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Notice 
1. All information included in this document is current as of the date this document is issued. Such information, however, is 

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please 
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to 
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights 
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights 
of Renesas Electronics or others. 

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of 

semiconductor products and application examples.  You are fully responsible for the incorporation of these circuits, software, 
and information in the design of your equipment.  Renesas Electronics assumes no responsibility for any losses incurred by 
you or third parties arising from the use of these circuits, software, or information. 

5. When exporting the products or technology described in this document, you should comply with the applicable export control 
laws and regulations and follow the procedures required by such laws and regulations.  You should not use Renesas 
Electronics products or the technology described in this document for any purpose relating to military applications or use by 
the military, including but not limited to the development of weapons of mass destruction.  Renesas Electronics products and 
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited 
under any applicable domestic or foreign laws or regulations. 

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics 
does not warrant that such information is error free.  Renesas Electronics assumes no liability whatsoever for any damages 
incurred by you resulting from errors in or omissions from the information included herein. 

7. Renesas Electronics products are classified according to the following three quality grades:  “Standard”, “High Quality”, and 
“Specific”.  The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as 
indicated below.  You must check the quality grade of each Renesas Electronics product before using it in a particular 
application.  You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior 
written consent of Renesas Electronics.  Further, you may not use any Renesas Electronics product for any application for 
which it is not intended without the prior written consent of Renesas Electronics.  Renesas Electronics shall not be in any way 
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an 
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written 
consent of Renesas Electronics.  The quality grade of each Renesas Electronics product is “Standard” unless otherwise 
expressly specified in a Renesas Electronics data sheets or data books, etc. 

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual 
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots. 

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support. 

“Specific”:  Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or 
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare 
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life. 

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, 
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation 
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or 
damages arising out of the use of Renesas Electronics products beyond such specified ranges. 

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have 
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, 
Renesas Electronics products are not subject to radiation resistance design.  Please be sure to implement safety measures to 
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a 
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire 
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.  Because 
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system 
manufactured by you. 

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental 
compatibility of each Renesas Electronics product.  Please use Renesas Electronics products in compliance with all applicable 
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS 
Directive.  Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with 
applicable laws and regulations. 

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas 
Electronics. 

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this 
document or Renesas Electronics products, or if you have any other inquiries. 

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries. 

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. 
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R8C Family 
General RTOS Concepts 

Introduction  
The advent of microprocessors has opened up several product opportunities that did not exist before. These intelligent 
processors have embedded themselves into all fields of our lives. As the complexities of the real-time embedded 
applications increases, benefits of employing a real-time operating system (RTOS) becomes ever more oblivious.    

RTOS has become the key to many embedded systems today. There are wide ranges of RTOS/s available to the 
developers of embedded systems ranging from RTOS for robotics to home appliances.  

This document defines RTOS and looks at its basic concepts.  

Target Device  
Applicable MCU: R8C Family  

Contents  
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1. Guide in using this Document  
This document strives to provide users with basic understanding of RTOS including explanation on some basic 
definitions, fundamental features and basic taxonomy of RTOS. It focuses on explaining the standard RTOS 
architecture and considerations to be taken in selection of RTOS. 

Table 1 Explanation of Document Topics 

Topic Objective Pre-requisite 

Introduction to Real-Time Operating 
System 

An overview of what is an RTOS 
and its architecture 

An understanding of the fundamentals 
of computer-based system 

Selection of RTOS 
An explanation of the considerations 
to be evaluated in the selection of an 
RTOS 

None 

Reference Documents 
Listing of documents that equip users 
with knowledge in the pre-requisite 
requirements 

None 
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2. Introduction to Real-Time Operating System 
“Real-Time Operating System (RTOS) is a multitasking operating system intended for real-time applications.” – 
WIKIPEDIA. RTOS is implemented in products all around us, ranging from military, and consumer to scientific 
applications. Figure 1 depicts an example of RTOS implementation on Renesas automotive dashboard platform. 

 

Figure 1   Renesas Automotive Dashboard Platform (with MR8C/4) 
 

2.1 What is RTOS 
RTOS comprises of two components, namely, “Real-Time” and “Operating System”.  

 

2.1.1 Real-Time 
Real-Time indicates an expectant response or reaction to an event on the instant of its evolution. The expectant response 
depicts the logical correctness of the result produced. The instant of the events’ evolution depicts deadline for producing 
the result.  

