GATTBrowser for Android
Smartphone Application Instruction manual

Introduction
This manual describes about Renesas Bluetooth® Low Energy (hereinafter call, "Bluetooth LE") on how to use the Smartphone application known as "GATTBrowser". This application will be used for checking the wireless communication behavior during the development of Bluetooth LE products with the Renesas Bluetooth LE microcontrollers.

Android Version Requirement
Android 10 or later

Target Device
- IC
 - RX23W Group
 - RA4W1 Group
 - RL78/G1D Group
- Module
 - RX23W Module
 - RY7011 (RL78/G1D mounted)

Related Documents
- RX23W Bluetooth LE Solution & Resource Quick Start Guide (R01QS0067)
- RA4W1 Bluetooth LE Solution & Resource Quick Start Guide (R01QS0066)
- RL78/G1D Bluetooth LE Solution & Resource Quick Start Guide (R01QS0068)
- Bluetooth Core Specification v5.0 (https://www.bluetooth.com/)
- Supplement to the Bluetooth Core Specification CSS (https://www.bluetooth.com/)
Contents

1. Overview .. 4
2. Applicability ... 4
3. Restriction .. 4
4. Operational Environment .. 4
5. Installation ... 5

6. Method of operation .. 5
 6.1 Application launch .. 5
 6.2 Bluetooth LE devices scan list .. 8
 6.2.1 Start scan .. 8
 6.2.2 Stop scan .. 9
 6.2.3 Rescan .. 9
 6.2.4 Bluetooth LE device information in short format 10
 6.2.5 Bluetooth LE device information with Advertising data information 11
 6.2.6 Bluetooth LE device connection ... 12
 6.2.7 Filter function ... 13
 6.2.8 Sort function ... 14
 6.2.9 Correspondence function of UUID and name ... 14
 6.2.10 Launch the Bluetooth setting screen ... 14
 6.2.11 Version information .. 14
 6.2.12 Local Device information ... 15
 6.3 Service and Characteristic list ... 16
 6.3.1 Connection Status .. 18
 6.3.2 Display Service name & Characteristic name ... 18
 6.3.3 Characteristic selection .. 19
 6.4 Characteristic operation ... 20
 6.4.1 Characteristic operation screen ... 20
 6.4.2 Connection status .. 21
 6.4.3 Read operation ... 21
 6.4.4 Display mode selection ... 22
 6.4.5 History of received data .. 22
 6.4.6 Notification operation ... 22
 6.4.7 Indication operation .. 22
 6.4.8 Write operation .. 23
 6.4.9 Write without response operation ... 23
 6.4.10 Write mode selection .. 23
 6.4.11 History of sending data ... 24

GATTBrowser for Android Smartphone Application Instruction manual

R01AN3802EJ0102 Rev.1.02 Page 2 of 29 Dec 20, 2022
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.12</td>
<td>Historical data copying into the text field</td>
</tr>
<tr>
<td>6.4.13</td>
<td>Update of descriptors</td>
</tr>
<tr>
<td>6.4.14</td>
<td>Limitations</td>
</tr>
<tr>
<td>6.5</td>
<td>Display Renesas custom data</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Renesas custom Service and Characteristic names display</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Beacon data analysis dialog</td>
</tr>
<tr>
<td>7.</td>
<td>Appendix</td>
</tr>
<tr>
<td></td>
<td>Revision History</td>
</tr>
</tbody>
</table>

Table of Contents:

- Historical data copying into the text field: Page 24
- Update of descriptors: Page 24
- Limitations: Page 24
- Display Renesas custom data: Page 25
- Renesas custom Service and Characteristic names display: Page 25
- Beacon data analysis dialog: Page 27
- Appendix: Page 28
- Revision History: Page 29
1. **Overview**

GATTBrowser is a general-purpose application that can scan Bluetooth LE devices, which are advertising in vicinity and can perform the GATT-based communication with the connected Bluetooth LE device. Using the functions of this application promotes software development using Renesas Bluetooth LE microcontrollers.

GATTBrowser supports the following features.

- Scan surrounding Bluetooth LE devices
- Display the Advertising data
- Display the Received Signal Strength Indication (hereafter call, "RSSI")
- Connect to Renesas Bluetooth LE microcontrollers and other Bluetooth LE devices
- Display the BD Address of the connected Bluetooth LE device
- Display the services and characteristics information
- Communicate with Bluetooth LE device
- Support Renesas custom services and characteristics

2. **Applicability**

This manual explains about Android application, GATTBrowser Version 1.0.4 or later.

