

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REU05B0067-0134/Rev.1.34 January 2010 Page 1 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)

Flash Over CAN

Table of Contents
1. Introduction to Flash over CAN .. 2

2. General description of the Flash over CAN concept .. 3

3. The Device Unlock Code.. 4

4. Reflashing Steps .. 4

4.1 Download procedure .. 5

5. Modifying the default FoCAN project.. 7

5.1 Memory Mapping of CANloader and UserApp ... 7

5.2 The CANloader and UserApp Headers .. 9

6. CANloader and UserApp boot procedure... 9

6.1 R32C, M16C, R8C using C-startup .. 9

6.2 SH RCAN-ET ... 10

6.3 The headers and control transfer details.. 12

7. Checksum protection.. 13

8. Debugging .. 13

8.1 R8C, M16C, R32C ... 13

8.2 SH .. 15

9. The Download Protocol .. 17

10. The SREC Format.. 18

10.1 Record Types * .. 18

11. Example ... 18

12. Suggested Improvements to FoCAN.. 18

13. Appendix .. 19

14. More Information .. 19

Website and Support ... 19

Revision Record... 19

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)

Flash Over CAN

1. Introduction to Flash over CAN

Flash over CAN, or FoCAN, is the ability to reprogram a Renesas CAN MCU using the CAN API over an
existing CAN network bus. This removes the need for standard debug, UART or serial interfaces to update
the device firmware.

FoCAN uses a Systec ‘CANmodul’ CAN bus interface which is part of the RCDK, or ‘CAN-D-Kit’. This HW

interface is used to send the bus CAN frames to the device. See chapter 13 ୗࡢ for information on this

interface. A Windows based Application, FoCAN Download, provides a graphical interface to program the
MCU via the CAN network. Each device can be flashed individually in-network using the unique FoCAN
Device Unlock Code.

At this writing, FoCAN firmware with a demo application is available for the R32C/118, M16C/6NK, M16C/29,
R8C/23. Also available are the SH RCAN-ET MCUs SH2A-7286 and SH2-SH7137. The SH2A-7216 is soon
to be released. FoCAN can be adapted to any other CAN equipped MCU within these families. The following
MCUs are also available on Renesas Starter Kit boards: R32C/118, M32C/87, M16C/6NK, M16C/29, R8C/23,
SH7286, SH7137. For these, FoCAN workspaces are available to download.

Figure 1. Flash over CAN may be used to reflash an application after a device is installed by giving

the device a unique programming ID.

Flash over CAN consists of a High-performance Embedded Workshop (HEW) workspace containing two
projects, CANloader and UserApp. These two projects are independent of each other in that they are not
sensitive to any code or data remapping by the linker. Both projects have a header so that the other project
can read key data; entry access points into the other program, device and version IDs, data consistency
checksum value, and the security FoCAN Device Unlock Code.

CANloader, the flashing project, is located in the first flash block of the MCU. The user application is free to
occupy the other flash block(s).

To reflash, the user PC program PC_Download will send reprogramming commands and data frames down
through the sniffer over CAN to the MCU. CANloader will first erase the user blocks and then reflash the new
user application. After completion, the device reboots, checks for data consistency and enters the user
application.

The application may be reflashed any time a user connects the PC to the bus and invokes the device’s
proper FoCAN Unlock Code and reprogramming CAN ID. When this happens the application exits, reads
the CANloader header for entry address into CANloader, tells the PC it’s ready and UserApp is reflashed
again.

REU05B0067-0134/Rev.1.34 January 2010 Page 2 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)

Flash Over CAN

2. General description of the Flash over CAN concept

F-o-CAN will work on any M16C family device with at least one CAN peripheral and internal flash memory.
The PC application, FoCAN Download, sends programming command frames and application content data
frames via USB to the Systec CANmodul sniffer which sends them over CAN to the MCU.