 

2.1.2 Operating System 
Operating System (OS) is a system program that provides an interface between hardware and application programs. OS 
is commonly equipped with features like: Multitasking, Synchronization, Interrupt and Event Handling, Input/ Output, 
Inter-task Communication, Timers and Clocks and Memory Management to fulfill its primary role of managing the 
hardware resources to meet the demands of application programs.  

RTOS is therefore an operating system that supports real-time applications and embedded systems by providing 
logically correct result within the deadline required. Such capabilities define its deterministic timing behavior and 
limited resource utilization nature.  
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2.2 Why RTOS for Real-Time Application 
RTOS is not a required component of all real-time application in embedded systems. An embedded system in a simple 
electronic rice cooker does not require RTOS. But as the complexity of applications expands beyond simple tasks, 
benefits of having an RTOS far outweigh the associate costs.  

Embedded systems are becoming more complex hardware-wise with every generation. And as more features are put 
into them in each iteration, application programs running on the embedded system platforms will become increasingly 
complex to be managed as they strive to meet the system response requirements. An RTOS will be effective to allow 
the real-time applications to be designed and expanded more easily whilst meeting the performances required. 

 

Figure 2   Real-Time Embedded System with RTOS   

2.3 Classification of RTOS 
RTOS’s are broadly classified into three types, namely, Hard Real Time RTOS, Firm Real Time RTOS and Soft Real 
Time RTOS as described below: 

• Hard real-time: degree of tolerance for missed deadlines is extremely small or zero. A missed deadline has 
catastrophic results for the system 

• Firm real-time: missing a deadline might result in an unacceptable quality reduction 
• Soft real-time: deadlines may be missed and can be recovered from. Reduction in system quality is acceptable 
 

2.4 Misconception of RTOS 
a) RTOS must be fast  
The responsiveness of an RTOS depends on its deterministic behavior and not on its processing speed. The ability of 
RTOS to response to events within a timeline does not imply it is fast.  
 
b) RTOS introduce considerable amount of overhead on CPU  
An RTOS typically only require between 1% to 4% of a CPU time. 
 
c) All RTOS are the same 
RTOS are generally designed for 3 types of real-time systems (i.e. hard, firm & soft). In addition, they are further 
classified according to the types of hardware devices (e.g. 8-bit, 16-bit, 32-bit MPU) supported.   
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2.5 Features of RTOS 
The design of an RTOS is essentially a balance between providing a reasonably rich feature set for application 
development and deployment and, not sacrificing predictability and timeliness. A basic RTOS will be equipped with the 
following features: 

i. Multitasking and Preemptibility  
An RTOS must be multi-tasked and preemptible to support multiple tasks in real-time applications. The scheduler 
should be able to preempt any task in the system and allocate the resource to the task that needs it most even at peak 
load. 

ii. Task Priority 

Preemption defines the capability to identify the task that needs a resource the most and allocates it the control to obtain 
the resource. In RTOS, such capability is achieved by assigning individual task with the appropriate priority level. Thus, 
it is important for RTOS to be equipped with this feature. 

iii. Reliable and Sufficient Inter Task Communication Mechanism 

For multiple tasks to communicate in a timely manner and to ensure data integrity among each other, reliable and 
sufficient inter-task communication and synchronization mechanisms are required.   

iv. Priority Inheritance 

To allow applications with stringent priority requirements to be implemented, RTOS must have a sufficient number of 
priority levels when using priority scheduling. 

v. Predefined Short Latencies 

An RTOS needs to have accurately defined short timing of its system calls. The behavior metrics are: 

• Task switching latency: The time needed to save the context of a currently executing task and switching to another 
task is desirable to be short. 

• Interrupt latency: The time elapsed between execution of the last instruction of the interrupted task and the first 
instruction in the interrupt handler.  

• Interrupt dispatch latency. The time from the last instruction in the interrupt handler to the next task scheduled to 
run. 

vi. Control of Memory Management 

To ensure predictable response to an interrupt, an RTOS should provide way for task to lock its code and data into real 
memory. 
 

2.6 RTOS Architecture 
The architecture of an RTOS is dependent on the complexity of its deployment. Good RTOSs are scalable to meet 
different sets of requirements for different applications. For simple applications, an RTOS usually comprises only a 
kernel. For more complex embedded systems, an RTOS can be a combination of various modules, including the kernel, 
networking protocol stacks, and other components as illustrated in Figure 3. 

