To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

1RENESAS APPLICATION NOTE

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)
Flash Over CAN

Table of Contents

1. Introduction to Flash over CAN ... e 2
2. General description of the Flash over CAN CONCEPLcooiiiiiieiie e e e 3
3. The Device UNIOCK COE...........ooiiiiiiiiii e 4
4. i F= T a1 T T (=1 o1 U 4
4.1 DOWNIOAA PrOCEAUIEoeeeiiiiiiiitieteetteeeeteesteeeeeeeaes s e assassssassssts s s s ss s s s s s s s s s s st s s st s s s ss s st s st ssssssssssssssssssnssnnnnnnnnnnnnnnns 5
5. Modifying the default FOCAN PrOJECL. ... ettt ettt ee e e e et e e e e eeee e e e enneeeeenees 7
5.1 Memory Mapping of CANIOGdEr and USEIADDcciiiiiiiiiiiieie ettt e ee e e s st e e e e e s s snnbbeeeeeaessenanes 7
5.2 The CANloader and USErAPP HEAAEISoii ittt e e et e e e e e nee e e e emneeeeeenns 9
6. CANIloader and UserApp boot procedure............coooooiiiiiiiiiiii 9
6.1 R32C, M16C, RBC USING C-StaArtUPueeeieeiiiiiiiiiiiee e e s ettt ee e e e s st e e e e e s s st ee e e e e e e s s nnttaeeeeaeesaaasnssaneeeessannnes 9
8.2 SH RCAN-ET .ttt bbb bbbt b bttt b e e bt eb e e st e bt e bt b e et e nb e et bt nnennas 10
6.3 The headers and control transfer detailS...........ccooiiiiiiii e 12
7. ChecksUm ProteCtioN.........ccooo i 13
8. (D=1 o8 To T |9 o PO PP PSP P PP PPTPPPRP 13
8.1 RBC, MIBC, R32C ...ttt et bbb bbbt bt e e bbbt et bt bt eaeennennennas 13
S | TR OUP TR 15
9 The DOWNIOAd ProtOCOLot e e s 17
10. The SREC FOIMMAL......oo ittt sttt b e st e ser e s e e be e e srneeseneennne s 18
10.1 =TT] (o I Y/ o 1= SRR SPPPPPPRPN 18
11. [=10 0] o) L= PO TP U SO PUPTT T PPTRPPPPP 18
12. Suggested Improvements t0 FOCAN e e e e s e e e e e e e nreeees 18
13. FaY o] o 1= o Lo 1 O PSSO P P UPPPPPPPPTRN 19
14. MOre INFOMMEALION ... e 19
LAV L=T o131 C=TR= 1o o BTN o] oo SR 19
REVISION RECOIM.........eeiiii et s e s b e s e e st e e e s ee e e b e e e snae e seneesaneea 19

REUO05B0067-0134/Rev.1.34 January 2010 Page 1 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)
LENESAS Fiach Over CAN

1. Introduction to Flash over CAN

Flash over CAN, or FOCAN, is the ability to reprogram a Renesas CAN MCU using the CAN API over an
existing CAN network bus. This removes the need for standard debug, UART or serial interfaces to update
the device firmware.

FoCAN uses a Systec ‘CANmodul’ CAN bus interface which is part of the RCDK, or ‘CAN-D-Kit’. This HW
interface is used to send the bus CAN frames to the device. See chapter 13 T® for information on this
interface. A Windows based Application, FOCAN Download, provides a graphical interface to program the
MCU via the CAN network. Each device can be flashed individually in-network using the unique FoCAN
Device Unlock Code.

At this writing, FOCAN firmware with a demo application is available for the R32C/118, M16C/6NK, M16C/29,
R8C/23. Also available are the SH RCAN-ET MCUs SH2A-7286 and SH2-SH7137. The SH2A-7216 is soon
to be released. FOCAN can be adapted to any other CAN equipped MCU within these families. The following
MCUs are also available on Renesas Starter Kit boards: R32C/118, M32C/87, M16C/6NK, M16C/29, R8C/23,
SH7286, SH7137. For these, FOCAN workspaces are available to download.

Flash over CAN
Reprogram application in-circuit for upgrade or bug fix

uss
FoCAN Download Systec R8C mg%sassggmg_'czus“m
[+] OWTIO
Meod UserApp Project CAN Analyzer ! ! B
and Device Unlack Code

Figure 1. Flash over CAN may be used to reflash an application after a device is installed by giving
the device a unique programming ID.

Flash over CAN consists of a High-performance Embedded Workshop (HEW) workspace containing two
projects, CANloader and UserApp. These two projects are independent of each other in that they are not
sensitive to any code or data remapping by the linker. Both projects have a header so that the other project
can read key data; entry access points into the other program, device and version IDs, data consistency
checksum value, and the security FOCAN Device Unlock Code.

CANIloader, the flashing project, is located in the first flash block of the MCU. The user application is free to
occupy the other flash block(s).

To reflash, the user PC program PC_Download will send reprogramming commands and data frames down
through the sniffer over CAN to the MCU. CANloader will first erase the user blocks and then reflash the new
user application. After completion, the device reboots, checks for data consistency and enters the user
application.

The application may be reflashed any time a user connects the PC to the bus and invokes the device’s
proper FOCAN Unlock Code and reprogramming CAN ID. When this happens the application exits, reads
the CANIloader header for entry address into CANloader, tells the PC it's ready and UserApp is reflashed
again.

REU05B0067-0134/Rev.1.34 January 2010 Page 2 of 20

- z ENESANS Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)

Flash Over CAN

2. General description of the Flash over CAN concept

F-o-CAN will work on any M16C family device with at least one CAN peripheral and internal flash memory.
The PC application, FOCAN Download, sends programming command frames and application content data
frames via USB to the Systec CANmodul sniffer which sends them over CAN to the MCU.