3. **Restriction**

This GATTBrowser application is intended to evaluate the Bluetooth LE software. Accordingly, this GATTBrowser is not applicable to any purpose other than evaluation.

4. **Operational Environment**

The GATTBrowser runs on the following operating environment.

- Android 10 or later
- Use Bluetooth LE function.
5. **Installation**
To install in Android devices, open Google Play and search for “GATTBrowser”. Then get the application. It is also possible to install from the following URL.

➢ GATTBrowser

After successfully installed, the following icons will be appeared on the screen.

![GATTBrowser icon](image)

Figure 5-1 GATTBrowser icon.

6. **Method of operation**
This chapter describes how to operate GATTBrowser. Shows an example of operation when using a smartphone that supports Android 10 and 12 as an example.

6.1 **Application launch**
To start GATTBrowser, touch the GATTBrowser icon. After starting, the GATTBrowser starts scanning the Bluetooth LE devices performing advertising in the surrounding area. Figure 6-1 GATTBrowser launch. shows the GATTBrowser launch screen.

![GATTBrowser launch](image)

Figure 6-1 GATTBrowser launch.
If the app’s permissions are insufficient, a dialog requesting permissions will be displayed, so please allow them.

<table>
<thead>
<tr>
<th>Below Android 12</th>
<th>Android 12 or later</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confirm why the app needs permissions.</td>
<td></td>
</tr>
</tbody>
</table>

Allow access to device location.

Allow GATTBrowser to access this device's location?

<table>
<thead>
<tr>
<th>ALLOW ONLY WHILE USING THE APP</th>
<th>DENY</th>
<th>DENY & DON'T ASK AGAIN</th>
</tr>
</thead>
</table>

Allow access to “Precise” location information.

Permission Required

Android 6.0 (Marshmallow) or later systems require precise location permission to scan for Bluetooth LE devices. Precise location information may be used by Bluetooth beacon (such as iBeacon and Eddystone) applications for determining phones location. (This app does not use any location information.)

CANCEL OK

Permission Required

Scanning and connecting to Bluetooth LE devices requires the Bluetooth Scan and Connect permission. Also, Android 6.0 (Marshmallow) or later systems require precise location permission to scan for Bluetooth LE devices. Precise location information may be used by Bluetooth beacon (such as iBeacon and Eddystone) applications for determining phones location. (This app does not use any location information.)

CANCEL OK
Allow find, connect to, and determine the relative position of nearby devices.

When the Android device is turned off the Bluetooth while starting, the GATTBrowser application notifies the message, "Bluetooth setting are turned OFF. Please turn on the Bluetooth" as shown in Figure 6-3. To use this application, the Android device must be turned on the Bluetooth function.

Figure 6-2 Allow app permissions.

When below Android 12, the dialog requesting allow of this permission will not be displayed.

Figure 6-3 Allow Bluetooth ON.
6.2 Bluetooth LE devices scan list

6.2.1 Start scan

When starting up, the GATT Browser starts scanning Bluetooth LE devices performing advertising in the surrounding area. The discovered Bluetooth LE device will be displayed in the list.

![List of found Bluetooth LE devices](image)

Figure 6-4 List of found Bluetooth LE devices.

A circular progress bar will be displayed on the upper right side of the screen during scanning. Scanning stops after 30 seconds have elapsed since the scan started.
6.2.2 Stop scan
Tap the Overflow Menu on the upper right side of the screen to display the function items. Tap "Stop Scanning" to stop scanning.

![Image showing Stop Scanning button]

Figure 6-5 Tap on “Stop Scanning”.

If the size of the screen is large such as tablet, "STOP SCANNING" button will be displayed on the upper side of the screen.

![Image showing STOP SCANNING button on tablet]

Figure 6-6 Tap on “STOP SCANNING” (Tablet devices).

Even if the Bluetooth LE device starts advertising newly while scanning is stopped, it will not be added to the list. It also stops updating the display of the RSSI and displays the RSSI last observed.

6.2.3 Rescan
Tap the "SCAN" button on the upper right side of the screen. After rescanning, the Bluetooth LE device information displayed in the list will be cleared once, and the discovered Bluetooth LE devices will be displayed in the list. Rescanning is also effective during scanning.
6.2.4 Bluetooth LE device information in short format

The information of the discovered Bluetooth LE device is displayed as follows.