The FoCAN firmware is written in one HEW workspace containing two projects; CANloader, and UserApp.
CANloader resides in the first flash memory block, or first two blocks if block 0 is too small for that specific
device. CANloader erases the user application block(s) and then reflashes the UserApp firmware. The
UserApp firmware includes reflash exit code to transfer execution over to CANloader whenever reflashing is
invoked. This feature allows the device to enter reflash mode during normal execution of the application.
UserApp is also where user application code is inserted by the linker. After reflash completes, the device
reboots and checks for data consistency before entering the application.

Figure 2. Program flow. To the left: Reset, CANloader’s startup code, and entering the user

application (UserApp). To the right is shown processing of CAN frames in UserApp and in turn

CANloader if a valid download is asserted.

REU05B0067-0134/Rev.1.34 January 2010 Page 3 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)

Flash Over CAN

3. The Device Unlock Code

The default FoCAN Device Unlock Code to unlock the device and reflash is

1. For the RSK-R8C23: 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11.

2. For the RSK-M16C29: 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x12.

3. For the RSK-M32C87: 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x13.

4. For the RSK-R32C118: 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x14.

5. For the RSK-SH2A7286: 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x15.

6. For the RSK-SH27137: 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x16.

7. For the RSK-SH27216: 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x17.

Figure 3. The PC_Download application. The Device Unlock Code is entered, after pressing

‘Download’. This example shows using the default Device Unlock Code for the RSK29.

In the source code, this code is set in the file canload_head.c. Note that this is not the same as the code
used to unlock the device when accessing it via a serial flash programmer e.g. the E8 debugger.

If FoCAN Download sends the correct control frame CAN-ID, the UserApp application reads from
canload_head.c in the CANloader section for an entry address to enter CANloader. CANloader then confirms
to the sniffer that it is ready and the application is reflashed.

Warning: No other interrupts should occur during reflash, as the MCU goes into and out of MCU erase /
rewrites (E/W) mode.

4. Reflashing Steps

When the ‘Program’ button in the Windows PC application FoCAN Download is pressed, commands will be
sent to the Systec sniffer to start downloading the user application code to the MCU flash. The first flash
command frame that is sent is a FoCAN Unlock Code that the user enters right after the ‘Program’ button
was pressed on the PC. If the code matches the value in the device’s FoCAN Device Unlock Code in project

REU05B0067-0134/Rev.1.34 January 2010 Page 4 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)

Flash Over CAN

REU05B0067-0134/Rev.1.34 January 2010 Page 5 of 20

CANloader, programming is accepted, the flash_request_flag is set and the target device firmware enters
into ‘Flash over CAN’ mode. CANloader then confirms to PC_Download to proceed with the flash update.
However, only CAN frames with CAN ID value CTRL_MSG_ID are accepted and processed for
reprogramming.

The CANloader firmware will idle when not processing CAN interrupts.

UserApp firmware is reflashed into the user flash memory blocks using EW1 mode. After the user blocks are
reflashed the device reboots.

After reboot, CANloader checks that the UserApp space was successfully flashed by verifying UserApp's
memory using a checksum algorithm, and comparing the result with a checksum reference value. If
CANloader does not calculate a matching checksum to what is stored in the App-header, the device stays in
CANloader and will wait until a new attempt is made to flash UserApp.

To add a checksum to the application header you can use the default checksum algorithm or your own. This
is to be done when all application development activities are finished. See ‘Checksum protection against
failed application reflash’.

Note that the relocatable user mode (UserApp) interrupt vector will automatically be used when UserApp is
entered, as everything such as interrupt vectors, stack pointer, clock frequency etc is initialized by UserApp’s
own startup code.

4.1 Download procedure

Program the RSK board with the CANloader project binary using HEW or FDT. See your RSK’s Quick Start
Guide for details on which MCU device to use, and how to connect and program the device.