The FoCAN firmware is written in one HEW workspace containing two projects; CANIloader, and UserApp.
CANIloader resides in the first flash memory block, or first two blocks if block 0 is too small for that specific
device. CANloader erases the user application block(s) and then reflashes the UserApp firmware. The
UserApp firmware includes reflash exit code to transfer execution over to CANloader whenever reflashing is
invoked. This feature allows the device to enter reflash mode during normal execution of the application.
UserApp is also where user application code is inserted by the linker. After reflash completes, the device
reboots and checks for data consistency before entering the application.

Flash over CAN
Program Flow

itrol frame

rogram data

AM-10s:
own handler to be called

Erter Block 0
Fun CAMloader startup
hw zetup
CAM init ete..

Contral frame with data|= Dewice Unlock Code

Signal Userfpp to exit.
Eniter CAMNloader
Ease Userfpp

Userfpp QK to enter? flash blocks 0-n.

N
F&hd_checkvar zays

reflash not requasted? Erase gonfim

Flash Userfpp

CAN_Download sends Feset

Ma

(Red LEO1 an)

If not in user area,
discard frames

{grden LEDZ used)

Erter Userfpp
Elock 1-n

Userfpp receives
Dewice Unlock Code

Erter CAMloader
==r Reflazh
uzer blocks

Uze of RSK LEDs

YELLOWY = User application or user interrupt code

oader: When on, RAM buffer is being filled, or waiting.
ng [rust not Be disturbed].

Figure 2. Program flow. To the left: Reset, CANloader’s startup code, and entering the user

application (UserApp). To the right is shown processing of CAN frames in UserApp and in turn
CANiIloader if a valid download is asserted.

REUO05B0067-0134/Rev.1.34 January 2010 Page 3 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)
LENESAS Fiach Over CAN

3. The Device Unlock Code

The default FOCAN Device Unlock Code to unlock the device and reflash is

1. For the RSK-R8C23: 0x11, 0x11, 0x11, Ox11, Ox11, 0x11, 0x11, Ox11, Ox11.
For the RSK-M16C29: 0x11, 0x11, 0x11, Ox11, 0x11, 0x11, 0x11, Ox11, 0x12.
For the RSK-M32C87: 0x11, 0x11, 0x11, Ox11, 0x11, 0x11, 0x11, Ox11, 0x13.
For the RSK-R32C118: 0x11, 0x11, 0x11, 0x11, 0x11, Ox11, 0x11, O0x11, Ox14.
For the RSK-SH2A7286: 0x11, 0x11, 0x11, Ox11, Ox11, 0x11, 0x11, Ox11, Ox15.
For the RSK-SH27137: 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, Ox16.
For the RSK-SH27216: 0x11, 0x11, 0x11, 0x11, Ox11, 0x11, 0x11, 0x11, Ox17.

N o o bk~ 0D

KARenesas
RLENESAS

Everywhere you imagine.

SO030000FC -
S2240F20007CF 201 FE2000C7034200C7034 3008 74D 00BEFFEET OFFE30B 32FFDB0CO0024,
S2240F8020FEF27DF27EAFE01 07EEFI31 06EQ7CIFFOG046E FE01 OFOEO4EE OB 331 204763
S 224DFED4D?24F1 ANATCTraTaAnnd AR NrEncd AR rd anaAdcCnnrCarnar o E?E EFEI:I'I I:II_II‘E

e] Unlock MCU A75CFOR40C
S 2240F S080F 304 04EEFOD0FO
S 22 40F 204 06E OF 100640F C3FF
SZ2A0FANCO04ES Frter the Unlock Codes [111111111111111 120475CFOG0
SIZAOFSOEDIOAZ e e o | A 026880F 7570
S 2240F 21000773 E3F0032FFES
S 2240F 31207258 - EB0SFERR227
S 2240F 51 40FCCS 4&_‘”’:3' 72R7AGFEFE]
S 2240F 21601602 FIBFEDS0EFI

ol |

S2240F81 808 4FE F2C000027EBOOOEE O7CAFFOR046EEFD10FOG046EOE 331 204 /63408724 |
*

CAM Setup Eile Open Download | E xit

Figure 3. The PC_Download application. The Device Unlock Code is entered, after pressing
‘Download’. This example shows using the default Device Unlock Code for the RSK29.

In the source code, this code is set in the file canload _head.c. Note that this is not the same as the code
used to unlock the device when accessing it via a serial flash programmer e.g. the E8 debugger.

If FOCAN Download sends the correct control frame CAN-ID, the UserApp application reads from
canload_head.c in the CANloader section for an entry address to enter CANloader. CANloader then confirms
to the sniffer that it is ready and the application is reflashed.

Warning: No other interrupts should occur during reflash, as the MCU goes into and out of MCU erase /
rewrites (E/W) mode.

4. Reflashing Steps

When the ‘Program’ button in the Windows PC application FOCAN Download is pressed, commands will be
sent to the Systec sniffer to start downloading the user application code to the MCU flash. The first flash
command frame that is sent is a FOCAN Unlock Code that the user enters right after the ‘Program’ button
was pressed on the PC. If the code matches the value in the device’s FOCAN Device Unlock Code in project

REUO05B0067-0134/Rev.1.34 January 2010 Page 4 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)
LENESAS Fiach Over CAN

CANIloader, programming is accepted, the flash_request_flag is set and the target device firmware enters
into ‘Flash over CAN’ mode. CANloader then confirms to PC_Download to proceed with the flash update.
However, only CAN frames with CAN ID value CTRL_MSG_ID are accepted and processed for
reprogramming.

The CANIloader firmware will idle when not processing CAN interrupts.

UserApp firmware is reflashed into the user flash memory blocks using EW1 mode. After the user blocks are
reflashed the device reboots.

After reboot, CANloader checks that the UserApp space was successfully flashed by verifying UserApp's
memory using a checksum algorithm, and comparing the result with a checksum reference value. If
CANloader does not calculate a matching checksum to what is stored in the App-header, the device stays in
CANloader and will wait until a new attempt is made to flash UserApp.

To add a checksum to the application header you can use the default checksum algorithm or your own. This
is to be done when all application development activities are finished. See ‘Checksum protection against
failed application reflash’.

