver modules are

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 20 of 60
Mar.15.19

represented with a light green color, and thread objects such as queues and mutexes are represented in
purple.

Figure 20. System Thread Module Diagram
The touch controller on most of the development boards generates an IRQ when a touch occurs. The
coordinates of the touch are then communicated over the I2C bus. In the center of the diagram, the system
thread uses the sf_touch_panel_i2c module. For interrupt processing, this module requires the
sf_external_irq module that in turn requires the r_icu module. For I2C communication, the
sf_touch_panel_i2c module requires the r_iic module.

The following figure shows a scenario that highlights some of the nuances in understanding your application
architecture with the SSP. It also shows a small shortcoming of the system thread in Figure 20. Even though
Figure 21 shows a GUIX thread, you never actually created a GUIX thread in your application. The reason is
the sf_el_gx module automatically creates this thread when you added the module to your application.
The main reason for the GUIX thread box is to have a place holder for the modules you add to your
application.

Even though the sf_audio_playback and sf_touch_panel_i2c modules are added under the system
thread, each of these modules creates a separate thread from which they operate. Illustrating these threads
would unnecessarily complicate the diagram, yet omitting them does not show a complete picture of what
occurs.

The GUIX thread utilizes several modules including the r_glcd driver module. The S7G2 MCU includes a
Graphics LCD (GLCD) controller that is controlled by the r_glcd driver module. This is also perhaps one of
the more complex modules to understand. This module allows you to define many properties including the
screen resolution, where the frame buffer resides for example, the internal and external memory, and the
assignment of video synchronization signals. It is recommended that you have a complete understanding of
the r_glcd driver module if you want to design embedded systems with graphical displays.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 21 of 60
Mar.15.19

Figure 21. The GUIX Thread Modules

5. Framework Configuration
One of the first things you must do when writing a Synergy application is to configure the framework. To
properly configure the framework, you must have detailed knowledge of both the software design that you
are implementing along with the specific hardware it is running on. For the hardware, this includes the types
of peripherals to be used on the hardware, the pins they are mapped to, and whether they are internal or
external to the processor. From the software perspective, you must decide how many threads to be used,
what threads need access to what hardware components, and what additional software objects such as
semaphores and queues, each thread requires. With this information, you can successfully configure the
framework for your specific application needs.

In the Thermostat application, the framework configuration is stored in a file named configuration.xml in
the synergy_cfg folder. Double-click on this file to bring up the Synergy Configuration window for the
project. This window is displayed as one of the tabs in e2 studio. It may take a few seconds for e2 studio to
process the .xml file.

Figure 22. Configuration.xml file Storing the Framework Configuration

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 22 of 60
Mar.15.19

When building a project from scratch, this configuration tab is where you perform the initial configuration of
the SSP Application Framework. In the following figure, selecting the Summary tab at the bottom of the
Synergy Configuration DKS7_Thermostat pane generates a Summary screen highlighting the items you
might configure along with a scrolling window that lists all the software components currently selected for this
project. The remaining tabs allow you to tailor the framework to your specific application needs.

This application note only highlights a few details of the application framework configuration as it pertains to
the Thermostat application. For more information, refer to the appropriate Synergy Application Framework
documentation and application notes.

After you have properly configured the project, click Generate Project Content (the green arrow button
above the summary screen) to build the auto-generated files required to implement the components you
defined.

c

Figure 23. Synergy Configuration Project Summary Screen

5.1 Components Tab
Even though the Components tab is the last tab shown, it is one of the first items you should configure.
Selecting components first makes them available in subsequent operations such as the mapping of hardware
resource to specific threads in the Threads tab. One of the advantages of the Synergy Framework is that it
only compiles in the components you choose, therefore reducing the size of your overall application. As
shown in Figure 24, the components tab is broken down into seven categories.

Figure 24. Components Tab
You can expand any of the categories by clicking on the arrow to the left of the category name. The following
table highlights the selections used for the Thermostat application. One of the nice features of the
Components tab is that it gives you a description of the component and also shows dependencies for each
component. As an example, notice that sf_message, the Messaging Framework component, requires
ThreadX. This dependency listing helps eliminate compile time errors that might result from failing to choose
the proper dependent components when making your component selections.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 23 of 60
Mar.15.19

Table 2. Components Selected for the Thermostat Application

Category Component Version Description
BSP s7g2_dk 1.5.0 Board Support Package for S7G2_DK
Express Logic gx 1.5.0 Express Logic GUIX: Provides=[GUIX],

Requires=[ThreadX]
tx 1.5.0 Express Logic ThreadX: Provides=[ThreadX]

Framework Services sf_el_gx 1.5.0 SF_EL_GX GUIX Adaption Framework:
Provides=[SSP GUIX Adaptation Framework] ,
Requires=[ThreadX, GUIX]

sf_external_irq 1.5.0 Framework External IRQ: Provides=[Framework
External IRQ] , Requires=[External IRQ ,
ThreadX]

sf_jpeg_decode 1.5.0 Framework JPEG Decode: Provides=[SF JPEG
Decode] , Requires=[ThreadX ,JPEG Decode]

sf_message 1.5.0 Messaging Framework: Provides=[Message] ,
Requires=[ThreadX]

sf_tes_2d_drw 1.5.0 TES Dave/2d(DRW) Framework:
Provides=[SF_TES_2D_DRW] ,
Requires=[ThreadX ,TES Dave/2d]

sf_touch_panel_i2c 1.5.0 Framework Touch Panel using I2C:
Provides=[Framework Touch Panel] ,
Requires=[ThreadX ,Message ,I2C , Framework
External IRQ]

HAL Drivers r_adc 1.5.0 A/D Converter: Provides=[ADC]
r_cgc 1.5.0 Clock Generation Circuit: Provides=[CGC]
r_elc 1.5.0 Event Link Controller: Provides=[ELC]
r_glcd 1.5.0 Graphics LCD: Provides=[Display]
r_gpt 1.5.0 General Purpose Timer: Provides=[Timer ,GPT]
r_icu 1.5.0 External IRQ: Provides=[External IRQ]
r_ioport 1.5.0 I/O Port: Provides=[IO Port]
r_jpeg_decode 1.5.0 JPEG Decode: Provides=[Key Matrix]
r_rtc 1.5.0 Real Time Clock: Provides=[RTC]
r_sci_common 1.5.0 SCI Common: Provides=[SCI]
r_sci_i2c 1.5.0 SCI I2C: Provides=[I2C Master] , Requires=[SCI

Common]
TES dave2d 1.5.0 TES Dave/2d: Provides=[Dave/2d]

5.2 Threads Tab
The Threads tab is where you can add, delete, or review existing application threads. You define a new
thread by clicking the New Thread button and then entering a unique name for your new thread. After you
added a new thread, define the modules for the thread to use in the System Thread Stacks pane. You may
also add thread objects such as queues, mutexes, semaphores, and event flags using the System Thread
Objects pane.

As an example, if you click the Threads tab and then single click the System Thread in the Threads pane,
you should see something like the screen shown in the following figure. In this figure, the System Thread has
two system thread objects and several system thread stacks. The SSP v1.5.0 thread stacks are conveniently
shown in graphical format, this makes it easy to see the relationship that exists between the driver and
framework modules.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 24 of 60
Mar.15.19

Figure 25. Threads Tab
The interface remains consistent across all three panes. You can add or delete additional threads using
Remove at the top right-corner of the Threads window. You can also add or delete additional modules to any
thread by clicking the same button above the System Thread Stacks pane.

If you have chosen the appropriate components before adding modules to your threads, you should not
receive any errors. As an example, Figure 26 shows how to add the ADC driver r_adc to the Temperature
thread. In this figure, the driver is added by selecting Driver > Analog > ADC driver on r_adc.

Figure 26. Adding an ADC driver to the Temperature Thread
Note: Drivers that are prefaced with r_ are driver level modules.