Do not download the Debug folder and session binary to the target with FoCAN Download, as it

contains the reset vector, which will then overwrite CANloader’s fixed vector. See Debugging below.

a. Program the RSK board with the CANloader project binary using HEW or FDT. See your RSK’s Quick

Start Guide for details on which MCU device to use, and how to connect and program the device.

b. After programming CANloader, unplug your debugger and press reset or power cycle the device. The

bottom red LED should light up indicating the device is in CAN bootload mode waiting to be programmed.

c. In HEW switch to the UserApp project.

d. Add your application under user_main(). To debug your application see ‘Debugging your application’

below.

e. Compile and link UserApp.

f. Start FoCAN Download.exe

The PC application FoCAN Download.exe can be found in the “PC_Download” folder in the “Flash over

CAN” Hew workspace directory. If your PC says it is missing a DLL file there are spare DLL files in the

folder of your FoCAN distribution, next to the FoCAN executable.

g. When CANloader is running on target RSK board, the FoCAN Download.exe will send CAN control

messages with CAN-ID CTRL_MSG_ID (0x201 in the example code) and subsequent program data

frames with the id DATA_MSG_ID (0x200).

h. Connect a Systec USB CANmodul sniffer to your PC and to CAN ch 0. (For the 6NK that is the CAN

connectors closest to the E8 connector.)

i. Inside FoCAN Download, Press ‘CAN Setup’ and set to 500 kbaud. CAN Message ID should default to

200 in Standard.

j. Press ‘File Open’ and select the new application binary created from compiling UserApp.

k. Press Download. The FoCAN Device Unlock Code is typically default 0x11 0x11 0x11 0x11 0x11 0x11

0x11 0x11 in the source code, but can be changed. See the variable unlockcode[8] located in the source

code file canload_head.c.

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)

Flash Over CAN

REU05B0067-0134/Rev.1.34 January 2010 Page 6 of 20

l. Press OK. It takes a moment to erase the user blocks, then the LED will flash each time a control frame

arrives and the flash process continues.

m. When the flash process is complete and CANloader is sent the ‘file complete code’ from PC_Download,

the device is fully programmed.

n. After rebooting, the UserApp header is checked for a correct checksum or code before entering. This

header code would preferably contain a valid checksum generated via the process mentioned below in

‘Checksum protection against failed application reflash’.

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)

Flash Over CAN

5. Modifying the default FoCAN project

To adjust the sample project to your particular MCU variant there are a few code mapping issues to be
looked over. Most of the items you need to consider modifying for your particular project are commented in
the file focan.h.

5.1 Memory Mapping of CANloader and UserApp

Flash memory Block 0 of the MCU contains CANloader, the flashing protocol handling project.

UserApp - the user application - may be mapped into any remaining block(s). All program code and constant data

are mapped either before or after each project’s header. The header locations are defined by the

CANLOAD_HEAD and APP_HEAD section start addresses.

Figure 4 Flash o' CAN memory layout for an SH7216 MCU.

REU05B0067-0134/Rev.1.34 January 2010 Page 7 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)

Flash Over CAN

Figure 5 For R8C, M16C and R32C block zero is at the high end of the address spectrum. Note the

red arrows indicating headers. This example shows an M16C/6Nx MCU.

These header addresses are the only thing the projects know about each other. The header member data
are certain key information pieces that the projects must be able to read from each other. The header
information members are at fixed relative offsets from the header tip. Besides execution entry point there is
information such as Firmware Version nr, Device Unlock Code, Security checksum. More can very easily be
appended to the structure.

For project CANloader, note the location of section ‘canload_head’ in Figure 5. All project sections are
subsequently placed within flash Block 0.

For project UserApp, all program code is mapped to section ‘app_program’. Note the section’s location and
the subsequent placement of the other sections for this project. Last is the header. For M16C type devices,
block numbers are reversed with respect to memory address and so ‘app_header’ is at the end of Block 1
right up against Block 0. This is done in order to keep the headers conveniently close together and the code
as ‘tight’ as possible. For SH devices, ‘app_header’ is by default located at the beginning of the first UserApp
block, e.g. Block 1.

The mapping can be rearranged. As long as a header is not in the middle of code. The checksum calculation
would then be more difficult as the checksum reference value can not be included in the checksum
calculation of the application code.

REU05B0067-0134/Rev.1.34 January 2010 Page 8 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)

Flash Over CAN

REU05B0067-0134/Rev.1.34 January 2010 Page 9 of 20

To pick header and code section addresses for your memory footprint, see your device’s HW manual under
section ‘Memory Map’ in the ‘Flash Memory’ chapter.