Note that the relocatable user mode (UserApp) interrupt vector will automatically be used when UserApp is
entered, as everything such as interrupt vectors, stack pointer, clock frequency etc is initialized by UserApp’s
own startup code.

4.1 Download procedure

Program the RSK board with the CANIloader project binary using HEW or FDT. See your RSK’s Quick Start
Guide for details on which MCU device to use, and how to connect and program the device.

Do not download the Debug folder and session binary to the target with FOCAN Download, as it
contains the reset vector, which will then overwrite CANloader’s fixed vector. See Debugging below.

a. Program the RSK board with the CANloader project binary using HEW or FDT. See your RSK’s Quick
Start Guide for details on which MCU device to use, and how to connect and program the device.

b. After programming CANloader, unplug your debugger and press reset or power cycle the device. The
bottom red LED should light up indicating the device is in CAN bootload mode waiting to be programmed.

c. In HEW switch to the UserApp project.

d. Add your application under user_main(). To debug your application see ‘Debugging your application’
below.

e. Compile and link UserApp.

f. Start FOCAN Download.exe
The PC application FOCAN Download.exe can be found in the “PC_Download” folder in the “Flash over
CAN” Hew workspace directory. If your PC says it is missing a DLL file there are spare DLL files in the
folder of your FOCAN distribution, next to the FOCAN executable.

g. When CANIloader is running on target RSK board, the FOCAN Download.exe will send CAN control
messages with CAN-ID CTRL_MSG_ID (0x201 in the example code) and subsequent program data
frames with the id DATA_MSG_ID (0x200).

h. Connect a Systec USB CANmodul sniffer to your PC and to CAN ch 0. (For the 6NK that is the CAN
connectors closest to the E8 connector.)

i. Inside FOCAN Download, Press ‘CAN Setup’ and set to 500 kbaud. CAN Message ID should default to
200 in Standard.

j- Press ‘File Open’ and select the new application binary created from compiling UserApp.

k. Press Download. The FOCAN Device Unlock Code is typically default 0x11 0x11 0x11 0x11 Ox11 Ox11
0x11 0x11 in the source code, but can be changed. See the variable unlockcode[8] located in the source
code file canload_head.c.

REUO05B0067-0134/Rev.1.34 January 2010 Page 5 of 20

zE N ESAS Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)
Flash Over CAN

Press OK. It takes a moment to erase the user blocks, then the LED will flash each time a control frame
arrives and the flash process continues.

m. When the flash process is complete and CANloader is sent the ‘file complete code’ from PC_Download,
the device is fully programmed.

n. After rebooting, the UserApp header is checked for a correct checksum or code before entering. This
header code would preferably contain a valid checksum generated via the process mentioned below in
‘Checksum protection against failed application reflash’.

REUO05B0067-0134/Rev.1.34 January 2010 Page 6 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)
LENESAS Fiach Over CAN

5. Modifying the default FOCAN project

To adjust the sample project to your particular MCU variant there are a few code mapping issues to be
looked over. Most of the items you need to consider modifying for your particular project are commented in
the file focan.h.

5.1 Memory Mapping of CANloader and UserApp
Flash memory Block 0 of the MCU contains CANloader, the flashing protocol handling project.

UserApp - the user application - may be mapped into any remaining block(s). All program code and constant data
are mapped either before or after each project’'s header. The header locations are defined by the
CANLOAD_HEAD and APP_HEAD section start addresses.

FoCAN Memory Map SH

User MAT Erasure block

Address H00000000 EBO0 CANloader header EBO (beg. of first block)
Address H'O00OFFFF EBO7 -
Address H'00010000 CANloader EBO,1 (first blocks) ~16 kB

EBOS

EB16 UserApp EB 2,...

Address H'O009FFFF
Address H'000A0000

geg17 ---rest of blocks

EB19

UserApp header EB19 (end of last block)

Address H'000FFFFF

Figure 4 Flash o' CAN memory layout for an SH7216 MCU.

REUO05B0067-0134/Rev.1.34 January 2010 Page 7 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)
LENESAS Fiach Over CAN

FoCAN Memory Map M16C

Address(size) Section

000000{ 6AB400) i
0004 00{ 6000824) data NE
0080424(6806cB) bss NE
98004e4(008002) data NO .
9084e6(000616) bss NO RAM is shared
8004Fc(008608) stack
880afc(B600300) heap Y
800dfc(06F204)
0100008(8dBOAB)>>
Ge0008(BBBaecb) [C] a rogram | A
Be Baeb{ B07515)
Be8000(686100)
Be81008(B87F00)
Bf0000{ 606060) : _
BFf0060(080024) [[F NEI '
Bf0084(080002) ([R] data HNOI j
0F0086(00601bc)] rogram
8F0242(008113) 1 Enterrupt

CANIloader and
UserApp Bf0355(88dbab)

only knmf' 8fdf00{080806c) :
8fdfOc({B00000a)
each other
8fdf16(08020e9)
through the =
information 6fe006(006014)
headers—p 0feB14(000022)
0fe036(0000908)
0feBc6(000062%4) || .
0feBea(000603) |[R i
8feBed(0014db) Erogran
0FF5c8(008123) 1 interrupt
0f F6eb(008615)
0ffdoo(006100)
0ffeBO(0001fC)
OFFFfc(000004)

oioivivioe

UserApp

CANIloader

Figure 5 For R8C, M16C and R32C block zero is at the high end of the address spectrum. Note the
red arrows indicating headers. This example shows an M16C/6Nx MCU.

These header addresses are the only thing the projects know about each other. The header member data
are certain key information pieces that the projects must be able to read from each other. The header
information members are at fixed relative offsets from the header tip. Besides execution entry point there is
information such as Firmware Version nr, Device Unlock Code, Security checksum. More can very easily be
appended to the structure.

For project CANIoader, note the location of section ‘canload_head’ in Figure 5. All project sections are
subsequently placed within flash Block 0.