If you pick a module but you have not selected the appropriate component first, the Application Framework
automatically selects the component for you. If the Application Framework detects errors with the module
addition, it prefaces the module with an error. You might examine the errors by hovering over the module
name.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 25 of 60
Mar.15.19

5.2.1 Thread Objects
ThreadX supports all typical objects in a RTOS. These include semaphores, mutexes, event flags, and
message queues. When you click the System Thread in the Threads pane, there is one Queue object and
is Mutex object allocated for this thread.

Figure 27. Adding Thread Objects to a Thread
You can allocate additional thread objects in the same way you allocate additional threads. Clicking the New
Object displays a drop-down list of the standard thread objects supported by ThreadX. Click the object you
want to add and the object is added to the System Thread Objects Window.

When adding or reviewing threads, thread modules, or thread objects, in general you want the Properties
tab enabled so you can examine or change the properties associated with the item. If your Properties tab is
not showing, you can display it by going to Window > Show View > Other… > General and then selecting
Properties. The following figure shows an example of the Audio Playback Queue
(g_sf_audio_playback_queue) that has a message size of one word and a queue size of 64 bytes. To
change these values, simply update them in the Properties view and then click the Generate Project
Content button to update your project code with the new value.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 26 of 60
Mar.15.19

Figure 28. Object Properties Displayed in the Properties Tab

5.3 Module Configuration
Most driver or framework modules added to your project have properties associated with them. The
properties are dependent on the drivers you add. The Properties tab is used to configure them. This
application note does not attempt to cover all the properties configured for every driver. Only a representative
few are covered, but the rest are configured in the same way. Since the basic element of the Thermostat
application is the HMI, the r_glcd driver module is added. This module is used to configure the Graphics
LCD (GLCD) peripheral of the Cortex-M4 core. While the properties of each development board might differ
slightly, the process of configuring these properties is generally the same on all the development boards.

5.3.1 GLCD Configuration
In Figure 29, selecting the g_display display driver on the g_glcd module from the System Thread Stacks
displays the associated GLCD properties under the Properties tab. The first thing to notice is a list of
properties with two groupings, ICU and Module. The ICU group is where you configure IRQ priorities.

The Module group is where you configure the GLCD controller itself. These properties can be a bit daunting
at first. There are a few broad categories inside the Module grouping:

• Name – The name given to this instance of the module g_display by default and the name of a user-
defined callback function if used. The Thermostat application does not use a callback.

• Input – This block of module properties defines the input to the GLCD, most notably the size of the frame
buffer, and the source of the dot clock, where the frame buffer is located. This section allows you to

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 27 of 60
Mar.15.19

define two graphics screens. The Thermostat application only uses one screen, so the Input-Graphics
Screen 1 is set to Used.

• Output – This is the area where you define the output properties of the GLCD. This includes properties
such as the total Horizontal and Video Cycles, the active video cycles both horizontal/vertical and
front/back porch duration.

• TCON – Use these lines in conjunction with the Pins tab, to map the Horizontal Sync (Hsync), Vertical
Sync (Vsync), and Data Enable signals. You can specify the LCD panel clock divisor, which divides the
clock input to the GCLD. This divisor ratio currently ranges from 1/1 to 1/32.

• Color Correction – This is where you can add various levels of color correction such as brightness,
contrast, and gamma to your display. Color correction of LCD screens is outside the scope of this
application note but this is the area where you can make this type of adjustment.

Figure 29. GLCD Properties

5.3.2 TCON Configuration
If you scroll down a little farther in the Properties tab, there are four TCON properties. One of these is
associated with the panel clock division ratio. This allows additional division of the dot clock, which is driven
directly from the PLLOUT branch of the clock tree. The other three TCON properties are associated with the
LCD sync signals. These three signals can be confusing to new users. The following figure shows how these
signals are mapped to the physical pins they are connected to.

Figure 30. GCLD TCON properties
To provide some flexibility, the GLCD controller of the S7G2 MCU provides two pin grouping options. Each
option uses different pins on the MCU to drive the data lines connected to the LCD display. It is up to the
hardware designer to pick the group of pins to be used. Picking one or the other may free up some MCU pins
that are required in some other part of the hardware design.

If you look at the schematics for the DK-S7G2 board, you can see all the pins connected to the LCD data
lines. You can see the four pins connected to the sync signals which are highlighted in red. The data lines
chosen by the hardware designer must match one of the two pin groupings available in the GLCD module.
Extra flexibility is provided for the LCD sync signals.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 28 of 60
Mar.15.19

Figure 31. DK_S7G2 LCD Electrical Interface
The easiest way to understand this is to go to the Pins tab in the Synergy Configuration window. The
selections for Ports, Peripherals, Analog Pins, and Other Pins are shown in the following figure. If you
expand the Peripherals dialog, all the various Arm® core peripherals that can be configured are displayed in
this screen.

If you scroll down to the LCD_GRAPHICS entry and click the small + sign next to it, the
GLCD_Controller_Pin_Option_A and GLCD_Controller_Pin_Option_B options are displayed.
There should be a green check mark next to GLCD_Controller_Pin_Option_B indicating this is the pin
group associated with driving the LCD display.

Note that TCON0 is associated with Port 3 Pin 15 (P315). If this designation is on the schematic, P3_15 is
connected to LCD_DE which is the data enable pin for this screen. Referring to Figure 30, TCON0 is selected
to drive the DataEnable signal.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 29 of 60
Mar.15.19

Figure 32. Pins Tab
If you look at all the LCD data lines such as LCD_DATA_DATA00, the pins they are connected to should
match the pins they are connected to on the schematic. Clicking on the arrow to the right of the pin takes you
directly to the associated Pin Configuration dialog, just as if you had selected the Ports Group and specific
port and pin.

Figure 33. Configuring GLCD Peripheral Pins

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 30 of 60
Mar.15.19

For example, clicking on the arrow next to the LCD_TCON0_B pin displays the Pin Selection and Pin
Configuration screens as shown in Figure 34. Notice that the pin is appropriately set to the peripheral
mode. As of this writing, the pins default to no Pull Up, Low Drive Capacity, and CMOS output type. Clicking
on the arrow button to the right of this screen takes you back to the associated peripheral screen.

Note: At the time of writing this application note, when you select option A or B of the LCD_GRAPHICS
peripheral, you must manually enable each pin connected to your display. Using the Arrow button
makes it easier to toggle between the Peripheral screen and the Pin Configuration screen.

Figure 34. Pin Selection and Configuration Screen

5.3.3 Using External Memory for Frame Buffer
One of the differences between a lower cost development board such as the SK-S7G2 and the more
expensive PE-HMI board is the availability of an external memory area for the screen buffer. As the screen
size and color depth increases or a more sophisticated display strategy, such as ping pong frame buffering,
is used, the available internal memory of the microcontroller may not be sufficient. In this case, an external
memory device is usually added to the board.

The S7G2 and S5D9 Synergy MCU Groups support the use of external SDRAM. Figure 35 shows an
example of the S7G2 memory map. In this example, the SDRAM address space is associated with address
9000 0000h to 9800 0000h.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 31 of 60
Mar.15.19

Figure 35. Example S7G2 Memory Map
To use external SDRAM for your frame buffer, you must first locate the following property under the
Properties tab for the GLCD controller and change it from bss to sdram. By convention, the bss
abbreviation instructs the SSP to place the frame buffer in internal memory in a section named bss.

Figure 36. SDRAM Selection in GLCD Properties Tab

You must configure the external memory interface. This is like configuring the GLCD controller. Return to the
Pins tab of the Synergy Configuration window, expand the Peripherals selection, then expand the BUS
selection. Change the Operation mode to Enabled, then manually enable each line used by your SDRAM
by toggling between the Peripheral view and the Pin Configuration view using the arrow to the right of the
pin name.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 32 of 60
Mar.15.19

Figure 37. Pin Configuration for the External Memory Interface

After you have correctly configured the external memory interface and changed the GLCD property to point
to SDRAM, you may not see any differences on your display. This may be because your current screen
resolution fits fine inside the internal memory. When you change to external memory, your GLCD continues
to drive the screen as it did before, only now it is pulling the frame buffer from your external SDRAM.