 

Figure 3   General Architecture of RTOS 
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2.6.1 Kernel 
An operating system generally consists of two parts: kernel space (kernel mode) and user space (user mode). Kernel is 
the smallest and central component of an operating system. Its services include managing memory and devices and also 
to provide an interface for software applications to use the resources. Additional services such as managing protection 
of programs and multitasking may be included depending on architecture of operating system. There are three broad 
categories of kernel models available, namely:  

Monolithic kernel 
It runs all basic system services (i.e. process and memory management, interrupt handling and I/O communication, file 
system, etc) in kernel space. As such, monolithic kernels provide rich and powerful abstractions of the underlying 
hardware. Amount of context switches and messaging involved are greatly reduced which makes it run faster than 
microkernel. Examples are Linux and Windows. 

 

Figure 4   Monolithic Kernel Based Operating System 
Microkernel  
It runs only basic process communication (messaging) and I/O control. The other system services (file system. 
networking, etc) reside in user space in the form of daemons/servers. Thus, micro kernels provide a smaller set of 
simple hardware abstractions. It is more stable than monolithic as the kernel is unaffected even if the servers failed (i.e. 
File System). Examples are AmigaOS and QNX. 

 

Figure 5   Microkernel Based Operating System 
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Exokernel  
The concept is orthogonal to that of micro- vs. monolithic kernels by giving an application efficient control over 
hardware.  It runs only services protecting the resources (i.e. tracking the ownership, guarding the usage, revoking 
access to resources, etc) by providing low-level interface for library operating systems (libOSes) and leaving the 
management to the application. 

  

Figure 6   Exokernel Based Operating System 

An RTOS generally avoids implementing the kernel as a large monolithic program. The kernel is developed instead as a 
micro-kernel with added configurable functionalities. This implementation gives resulting benefit in increase system 
configurability, as each embedded application requires a specific set of system services with respect to its characteristics.  

The kernel of an RTOS provides an abstraction layer between the application software and hardware. This abstraction 
layer comprises of six main types of common services provided by the kernel to the application software. Figure 7 
shows the six common services of an RTOS kernel. 

 

Figure 7   RTOS Kernel Services 
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2.6.2 Task Management  
Task management allows programmers to design their software as a number of separate “chunks” of codes with each 
handling a distinct goal and deadline. This service encompasses mechanism such as scheduler and dispatcher that 
creates and maintain task objects. 

Task Object 
To achieve concurrency in real-time application program, the application is decompose into small, schedulable, and 
sequential program units known as “Task”. In real-time context, task is the basic unit of execution and is governed by 
three time-critical properties; release time, deadline and execution time.  Release time refers to the point in time from 
which the task can be executed. Deadline is the point in time by which the task must complete. Execution time denotes 
the time the task takes to execute. 

A task object is defined by the following set of components: 

• Task Control block (Task data structures residing in RAM and only accessible by RTOS)  
• Task Stack (Data defined in program residing in RAM and accessible by stack pointer) 
• Task Routine (Program code residing in ROM) 
 

 

Figure 8   Typical Task Control Block (TCB) 

Each task may exist in any of the four states, including running, ready, or blocked and dormant as shown in Figure 9. 
During the execution of an application program, individual tasks are continuously changing from one state to another. 
However, only one task is in the running mode (i.e. given CPU control) at any point of the execution. In the process 
where CPU control is change from one task to another, context of the to-be-suspended task will be saved while context 
of the to-be-executed task will be retrieved. This process of saving the context of a task being suspended and restoring 
the context of a task being resumed is called context switching. 

 

Figure 9   Possible States Transition of Tasks  
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Scheduler 
The scheduler keeps record of the state of each task and selects from among them that are ready to execute and allocates 
the CPU to one of them. A scheduler helps to maximize CPU utilization among different tasks in a multi-tasking 
program and to minimize waiting time. There are generally two types of schedulers: non-preemptive and priority-based 
preemptive. 