For project UserApp, all program code is mapped to section ‘app_program’. Note the section’s location and
the subsequent placement of the other sections for this project. Last is the header. For M16C type devices,
block numbers are reversed with respect to memory address and so ‘app_header’ is at the end of Block 1
right up against Block 0. This is done in order to keep the headers conveniently close together and the code
as ‘tight’ as possible. For SH devices, ‘app_header’ is by default located at the beginning of the first UserApp
block, e.g. Block 1.

The mapping can be rearranged. As long as a header is not in the middle of code. The checksum calculation
would then be more difficult as the checksum reference value can not be included in the checksum
calculation of the application code.

REU05B0067-0134/Rev.1.34 January 2010 Page 8 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)
LENESAS Fiach Over CAN

To pick header and code section addresses for your memory footprint, see your device’s HW manual under
section ‘Memory Map’ in the ‘Flash Memory’ chapter.

5.2 The CANloader and UserApp Headers

The headers are used to convey certain information between the CANloader and UserApp projects. The reason for
the split into two separate programs is so that they are independent of each other; so the linker doesn’t remap
code or data location by surprise. Each project has a header at a fixed address. This is the only information that
the projects have of each other.

5.2.1 CANIloader
a. CANIloader Entry Point

UserApp reads this to enter CANloader upon a successful reflash request.
b. CANIloader Firmware Version ID

16 bytes.
c. Device Unlock Code

8 bytes; > 18 * 10'® combinations.
d. HW Unit Device Nr

4 bytes; > 4 million combinations.

5.2.2 UserApp
UserApp Entry Point

p

CANIloader reads this to enter UserApp upon a successful checksum evaluation of UserApp.

4

UserApp Firmware Version ID

16 bytes.

o

UserApp Checksum Reference
Default testing value 0x55AA55AA.
d. Low Address for UserApp

Devices highest block nr start address.

1

UserApp Code Length

Top of App header minus the above UserApp low address.

6. CANloader and UserApp boot procedure

6.1 R32C, M16C, R8C using C-startup

The boot procedure, or transfer of control between CANloader and UserApp for R32C, M16C, R8C using C-
startup files is shown below. For assembly startup versions, the procedure is roughly the same. Assembly
‘labels’ are used to set up code references in the headers instead of using C-references for example. Also
the focan_state var is setup as a separate section using HEW instead of the sect32.inc file, etc.

REUO05B0067-0134/Rev.1.34 January 2010 Page 9 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)
Flash Over CAN

LENESAS

R8C/M16C/R32C FoCAN

CANloader and UserApp Project Boot Procedure

HARD
RESET

PowerON Reset
boot [procedure

Set focan_state = COLDSTART
in PowerON_Reset()

CANIloader
boot procedure

Jump to CANloader main()

UserApp OK to enter?
and
focan_state ! = REFLASH?

CANIloader

If focan_state == REFLASH
or

Device Unlock Code received,

ERASE and REFLASH. "

Done
reflashing

CANloader looks at U
to locate userapp_st:
Execution is then con{
(UserApp ¢

Yes

serApp's header
art() in UserApp.
inued from there

tarts).

Execution is then ¢

UserApp
boot procedure

Jump to UserApp main()

UserApp
+

Process FOCAN
Device Unlock request HARD

RESET

set focan_state = REFLASH
in EntryToLoader()

UserApp looks at CANloader's
header to locate focan_start().
ntinued from there
(CANloader starts).

(1) See separate protocol.

Figure 6. Boot procedure, or transfer of control between CANloader and UserApp for R32C, M16C, R8C

using C-startup files.

6.2 SH RCAN-ET

The SH RCAN ET FoCAN boot procedure uses C-startup files. The Manual Reset vectors are used for
transfer of control between the projects. This is so the stack pointer can be set differently in CANloader and
UserApp if desired. The stack pointer in SH is set with either by dong a hard reset or manually as we shall

see.

REUO05B0067-0134/Rev.1.34

January 2010

Page 10 of 20

LENESAS

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)

Flash Over CAN

SH Flash over CAN
CANIloader and UserApp Project Boot Procedure

HARD
RESET

e

e 1
book TN
Set RAM_checkvar = COLDSTART
§ in_Pcofv%rONr_Reseto | User Reset() 5|
hoot procedure |
\ /
CANoader looks fit UserApp's e
header bo locate TolJserApp()
which uses User vecln‘r o
jump o UserAgp's neset
Jump bo main) 2
Jump to main{)
SN
N / N
. i/ AN
Ge > Userhpp Y
~UserApp OK to enter? ™ i \
g and . Yes | + |

""'\,‘ RAM_checkvar says
““““ reflash nat requested'?/a
-

S -

/ CANloader
|" If RAM_checkvar == REFLASH |
\ Dr I}

Device Unlock Code received, ‘.
\ ERASEand REFLASH. R

~

\ Process any FoCAN

\ Device Unlockrequest | HARD
\ RESET
AN /
............. - __//
Device Code
UserApp looks gt CANloader's
header o locate TolLoader()
which uses vachor bo
jump bo reset*

N, V4 et RAM_checkvar = REFLASH
, /’ in EntnToLoader(
ANy P4
"""""""""""" =
Done T
reflashing ™~
[User Reset() \
'\hnnr prorednre 5 _.|—
{1)Via projact CAMBador: It 4 {0) For 3H, Tha Nanuar na3al vaclors ana t3ad 30 Tat CAMIGador and LiaacApp naalans can ba
{2)Via project Usadipp’s int#H 4 dislnguishad lhom hand resots and 50 tha SP I sot 2 por projact selings (da Int #3).
{3) Saw soparale prolocol {5) Usacpp and CAMIcador lave common roset sounca coda. Can be changed

Figure 7. For SH devices the FOCAN boot and handover procedure between CANloader and UserApp
is slightly different from the R8C/M16C/R32C family C-startup in that the Manual reset vector is used
when the projects transfer control to each other.

The CANIloader and UserApp Manual reset vectors are used together with the ‘sef jmp’ function to transfer control
between the two projects. This yields a convenient way to set the stack pointer; it will be set with the value
selected by the user in the “EntryTo..." functions. The ‘set_jmp’ assembly function was added. This function takes
as the first argument the new stack pointer (value in R4) and the address to jump to as the second argument (in

R5).