5.2 The CANloader and UserApp Headers

The headers are used to convey certain information between the CANloader and UserApp projects. The reason for

the split into two separate programs is so that they are independent of each other; so the linker doesn’t remap

code or data location by surprise. Each project has a header at a fixed address. This is the only information that

the projects have of each other.

5.2.1 CANloader

a. CANloader Entry Point

 UserApp reads this to enter CANloader upon a successful reflash request.

b. CANloader Firmware Version ID

 16 bytes.

c. Device Unlock Code

 8 bytes; > 18 * 10
18

 combinations.

d. HW Unit Device Nr

 4 bytes; > 4 million combinations.

5.2.2 UserApp

a. UserApp Entry Point

 CANloader reads this to enter UserApp upon a successful checksum evaluation of UserApp.

b. UserApp Firmware Version ID

 16 bytes.

c. UserApp Checksum Reference

 Default testing value 0x55AA55AA.

d. Low Address for UserApp

 Devices highest block nr start address.

e. UserApp Code Length

 Top of App header minus the above UserApp low address.

6. CANloader and UserApp boot procedure

6.1 R32C, M16C, R8C using C-startup

The boot procedure, or transfer of control between CANloader and UserApp for R32C, M16C, R8C using C-
startup files is shown below. For assembly startup versions, the procedure is roughly the same. Assembly
‘labels’ are used to set up code references in the headers instead of using C-references for example. Also
the focan_state_var is setup as a separate section using HEW instead of the sect32.inc file, etc.

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)

Flash Over CAN

HARD
RESET

HARD
RESET

PowerON Reset
boot procedure

No

Yes

Done
 reflashing

Correct
Device Unlock Code

received

(1) See separate protocol.

UserApp
boot procedure

UserApp
+

Process FoCAN
Device Unlock request

No

CANloader
boot procedure

Jump to CANloader main()

Set focan_state = COLDSTART

in PowerON_Reset()

CANloader looks at UserApp's header
to locate userapp_start() in UserApp.

Execution is then continued from there
(UserApp starts).

Jump to UserApp main()

UserApp OK to enter?
and

focan_state ! = REFLASH?

CANloader

If focan_state == REFLASH
or

Device Unlock Code received,

ERASE and REFLASH.
(1)

set focan_state = REFLASH

in EntryToLoader()

R8C/M16C/R32C FoCAN
CANloader and UserApp Project Boot Procedure

UserApp looks at CANloader's

header to locate focan_start().
Execution is then continued from there

(CANloader starts).

Figure 6. Boot procedure, or transfer of control between CANloader and UserApp for R32C, M16C, R8C

using C-startup files.

6.2 SH RCAN-ET

The SH RCAN ET FoCAN boot procedure uses C-startup files. The Manual Reset vectors are used for
transfer of control between the projects. This is so the stack pointer can be set differently in CANloader and
UserApp if desired. The stack pointer in SH is set with either by dong a hard reset or manually as we shall
see.

REU05B0067-0134/Rev.1.34 January 2010 Page 10 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)

Flash Over CAN

Figure 7. For SH devices the FoCAN boot and handover procedure between CANloader and UserApp

is slightly different from the R8C/M16C/R32C family C-startup in that the Manual reset vector is used

when the projects transfer control to each other.

The CANloader and UserApp Manual reset vectors are used together with the ‘set_jmp’ function to transfer control

between the two projects. This yields a convenient way to set the stack pointer; it will be set with the value

selected by the user in the “EntryTo…" functions. The ‘set_jmp’ assembly function was added. This function takes

as the first argument the new stack pointer (value in R4) and the address to jump to as the second argument (in

R5).

REU05B0067-0134/Rev.1.34 January 2010 Page 11 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)

Flash Over CAN

REU05B0067-0134/Rev.1.34 January 2010 Page 12 of 20

Hard resets use the ‘normal’ Reset vector. For hard resets, the SP is set in HEW using the ‘S’ section address

setting. This value is written to the interrupt vector address adjacent to the reset vector. This value for the SP can

be used by referring to it with RESET_Vectors[1]. The default manual reset vector setting is in RESET_Vectors[3].