![Figure 6-7 Bluetooth LE device information in short format.](image)

<table>
<thead>
<tr>
<th>No.</th>
<th>Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>Device Name</td>
<td>Displays the device name for Bluetooth LE devices found.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Display the device name from the advertising data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the advertising data does not contain the device name, it will display as</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"<No name>".</td>
</tr>
<tr>
<td>②</td>
<td>BD Address</td>
<td>Displays the BD Address of the discovered Bluetooth LE device.</td>
</tr>
<tr>
<td>③</td>
<td>RSSI</td>
<td>Displays the RSSI value of the discovered Bluetooth LE device.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>During scanning operation, the RSSI value is periodically updated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>After the scanning operation is stopped, the RSSI value last observed is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>displayed.</td>
</tr>
<tr>
<td>④</td>
<td>Connection Button</td>
<td>Connects to the discovered Bluetooth LE devices.</td>
</tr>
</tbody>
</table>
6.2.5 Bluetooth LE device information with Advertising data information

When the cell of the discovered Bluetooth LE device is tapped, the display area of the cell is enlarged and the advertising data is displayed. Tap again to erase the advertising data and return to the original display.

For detail information about displayed parameters, refer to the Bluetooth SIG documents such as Bluetooth Core Specification v5.0 [Vol 3, Part-C] and Supplement to the Bluetooth Core Specification CSS [Part A].

![Figure 6-8 Advertising data information.](image_url)

Table 6-2 Advertising data

<table>
<thead>
<tr>
<th>No.</th>
<th>Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>Raw Data</td>
<td>Raw data of the Advertising data and the Scan Response data.</td>
</tr>
<tr>
<td>②</td>
<td>Local Name</td>
<td>The local name of the Bluetooth LE device.</td>
</tr>
<tr>
<td>③</td>
<td>Flags</td>
<td>The flags such as discoverable mode and others.</td>
</tr>
<tr>
<td>④</td>
<td>TX Power Level</td>
<td>The transmit power of the Bluetooth LE device.</td>
</tr>
<tr>
<td>⑤</td>
<td>Service UUIDs(16-bit)</td>
<td>Services UUID of the Bluetooth LE device.</td>
</tr>
<tr>
<td>⑥</td>
<td>Service UUIDs(32-bit)</td>
<td></td>
</tr>
<tr>
<td>⑦</td>
<td>Manufacturer Specific Data</td>
<td>Data set independently by the manufacturer of the Bluetooth LE device.</td>
</tr>
<tr>
<td>⑧</td>
<td>Service Data</td>
<td>Service Data of the Bluetooth LE device.</td>
</tr>
</tbody>
</table>
When the received Advertising data is iBeacon, detailed information on iBeacon will be displayed. For detail information about displayed parameters, refer to https://developer.apple.com/ibeacon

<table>
<thead>
<tr>
<th>Renesas-BLE</th>
<th>-66</th>
</tr>
</thead>
<tbody>
<tr>
<td>74:90:50:00:63:E1</td>
<td></td>
</tr>
<tr>
<td>Raw data: 02 01 06 1A FF 4C 00 02 15 6B 6E 78 95 A0 44 49 C3 A7 2F 09 0C 06 4D 12 51 00 02 01 80 CE</td>
<td></td>
</tr>
<tr>
<td>iBeacon: Proximity UUID: 6b6e7f895-a044-49c3-a72f-090c064d1251 Major: 0x0002 Minor: 0x0180 Measured Power: -50 dBm</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6-9 iBeacon information.

When the received Advertising data is Eddystone, detailed information on Eddystone will be displayed. Eddystone URL, Eddystone-TLM, and Eddystone-EID are supported. Tap the URL to open the URL in WebView in this application. For detail information about displayed parameters, refer to https://github.com/google/eddystone

<table>
<thead>
<tr>
<th>Renesas-BLE</th>
<th>-61</th>
</tr>
</thead>
<tbody>
<tr>
<td>74:90:50:00:63:E1</td>
<td></td>
</tr>
<tr>
<td>Raw data: 0E 16 AA FE 11 F0 01 72 65 6C 2D 62 6C 65 00</td>
<td></td>
</tr>
<tr>
<td>Eddystone URL: Calibrated Tx power: -16 dBm URL: https://www.rel-ble.com/</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6-10 Eddystone information.

6.2.6 Bluetooth LE device connection

Tap the Connection Button at the right end of the Bluetooth LE device information to connect to the Bluetooth LE device and move to the screen described in 6.3 Service and Characteristic list

<table>
<thead>
<tr>
<th>Renesas-BLE</th>
<th>-38</th>
</tr>
</thead>
<tbody>
<tr>
<td>74:90:50:00:63:E0</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6-11 Bluetooth LE device connection.
6.2.7 Filter function

For the discovered Bluetooth LE devices, only Bluetooth LE devices corresponding to preset conditions are displayed.