REUO05B0067-0134/Rev.1.34

January 2010 Page 11 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)
LENESAS Fiach Over CAN

Hard resets use the ‘normal’ Reset vector. For hard resets, the SP is set in HEW using the ‘S’ section address
setting. This value is written to the interrupt vector address adjacent to the reset vector. This value for the SP can
be used by referring to it with RESET_Vectors[1]. The default manual reset vector setting is in RESET_Vectors[3].
Any ‘custom’ value can instead be passed for the SP using the first argument to ‘set_jmp()’.

6.3 The headers and control transfer details
This is not necessary reading -- only for the interested!

Here follows a detailed explanation on how the source code is set up to enable the code execution to
transfer control between CANloader and UserApp. The example is from R8C but is applicable to all FOCAN
devices.

Each project has a header so that the other one can read key data; entry access points into the other
program space, device and version IDs etc, (see header source files.) The headers’ locations in flash
memory space are specified by the flash_o_can.h file defines.

#define CANLOAD HEAD ADR 0xC000

#define APP_HEAD ADR 0xBFO00

Here is how we jump from CANloader to UserApp using an address specified inside the UserApp header:
The actual jump consists of two assembly lines of code. The first one clears register AO:

asm("mov.w #0,A0");
The next line does an indirect jump. It jumps to the address contained in [an offset+]AOQ, that is, to the
address contained in BF00+0.

asm("Jjmpi.a OBEFOOh[AO]™);
Notice the "contained in" above. The program will start executing from the address that is stored in BFO0+0.
(This is not the address to jump to, but the location of the address in App-header). The next question is what

value is actually stored in BFOO (in the App-header)? This is determined at link time. The location of the
application start address is determined by the following lines in sect30_canapp.inc.

Notice the comments after ;'

APP HEAD ADR .equ 0BFOOh

.section program, CODE ;Tell the linker that we are now defining a new flash memory
;section named 'program' and it will contain actual program code.

.org APP ADR ;This is the starting address where the code should reside.

.glb app mem start ;This is just telling the linker to first of all place a label

_app_mem start: ;' app mem start' at the beginning of the section.

The next piece of the puzzle is filling the App-header at link time with the values we need. Go to app_head.c:
(The lines are numbered for reference)

0. #pragma SECTION rom app header

1. const uint32 app entry addr = (uint32) &app_entry;

2. const uint8 app id[0x10] = "APPLIC ID 123\0";

3. const uintlé app check = 0x55AA;//0x73B8; //0x55AA=testing value

4. const uint8 * const app mem start addr = &app mem start;

5. const uintlé app length = (const uintl6) ((uint8 const *)&app entry addr - APP ADR);

Line 0: The header itself is located at the end of the UserApp area. lts place is specified in
sect30_canapp.inc (search for 'app_header’).

REUO05B0067-0134/Rev.1.34 January 2010 Page 12 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)
LENESAS Fiach Over CAN

Line 1: We want the address of where to execute when jumping into UserApp. This would be right at the
reset address. See ncrt0_canapp.a30. Note that this is not at APP_ADR because the first code to execute in
time is not necessarily the code right at the beginning of user memory.

Line 4: This 4th item of the header contains the actual start address in flash of all User Application code. Its
value will be APP_ADR. See explanation for sect30_canapp.inc above. (“.org APP_ADR” etc above.)

cent to reset. This is used by hardware to set the SP.

7. Checksum protection

To prevent a failed application reflashing image from running, there is an application checksum protection function
added by default. All you have to do is add the UserApp checksum to the UserApp header.

When finished developing UserApp’s application source code, a checksum for the UserApp firmware can be
calculated as follows:

1. Press SW3 at startup to read the calculated checksum from the LCD display if you are using the
RSK, or

Stop the debugger in CANloader where the checksum is calculated.

Make a note of the calculated checksum and write it to the application source code header for
variable app_check_ref. Also make the calc-checksum routine of CANloader return a calculated
checksum instead of the default constant test value 0x55AA (0x55AA55AA for the R32C).

F-o-CAN has a data checksum byte in the control message frames (CTRL_MSG_ID frames), but this is
currently not used on the embedded side. The reason is because there already is a CRC field in all CAN
data frames. Thus, it is already implemented by the CAN standard.

8. Debugging

8.1 RS8C, M16C, R32C

8.1.1 Debugging with an E8(A)

When debugging with an E8: If your application uses all available memory blocks (it cannot use Block 0
where CANloader is) you must in the dialog box for E8 place the target debug kernel code in block 0 above
canloader at a higher address. See the map file for free space in block 0. By default most FOCAN UserApp
sample code uses all blocks except Block 0. Here is an example using the M16C/29.

Emulator Setting

Emulator mode Firmiware Location 1 MCU Setting1

Firmware location.

Frogram -200h Byte Use- oo
[MIM - EDDOD - M : FF700)

‘work FiaM -80h Byte Use- [200 0
[MIN - 0400 - MAed: 3380)

[Debugging of program that uses WDT.

ak. | Cancel |

™ Da nat show this dialog box again.

Figure 8. You can place the target debug kernel code in block 0 above canloader at a higher address
and thereby leave all of UserApp free for your code. See the map file of your CANloader project to
find free space in block 0 that the debugger can use.

REUO05B0067-0134/Rev.1.34 January 2010 Page 13 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)
LENESAS Fiach Over CAN

8.1.2 Connecting with E8 and the ID Code Check Function

The default serial ID Code Check Function code for connecting to the MCU with the E8(a), not to be
confused with the reflashing Device Unlock Code, is 00000000000000h, or OxFFFFFFFFFFFFFFh. Again;
this is not the same as the FOCAN Device Unlock Code.

Always take note of the programming ID code is shown in the confirmation window when you flash the
device. It should be 00000000000000h, or OXFFFFFFFFFFFFFFh unless you have set it to something else.