5.3.4 SK-S7G2 LCD
There are several differences in the LCD configuration and control when running the Thermostat application
on the SK-S7G2 MCU board. They are:

• Some LCD initializations are required on the SPI interface before running in RGB mode
• No SDRAM to hold GUIX external frame buffers
• No backlight control

This on-board ILI9341 graphics controller of the LCD screen has several operating modes. Placing the
controller in the proper mode so it can be controlled by the GLCD controller of the S7G2 MCU, requires
some SPI initialization commands to be sent to the ILI9341. This code resides in separate .c and .h files,
which are copied to the project when you run the configuration for the SK-S7G2.bat file in the
board_config directory.

As is the case with most small code changes, the system_thread_entry.c file contains the following
lines that call the code that initializes the on-board ILI9341 graphics controller if the code executes on the
SK-S7G2 Synergy MCU Group development board.

#if defined(BSP_BOARD_S7G2_DK)
 InitILI9341V ();
#endif

If you were to examine the Pins tab after configuring the Thermostat application to run on the SK-S7G2
MCU, you would notice that the external memory controller is not enabled for this board, and there is no
PWM signal setup for LCD backlight control.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 33 of 60
Mar.15.19

5.3.5 e2 studio Tricks
The e2 studio ISDE has a handy feature you can use to ensure that the images you see on your LCD screen
are coming from your external SDRAM. To use this feature, make sure to connect e2 studio to your board,
and run the program in the debugger. Ensure your Memory tab is open in the Console window, normally
located to the bottom of the screen and in Debug view. Click the small green plus (+) sign to add a memory
monitor. The Monitor Memory dialog box is displayed as shown in Figure 38. Enter the external address
space associated with the SDRAM area in hex format (0x90000000) and press the OK button.

A new tab appears in the Memory tab that displays the content of the memory area you specified for the
memory monitor.

Figure 38. Setting up a Memory Monitor

The content of the SDRAM memory area is displayed in the memory monitor you just created.

Figure 39. SDRAM Contents
Select the New Renderings tab next to the memory monitor you just created, then select Raw Image from
the list of options and click the Add Renderings button.

Figure 40. GUIX Rendering Format Selection

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 34 of 60
Mar.15.19

When the Raw Image Format dialog box displays, enter the screen resolution width and height, along with
the encoding, which is 16 bpp (5:6:5) in our case.

Figure 41. Selecting the Image Format
After pressing OK, the memory monitor displays the image based on the parameters you entered. At this
point you can even switch back to the Memory Monitor tab, modify memory locations, and see the image
changes on both the memory monitor and the LCD screen. You can perform these same steps when running
out of internal memory but you must first reference the linker map to determine where in the .bss section
the screen memory was mapped. Open a memory monitor on that location and repeat the specified steps.

Figure 42. Memory Displayed as an Image

5.4 Messaging Tab
Many modern RTOS environments such as ThreadX, provide a facility for passing messages between
threads. The SSP provides a robust messaging framework and the Synergy Configuration window provides
a point-and-click interface for defining these messages.

The Messaging tab of the Synergy Configuration window allows you to define messages (events) that are
appropriate to your system. You can double-click on the configuration.xml file in the e2 studio Project

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 35 of 60
Mar.15.19

explorer to bring up the Synergy Configuration window. Click the Messaging tab to display the Messaging
window that looks like in the following figure. The Messaging pane is divided into three sections:

• Event Classes
• Events
• Touch Subscribers

The Touch Subscribers section is prefaced by the currently selected event class.

Figure 43. Messaging Tab

5.4.1 Messaging
Messages are used in the system to avoid polling. In event driven systems, respond to asynchronous events
in a timely fashion without wasting precious processor cycles to poll for every event that might occur.
Messaging systems provide the ability for a thread to suspend execution while waiting for an event. This
frees up the processor and simplifies the code. The term message and event are often used synonymously.

How messaging is implemented in the Thermostat application is described later in this document. Detailed
description of messaging theory and the SSP messaging framework is outside the scope of this document,
however key issues that are often confusing to new users as they implement messaging in their SSP
applications are covered.

5.4.2 Event Classes
Event classes logically group specific events together. For example, the Touch event class groups all the
messages associated with the touch controller of the screen. The Temperature class groups all the
messages associated with temperature measurements, for example. Event classes are necessary for routing
events to subscribers, because threads subscribe to event classes and not to individual events.

In the current SSP, there is no direct linkage between an event class and an event. For example, a Start
event can be reused across multiple event classes. For instance, an audio recorder and an audio playback
subsystem can both require Start events so they can share a single start event. For readability, it is better to
have separate named events for each event class where the event is preceded by the name of the event
class. For example, Audio Playback Start is a more descriptive name then the Start event.

The SSP has several predefined event classes. The Thermostat application uses two of these, Touch and
Audio Playback. These classes populate in the Event Classes pane automatically when you include these
modules in the Threads tab. The list of these predefined event classes might grow as the SSP evolves but
for the purposes of this application note, we only describe two predefined event classes that the Thermostat
application uses.

Besides predefined classes, you can create your own event classes to fit the requirement of your system. As
shown in the following figure, the Thermostat application has five additional user-defined classes:

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 36 of 60
Mar.15.19

• System
• Volume
• Time
• Temperature
• Display

It is easier to understand how to create a new event class by examining the properties of an existing event
class.

Figure 44. Examining the Temperature Event Class
When you click Temperature Event Class and examine the Properties tab, there are five properties as
shown in the above figure. The five properties are:

• Symbol
• Name
• Payload header file
• Payload
• Payload type

The Synergy message configurator guides you through the process and all you need to do is decide on an
appropriate name for your event class.

As shown in the New Event Dialog box that displays when you click the New Event Class above the Event
Class window, all five fields are partially filled out for you. As you type the name of your event class, it is
appended or prepended according to the Synergy naming conventions.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 37 of 60
Mar.15.19

Figure 45. New Event Class Dialog Box Before Entering a Name
As an example, if you have an accelerometer on your hardware and you want to create a new event class for
messages related to the accelerometer, you can type Accelerometer in the name field and the remaining
fields are populated as shown in the following figure. Event class names can be any descriptive string, so
consider readability when defining your event classes.

Figure 46. New Event Class Dialog After Entering a Name
You have defined important information that the SSP Framework requires at compile time. This information
includes the name of the header file that defines the event class payload along with the Payload type name.
To complete the creation of your new event class, you must create the header file.

Return to the existing temperature event class that is already defined in the application and examine the key
element of the temperature_api.h file that is the temperature_payload_t structure.

#ifndef TEMPERATURE_API_H

#define TEMPERATURE_API_H

typedef struct st_temperature_payload

{

 float temperature;

} temperature_payload_t;

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 38 of 60
Mar.15.19

#endif /* TEMPERATURE_API_H */

The structure named temperature_payload_t, aligns with the Payload type property shown in
Figure 46. This structure contains just a single float variable that is used to pass the temperature reading to
any event subscribers.

In the background, the SSP builds an enumerated type of event class names in the structure
sf_message_event_class_t that resides in the auto-generated file
synergy_cfg\ssp_cfg\framework\sf_message_port.h. Note the comment that corresponds to the
Name property:

typedef enum e_sf_message_event_class
{
 SF_MESSAGE_EVENT_CLASS_TOUCH, /* Touch */
 SF_MESSAGE_EVENT_CLASS_AUDIO, /* Audio Playback */
 SF_MESSAGE_EVENT_CLASS_SYSTEM, /* System */
 SF_MESSAGE_EVENT_CLASS_VOLUME, /* Volume */
 SF_MESSAGE_EVENT_CLASS_TIME, /* Time */
 SF_MESSAGE_EVENT_CLASS_TEMPERATURE, /* Temperature */
 SF_MESSAGE_EVENT_CLASS_DISPLAY, /* Display */
} sf_message_event_class_t;

5.4.3 Events
After the Temperature Event class is defined, you need to create some events. With the Properties tab
open, click the Temperature Increment event. The Name and Symbol properties are displayed like the
Name and Symbol properties in the Event Class.