Any ‘custom’ value can instead be passed for the SP using the first argument to ‘set_jmp()’.

6.3 The headers and control transfer details

This is not necessary reading -- only for the interested!

Here follows a detailed explanation on how the source code is set up to enable the code execution to
transfer control between CANloader and UserApp. The example is from R8C but is applicable to all FoCAN
devices.

Each project has a header so that the other one can read key data; entry access points into the other
program space, device and version IDs etc, (see header source files.) The headers’ locations in flash
memory space are specified by the flash_o_can.h file defines.

#define CANLOAD_HEAD_ADR 0xC000

...

#define APP_HEAD_ADR 0xBF00

Here is how we jump from CANloader to UserApp using an address specified inside the UserApp header:
The actual jump consists of two assembly lines of code. The first one clears register A0:

 asm("mov.w #0,A0");

The next line does an indirect jump. It jumps to the address contained in [an offset+]A0, that is, to the
address contained in BF00+0.

 asm("jmpi.a 0BF00h[A0]");

Notice the "contained in" above. The program will start executing from the address that is stored in BF00+0.
(This is not the address to jump to, but the location of the address in App-header). The next question is what
value is actually stored in BF00 (in the App-header)? This is determined at link time. The location of the
application start address is determined by the following lines in sect30_canapp.inc.

Notice the comments after ';'

;---

; Application ROM data and program section (M16C)

;---

APP_HEAD_ADR .equ 0BF00h

.section program,CODE ;Tell the linker that we are now defining a new flash memory

 ;section named 'program' and it will contain actual program code.

.org APP_ADR ;This is the starting address where the code should reside.

.glb _app_mem_start ;This is just telling the linker to first of all place a label

_app_mem_start: ;'_app_mem_start' at the beginning of the section.

The next piece of the puzzle is filling the App-header at link time with the values we need. Go to app_head.c:
(The lines are numbered for reference)

0. #pragma SECTION rom app_header

1. const uint32 app_entry_addr = (uint32) &app_entry;

2. const uint8 app_id[0x10] = "APPLIC_ID_123\0";

3. const uint16 app_check = 0x55AA;//0x73B8; //0x55AA=testing value

4. const uint8 * const app_mem_start_addr = &app_mem_start;

5. const uint16 app_length = (const uint16) ((uint8 const *)&app_entry_addr - APP_ADR);

Line 0: The header itself is located at the end of the UserApp area. Its place is specified in
sect30_canapp.inc (search for 'app_header').

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)

Flash Over CAN

Line 1: We want the address of where to execute when jumping into UserApp. This would be right at the
reset address. See ncrt0_canapp.a30. Note that this is not at APP_ADR because the first code to execute in
time is not necessarily the code right at the beginning of user memory.

Line 4: This 4th item of the header contains the actual start address in flash of all User Application code. Its
value will be APP_ADR. See explanation for sect30_canapp.inc above. (“.org APP_ADR” etc above.)

cent to reset. This is used by hardware to set the SP.

7. Checksum protection

To prevent a failed application reflashing image from running, there is an application checksum protection function

added by default. All you have to do is add the UserApp checksum to the UserApp header.

When finished developing UserApp’s application source code, a checksum for the UserApp firmware can be

calculated as follows:

1. Press SW3 at startup to read the calculated checksum from the LCD display if you are using the
RSK, or

2. Stop the debugger in CANloader where the checksum is calculated.

3. Make a note of the calculated checksum and write it to the application source code header for
variable app_check_ref. Also make the calc-checksum routine of CANloader return a calculated
checksum instead of the default constant test value 0x55AA (0x55AA55AA for the R32C).

F-o-CAN has a data checksum byte in the control message frames (CTRL_MSG_ID frames), but this is
currently not used on the embedded side. The reason is because there already is a CRC field in all CAN
data frames. Thus, it is already implemented by the CAN standard.