If the default value was not used, and you cannot remember the programming code, read the
CANIloader.mot file that you used to program the device with, at the ID code addresses. These addresses
are found in your MCU HW manual. It will specify at what addresses the ID code values lie. Again, this is not
the FOCAN Device Unlock Code.

Example; In a certain project using the R8C/23 one could read the following ID code values by reading the
mot file at the addresses in the second column:

ID byte Address Value read

ID1 FEDF 00
ID2 FFE3 00
ID3 FFES8 00
ID4 FFEF 00
IDS FFF3 00
ID6 FFE7 00
ID7 FEFB FE

In this case, use the ID-code 000000000000FF to unlock the device.

Tip: Use the power supply from E8 if there are problems unlocking.

8.1.3 Debugging the Application Standalone

You can debug UserApp with the E8(A) debugger standalone without CANloader. That way, CANloader
does not have to be downloaded when debugging. Use the ‘Debug’ session in UserApp to do this. Using this
session the Reset vector of UserApp (otherwise not used) is downloaded so CANloader is not needed.

To do this sith the FOCAN assembly startup versions, set
DEBUG_APP .equ 1

in sect30_canapp.inc. The reset vector will now point to the Application memory start, and not CANloader’s.

In addition, for both UserApp and CANloader projects, use the macro
#define DEBUG 1

in focan.h if you want to use or add debug code.

REUO05B0067-0134/Rev.1.34 January 2010 Page 14 of 20

LENESAS

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)

Flash Over CAN

8.2 SH

File
D= 5

SH7286_FoCAN - HyperT erminal
Edit “iew Call Transfer Help

| ol

|

FoCAN CANloader started. Serial test output at 35400, 5-N-1.
CANLODADER REFLASH
- BLOCK(s) WILL BE ERASED! -

Erasing USERAPP starting at block 0E. Erasing...
...finished erase including block OF.

Useripp erase result = 00

STARTING

oo

0l

buffer_nr
Flash status
buffer nr
Flash status ulu]

Data at flashbase data address 000CO000 is:
000CL1004150504C49435F49445F313233000000FCFS1FS55000C0030000C307D
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFO00COS42FFFAOQO0000COSSCFFFAOQOOO
000CO5E4000C0EECO0OCOSA0000COBECOOOCOBECOOOCOSAGNO0COSACONOCOEES
000COSES000COBECOO0OCOEECOO0OCOBECOOOCOBECOOOCOEECOOOCOEECOOOCOREC
O00COBECOOOCOEECOOOCORECOOOCOBECOOOCOEECOOOCOBECOOOCOEECOOOCOBED
O00COBECOOOCOBECOOOCOEECOOOCOBECOOOCOSEEOOOCOSCA000C0OSCA000COSDO
000CO8Ds000COS8DCO00COSEZ000COBESO00COSEEOOOCOSFA000COSFAOOOCOS00
000C0o906000C0S0C000C0912000C0915000C091E000CO924000C092A000C0930
000C0936000C093C000C0942000C0945000C094E000C0254000C095A000C0960
000C0966000C096C000C0972000C0975000C097EOOOCO954000C095A000C0950
000C0O996000C099C000C09AZ000C09A5000COBECOOOCOEECOOOCOEECOOOCOEEC
O00COBECOOOCOBECOOOCOEECOOOCOBECOOOCOBECOOOCOEECOOOCOEECOOOCOEEC
O00COBECOOOCOBECOOOCOEECOOOCOBECOOOCOBECOOOCOEECOOOCOEECOOOCOEEC
000COSAEQOOCOBECOOOCOEECOOOCOBECOOOCOSE4000COEECOOOCOEECOOOCOEEC
000COSEAOOOCOBECOOOCOBECOOOCOBECOOOCESSZ000CETEZC000CEDO0000CZCLA
000CoSCO000C0SCE000COEECOOOCOBECOOOCOSCCOO0COSDZ000COBECOOOCOREC
000COSDE000COSDEOOOCOEECOOOCOBECOOOCOSE4DO0COSEADOOCOEECOOOCOBEC
000COSF0000COSFE000COBECOOOCOBECOOOCOSFCO0OCOADZOO0COEECOOOCOBED
000COADS000COADEOOOCOEECOOOCOBECOOOCOAL4000COALS000COEECOOOCOEEC
O00COALEQDOCOEECOOOCORECOOOCOBECOOOCOAZZ000COBECOOOCOEECOOOCOBED
000COAZ6000COBECOOOCOEECOOOCOBECOODCOAZADOOCOBECOOOCOAZEOOOCOASZ
000COASS000COASCO00COA40000COAL4000C0A4S000C0AAENOOCOAS4000COBED
000COASAODOCOASEOOOCOEECOOOCOBECOOOCOAGZ000COAGS000COEECOOOCOEEC
O00COAGEDDOCOATAN0NCOBECOOOCOBECOOOCOATADONCOASONOOCOEECOOOCOBED
O00COASAODOCOASOOOOCOASGO00COASCOODCOAAZOOOCOEECOOOCOEECOOOCOEEC
000COAASOOOCOAAEOOOCOAEA000COAEADODCOACOOOOCOEECOOOCOEECOOOCOEEC
000COACE000COACCOOOCOADZ000COBECOODCOADS000COADEOOOCOEECOOOCOEEC
O00COAE4000OCOAEADOOCOAFOOO0COAFG000COAFCOOOCOEECOOOCOEECOOOCOEEC
000COEOZ000COEOS000COEOEOOOCOEL4000C0OELADOOCOBECOOOCOEECOOOCOBEC
000COBEZ0000C0EZ6000C0EZCO00COBECOOOCOE3Z000COBECOOOCOESS000COESE
000COBE44000C0E4AN00COES0000COBSA000COESCO0NCOBAZ000COEAE000COEAE
O00COE74000C0E7AOOOCOESO000COESS000COESCO00COESZ000C0ESS000COESE
FFFEF

FF

0z

buffer nr
Flash status ulu]

Data at flashhase data address 000C0400 is:
000COBA4000CO0EALDOOCOBEOODOCOBEBE000COEBCO0OCOBCZ000C0ECS000C0ECE
000COED4000C0BDADOOCOBEOODOCOBEGFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FF
FF
FF
FF
FF
FF
FFFEF
FF

| o

Disconnected

ANSIw 38400 8-N-1 MM

RENESAS

Everywhere you imagine.