Tap the Overflow Menu on the upper right side of the screen to display the function items. Tap "Filter" to display the filter selection dialog.

![Filter function](image)

Figure 6-12 Filter function.

<table>
<thead>
<tr>
<th>No.</th>
<th>Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>No filter</td>
<td>Displays all discovered Bluetooth LE devices. (Default)</td>
</tr>
<tr>
<td>②</td>
<td>RSSI > -62 dBm</td>
<td>Displays Bluetooth LE devices with RSSI greater than -62 dBm.</td>
</tr>
<tr>
<td>③</td>
<td>RSSI > -74 dBm</td>
<td>Displays Bluetooth LE devices with RSSI greater than -74 dBm.</td>
</tr>
<tr>
<td>④</td>
<td>RSSI > -86 dBm</td>
<td>Displays Bluetooth LE devices with RSSI greater than -86 dBm.</td>
</tr>
<tr>
<td>⑤</td>
<td>BD ADDR: 74:90:50:::*</td>
<td>Displays Bluetooth LE devices that BD Address corresponds to vendor code of Renesas Electronics Corporation (OUI: 74 - 90 - 50)</td>
</tr>
</tbody>
</table>

When filtering by RSSI reception strength, if the RSSI reception strength of the displayed Bluetooth LE device falls below the RSSI reception strength set in the filter, it will be removed from the display list. If the RSSI reception strength exceeds the RSSI reception strength set in the filter again, it will be displayed in the display list.
6.2.8 Sort function

Sets the order of the discovered Bluetooth LE devices. Tap the Overflow Menu on the upper right side of the screen to display the function items. Tap "Sort" to display the sort selection dialog.

If scanning is in progress and sorting is enabled, the order of the Bluetooth LE devices is updated approximately once every second.

![Sort function](image)

Figure 6-13 Sort function.

<table>
<thead>
<tr>
<th>No.</th>
<th>Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>No sort</td>
<td>Displays Bluetooth LE devices in the order of discovery. (Default)</td>
</tr>
<tr>
<td>②</td>
<td>Sort by RSSI (Descending)</td>
<td>Display Bluetooth LE devices in the order of RSSI descending.</td>
</tr>
</tbody>
</table>

6.2.9 Correspondence function of UUID and name

Register the name corresponding to 128 bit UUID. The name corresponding to the 128-bit UUID is displayed in the 128-bit UUID display part of "Service and Characteristic list" screen and "Characteristic operation" screen.

Tap the Overflow Menu on the upper right side of the screen to display the function items. Tap "Register UUID name" to display a dialog to register correspondence between UUID and name.

6.2.10 Launch the Bluetooth setting screen

Tap the Overflow Menu on the upper right side of the screen to display the function items. Tap "Bluetooth Settings" to launch the Android standard Bluetooth setting application.

6.2.11 Version information

Tap the Overflow Menu on the upper right side of the screen to display the function items. Tap "Version Information" to display the version information dialog of this application.
6.2.12 **Local Device information**

Tap the Overflow Menu on the upper right side of the screen to display the function items. Tap "Local Device Information" to display the information dialog about the local device running this application.

A dialog displays support information for the main features of "Bluetooth Low Energy" and "LE Audio" and information about "Hardware". ("LE Audio" information is valid for Android 13 or later)
6.3 **Service and Characteristic list**

When you connect to the Bluetooth LE device, it switches to "Service and Characteristic list" screen.

![Service and Characteristic list screen](image)

Figure 6-15 Service and Characteristic list.

Table 6-5 Bluetooth LE device information

<table>
<thead>
<tr>
<th>No.</th>
<th>Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>Connected device information</td>
<td>Displays the “local name”, “BD address”, “connection status”, “binding status”, and “RSSI” of the connected Bluetooth LE device.</td>
</tr>
<tr>
<td>②</td>
<td>Service name</td>
<td>Displays a list of all Service and Characteristic found by Service Discovery.</td>
</tr>
<tr>
<td>③</td>
<td>Characteristic name</td>
<td>Displays the “name” and “Properties” of the characteristic in the service.</td>
</tr>
<tr>
<td>④</td>
<td>DISCONNECT</td>
<td>Disconnects the connection.</td>
</tr>
<tr>
<td>⑤</td>
<td>Overflow Menu</td>
<td>Displays the functions items described in Table 6-6.</td>
</tr>
</tbody>
</table>
Figure 6-16 Overflow Menu.