8. Debugging

8.1 R8C, M16C, R32C

8.1.1 Debugging with an E8(A)

When debugging with an E8: If your application uses all available memory blocks (it cannot use Block 0
where CANloader is) you must in the dialog box for E8 place the target debug kernel code in block 0 above
canloader at a higher address. See the map file for free space in block 0. By default most FoCAN UserApp
sample code uses all blocks except Block 0. Here is an example using the M16C/29.

Figure 8. You can place the target debug kernel code in block 0 above canloader at a higher address

and thereby leave all of UserApp free for your code. See the map file of your CANloader project to

find free space in block 0 that the debugger can use.

REU05B0067-0134/Rev.1.34 January 2010 Page 13 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)

Flash Over CAN

REU05B0067-0134/Rev.1.34 January 2010 Page 14 of 20

8.1.2 Connecting with E8 and the ID Code Check Function

The default serial ID Code Check Function code for connecting to the MCU with the E8(a), not to be
confused with the reflashing Device Unlock Code, is 00000000000000h, or 0xFFFFFFFFFFFFFFh. Again;
this is not the same as the FoCAN Device Unlock Code.

Always take note of the programming ID code is shown in the confirmation window when you flash the
device. It should be 00000000000000h, or 0xFFFFFFFFFFFFFFh unless you have set it to something else.

If the default value was not used, and you cannot remember the programming code, read the
CANloader.mot file that you used to program the device with, at the ID code addresses. These addresses
are found in your MCU HW manual. It will specify at what addresses the ID code values lie. Again, this is not
the FoCAN Device Unlock Code.

Example; In a certain project using the R8C/23 one could read the following ID code values by reading the
mot file at the addresses in the second column:

ID byte Address Value read
ID1 FFDF 00
ID2 FFE3 00
ID3 FFE8 00
ID4 FFEF 00
ID5 FFF3 00
ID6 FFF7 00
ID7 FFFB FF

In this case, use the ID-code 000000000000FF to unlock the device.

Tip: Use the power supply from E8 if there are problems unlocking.

8.1.3 Debugging the Application Standalone

You can debug UserApp with the E8(A) debugger standalone without CANloader. That way, CANloader
does not have to be downloaded when debugging. Use the ‘Debug’ session in UserApp to do this. Using this
session the Reset vector of UserApp (otherwise not used) is downloaded so CANloader is not needed.

To do this sith the FoCAN assembly startup versions, set
DEBUG_APP .equ 1

in sect30_canapp.inc. The reset vector will now point to the Application memory start, and not CANloader’s.

In addition, for both UserApp and CANloader projects, use the macro
#define DEBUG 1

in focan.h if you want to use or add debug code.

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)

Flash Over CAN

8.2 SH

You can trace reflashing via serial interface SCI1 using a serial terminal program on a PC. The default
settings are 38400 bps 8, N, 1. The output when reflashing should look something like in Figure 9.

Figure 9. SH reflashing session with a serial terminal attached. To receive data via the serial port the

macro DEBUG must be defined. Flash status is default 0xFF (Firmware did not download) for each

buffer before the Flash API is called. If length to flash is 0, the Flash API is not called and neither is

anything output to the trace port. Status then remains 0xFF. This happens when non-continuous

flash data is filling up a reflash RAM buffer.

The intent of the serial output feature is to be able to debug flash erase / rewrites (E/W), as there are severe

restrictions on debugging E/W code, and the flashing results cannot be seen. Trace functions have been added for

serial trace output. These can convert constants and variables to strings so they can be output. This will be

valuable for the end user to output trace messages and data, without a debugger. See source code file sci.h in the

SH FoCAN project.

REU05B0067-0134/Rev.1.34 January 2010 Page 15 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)

Flash Over CAN

REU05B0067-0134/Rev.1.34 January 2010 Page 16 of 20

There is an initial flash test that can optionally be run at the beginning of a reflash session. This ‘feature’ is
activated with the macro REFLASH_TEST. It enables one to see if the serial SCI port and the Flash API are
functioning as expected. It reads, erases and flashes a test block with dummy data and traces the data via
the serial port. Again, this test is not necessary, but a convenient debug mechanism.