Figure 47. Temperature Increment Event Properties
The Name under Property contains the name you see in the Synergy Configuration window. The Symbol
property is the actual #define you use in your code to refer to this event. In a later section, the code used to
send and receive these types of events is examined. This only focuses on the location and how to create
events.

Creating new events is the same as creating new event classes. When you click the small New Event at the
top right of the Events dialog, the New Event dialog appears with the Symbol field partially populated.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 39 of 60
Mar.15.19

Figure 48. New Event Dialog
As you type the name of your event in the Name field, it is appended in upper case to the Symbol field.
Therefore, if you are designing a system that has an accelerometer, for example, and you want a new data
event, you only need to type Accelerometer New Data in the Name field. The SSP automatically appends
this name to the Symbol, converting letters to upper case, and replacing spaces with the underscore
character.

Figure 49. Example for Adding a New Event
While the SSP built an enumerated type containing all the event classes in the auto-generated file
synergy_cfg\ssp_cfg\framework\sf_message_port.h, it also built an enumerated type
sf_message_event_t for all the events you define. The comment for each field in the enumerated type
aligns with the Name field of the Event.
Do not edit the sf_message_port.h file. It is automatically generated from the data contained in the
configuration.xml file each time you click the Generate Project Content button at the top of the
Synergy Configuration window, therefore any changes you make to this file are lost.

To see how it all works in the background, you can open the configuration.xml file in a text editor and
browse the section labeled <synergyMessagingConfiguration>. You can find all the events and event
classes you entered using the ISDE.

5.4.4 Event Class Subscribers
ThreadX uses a producer/consumer model for messaging. Producers place messages (events) on a
message queue. Subscribers read those messages from the queue and act upon them. The last thing you
must do when configuring messages for your system is to define the subscribers. The process is reduced to

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 40 of 60
Mar.15.19

a simple point-and-click environment in the latest version of the SSP. Clicking on any event class
automatically populates the Subscribers window to the right of the Event Classes window. It also prepends
the event class name to the heading of the Subscriber window. As shown in the following figure, clicking on
the Temperature, Event Classes shows the Temperature Subscribers what is currently the System
Thread. Event Classes may have more than one subscriber. If you do not see the appropriate thread listed,
click the New Subscriber to open the New Subscriber Dialog box, and use the drop-down arrow on the
Thread line to select from a list of available threads.

Figure 50. Adding Subscribers to an Event Class

6. Application Source Code Highlights
This section describes some of the more interesting highlights of the Thermostat application. The main
purpose of the Thermostat application is to enable you to develop more complex multi-threaded HMI
applications using ThreadX and GUIX in the SSP.

The key objective of the SSP is to reduce the complexity of interfacing with a myriad of ARM peripherals and,
as quickly as possible, allows you to focus on constructing more complex applications.

Note: The Thermostat application was one of the first SSP applications written using some of the earliest
releases of the SSP. Both the application and the SSP have gone through numerous iterations and it
is now a stable process. Many of the tools for configuring the SSP framework were not present
earlier. While the SSP has considerably improved over the life of the Thermostat application, the SSP
is being continually improved for quicker development of complex applications.

6.1 Threads and Main
There are a few subtle differences when using ThreadX in the SSP environment. In a typical ThreadX
application, the main() function calls tx_kernal_enter() that then calls tx_application_define().
If you have written ThreadX applications prior to working with the Renesas Synergy Platform, you may be
used to creating the main application threads and defining other resources used by the application for
example, queues, and semaphores in tx_application_define().

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 41 of 60
Mar.15.19

In the Synergy framework, main() is an auto-generated file which looks similar to the following code. In this
case, tx_application_define() calls thread entry functions for the threads specified during the SSP
framework configuration.

void tx_application_define(void* first_unused_memory)
{
 system_thread_create ();
 temperature_thread_create ();

#ifdef TX_USER_ENABLE_TRACE
 TX_USER_ENABLE_TRACE;
#endif

 g_hal_init ();

 tx_application_define_user (first_unused_memory);
}

void main(void)
{
 __disable_irq ();
 tx_kernel_enter ();
}

When you create a thread using the Threads tab, the application framework creates several files. As an
example, when the System Thread was added, the application framework created three files as shown in
Figure 51:

• system_thread.h
• system_thread.c
• system_thread_entry.c

The first two files are auto-generated and therefore placed in the synergy_gen folder. The
system_thread_entry.c file is the entry point for the system thread and this is where you put your
application code. You should not update auto-generated files because they are regenerated every time you
build the project or click the Generate Project Content button. Auto-generated files always contain some
form of -- do not edit -- message at the top of the file.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 42 of 60
Mar.15.19

Figure 51. System Thread Files

6.1.1 GUIX Initialization
The GUIX system is not automatically initialized by the application framework. Several calls are required to
initialize GUIX and create the initial canvas where the drawing takes place. You can find this initialization
code at the top of the system_thread_entry() function located in the system_thread_entry.c file.

/* Initializes GUIX. */
 status = gx_system_initialize();
 if(TX_SUCCESS != status)
 {
 while(1);
 }

 /* Initializes GUIX drivers. */
 err = g_sf_el_gx.p_api->open (g_sf_el_gx.p_ctrl, g_sf_el_gx.p_cfg);
 if(SSP_SUCCESS != err)
 {
 while(1);
 }

 gx_studio_display_configure (DISPLAY,
 g_sf_el_gx.p_api->setup,
 LANGUAGE_ENGLISH,
 DISPLAY_THEME_1,
 &p_root);

 err = g_sf_el_gx.p_api->canvasInit(g_sf_el_gx.p_ctrl, p_root);
 if(SSP_SUCCESS != err)
 {
 while(1);
 }

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 43 of 60
Mar.15.19

6.1.2 Events and GUIX Message
Touching the screen in the Thermostat application causes GUIX to invoke the specific callback function
defined for that screen in GUIX studio. GUIX provides the callback function with specific information about
the window that caused the event and the actual event that occurred. There are currently 46 different event
types recognized by GUIX. They are defined in the gx_api.h file and reproduced in this document for
convenience.

/* Define the pre-defined Widget event types. */

#define GX_EVENT_TERMINATE 1
#define GX_EVENT_REDRAW 2
#define GX_EVENT_SHOW 3
#define GX_EVENT_HIDE 4
#define GX_EVENT_RESIZE 5
#define GX_EVENT_SLIDE 6
#define GX_EVENT_FOCUS_GAINED 7
#define GX_EVENT_FOCUS_LOST 8
#define GX_EVENT_HORIZONTAL_SCROLL 9
#define GX_EVENT_VERTICAL_SCROLL 10
#define GX_EVENT_TIMER 11
#define GX_EVENT_PEN_DOWN 12
#define GX_EVENT_PEN_UP 13
#define GX_EVENT_PEN_DRAG 14
#define GX_EVENT_KEY_DOWN 15
#define GX_EVENT_KEY_UP 16
#define GX_EVENT_CLOSE 17
#define GX_EVENT_DESTROY 18
#define GX_EVENT_SLIDER_VALUE 19
#define GX_EVENT_TOGGLE_ON 20
#define GX_EVENT_TOGGLE_OFF 21
#define GX_EVENT_RADIO_SELECT 22
#define GX_EVENT_RADIO_DESELECT 23
#define GX_EVENT_CLICKED 24
#define GX_EVENT_LIST_SELECT 25
#define GX_EVENT_VERTICAL_FLICK 26
#define GX_EVENT_HORIZONTAL_FLICK 28
#define GX_EVENT_MOVE 29
#define GX_EVENT_PARENT_SIZED 30
#define GX_EVENT_CLOSE_POPUP 31
#define GX_EVENT_ZOOM_IN 32
#define GX_EVENT_ZOOM_OUT 33
#define GX_EVENT_LANGUAGE_CHANGE 34
#define GX_EVENT_RESOURCE_CHANGE 35
#define GX_EVENT_ANIMATION_COMPLETE 36
#define GX_EVENT_SPRITE_COMPLETE 37
#define GX_EVENT_TEXT_EDITED 40
#define GX_EVENT_TX_TIMER 41
#define GX_EVENT_FOCUS_NEXT 42
#define GX_EVENT_FOCUS_PREVIOUS 43
#define GX_EVENT_FOCUS_GAIN_NOTIFY 44
#define GX_EVENT_SELECT 45
#define GX_EVENT_DESELECT 46

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 44 of 60
Mar.15.19

The Thermostat application uses only a few of these events such as GX_EVENT_CLICKED. GUIX passes
these events as a GX_EVENT structure. The first element of the structure is the event type. A GX_EVENT
allows data to be sent as part of the message. The final field, gx_event_payload, is a combination of
various data types. The Thermostat application uses this payload to send a pointer to the current data
structure state.