Table 6-6 Overflow Menu items

<table>
<thead>
<tr>
<th>No.</th>
<th>Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>Refresh</td>
<td>Removes the Service and Characteristic information that Android keeps in the cache, and get information from the connected Bluetooth LE device.</td>
</tr>
<tr>
<td>②</td>
<td>Create bond</td>
<td>Bonds to the connected Bluetooth LE device.</td>
</tr>
<tr>
<td>③</td>
<td>Bluetooth Settings</td>
<td>Launches the Android standard Bluetooth setting application.</td>
</tr>
</tbody>
</table>
6.3.1 Connection Status
Displays the “device name”, “BD Address”, “Connection status”, “Bonding status”, and “RSSI value” of the connected Bluetooth LE device. The “RSSI value” is updated at regular intervals. The color of the divider line changes (CONNECTED: Blue, DISCONNECTED: Red) depending on the connection state.

Figure 6-17 Connected.

Figure 6-18 Disconnected.

6.3.2 Display Service name & Characteristic name
When UUID specified by Bluetooth SIG, Inc. is detected during Service Discovery, the service name corresponding to the UUID is displayed. For other custom UUID, the UUID is displayed as it is.

Figure 6-19 Display Service name determined by the Bluetooth SIG, Inc.

Figure 6-20 Service names of custom UUID is detected.

Likewise, when UUID specified by Bluetooth SIG, Inc. is detected during Characteristic Discovery, the characteristic name corresponding to the UUID is displayed. For other custom UUID, the UUID is displayed as it is.

Figure 6-21 Display Characteristic name determined by the Bluetooth SIG, Inc.

Figure 6-22 Characteristic names of custom UUID is detected.
If a custom UUID to be used in the sample application for Bluetooth LE microcontrollers is detected, the custom service name and characteristic name will be displayed instead of the UUID. For details, see “6.5 Displaying Renesas Custom data”.

6.3.3 Characteristic selection

When the characteristic you want to operate is tapped, it will move to “Characteristic operation” screen. Only one characteristic can be selected and operated at a time.

![characteristic selection figure](image)

Figure 6-23 Characteristic selection.
6.4 Characteristic operation

6.4.1 Characteristic operation screen

By tapping the characteristic that you want to operate on "Service and Characteristic list" screen, the screen will move to "Characteristic operation" screen. The displayed buttons and items will change depending on the Characteristic Properties attributes of the characteristic to be operated.

![Figure 6-24 Characteristic operation 1.](image1)

![Figure 6-25 Characteristic operation 2.](image2)

Table 6-7 Characteristic operation information

<table>
<thead>
<tr>
<th>No.</th>
<th>Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>Connected device information</td>
<td>Displays "Local name", "BD address", "Connection status", "Bonding status", and "RSSI" of the connected Bluetooth LE device. The displayed information is the same as the "Service and Characteristic list" screen.</td>
</tr>
<tr>
<td>②</td>
<td>Characteristic information</td>
<td>Displays "Characteristic name", "Characteristic UUID" and "Characteristic Properties" of the connected Bluetooth LE device.</td>
</tr>
<tr>
<td>③</td>
<td>Read button & Display mode selection spinner</td>
<td>The "Read" button is to receive the value of the characteristic. "Display mode selection Spinner" selects the display method of received data. "Read" button and "Display mode selection" spinner is displayed based on the characteristic properties and are not displayed when there is no Read attribute in the characteristic properties.</td>
</tr>
<tr>
<td>④</td>
<td>History of received data</td>
<td>Displays the characteristic value received by operating the "Read" button. Up to three cells are displayed, and the latest data is displayed at the top.</td>
</tr>
<tr>
<td>⑤</td>
<td>Indication / Notification button</td>
<td>The Indication / Notification button is for instructing Indication / Notification. Each button is displayed based on the characteristic properties and are not displayed when there is no Indication / Notification attribute in the characteristic properties.</td>
</tr>
</tbody>
</table>
6.4.2 Connection status
The connection status is the same as "6.3.1 Connection Status".

6.4.3 Read operation
If the characteristic has the read attribute in the Characteristic Properties, the "Read" button and "display mode selection" spinner will be displayed. Tap the "Read" button to read the characteristic value.

The read data is displayed in the received data history field.

![Figure 6-26 The “Read” button.](image)

![Figure 6-27 After tapping the "Read" button.](image)
6.4.4 Display mode selection
In the “display mode selection” spinner, next to the “Read” button, select the display method of the received data. “Hex” mode and “String” mode can be selected. When “Hex” mode is selected, data is displayed in hexadecimal for every 8 bits. If “String” mode is selected, data is displayed as UTF-8 string.