For SH, CANloader needs to be taken into and out of a ‘FoCAN E/W state’. The functions
SlowClockHaltCanMaskInterrupts and ResumeClockCANandInterrupts are added to do this. The clock must
be slowed to max 40 MHz before erasing and flashing since flash E/W cannot run at the default 100MHz.
The CAN peripheral must then be halted/unhalted by these functions so that no Error Frames are sent during
flash E/W. This is because when the system frequency changes the CAN bitrate changes as well with the
system clock. Also, all interrupts must completely be masked to eliminate ANY interrupt during E/W. Slowing
the clock is done by the Flash API anyway, but the frequency must nonetheless be restored by the latter
function. This function also restores interrupts and the CAN peripheral from halt.

Note that the CPU clock change during flash E/W disrupts the serial output from clocking data out with the
correct speed. A short delay after trace data is output was therefore added in some places so the SCI
peripheral has time to clock out trace data before clock speed changes.

8.2.1 Debugging the Application

To debug the Application using E10A, CANloader must be present.

For the SH workspaces, the E10A debugger cannot be used while reflashing with FoCAN.

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)

Flash Over CAN

9. The Download Protocol

Figure 10. The Flash-over-CAN firmware download interaction process (protocol).

REU05B0067-0134/Rev.1.34 January 2010 Page 17 of 20

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)

Flash Over CAN

REU05B0067-0134/Rev.1.34 January 2010 Page 18 of 20

10. The SREC Format

An SREC format file consists of a series of ASCII records. All hexadecimal (hex) numbers are Big Endian.

The records have the following structure:

Start code: One character, an S.

Record type: One digit, 0 to 9, defining the type of the data field.

Byte count: Two hex digits, indicating the number of bytes (hex digit pairs) that follow in the rest of the

record (in the address, data and checksum fields).

Address: Four, six, or eight hex digits as determined by the record type for the memory location of the first

data byte.

Data: A sequence of 2n hex digits, for n bytes of the data.

Checksum, two hex digits - the one's complement of the least significant byte sum of the values represented

by the two hex digit pairs for the byte count, address and data fields.

10.1 Record Types

Record

Type Description

Address

Bytes

Data

Sequence Notes

S0 Block header 2 Yes Vendor specific data

S1 Data sequence 2 Yes

S2 Data sequence 3 Yes

S3 Data sequence 4 Yes

S5 Record count 2 No Record count stored in the 2-byte address

S7 End of block 4 No Address field may contain start address of program

S8 End of block 3 No “ -

S9 End of block 2 No “ -

11. Example

S00F000068656C6C6F202020202000003C
S11F00007C0802A6900100049421FFF07C6C1B787C8C23783C6000003863000026
S11F001C4BFFFFE5398000007D83637880010014382100107C0803A64E800020E9
S111003848656C6C6F20776F726C642E0A0042
S5030003F9
S9030000FC

 Start code Record type Byte count Address Data Checksum

12. Suggested Improvements to FoCAN

Today each node is individually chosen for reprogramming in-network using a unique FoCAN Device Unlock
Code and CAN ID. The number of standard IDs is only 2048, but there are 18x10

18
 possible combinations of

Device Unlock Codes. The PC application FoCAN Download asks the user for which FoCAN Unlock Code to

http://en.wikipedia.org/wiki/Checksum
http://en.wikipedia.org/wiki/One%27s_complement
http://en.wikipedia.org/wiki/Least_significant_byte

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)

Flash Over CAN

REU05B0067-0134/Rev.1.34 January 2010 Page 19 of 20

use, where after the user enters one and the programming proceeds with the unit in network that has the
corresponding FoCAN Unlock Code written to its Canload Head firmware structure.

• There is no simple mechanism to program each product with an individual FoCAN Device Unlock Code

(or programming CAN ID). Adding a mechanism to increment the Device Unlock Code for each device’s

firmware image without having to rebuild the code has been suggested. The Device Unlock Code could

then be put on a sticker onto the product.

• Similarly, entering the checksum to the image in a post build phase is desirable – that is, add the

checksum after compile/build instead of as today where it is entered before compile time. See section 7

above for how to get the application checksum.