Non-preemptive scheduling or cooperative multitasking requires the tasks to cooperate with each other to explicitly give 
up control of the processor. When a task releases the control of the processor, the next most important task that is ready 
to run will be executed. A task that is newly assigned with a higher priority will only gain control of the processor when 
the current executing task voluntarily gives up the control.  Figure 10 gives an example of a non-preemptive scheduling 

 

Figure 10   Non-preemptive Scheduling 

Priority-based preemptive scheduling requires control of the processor be given to the task of the highest priority at all 
time. In the event that makes a higher priority task ready to run, the current task is immediately suspended and the 
control of the processor is given to the higher priority task. Figure 11 shows an example of a preemptive scheduling. 

 

Figure 11   Preemptive Scheduling 

Dispatcher 
The dispatcher gives control of the CPU to the task selected by the scheduler by performing context switching and 
changes the flow of execution. At any time an RTOS is running, the flow of execution passes through one of three 
areas: through the task program code, through an interrupt service routine, or through the kernel.  
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2.6.3 Task Synchronization & Intertask Communication 
Task synchronization and intertask communications serves to enable information to be transmitted safely from one task 
to another. The service also makes it possible for tasks to coordinate and cooperate with one another.   

Task Synchronization 
Synchronization is essential for tasks to share mutually exclusive resources (devices, buffers, etc) and/or allow multiple 
concurrent tasks to be executed (e.g. Task A needs a result from task B, so task A can only run till task B produces it). 
Task synchronization is achieved using two types of mechanisms; 1) Event Objects and 2) Semaphores.  

Event objects are used when task synchronization is required without resource sharing. They allow one or more tasks to 
keep waiting for a specified event to occur. An event object can exist in either of two states: triggered and non-triggered. 
An event object in a triggered state indicates that a waiting task may resume. In contrast, if the event object is in a non-
triggered state, a waiting task will need to stay suspended.  

 

Figure 12   Working Principle of Event Objects 

Sharing of resource among tasks can be a problem when the coordination is not well done. For instance, if task A begins 
reading a set of data currently being updated by task B, task A might received corrupted data – mixture of new and 
existing data. To resolve this problem, RTOS kernels provide a semaphore object and associated semaphore services to 
ensure the integrity of data.  

A semaphore has an associated resource count and a wait queue. The resource count indicates availability of resource. 
The wait queue manages the tasks waiting for resources from the semaphore. A semaphore functions like a key that 
define whether a task has the access to the resource. A task gets an access to the resource when it acquires the 
semaphore. The resource count of a semaphore determines the number of times the semaphore can be acquired. When a 
task acquires the semaphore, its count decrement by one. Likewise, its count increment by one when a task releases the 
semaphore. Generally. There are three types of semaphore: 

• Binary Semaphores (semaphore value of either 0 or 1 to indicate unavailability and availability respectively) 
• Counting Semaphores (semaphore value of 0 or greater indicating it can be acquired/released multiple times) 
• Mutually Exclusion Semaphores (semaphore value of 0 or 1 but lock count can be 0 or greater for recursive locking)   
 
Figure 13 illustrates the types of semaphore. 
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Figure 13   Types of Semaphore 
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Intertask Communication 
Intertask communication involves sharing of data among tasks through sharing of memory space, transmission of data 
and etc. Few of mechanisms available for executing intertask communications includes: 

• Message queues 
• Pipes 
• Remote procedural calls (RPC) 
 
A message queue is an object used for intertask communication through which task send or receive messages placed in 
a shared memory. Tasks and ISRs send and receive messages to the queue through services provided by the kernel. A 
task seeking for a message from an empty queue is blocked either for a duration or until a message is received. The 
sending and receiving of messages to and from the queue may follow 1) First In First Out (FIFO), 2) Last in First Out 
(LIFO) or 3) Priority (PRI) sequence. Usually, a message queue comprises of an associated queue control block (QCB), 
name, unique ID, memory buffers, queue length, maximum message length and one or more task waiting lists. A 
message queue with a length of 1 is commonly known as a mailbox. 

A pipe is an object that provide simple communication channel used for unstructured data exchange among tasks. A 
pipe can be opened, closed, written to and read from. Traditionally, a pipe is a unidirectional data exchange facility. 
There are two descriptors respectively at each end of the pipe for reading and writing. Data is written into the pipe as an 
unstructured byte stream via one descriptor and read from the pipe in the FIFO order from the other. Unlike message 
queue, a pipe does not store multiple messages but stream of bytes. In addition, data flow from a pipe cannot be 
prioritized. 

Remote procedure call (RPC) component permits distributed computing where task can invoke the execution of a 
another task on a remote computer, as if the task ran on the same computer.   