S00E0000373238365F 557 36560 6F 743E
52140C0000000C11004150504C43435F 43445F 313256
52140C001033000000F CF51F55000C0030000C3070 42
52140C0030000C0542FFFADODD000CO35CFFRACOOOF?
52140C0040000C0334000C0BECO00CO3A0000COBECAD
£2140C0050000C0BECONDCO8AE000C08ACO00C0SE 24C
52140C0060000C058 8000COBE COODCOBECOOOCOBE CAA
$2140C0070000C0OBE CONDCOBECOOOCOBE COOOCOBECES
52140C0030000C0BECONDCOBECOOOCOBE COOOCOBECS3
52140C0030000CORE CONDCORECOOOCORE COOOCOBE C43 =
52140C0040000C0EECONOCORECOOOCOBECODOCOBEC33 <
52140C00B0000COSBEONDCOSC4000C0SCAN00COS00CS
52140C00C0O000COS0 6000C0S0 CODOCOSE 2000C03E 853
52140C0000000C03SE EOOOCOSF4000C08FADDOCO300E 2

L]

If Device Unlock Code exists: Eraze, then download

LCAMN Setup |

File Open |

Figure 9. SH reflashing session with a serial terminal attached. To receive data via the serial port the
macro DEBUG must be defined. Flash status is default 0xFF (Firmware did not download) for each
buffer before the Flash API is called. If length to flash is 0, the Flash API is not called and neither is
anything output to the trace port. Status then remains 0xFF. This happens when non-continuous
flash data is filling up a reflash RAM buffer.

The intent of the serial output feature is to be able to debug flash erase / rewrites (E/W), as there are severe
restrictions on debugging E/W code, and the flashing results cannot be seen. Trace functions have been added for
serial trace output. These can convert constants and variables to strings so they can be output. This will be
valuable for the end user to output trace messages and data, without a debugger. See source code file sci.h in the

SH

FoCAN project.

RE

U05B0067-0134/Rev.1.34

January 2010

Page 15 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)
LENESAS Fiach Over CAN

There is an initial flash test that can optionally be run at the beginning of a reflash session. This ‘feature’ is
activated with the macro REFLASH_TEST. It enables one to see if the serial SCI port and the Flash API are
functioning as expected. It reads, erases and flashes a test block with dummy data and traces the data via
the serial port. Again, this test is not necessary, but a convenient debug mechanism.

For SH, CANloader needs to be taken into and out of a ‘FOCAN E/W state’. The functions
SlowClockHaltCanMaskinterrupts and ResumeClockCANandinterrupts are added to do this. The clock must
be slowed to max 40 MHz before erasing and flashing since flash E/W cannot run at the default 100MHz.
The CAN peripheral must then be halted/unhalted by these functions so that no Error Frames are sent during
flash E/W. This is because when the system frequency changes the CAN bitrate changes as well with the
system clock. Also, all interrupts must completely be masked to eliminate ANY interrupt during E/W. Slowing
the clock is done by the Flash API anyway, but the frequency must nonetheless be restored by the latter
function. This function also restores interrupts and the CAN peripheral from halt.

Note that the CPU clock change during flash E/W disrupts the serial output from clocking data out with the
correct speed. A short delay after trace data is output was therefore added in some places so the SCI
peripheral has time to clock out trace data before clock speed changes.

8.2.1 Debugging the Application
To debug the Application using E10A, CANloader must be present.

For the SH workspaces, the E10A debugger cannot be used while reflashing with FOCAN.

REUO05B0067-0134/Rev.1.34 January 2010 Page 16 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)
LENESAS Fiach Over CAN

9. The Download Protocol

PC Download _ PC Download command/data Flash over CAN Firmware
Triggers transition of FOCAN states
Program
i Flash over CAN Firmware
4 Firmware response————— Rep

CAN-Download on PC g
Control msg CAN frames: Flash-o-CAN Firmware
« DLC=8: Davice Unlock Code Control msg CAN frames:
« DLC 4-6: S-record line header. 1 byte flash data length, * DLC=1:1byte reponse ID

2-4 bytes flash data addrass (+1 byte check).
» DLC=1: Reset command

Data msg CAN frames: ¢
+ DLC=1-8. 1-8 bytes flash data
Run Application'Canloader
‘Wait for Device Unlock Code
Bend Devics Uniock Cods -
Lser Control Msg (DLC=8) »
- Salect download application . MOT file ot Devi
- Enter Device Unlock Code U°n’|ge i Cde:?e
- Click Downlead
Yas
Erase flash
¥
Erase ACK
trol Msg((x55
< Eont sl] Juimg to Canloader block.
S-record line head. flash_proceed_flag = 1
Control Msg{DLC=4-6) — ¢
1 byte line date length N, Sa‘trﬁ =
Line header ACK 2-4 byles data address, as
Control Msg(0xAA) dlh_ﬂ*liml and data_length
-+ for following S-rec line data msgs.
If address non-consecutive, set
i discontinuous_data
TransferFile Data Msg(DLC=1-8) data_flag
Flash Errar & - First DLC Rash byte:
Control Msg(0xFo} UsbCanReceive of N in S-record line
Data (request more) ACK
Control Msg(0x22)
[
Data Msg(DLC=1-8) SR,
Iy —
‘Neaxt DLC fash bytes even though not full
of N in S-record fine Sm:tams
| Put new flash data bytes into flash buifer |
. Flash data
o buffer full? Yes
—p
> l Mo
= Ask for more flash data,
Tell User: B Repeat blacks in dark colar.
“Download Any TransferFile message possible.
Unsuccessiul® Data Msg(DLC=RESET) M =l
Flash remaining buffer content
FReboot
[Donel A |
e
Flash Error
Conirol Msg(0x0F)
Flash buffer o
status OK?