13. Appendix

14. More Information

a. CAN MCUs

Devices which can use this concept are primarily SH RCAN-ET MCUs, R32C/11x, M32C/8x,

M16C/6Nx, M16C/1N, M16C/29, R8C/23. FoCAN software already exists for some of these devices.

b. CAN Specification Version 2.0. 1991, Robert Bosch GmbH

c. IEC standards 118981-5.

d. Systec CAN sniffer

GW002, or USB-CANmodul1 or 2, or all types 3204001-4.

Website and Support

Renesas Technology Website: http://www.renesas.com/

Inquiries: http://www.renesas.com/inquiry

 csc@renesas.com

Revision Record

Description

Rev.

Date Page Summary

1.09 Jun 16 ’08 — First edition issued

1.30 Jan 14 ‘09 All pages Major Worldwide Release. All text reedited and updated

for R32C.

1.31 Jun 1 ‘09 Sections 1, 2, 3,

4, 8.2, 9, and

10.2.

Updated for SH RCAN-ET.

1.32 Aug 17 ‘09 Section 6, 9. Section 6 rearranged. “R32C, M16C, R8C using C-

startup” sub-section added. Figure section 9 modified.

1.33 Nov 4, 09 Figure 1,4, 5. Figures modified + SH map added.

1.34 Jan 1, ‘10 Section

“Download

procedure”

Changed DLL file replace instructions.

http://www.renesas.com/
http://www.renesas.com/inquiry
mailto:csc@renesas.com

Families R8C, M16C, R32C, SH2 & SH2-A (RCAN-ET)

Flash Over CAN

All trademarks and registered trademarks are the property of their respective owners.

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate
Renesas products for their use. Renesas neither makes warranties or representations with respect to the
accuracy or completeness of the information contained in this document nor grants any license to any intellectual
property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out
of the use of any information in this document, including, but not limited to, product data, diagrams, charts,
programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military
applications such as the development of weapons of mass destruction or for the purpose of any other military
use. When exporting the products or technology described herein, you should follow the applicable export
control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and
application circuit examples, is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas products listed in this
document, please confirm the latest product information with a Renesas sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas such as that disclosed
through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas
assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information
included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light
of the total system before deciding about the applicability of such information to the intended application.
Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any
particular application and specifically disclaims any liability arising out of the application and use of the
information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products
are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of
which may cause a direct threat to human life or create a risk of human injury or which require especially high
quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare,
combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you
are considering the use of our products for such purposes, please contact a Renesas sales office beforehand.
Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who

elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas
Technology Corp., its affiliated companies and their officers, directors, and employees against any and all
damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to
the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or
damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific
characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or
damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and
software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment
for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer
software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products
are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You
should implement safety measures so that Renesas products may not be easily detached from your products.
Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this
document, Renesas semiconductor products, or if you have any other inquiries.

Notes regarding these materials

© 2008 (2010) Renesas Technology Corp., All rights reserved.

REU05B0067-0134/Rev.1.34 January 2010 Page 20 of 20

	1. Introduction to Flash over CAN
	2. General description of the Flash over CAN concept
	3. The Device Unlock Code
	4. Reflashing Steps
	4.1 Download procedure

	5. Modifying the default FoCAN project
	5.1 Memory Mapping of CANloader and UserApp
	5.2 The CANloader and UserApp Headers
	5.2.1 CANloader
	5.2.2 UserApp

	6. CANloader and UserApp boot procedure
	6.1 R32C, M16C, R8C using C-startup
	6.2 SH RCAN-ET
	6.3 The headers and control transfer details

	7. Checksum protection
	8. Debugging
	8.1 R8C, M16C, R32C
	8.1.1 Debugging with an E8(A)
	8.1.2 Connecting with E8 and the ID Code Check Function
	8.1.3 Debugging the Application Standalone

	8.2 SH
	8.2.1 Debugging the Application

	9. The Download Protocol
	10. The SREC Format
	10.1 Record Types

	11. Example
	12. Suggested Improvements to FoCAN
	13. Appendix
	14. More Information