 

2.6.4 Memory Management 
An embedded RTOS usually strive to achieve small footprint by including only the functionality needed for the user’s 
applications. There are two types of memory management in RTOSs.  They are Stack and Heap managements. 

In a multi-tasking RTOS, each task needs to be allocated with an amount of memory for storing their contexts (i.e. 
volatile information such as registers contents, program counter, etc) for context switching. This allocation of memory 
is done using task-control block model (as mentioned in section 2.6.2). This set of memory is commonly known as 
kernel stack and the management process termed Stack Management. 

Upon the completion of a program initialization, physical memory of the MCU or MPU will usually be occupied with 
program code, program data and system stack. The remaining physical memory is called heap. This heap memory is 
typically used by the kernel for dynamic memory allocation of data space for tasks. The memory is divided into fixed 
size memory blocks, which can be requested by tasks. When a task finishes using a memory block it must return it to 
the pool. This process of managing the heap memory is known as Heap management.  

 

2.6.5 Timer Management 
In embedded systems, system and user tasks are often scheduled to perform after a specified duration. To provide such 
scheduling, there is a need for a periodical interrupt to keep track of time delays and timeout. Most RTOSs today offer 
both “relative timers” that work in units of ticks, and “absolute timers” that work with calendar date and time. For each 
kind of timer, RTOSs provide a “task delay” service, and also a “task alert” service based on the signaling mechanism 
(e.g. event flags). Another timer service provided is in meeting task deadline by cooperating with task schedulers to 
determine whether tasks have met or missed their real-time deadlines.  
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2.6.6 Interrupt and Event Handling 
An interrupt is a hardware mechanism used to inform the CPU that an asynchronous event has occurred. A fundamental 
challenge in RTOS design is supporting interrupts and thereby allowing asynchronous access to internal RTOS data 
structures. The interrupt and event handling mechanism of an RTOS provides the following functions: 

• Defining interrupt handler 
• Creation and deletion of ISR 
• Referencing the state of an ISR 
• Enabling and disabling of an interrupt 
• Changing and referencing of an interrupt mask 
 
and help to ensure: 

• Data integrity by restricting interrupts from occurring when modifying a data structure 
• Minimum interrupt latencies due to disabling of interrupts when RTOS is performing critical operations 
• Fastest possible interrupt responses that marked the preemptive performance of an RTOS 
• Shortest possible interrupt completion time with minimum overheads 
 
 
2.6.7 Device I/O Management 
An RTOS kernel is often equipped with a device I/O management service to provide a uniform framework (application 
programmer’s interface-“API”) and supervision facility for an embedded system to organize and access large numbers 
of diverse hardware device drivers. However, most device driver APIs and supervisors are “standard” only within a 
specific RTOS.  
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3. Selection of RTOS  
RTOS tends to be a selection for many embedded projects. But is an RTOS always necessary? The answer lies on 
careful analysis in understanding what an application needs to deliver to determine whether implementing RTOS is a 
requirement or an extravagance.  

Most programmers are not familiar with RTOS constraints and requirements. An RTOS is usually chosen based on its 
performance or one’s comfort and familiarity with the product. However, such a selection criteria is insufficient. To 
make matter worse, there is a wide variety of RTOS ranging from commercial RTOS, open-source RTOS to internally 
developed RTOS to choose from. Therefore, it is incumbent upon the programmers to exercise extra caution in the 
selection process.  

The selection criteria of RTOS can be broadly classified into two main areas; technical features of RTOS and 
commercial aspect of the implementation. 

 

3.1 Technical Considerations 
 
3.1.1 Scalability 
Size or memory footprint is an important consideration. Most RTOS are scalable in which only the code required is 
included in the final memory footprint. Looking for granular scalability in an RTOS is a worthwhile endeavor, as it 
minimizes memory usage.  

3.1.2 Portability 
Often, a current application may outgrow the hardware it was originally designed for as the requirements of the product 
increases. An RTOS with such a capability can therefore be ported between processor architectures and between 
specific target systems. 

3.1.3 Run-time facilities 
Run-time facilities refer to the services of the kernel (i.e. intertask communication, task synchronization, interrupts and 
events handling, etc). Different application systems have different sets of requirements. Comparison of RTOSs is 
frequently between the kernel-level facilities they provided.  