/* Define Event type. Note: the size of this structure must be less than
or equal to the constant
 GX_EVENT_SIZE defined previously. */

typedef struct GX_EVENT_STRUCT
{
 ULONG gx_event_type; /* Global
event type */
 ULONG gx_event_display_handle;
 struct GX_WIDGET_STRUCT *gx_event_target; /*
receiver of event */
 USHORT gx_event_sender; /* ID of
the event sender */
 union
 {
 UINT gx_event_timer_id;
 GX_POINT gx_event_pointdata;
 GX_UBYTE gx_event_uchardata[4];
 USHORT gx_event_ushortdata[2];
 ULONG gx_event_ulongdata;
 GX_BYTE gx_event_chardata[4];
 SHORT gx_event_shortdata[2];
 INT gx_event_intdata[2];
 LONG gx_event_longdata;
 } gx_event_payload;
} GX_EVENT;

6.1.3 User defined GUIX messages
When you click on a screen object, it is often you are asking for a change to the system state. As an
example, when you toggle the Fan mode button on the Thermostat screen, you are asking the system to
change the state of the fan from Auto to On or visa-versa. Because the System Thread is responsible for
maintaining and updating the logical state of the machine, the GUIX Thread sends a message to the
System Thread requesting a change to the Fan mode. The following figure illustrates this concept with a
simplified message sequence diagram.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 45 of 60
Mar.15.19

Figure 52. Simplified System Message Sequence Diagram
The System Thread evaluates the request, makes any necessary changes to the system state and if
appropriate, sends a message back to the GUIX Thread to update the screen.

The GUIX system has numerous predefined messages to communicate GUIX events to the application
through the provided callback functions. In addition to these predefined events, GUIX also provides a
method for other threads to send user-defined messages to GUIX using the gx_system_even_send()
function.

To separate user-defined events from standard GUIX events, you must pick an event ID numbers larger than
the #define value of GX_FIRST_APP_EVENT defined in the gx_api.h file.

/* Define the value of the first application defined event type. */

#define GX_FIRST_APP_EVENT 0x40000000

GUIX does not attempt to process any message with a gx_event_type ID larger than
GX_FIRST_APP_EVENT; it only passes the event to the event handler of the currently active window through
the callback function defined for that screen. This is the method the System Thread uses to inform the
currently active screen to update to the latest state.

The System Thread utilizes gx_event_payload element of the GX_EVENT structure to pass a pointer to
the static data structure containing the system state variables. When the screen event handler receives this
message, it uses the state information passed in the message to update the current screen display state.

The following figure shows the list of message requests and responses the Thermostat application uses.
Requests are sent from the GUIX event handler functions to the System Thread using the SSP messaging
framework. You define these messages using the Messaging tab in the Synergy Configuration window.
The system saves them as enumerated types in the file
synergy_cfg/ssp_config/framework/sf_message_port.h. Responses are sent from the System
Thread to GUIX.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 46 of 60
Mar.15.19

Figure 53. System Message/Response Defines
Responses from the System thread to the GUIX thread are handled differently. GUIX has its own message
passing facility. Messages are sent to the GUIX thread using the gx_system_event_send() call. The
response messages defined in the above figure are not configured in the Synergy Configuration
Messaging Pane. They must be defined by the application programmer. In the Thermostat Application,
these messages are defined in the src/system_api.h file.

6.2 Handling Screen Events
This section walks you through the code involved in changing the Fan mode on the Thermostat screen. For
this task, you should have the system_thread_entry.c and hmi_event_handler.c files opened as
you follow along with the text.

The following figure contains a detailed message sequence diagram. The logic and data flow are similar for
all screen input and update events.

The function prototype for the screen event handler as defined in the thermostat_specifications.h
file is as follows:

UINT thermostat_screen_event(GX_WINDOW * p_window, GX_EVENT *event_ptr)

This header file is auto-generated by the application framework but you must write the actual event handler
code yourself. If your screens are complex, you may consider separating event handlers for each screen into
separate files. In the Thermostat application, all the code for all the screen handlers exists in the
hmi_event_handler.c file.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 47 of 60
Mar.15.19

Figure 54. Detailed System Message Diagram
The following section shows a partial extraction of the code for the thermostat screen event handler, focusing
on just two cases in the switch statement. Unrelated code has been omitted with the … characters in the
code. When you click the Fan button in the Thermostat screen, GUIX calls this event handler with a pointer
to the window that caused the event to occur and a pointer to the GX_EVENT structure which contains the
gx_event_type field.

UINT thermostat_screen_event(GX_WINDOW * p_window, GX_EVENT *event_ptr)
{
 UINT result = gx_window_event_process(p_window, event_ptr);
 GX_WIDGET * p_widget = (GX_WIDGET *) p_window;

 switch (event_ptr->gx_event_type)
 {
 …
 case THERMO_MESSAGE_EVENT_FAN_TOGGLE:
 update_state_data(event_ptr);
 if (SYSTEM_FAN_MODE_AUTO == g_gui_state.fan_mode)
 {
 update_pixelmap_button_id((GX_WIDGET *) p_widget,
ID_FAN_BUTTON,
 GX_PIXELMAP_ID_BLACKBUTTON);
 update_text_id((GX_WIDGET *) p_widget, ID_FAN_MODE_TEXT,
GX_STRING_ID_FAN_MODE_AUTO);
 }
 else
 {
 update_pixelmap_button_id((GX_WIDGET *) p_widget,
ID_FAN_BUTTON,
 GX_PIXELMAP_ID_GREENBUTTON);

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 48 of 60
Mar.15.19

 update_text_id((GX_WIDGET *) p_widget, ID_FAN_MODE_TEXT,
GX_STRING_ID_FAN_MODE_ON);
 }
 if (g_gui_state.fan_on)
 {
 show_hide_widget((GX_WIDGET *) p_widget, ID_FAN_ICON, 1);
 }
 else
 {
 show_hide_widget((GX_WIDGET *) p_widget, ID_FAN_ICON, 0);
 }
 break;
 …
 case GX_SIGNAL(ID_FAN_BUTTON, GX_EVENT_CLICKED):
 /** Create fan toggle message. */
 send_update_request(SF_MESSAGE_EVENT_CLASS_SYSTEM,
SF_MESSAGE_EVENT_FAN_TOGGLE);
 break;
 …
 case GX_SIGNAL(ID_BACK_BUTTON, GX_EVENT_CLICKED):
 …
 /** Returns to main screen. */
 show_window((GX_WINDOW*)&MainPage, (GX_WIDGET*) p_widget,
true);
 break;
 …
 default:
 break;
 }

The code switches off event_ptr->gx_event_type, the three cases that were selected illustrate most of
what you need to follow any GUIX event handling in the Thermostat application. Typically, the screen
handler is associated with three different types of events, listed as follows:

1. Events such as the ID_BACK_BUTTON return to the previous screen. The event handler processes this
type of event immediately. No interaction with the system thread occurs.

2. Events such as the ID_FAN_BUTTON that may result in a change to the system state. Because the
system thread is responsible for determining the validity of the system state changes, this type of event
causes a message to be sent to the System Thread requesting a System State update using the
send_update_request() call.