![Figure 6-28 Display mode selection spinner.](image)

![Figure 6-29 Select display mode.](image)

![Figure 6-30 Hex mode.](image)

![Figure 6-31 String mode.](image)

6.4.5 History of received data
The data received with the “Read” button is displayed in the received data history field. Up to three of this history are displayed, and the latest data is displayed at the top. When receiving the characteristic data when there are three histories, the oldest history at the bottom is removed and the latest data is added to the top.

6.4.6 Notification operation
If the characteristic has the Notification attribute in the Characteristic Properties, the Notification On / Off toggle button will be displayed. When this toggle button is pressed, the display changes from “Notification Off” to “Notification On”, and you can receive the Notification. If the reception request for Notification fails, the button display will not be switched. In the “display mode selection” spinner, next to the Notification On/Off toggle button, select the display method of the received data. “Hex” mode and “String” mode can be selected.

The received notification data is displayed in the received notification data history field.

![Figure 6-32 Notification On/Off toggle button.](image)

![Figure 6-33 Received notification data.](image)

6.4.7 Indication operation
If the characteristic has the Indication attribute in the Characteristic Properties, the Indication On / Off toggle button will be displayed. When this toggle button is pressed, the display changes from “Indication Off” to “Indication On”, and you can receive the Indication. If the reception request for Indication fails, the button display will not be switched.

The received indication data is displayed in the received indication data history field.
6.4.8 Write operation
If the characteristic has the write attribute in the Characteristic Properties, the "Write" button, the "write mode selection" spinner, and the text field for setting write data are displayed. Tap the "Write" button to write the characteristic value.

The data that was successfully written is displayed in the sent data history field.

Enter the write data.

![Figure 6-34 Sending text field.](image)

![Figure 6-35 After tapping the "Write" button.](image)

6.4.9 Write without response operation
If the characteristic has the write without response attribute in the Characteristic Properties, the "Write" button and the text field for setting write data are displayed. On the screen display, there is no difference between Write operation and Write without response operation.

6.4.10 Write mode selection

In the "write mode selection" spinner, next to the "Write" button, select the specifies whether data set in the text field is handled as Hex data or String data.

In the “Hex” mode, write data is handled as a hexadecimal number. Two hexadecimal digits (8-bit data) are the minimum input unit, and the delimiter allows a space and a comma. For example, to write hexadecimal "0x00102ABCD", enter as follows.

```
000102ABCD
0 0 1 0 2 A B C D
00102ABCD
0,01,02,AB,CD
```

In addition, character strings delimited by single quotation mark or double quotation mark are decoded and written by UTF-8. For example, if you enter"00 "Renesas" FE FF","0x0052656e65736173FEFF" will be written.

In the “String” mode, write data is decoded and written with UTF-8. For example, to write "Renesas", "0x52656e65736173" will be written.
6.4.11 History of sending data
As with the received data history, the data sent with the “Write” button is displayed in the sent data history field. Up to three of this history are displayed, and the latest data is displayed at the top. When sending the characteristic data when there are three histories, the oldest history at the bottom is removed and the latest data is added to the top.

Sent data history is displayed in hexadecimal format regardless of the type of the write mode selection.

6.4.12 Historical data copying into the text field
When the text field of the write data is displayed and there is a received data history, long tap on the cell of the received data history will copy the data to the text field of the write data.

![Copy historical data into the text field](image)

6.4.13 Update of descriptors
The descriptor information is automatically updated when requesting reception of Notification or Indication, but by tapping the cell of display information, it intentionally reads the descriptor information of the characteristic.

![Update of descriptor](image)

6.4.14 Limitations
Operations on Broadcast attribute (0x01) and Extended Properties attribute (0x80) of Characteristic Properties are not supported.
6.5 Display Renesas custom data

If a custom UUID used in the sample application for Bluetooth LE microcomputers is detected, the custom Service name and Characteristic name will be displayed instead of the UUID. In addition, a dedicated information analysis dialog is displayed for a specific Characteristic.

6.5.1 Renesas custom Service and Characteristic names display

The Service name used in the sample applications for Bluetooth LE microcomputers as below are detected and displayed the following Service/Characteristic UUID and Characteristic names.