3.1.4 Run-time performance 
Run-time performance of an RTOS is generally governed by the interrupt latency, context switching time and few other 
metric of kernel performance. This consideration is useful if the performance assessment of the application on a given 
RTOS is to prototype its performance-critical aspects on standard hardware. 

3.1.5 Development tools 
A sufficient set of development tools including debugger; compiler and performance profiler might help in shortening 
the development and debugging time, and improve the reliability of the coding. Commercial RTOSs usually have a 
complete set of tools for analyzing and optimizing the RTOSs’ behavior whereas Open-Source RTOSs will not have. 

 

3.2 Commercial Considerations 
 
3.2.1 Costs 
Costs are a major consideration in selection of RTOS. There are currently more than 80 RTOS vendors. Some of the 
RTOS packages are complete operating systems including not only the real-time kernel but also an input/output 
manager, windowing systems, a file system, networking, language interface libraries, debuggers, and cross platform 
compilers. And the cost of an RTOS ranges from US$70 to over US$30,000. The RTOS vendor may also require 
royalties on a per-target-system basis, which may varies between USS5 to more than US$250 per unit. In addition, there 
will be maintenance required and that can easily cost between US$100 to US$5,000 per year.  

3.2.2 License 
An RTOS vendor usually has a few license models for customers to choose from. A perpetual license enables customers 
to purchase the development set and pay an annual maintenance fee, which entitles he/her to upgrades and bug fixes. An 
alternative model known as subscription model allow customers to “rent” the development set whilst paying an annual 
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fee to renew the access. This model provides customers with lower technology acquisition fees but cost from annual 
renewal fee can escalate after many years. 

3.2.3 Supplier stability/ longevity 
Development with RTOS is not a problem free process. Reliable and consistent support from supplier is a critical factor 
in ensuring the prompt completion of a project. Supplier longevity thus helps to determine the availability of support. 
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4. Reference Documents 
 
Publication 
• An Embedded Software Primer (David E. Simon) 
• Real-Time Concepts for Embedded Systems (Qing Li with Caroline Yeo) 
 
Website 

• EMBEDDED.COM, http://www.embedded.com. 
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Website and Support  
Renesas Technology Website 

http://www.renesas.com/ 
 
Inquiries 

http://www.renesas.com/inquiry 
csc@renesas.com 
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Renesas products for their use. Renesas neither makes warranties or representations with respect to the 
accuracy or completeness of the information contained in this document nor grants any license to any  intellectual 
property rights or any other rights of Renesas or any third party with respect to the information in  this document. 

2. Renesas shall have no liability  for damages or infringement of any intellectual property or other rights arising  out 
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,  
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military 
applications such as the development of weapons of mass destruction or for the purpose of any other military  
use. When exporting the products or technology described herein, you should follow the applicable export  
control laws and regulations, and procedures required by such laws and regulations.
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application circuit examples, is current as of the date this document is issued. Such information, however,  is  
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through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas  
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information  
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in  light 
of the total system before deciding about the applicability of such information to the intended application. 
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any  
particular application and specifically disclaims any liability arising out of the application and use of the  
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas  products 
are not designed, manufactured or tested for applications or otherwise in systems the failure or  malfunction of 
which may cause a direct threat to human life or create a risk of human injury or which require  especially high 
quality and reliability such as safety systems, or equipment or systems for transportation and  traffic, healthcare, 
combustion control, aerospace and aeronautics, nuclear power, or undersea communication  transmission. If you 
are considering the use of our products for such purposes, please contact a Renesas  sales office beforehand. 
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
  (1) artificial life support devices or systems
  (2) surgical implantations
  (3) healthcare intervention (e.g., excision, administration of medication, etc.)
  (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who 

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas  
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all  
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect  to 
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation  
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or  
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific  
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use  conditions. 
Please be sure to implement safety measures to guard against the possibility of physical injury, and  injury or 
damage caused by fire in the event of the failure of a Renesas product, such as safety design for  hardware and 
software including but not limited to redundancy, fire control and malfunction prevention,  appropriate treatment 
for aging degradation or any other applicable measures.  Among others, since the  evaluation of microcomputer 
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas  products 
are attached or affixed, the risk of accident such as swallowing by infants and small children is very  high. You 
should implement safety measures so that Renesas products may not be easily detached from your  products. 
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in  whole or in part, without prior written  
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this 
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