3. User-defined events sent from the System Thread, generally to cause an update of display data to
occur. These types of events are enumerated to be larger than the #define value of
GX_FIRST_APP_EVENT. This event is the system thread response to an update request instructing the
screen to update to the current system state.

Statements that switch off GUIX events typically make use of the GUIX-defined macro GX_SIGNAL specified
in the gx_api.h file.

#define GX_SIGNAL(_a, _b) (((_a) << 8) | (_b))

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 49 of 60
Mar.15.19

GX_EVENT_CLICKED is one of the standard GUIX events that occurs when you touch a button widget on the
screen. The ID_FAN_BUTTON define is created by GUIX Studio when you design the screens. From the
partial list shown below, there are 71 individually defined elements in the screen design created in GUIX
Studio for the Thermostat application.

/* Define widget ids
*/

#define ID_HELP_SCREEN 1
#define ID_THERMO_HELP 2
#define ID_HELP_CLOSE_BUTTON 3
#define ID_TIME_TEXT 4
#define ID_DATE_TEXT 5
…
#define ID_FAN_BUTTON 13
#define ID_FAN_MODE_TEXT 14
…
#define ID_MAINPAGE_SCREEN 68
#define ID_THERMO_BUTTON 69
#define ID_SETTINGS_BUTTON 70
#define ID_WEEKDAY_TEXT 71

As previously stated, the Fan button requires a state change to the fan mode. Any screen event that requires
a state change calls the following function:
send_update_request(SF_MESSAGE_EVENT_CLASS_SYSTEM,SF_MESSAGE_EVENT_REQUEST_FAN_TOGGLE);

This function sends an update request message to the System thread, as shown in the flow of Figure 54. It
is important to remember that the code in hmi_event_handler.c is running in the context of the GUIX
thread. As mentioned earlier, the system thread is responsible for updating the system data with the best
practices of separating the business logic from the presentation logic.

6.3 Maintaining and Updating the System State
The Thermostat screen handler sends an update request message to the System thread to toggle the fan
mode. The System thread is responsible for evaluating the request, updating the state variables, and
informing the screen to update if necessary. The state variables for this application are contained in a single
structure type system_state_t defined in system_api.h.

typedef struct st_system_state
{

rtc_time_t time;
 system_hour_mode_t hour_mode;
 system_mode_t mode;
 system_fan_mode_t fan_mode;
 system_temp_units_t temp_units;
 float temp_c; ///< In Celsius
 float target_temp_c; ///< In
system_state_t::temp_units
 uint8_t volume;
 uint8_t brightness;
 bool fan_on;
} system_state_t;

The structure is allocated and initialized, g_system_state at the top of the system_thread_entry.c
file. You can see all the Thermostat system variables, including the fan_mode in the structure definition.

The first thing the system thread does is a pend operation on the system message queue.
err = g_sf_message.p_api->pend(g_sf_message.p_ctrl, &g_system_queue,
 (sf_message_header_t **) &p_message, TX_WAIT_FOREVER);

When a message arrives, the system thread executes and switches off the class type, then the message
type that are both embedded in the message. In the case of the fan mode, the code toggles the state of the
system fan mode variable. It then sets the system_state_changed variable to true that causes an update
message to be sent to the GUIX thread.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 50 of 60
Mar.15.19

switch (p_message->event_b.class)
{
case SF_MESSAGE_EVENT_CLASS_SYSTEM:
 {

 switch (p_message->event_b.code)
 {

 case SF_MESSAGE_EVENT_REQUEST_FAN_TOGGLE:
 {
 /** Toggles fan setting. */

 g_system_state.fan_mode = !g_system_state.fan_mode;

 system_state_changed = true;
 break;
 }

Once the message is processed the buffer containing the message is released.
err = g_sf_message.p_api->bufferRelease(g_sf_message.p_ctrl,

(sf_message_header_t *)
 p_message, SF_MESSAGE_RELEASE_OPTION_NONE);

...

 /** Turn fan on or off based on fan mode, system mode, and target
temperature. */

 if (SYSTEM_FAN_MODE_ON == g_system_state.fan_mode)

 {

 if (!g_system_state.fan_on)

 {

 system_state_changed = true;

 g_system_state.fan_on = true;

 }

 }

...

 if (system_state_changed)

 {

 /** Create message. */

 gx_message.gx_event.gx_event_type = GX_FIRST_APP_EVENT;

 gx_message.state = g_system_state;

 gx_message.gx_event.gx_event_payload.gx_event_ulongdata = (ULONG)
&gx_message;

 /** Post message. */

 gx_system_event_send(&gx_message.gx_event);

 }

 }

}

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 51 of 60
Mar.15.19

6.4 LCD Control
The 4.3-inch display has a couple of digital controls that must be driven from the Thermostat application. As
is the case with most embedded applications, the first thing you must do is identify the hardware
dependencies, and set up the appropriate drivers.

The two signals in this section are the LCD_ON and LCD_BLEN with Blanking Enable. The following figure
shows an excerpt from the DK-S7G2 v3.0 schematic that shows the J102 connector. This is the connector
the LCD screen plugs into. The two signals list the associated MCU pins, P7 10 and P7 12. The LCD_ON
signal requires a simple Hi/Lo state that turns the LCD ON and OFF. The LCD_BLEN signal requires a PWM
signal that modulates the display intensity.

Figure 55. LCD Control Signals
The following figure shows the Pins tab for the DK-S7G2 Thermostat application. The first thing you do when
configuring a pin is to select the port from the Pin Selection dialog box on the left-hand side of the screen, in
this case P7 (port 7). The port selection expands to show the pins associated with the I/O port.

Figure 56. Configuring an Individual Pin
This is the simplest configuration you can have for a GPIO pin; the mode is set to Output mode, the
input/output of the MCU is set to GPIO. Notice that the module name is P710, which is the naming
convention you see in the Synergy pin configuration. Declaring an I/O pin in this manner causes the Synergy
framework to create an instance of the pin in the hal_data.c file that is an auto-generated file.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 52 of 60
Mar.15.19

const ioport_instance_t g_ioport =
{ .p_api = &g_ioport_on_ioport, .p_cfg = NULL };

This provides driver level access to the pin but you can write code that sets the state of the pin. In this case,
all that is required for the Thermostat application is to set the pin high to turn the LCD display on. This is
accomplished during the initialization code in the system_thread_entry.c file.

 /* Controls the GPIO pin for LCD ON. */
 err = g_ioport.p_api->pinWrite(LCD_ON_PIN, IOPORT_LEVEL_HIGH);
 if (err)
 {
 while(1);
 }

For this demonstration application, the error handling loops with a while(1) condition if an error is returned
from the g_ioport.p_api->pinWirte() call. It causes the system thread to stop responding should an
error be returned from the pinWrite call.

6.5 Backlight Control
The Thermostat application, running on the DK-S7G2 MCU board, provides an example of how the screen
brightness is typically varied on embedded systems. The Display option, in the Settings screen, brings up
the Brightness Control screen as shown in the following figure. This screen is used for controlling the
screen brightness.

There are two items for discussion in this section. First, there are no callback functions defined for these sub-
screens in GUIX Studio. Second, the brightness control relies on a Pulse Width Modulation, (PWM) signal to
control the brightness of the screen.

Figure 57. Brightness Control Screen
Referring to the schematic for the DK-S7G2 LCD, you see that a CAT4139 LED driver is used to drive the
backlight LEDs on the LCD screen. Driving pin 4 of this device with a PWM signal can vary the brightness of
the screen. Figure 55 shows this pin connected to Port 7 Pin 12 so configure this pin to have a PWM output.
From Figure 3 earlier, this project includes the General PWM Timer resource of the S7G2 MCU that
required the r_gpt driver to be loaded. When you click the System Thread tab in the Synergy
Configuration window, and then click on the g_pwm_backlight Timer Driver on r_gpt in the
System Threads module, you can see the following displayed in the Properties tab.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 53 of 60
Mar.15.19

Figure 58. DK-S7G2 Backlight Control Circuit
The GPT driver for this pin is set to the PWM mode with the units set to milliseconds. The Duty Cycle Unit
is set to Unit Percent. The Period Value is set to 10 milliseconds, and the Duty Cycle Value is set to 50.