➢ BLE Virtual UART application (R01AN3130)

<table>
<thead>
<tr>
<th>UUID</th>
<th>Service and Characteristic Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>D68C0001-A21B-11E5-8CB8-0002A5D5C51B</td>
<td>Renesas Virtual UART Service</td>
</tr>
<tr>
<td>D68C0002-A21B-11E5-8CB8-0002A5D5C51B</td>
<td>Indication Characteristic</td>
</tr>
<tr>
<td>D68C0003-A21B-11E5-8CB8-0002A5D5C51B</td>
<td>Write Characteristic</td>
</tr>
</tbody>
</table>

➢ Embedded Configuration Sample Program (R01AN3319)

<table>
<thead>
<tr>
<th>UUID</th>
<th>Service and Characteristic Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>5BC1B9F7-A1F1-40AF-9043-C43692C18D7A</td>
<td>Renesas Sample Custom Service</td>
</tr>
<tr>
<td>5BC18D80-A1F1-40AF-9043-C43692C18D7A</td>
<td>Switch State Characteristic</td>
</tr>
<tr>
<td>5BC143EE-A1F1-40AF-9043-C43692C18D7A</td>
<td>LED Control Characteristic</td>
</tr>
</tbody>
</table>

➢ RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program (R01AN3313)

<table>
<thead>
<tr>
<th>UUID</th>
<th>Service and Characteristic Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7660001-4B1E-4D6E-91C4-997BA9B6FC07</td>
<td>Renesas Beacon Updater Service</td>
</tr>
<tr>
<td>A7660002-4B1E-4D6E-91C4-997BA9B6FC07</td>
<td>Advertising Information</td>
</tr>
<tr>
<td>A7660003-4B1E-4D6E-91C4-997BA9B6FC07</td>
<td>Advertising Data</td>
</tr>
<tr>
<td>A7660004-4B1E-4D6E-91C4-997BA9B6FC07</td>
<td>Code Flash Memory Updated Count</td>
</tr>
<tr>
<td>A7660005-4B1E-4D6E-91C4-997BA9B6FC07</td>
<td>Data Flash Memory Updated Count</td>
</tr>
<tr>
<td>A7660006-4B1E-4D6E-91C4-997BA9B6FC07</td>
<td>Scan Response Data</td>
</tr>
</tbody>
</table>
Other Renesas custom UUIDs

<table>
<thead>
<tr>
<th>UUID</th>
<th>Service and Characteristic Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>64800001-FAC7-4B08-AFA8-7D89FC4BBB41</td>
<td>Renesas Data Exchange Sample Program Service(Tag)</td>
</tr>
<tr>
<td>64800002-FAC7-4B08-AFA8-7D89FC4BBB41</td>
<td>Renesas Data Exchange Sample Program Service(Reader)</td>
</tr>
<tr>
<td>D68C0004-A21B-11E5-8CB8-0002A5D5C51B</td>
<td>Simple Connection Notification Characteristic</td>
</tr>
<tr>
<td>D68C0005-A21B-11E5-8CB8-0002A5D5C51B</td>
<td>Simple Connection Write Without Response Characteristic</td>
</tr>
<tr>
<td>FEACBB7A-DB63-4CA1-8AE2-F611C8269F65</td>
<td>Renesas OTA Reset Service</td>
</tr>
<tr>
<td>7753002F-34E9-4A65-904E-5636FBFCEC23</td>
<td>Virtual Reset Button Characteristic</td>
</tr>
<tr>
<td>1B7EEA33-19BF-44E0-BA37-3FA621BBB0D7</td>
<td>Project Information Characteristic</td>
</tr>
<tr>
<td>AAA509C9-7A50-458C-99DD-DC33E2C2D90C</td>
<td>Version Information Characteristic</td>
</tr>
<tr>
<td>9D5998F8-105B-4691-92BE-4B1B4D3EE8BB</td>
<td>Renesas OTA Service</td>
</tr>
<tr>
<td>629C8EF7-AA42-4F1E-8330-FE832961B926</td>
<td>Data Control Characteristic</td>
</tr>
<tr>
<td>13561280-ECB3-4691-9AB0-33649C7E03DB</td>
<td>Data Transfer Characteristic</td>
</tr>
<tr>
<td>9CEF3D10-7FAB-49DC-AB89-762C9079FE96</td>
<td>Renesas Throughput Service</td>
</tr>
<tr>
<td>9CEF3D11-7FAB-49DC-AB89-762C9079FE96</td>
<td>Throughput Data 1 Characteristic</td>
</tr>
<tr>
<td>9CEF3D12-7FAB-49DC-AB89-762C9079FE96</td>
<td>Throughput Data 2 Characteristic</td>
</tr>
<tr>
<td>7DBE3201-F5AB-498A-A012-676FEF22F735</td>
<td>Renesas Data I/O Service</td>
</tr>
<tr>
<td>7DBE3202-F5AB-498A-A012-676FEF22F735</td>
<td>Data In Characteristic</td>
</tr>
<tr>
<td>7DBE3203-F5AB-498A-A012-676FEF22F735</td>
<td>Data Out Characteristic</td>
</tr>
<tr>
<td>58831926-5F05-4267-AB01-B4968E8EFCE0</td>
<td>Renesas LED Switch Service</td>
</tr>
<tr>
<td>58837F57-5F05-4267-AB01-B4968E8EFCE0</td>
<td>Switch State Characteristic</td>
</tr>
<tr>
<td>5883C32F-5F05-4267-AB01-B4968E8EFCE0</td>
<td>LED Blink Rate Characteristic</td>
</tr>
<tr>
<td>908DCB17-7F42-44AC-AB9D-C36F63DCEBD8</td>
<td>Renesas LED Switch Bridge Service</td>
</tr>
<tr>
<td>4CC8C6EC-3954-41D1-8CFF-3F2FE5EC0180</td>
<td>Bridged Switch State Characteristic</td>
</tr>
<tr>
<td>458B6862-6D2C-4356-8B2E-B88BCE7F0C84</td>
<td>Bridged LED Blink Rate Characteristic</td>
</tr>
</tbody>
</table>
6.5.2 Beacon data analysis dialog