Figure 10. The Flash-over-CAN firmware download interaction process (protocol).

REUO05B0067-0134/Rev.1.34 January 2010 Page 17 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)
LENESAS Fiach Over CAN

10. The SREC Format

An SREC format file consists of a series of ASCII records. All hexadecimal (hex) numbers are Big Endian.
The records have the following structure:

Start code: One character, an S.
Record type: One digit, 0 to 9, defining the type of the data field.

Byte count: Two hex digits, indicating the number of bytes (hex digit pairs) that follow in the rest of the
record (in the address, data and checksum fields).

Address: Four, six, or eight hex digits as determined by the record type for the memory location of the first
data byte.

Data: A sequence of 2n hex digits, for n bytes of the data.

Checksum, two hex digits - the one's complement of the least significant byte sum of the values represented
by the two hex digit pairs for the byte count, address and data fields.

10.1 Record Types

Record Address Data
Type Description Bytes Sequence Notes

SO0 Block header 2 Yes Vendor specific data
S$1 Data sequence 2 Yes
S2 Data sequence 3 Yes
S3 Data sequence 4 Yes
S5 Record count 2 No Record count stored in the 2-byte address
S7 End of block 4 No Address field may contain start address of program
S8 End of block 3 No “-
S9 End of block 2 No “-

11. Example

S00F000068656C6C6F202020202000003C
S11F00007C0802A6900100049421FFF07C6C1B787C8C23783C6000003863000026
S11F001C4BFFFFE5398000007D83637880010014382100107C0803A64E800020E9
S111003848656C6C6F20776F726C642E0A0042

S5030003F9

S9030000FC

Start code Record type Byte count Address Data Checksum

12. Suggested Improvements to FOCAN

Today each node is individually chosen for reprogramming in-network using a uni%ue FoCAN Device Unlock
Code and CAN ID. The number of standard IDs is only 2048, but there are 18x10' possible combinations of
Device Unlock Codes. The PC application FOCAN Download asks the user for which FOCAN Unlock Code to

REUO05B0067-0134/Rev.1.34 January 2010 Page 18 of 20

http://en.wikipedia.org/wiki/Checksum
http://en.wikipedia.org/wiki/One%27s_complement
http://en.wikipedia.org/wiki/Least_significant_byte

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)
LENESAS Fiach Over CAN

use, where after the user enters one and the programming proceeds with the unit in network that has the
corresponding FOCAN Unlock Code written to its Canload Head firmware structure.

e There is no simple mechanism to program each product with an individual FOCAN Device Unlock Code
(or programming CAN ID). Adding a mechanism to increment the Device Unlock Code for each device’s
firmware image without having to rebuild the code has been suggested. The Device Unlock Code could
then be put on a sticker onto the product.

e Similarly, entering the checksum to the image in a post build phase is desirable — that is, add the
checksum after compile/build instead of as today where it is entered before compile time. See section 7
above for how to get the application checksum.

13. Appendix

14. More Information

a. CAN MCUs
Devices which can use this concept are primarily SH RCAN-ET MCUs, R32C/11x, M32C/8x,
M16C/6Nx, M16C/1N, M16C/29, R8C/23. FoCAN software already exists for some of these devices.

b. CAN Specification Version 2.0. 1991, Robert Bosch GmbH
c. |IEC standards 118981-5.

d. Systec CAN sniffer
GW002, or USB-CANmodul1 or 2, or all types 3204001-4.

Website and Support

Renesas Technology Website: http://www.renesas.com/

Inquiries: http://www.renesas.com/inquiry
csc@renesas.com

Revision Record

Description
Rev. Date Page Summary
1.09 Jun 16’08 — First edition issued
1.30 Jan 14 ‘09 All pages Major Worldwide Release. All text reedited and updated
for R32C.
1.31 Jun 109 Sections 1,2, 3, Updated for SH RCAN-ET.
4,82,9, and
10.2.
1.32 Aug 17 ‘09 Section 6, 9. Section 6 rearranged. “R32C, M16C, R8C using C-
startup” sub-section added. Figure section 9 modified.
1.33 Nov 4, 09 Figure 1,4, 5. Figures modified + SH map added.
1.34 Jan 1,10 Section Changed DLL file replace instructions.
“‘Download
procedure”

REUO05B0067-0134/Rev.1.34 January 2010 Page 19 of 20

http://www.renesas.com/
http://www.renesas.com/inquiry
mailto:csc@renesas.com

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)
LENESAS Fiach Over CAN

All trademarks and registered trademarks are the property of their respective owners.

10.

11.

12.

13.

Notes regarding these materials

This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.
Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.
You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.
All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)
Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.
When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.
With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.
Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:

(1) artificial life support devices or systems

(2) surgical implantations

(3) healthcare intervention (e.g., excision, administration of medication, etc.)

(4) any other purposes that pose a direct threat to human life
Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who
elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.
You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.
Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.
This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.
Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

© 2008 (2010) Renesas Technology Corp., All rights reserved.

REUO05B0067-0134/Rev.1.34 January 2010 Page 20 of 20

	1. Introduction to Flash over CAN
	2. General description of the Flash over CAN concept
	3. The Device Unlock Code
	4. Reflashing Steps
	4.1 Download procedure

	5. Modifying the default FoCAN project
	5.1 Memory Mapping of CANloader and UserApp
	5.2 The CANloader and UserApp Headers
	5.2.1 CANloader
	5.2.2 UserApp

	6. CANloader and UserApp boot procedure
	6.1 R32C, M16C, R8C using C-startup
	6.2 SH RCAN-ET
	6.3 The headers and control transfer details

	7. Checksum protection
	8. Debugging
	8.1 R8C, M16C, R32C
	8.1.1 Debugging with an E8(A)
	8.1.2 Connecting with E8 and the ID Code Check Function
	8.1.3 Debugging the Application Standalone

	8.2 SH
	8.2.1 Debugging the Application

	9. The Download Protocol
	10. The SREC Format
	10.1 Record Types

	11. Example
	12. Suggested Improvements to FoCAN
	13. Appendix
	14. More Information