Figure 59. PWM Properties for Backlight Control
Enabling this driver in the application framework causes an instance of the driver to automatically be
initialized in system_thread.c file:

/* Instance structure to use this module. */
const timer_instance_t g_pwm_backlight =
{ .p_ctrl = &g_pwm_backlight_ctrl, .p_cfg = &g_pwm_backlight_cfg, .p_api =
&g_timer_on_gpt };

The Synergy Software Package (SSP) User’s Manual contains a detailed API Reference for the various
modules you may install in the Synergy framework. The code in many cases is self-documented and finding
the various API calls for a given module can be done quickly in e2 studio. For example, the p_api element of
this array points to the API structure defined in the system r_gptc file. Examining this structure reveals the
API calls available for the General Purpose Timer (GPT) driver. These are the same API calls described in
the SSP User’s Manual.

/** GPT Implementation of General Timer Driver */
const timer_api_t g_timer_on_gpt =
{
 .open = R_GPT_TimerOpen,
 .stop = R_GPT_Stop,
 .start = R_GPT_Start,
 .reset = R_GPT_Reset,
 .periodSet = R_GPT_PeriodSet,
 .counterGet = R_GPT_CounterGet,
 .dutyCycleSet = R_GPT_DutyCycleSet,
 .infoGet = R_GPT_InfoGet,

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 54 of 60
Mar.15.19

 .close = R_GPT_Close,
 .versionGet = R_GPT_VersionGet
};

As is the case with most driver related calls, the first thing to do is call the driver open call. This is done in the
system_thread_entry.c file that turns on the LCD:

/* Opens PWM driver and controls the TFT panel back light. */
err = g_pwm_backlight.p_api->open(g_pwm_backlight.p_ctrl,
g_pwm_backlight.p_cfg);
if (err)
{
 while(1);
}

The GUIX screen interaction with the system thread works like the method described above for the Fan
Mode selection. Pressing the increment or decrement arrows on the Brightness screen causes GUIX to call
the settings_screen_event() routine with a GX_EVENT_CLICKED message. The handler calls
send_update_request() to request a system state change. The system thread processes the request
and calls either one of the helper functions, brightness_up() or brightness_down() located in the
brightness.c file to update the state data appropriately. The system thread then sends the
GX_FIRST_APP event message to the GUIX thread causing the screen to be updated.

The following figure shows the PWM signal generated with the brightness set to 95% and 10%. In both
cases, a 100 Hz signal is generated, setting the intensity to 10% on the Display screen to yield a signal that
is low most of the time, as shown in the following image. This disables the LED driver most of the time when
dimming the screen.

Figure 60. PWM Signals for Backlight Control

6.6 Temperature Thread
To simulate a real-world temperature measurement in the Thermostat application, the on-board temperature
sensor of the S7G2 Synergy MCU Group is used. The ADC unit of the S7G2 MCU is a complex unit with
many operating modes and features. The Synergy framework provides an easy way to access the unit for
common use cases.

The use of a separate thread is more than required for this application but it illustrates how you can easily
separate measurements from your main thread. In more complex control and measurement applications, this
can simplify the application logic required for the task.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 55 of 60
Mar.15.19

6.6.1 Configuring the ADC
You can configure the hardware peripherals of the S7G2 MCU using the Synergy framework by:

• Determining what components are required and adding the appropriate application framework and HAL
drivers. You can add them in the Components tab of the Synergy Configuration window.

• Determining what thread processes the peripheral data and adding the appropriate modules to it in the
Threads tab.

• Adding any supporting thread objects such as mutex, and semaphore required by the thread handling the
data and creating those in the Thread Objects dialog.

• Identifying any actual physical connections to the peripherals, if any, and mapping specific MCU pins to
the associated peripheral unit in the Pins tab.

• Writing the supporting user code required to open the driver and to process the data.

In the Thermostat application, rather than using the internal temperature sensor of the S7G2 MCU, it is most
likely that an external temperature sensor is connected. If the temperature sensor provides an analog output
that can be connected to one of the various input channels of the ADC, you can use any of the external
temperature sensors that provides a digital interface. In that case, you should connect the analog output to
the sensor and read data using any of the available communication methods such as SPI, I2C, and CAN.
Read the temperature directly from the sensor module as the internal ADC unit is not needed.

For demonstration purposes on the DK-S7G2 board, the internal temperature sensor was selected to allow
for a changing temperature display and to provide some levels of detail on how to use the ADC unit.

6.6.2 Accessing the ADC Unit
You can access the ADC unit in the temperature thread by adding the appropriate module to the thread. In
this example, add the g_adc module. The ADC unit on the S7G2 MCU supports three different modes of
operation:

• Single scan mode - Convert the analog inputs of selected channels in ascending order of the channel
number

• Continuous scan mode - Sequentially convert the analog inputs of selected channels continuously in
ascending order of the channel number

• Group scan mode - Divide the analog inputs of channels into two groups (Group A and Group B) and
convert the analog inputs of selected channels for each group in ascending order of the channel number.

In more complex applications, the continuous scan mode or group scan mode might make sense for
converting multiple analog channels and having the application framework with data already buffered.

Note: One of the modules you can add to a thread is SF_ADC_Periodic which also requires a timer driver

(r_gpt) and a data transfer mechanism (r_dtc).

Because only reading a single analog channel is read, the temperature sensor at a slow rate, one of the
most basic ways to access the ADC is used in this application note. In the following figure, the only module
added to the temperature thread is the ADC driver module g_adc ADC Driver on r_adc. As is the case
with most drivers in the Synergy Framework, you can configure various ADC driver parameters using the
Properties tab.

Note: When adding modules to a thread, the ISDE turns the module outline red if it detects conflicts. As an

example, if you are to set the mode of the g_adc module to continuous scan while defining a callback
name, the outline turns red. Hovering over the box produces a warning tip that tells you the callback
must be null in continuous mode.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 56 of 60
Mar.15.19

Figure 61. Temperature Thread with Only One Module
Because a large portion of the properties page for the ADC driver module is the numerous channels you can
select from, the entire properties page is not reproduced in the example. The key properties to note are
shown in the following table.

Table 3. Key ADC Properties to Configure

ICU ADC1 SCAN END Priority 3
ADC1 SCAN END B Priority 3

Module Mode Single Scan
Channel Scan Mask Temperature Sensor – Use in Normal/Group A

The temperature_thread_entry.c file is the code that runs inside the temperature thread. In summary,
the code initializes the g_adc driver.

void temperature_thread_entry(void)
{

 /** Configure the temperature sensor **/
 ssp_err_t err = g_adc.p_api->open(g_adc.p_ctrl, g_adc.p_cfg);
 err += g_adc.p_api->scanCfg(g_adc.p_ctrl, g_adc.p_channel_cfg);
 err += g_adc.p_api->sampleStateCountSet(g_adc.p_ctrl,
&adc_sample_state);

Inside the main loop of the thread, the code starts an A/D scan, sleeps then reads the A/D. So essentially,
this code is polling the A/D using the tx_thread_sleep() call to determine the polling rate.

 while(1)
 {
 /** Start the ADC conversion*/
 g_adc.p_api->scanStart(g_adc.p_ctrl);

 /** Only update every 100 ms. */
 tx_thread_sleep(10);

 /** Read the raw ADC value. */
 g_adc.p_api->read(g_adc.p_ctrl, ADC_REG_TEMPERATURE,
&adc_data[index]);

The remaining code averages the values read from the A/D. If the value changes, the code sends a
message to the system thread to update the current temperature.

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 57 of 60
Mar.15.19

The e2 studio provides quick API information you can reference while working in the code. Hovering over the
p_api element of the g_adc instance produces the following tool tip as shown in the following figure.