When connecting to the sample program included in “RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program (R01AN3313)”, if you read the characteristic value of the Advertising Information characteristic, the Advertising Data characteristic, or the Scan Response Data characteristic and tap the received data, a dedicated analysis dialog will appear. When tapping the wrote data, the dedicated analysis dialog will appear as well.

➢ Advertising Information

If you read an Advertising Information and tap history data, the Advertising Information analysis dialog will be displayed. Likewise, if you write an Advertising Information and tap the history data, the Advertising Information analysis dialog will be displayed.

Here is an example when tapping the history data of Read.

![Advertising Information Analysis Dialog](image)

- **Parameters from “Advertising Interval” to “Advertising TX Power”** can be edited in this dialog. After editing and tapping the "OK" button in the dialog, the changed parameter is set in the send text field.

 - If you set the write mode to Hex and tap the "Write" button, you can write the changed data to the characteristic. If you tap the "Cancel" button in the analysis dialog, the data will not be reflected in the send text field.

 For details of each parameter, refer to "RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program (R01AN3313)" application note.
Advertising Data / Scan Response Data

Just like Advertising Information, if you read an Advertising Data or a Scan Response Data and tap the history data, Advertising Data analysis dialog will be displayed. Likewise, if you write an Advertising Data and tap the history data, the Advertising Data analysis dialog will be displayed.

Here is an example when tapping the history data of Read.

![Figure 6-41 Advertising Information analysis dialog.](image)

The tapped history data is copied to the text field at the top of the dialog and the analysis content is displayed in the analysis data field at the bottom. When editing the text field, the analysis result is reflected in the analysis data field. If the analysis data is Eddystone URL, the URL is displayed in blue and hyperlinked. Tap to open the URL in WebView in the application.

If you tap the "OK" button on the dialog after editing, the changed parameter is set in the send text field. If you set the write mode to Hex and tap the "Write" button, you can write the changed data to the characteristic. If you tap the "Cancel" button on the analysis dialog, the data will not be reflected in the send text field.

Refer to "RL78/G1D Beacon Stack Connecting and Updating Beacon Data Sample Program (R01AN3313)" application notes for details of each parameter.

7. Appendix

GATTBrowser uses the Bluetooth capabilities of the Android device. This feature cannot work when OFF. Turned up the GATTBrowser on the set. If you do not expect if you turned OFF the Bluetooth function during the operation.
Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Page</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Apr 11, 2017</td>
<td>-</td>
<td>First edition issued.</td>
</tr>
<tr>
<td>1.01</td>
<td>Jul 7, 2017</td>
<td>25-28</td>
<td>A76600006-4B1E-4D6E-91C4-997BA9B6FC07 (Scan Response Data) was added in Table 6-10. Also, added the description in the text.</td>
</tr>
<tr>
<td>1.02</td>
<td>Dec 20, 2022</td>
<td>1</td>
<td>• Android requirements change.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Add target device information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Replace related documents.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>• Added a footnote regarding the attribution of the Bluetooth trademark.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>• Android version requirement change.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>• Added about app permission settings.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26</td>
<td>• Addition of description of local device information display function.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Added a list of other Renesas custom UUIDs.</td>
</tr>
</tbody>
</table>
General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)
 A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
 Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on
 The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state
 Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins
 Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals
 After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin
 Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input pin of the CMOS device remains in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses
 Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products
 Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against infringement or liability for any claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacturing, sales, or disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE ININVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL LIABILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics hereby expressly disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Rev.5.0-1 October 2020)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2022 Renesas Electronics Corporation. All rights reserved.