Figure 62. Useful e2 studio Tool Tips Showing API Calls

6.7 Weak Callback Functions and the g_adc
After adding a driver module that can make use of a callback function, as is the case with the g_adc module,
the application framework defines a callback function using a weak attribute. The weak attribute, associated
with GNU and other compilers, is a method that allows you to override a system-defined function. The
following is an excerpt from the auto-generated temperature_thread.c file defining the weak internal
adc_callback_internal() function. This call is called by the ADC whenever a scan completes. The
default implementation in the application framework has a /** Do nothing **/ comment.

#if ADC_CALLBACK_USED_g_adc
#if defined(__ICCARM__)
#define adc_callback_WEAK_ATTRIBUTE
#pragma weak adc_callback =
adc_callback_internal
#elif defined(__GNUC__)
#define adc_callback_WEAK_ATTRIBUTE __attribute__ ((weak,
alias("adc_callback_internal")))
#endif
void adc_callback(adc_callback_args_t * p_args)
adc_callback_WEAK_ATTRIBUTE;
#endif

#if ADC_CALLBACK_USED_g_adc

/***
//

 * @brief This is a weak example callback function. It should be
overridden by defining a user callback function

 * with the prototype below.

 * - void adc_callback_internal(adc_callback_args_t *
p_args)

 *

 * @param[in] p_args Callback arguments used to identify what caused the
callback.

**
**/

void adc_callback_internal(adc_callback_args_t * p_args)

{

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 58 of 60
Mar.15.19

 /** Do nothing. */

}

You may override the callback function in your code. For example, you can define
a callback function in the system_thread_entry.c file that reads the temperature
sensor whenever the A/D finishes a scan and places the data inside a variable
called adc_read_data.

void adc_callback(adc_callback_args_t * p_args) {

 g_adc.p_api->read(g_adc.p_ctrl, ADC_REG_TEMPERATURE, &adc_read_data);

 return;

}

The main thread code can then pick up this value whenever it wakes up, process it, and call the
scanStart() API call again before going back to sleep.

7. Importing a Project into e2 studio
Refer to the Renesas Synergy™ Project Import Guide (r11an0023eu0121-synergy-ssp-import-guide.pdf) for
instructions on importing the project into e2 studio and build/run the project.

8. Reloading the Demonstration Program
Refer to the DK-S7G2 v3.0 Out-of-Box Demonstration Programming Guidelines (r12an0024eu0129-synergy-
dk-s7g2-oob.pdf) for instructions on reloading the Out-of-Box demonstration onto the DK-S7G2 Synergy
MCU Group board, included in this kit. Similar guides are available for each of the boards that supports
running the Thermostat application.

9. Known Issues
Each GX_EVENT_CLICKED, sends GX_EVENT_KEY_DOWN event to parent and then parent routes it to selected
single line text input widget. With GUIX 5.3.3, if you press a button with auto-repeat, then move your finger
outside of the button boundaries while still holding your finger pressed on the screen and then release it, the
button will stay locked in the auto-repeat state and generates GX_EVENT_CLICKED periodically despite the
screen being released. The only way to restore proper behavior is to press and release the button again.

10. Reference Documents
You can download the required Renesas software and documents from the Renesas Synergy™ Gallery at
www.renesas.com/synergy/software

• Synergy Software Package User’s Manual (SSP) (available in HTML).
• ThreadX® User’s Manual: Express Logic Inc.
• Renesas Synergy™ Project Import Guide (r11an0023eu0121-synergy-ssp-import-guide.pdf)
• DK-S7G2 v3.0 Out-of-Box Demonstration Programming Guidelines (r12an0024eu0129-synergy-dk-

s7g2-oob.pdf).

https://www.renesas.com/synergy/software

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 59 of 60
Mar.15.19

Website and Support
Visit the following vanity URLs to learn about key elements of the Synergy Platform, download components
and related documentation, and get support.

Synergy Software www.renesas.com/synergy/software
 Synergy Software Package www.renesas.com/synergy/ssp
 Software add-ons www.renesas.com/synergy/addons
 Software glossary www.renesas.com/synergy/softwareglossary

Development tools www.renesas.com/synergy/tools

Synergy Hardware www.renesas.com/synergy/hardware
 Microcontrollers www.renesas.com/synergy/mcus
 MCU glossary www.renesas.com/synergy/mcuglossary
 Parametric search www.renesas.com/synergy/parametric

Kits www.renesas.com/synergy/kits

Synergy Solutions Gallery www.renesas.com/synergy/solutionsgallery
 Partner projects www.renesas.com/synergy/partnerprojects

Application projects www.renesas.com/synergy/applicationprojects

Self-service support resources:

Documentation www.renesas.com/synergy/docs
Knowledgebase www.renesas.com/synergy/knowledgebase
Forums www.renesas.com/synergy/forum
Training www.renesas.com/synergy/training
Videos www.renesas.com/synergy/videos
Chat and web ticket www.renesas.com/synergy/resourcelibrary

https://www.renesas.com/synergy/software
https://www.renesas.com/synergy/ssp
https://www.renesas.com/synergy/addons
https://www.renesas.com/synergy/softwareglossary
https://www.renesas.com/synergy/tools
https://www.renesas.com/synergy/hardware
https://www.renesas.com/synergy/mcus
https://www.renesas.com/synergy/mcuglossary
https://www.renesas.com/synergy/parametric
https://www.renesas.com/synergy/kits
https://www.renesas.com/synergy/solutionsgallery
https://www.renesas.com/synergy/partnerprojects
https://www.renesas.com/synergy/applicationprojects
https://www.renesas.com/synergy/docs
https://www.renesas.com/synergy/knowledgebase
https://www.renesas.com/synergy/forum
https://www.renesas.com/synergy/training
https://www.renesas.com/synergy/videos
https://www.renesas.com/synergy/resourcelibrary

Renesas Synergy™ Platform Getting Started with the Thermostat Application for S7G2 and S5D9

R12AN0055EU0106 Rev.1.06 Page 60 of 60
Mar.15.19

Revision History

Rev. Date
Description
Page Summary

1.00 Sep.18.17 — Initial release for v1.3.0
1.01 Nov.17.17 — Bug fix for splash screen and date configuration, and

updated software versions
1.02 Jan.18.18 — Updated for SSP v1.3.3
1.03 Mar.02.18 — Updated for SSP v1.4.0
1.04 Jun.18.18 — Sample codes updated.
1.05 Sep.24.18 — Updated for SSP v1.5.0
1.06 Mar.15.19 — Updated for SSP 1.6.0

© 2019 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Board Setup
	2. Application Overview
	2.1 S7G2 and S5D9 Synergy MCU Group Peripherals Used by the Thermostat Application
	2.2 HMI
	2.3 Thermostat Screens
	2.3.1 Large Screen Design
	2.3.2 Small Screen Design

	3. GUIX Studio Overview
	4. Analyzing the Application
	4.1 Source Code Layout
	4.1.1 State Machine

	4.2 Thread Overview
	4.2.1 System Thread
	4.2.2 Temperature Thread
	4.2.3 Thread Layout and the SSP

	5. Framework Configuration
	5.1 Components Tab
	5.2 Threads Tab
	5.2.1 Thread Objects

	5.3 Module Configuration
	5.3.1 GLCD Configuration
	5.3.2 TCON Configuration
	5.3.3 Using External Memory for Frame Buffer
	5.3.4 SK-S7G2 LCD
	5.3.5 e2 studio Tricks

	5.4 Messaging Tab
	5.4.1 Messaging
	5.4.2 Event Classes
	5.4.3 Events
	5.4.4 Event Class Subscribers

	6. Application Source Code Highlights
	6.1 Threads and Main
	6.1.1 GUIX Initialization
	6.1.2 Events and GUIX Message
	6.1.3 User defined GUIX messages

	6.2 Handling Screen Events
	6.3 Maintaining and Updating the System State
	6.4 LCD Control
	6.5 Backlight Control
	6.6 Temperature Thread
	6.6.1 Configuring the ADC
	6.6.2 Accessing the ADC Unit

	6.7 Weak Callback Functions and the g_adc

	7. Importing a Project into e2 studio
	8. Reloading the Demonstration Program
	9. Known Issues
	10. Reference Documents
	Revision History

