

Application Note

4-bit Counter

SLG47910

R19AN0189EU0101 Rev.3.00
Jul 31, 2024

 Page 1
© 2024 Renesas Electronics

Abstract

This application shows how to build a 4-bit counter and observe the simulation waveforms on GTKWave and

explains the Emulation feature on the ForgeFPGA Software. The internal oscillator is used as clock for the

counter. The counter outputs are programmed to GPIOs.

This application note comes complete with design files which can be found in the References Section.

Contents

1. Terms and Definitions ... 1

2. References .. 2

3. Introduction .. 2

3.1 Debug .. 2

3.2 Type of hardware platforms ... 2

3.3 Platform Configuration Guide .. 3

3.4 Add Test Point Controls ... 4

3.4.1. Types of areas .. 5

4. Logic Analyzer ... 7

5. Ingredients .. 8

6. Verilog Code ... 8

7. Testbench ... 8

8. Floorplan: CLB Utilization ... 9

9. Design Steps .. 10

10. Conclusion ... 12

11. Revision History .. 13

1. Terms and Definitions

FPGA Field Programmable Gate Array

FPGA Editor Main FPGA design and simulation window

Go Configure Software Hub Main window for device selection

ForgeFPGA workshop Main FPGA project window for debug and IO programming

CLB Configuration Logic Block

TP Test Point

4-bit Counter

R19AN0189EU0101 Rev.3.00
Jul 31, 2024

 Page 2

2. References

Download our free ForgeFPGA™ Designer software [1] to open the. ffpga design files [2] and view the proposed

circuit design.

[1] ForgeFPGA Designer Software, Software Download and User Guide

[2] AN-FG-001 4-Bit Counter.ffpga, ForgeFPGA Design File

[3] SLG47910, Datasheet, Renesas Electronics

[4] SLG47910 Software User Guide, Renesas Electronics

3. Introduction

This application shows how to build a 4-bit Counter using SLG47910 and how to simulate the testbench to observe

the waveform in GTKWave. Emulation function allows the user to see how the part will behave after it has been

programmed. Since the SLG47910 has One-Time-Program capability (OTP), it is important to verify the

functionality of the design you designed by emulating it.

3.1 Debug

The Debug button starts the Debug tool in ForgeFPGA Workshop Window. The Debug tool enables electronic

circuit emulation and chip programming, which uses specific hardware platform to replicate the behavior of chip

components designed. Before starting the emulation process, add test point (TP) controls to configure the

emulation process. The Test Points controls allows the user to configure the GPIOs in different options (Section

3.4)

3.2 Type of hardware platforms

After the Debug button is pressed, the Development Platform Selector and the two hardware options will be

displayed (Figure 1). Select the ForgeFPGA Development Platform option.

Figure 1: Development Platform Selector

https://www.renesas.com/us/en/document/scd/001-ffpga

4-bit Counter

R19AN0189EU0101 Rev.3.00
Jul 31, 2024

 Page 3

3.3 Platform Configuration Guide

Recommended Platform Configuration contains information about suitable sockets, adapters, and boards for

specific chip. The user can pop up the guide by clicking on platform's name into Debugging controls panel. (Figure

2)

Figure 2: Platform Configuration Guide

Figure 3: Debugging controls

Now let's review the different parts of the Debugging controls (Figure 3)

a. Change platform - select type of hardware platform with supported features.

b. Import configuration - Allows user import configuration of test points from another platforms.

c. Emulation - the current project will be loaded to the chip (but not programmed) and will be ready for test on the
hardware board.

4-bit Counter

R19AN0189EU0101 Rev.3.00
Jul 31, 2024

 Page 4

d. Test Mode - Test mode is used for connecting or disconnecting the chip’s I/O pads to TP controls, configured
by user. Also, a user can check the programmed chip using the test mode without emulation. To do this, turn on
the test mode and internal VDD button. The test mode can work without power on the chip. User will control the
power manually. Another feature of the Test Mode is that it can test with the conditions from Flash Memory.

e. Read - Read chip using hardware board.

f. Program - Program chip with the current project. For some chip models user can configure programming
process by clicking Programming options at Program button. As SLG47910 is OTP, it can be programmed only
once.

g. External Flash Controls -The data can also be read from External Flash. The read data can be accessed from
the Project Data window after the data has been read.

The current bitstream can also be loaded onto the external Flash by pressing the Program button under this
category.

h. Generator Controls - During Emulation, you can start all the test points together, or pause them or even Stop
them from running altogether as well.

i. TP Map - The Test Points of each pin will be shown next to the respective pin. (Figure 4)

Figure 4: TP Map

j. PN: SLG47910 C/V(0x0), DB HW-FW: 1.2-0.3

After the Development board with the Chip in the Socket Adapter Board has been connected, we can see the PN
(Part Number) SLG47910 being displayed at the bottom of the Debugging Controls Dialog Box (Figure 3). The
Debugging Control Window also indicates the Development Boards (DB) Hardware (HW) and Firmware (FW)
version.

3.4 Add Test Point Controls

Debugging tool controls are used to configure input signals on external inputs of chip. There are many ways in
which we can manage the chip input signals.

Use the context menu on the GPIOs with a right click to see the options of connectivity (Figure 5)

4-bit Counter

R19AN0189EU0101 Rev.3.00
Jul 31, 2024

 Page 5

3.4.1. Types of areas

1. NC (not connected)

Figure 5: N/C (Not connected)

2. Set to VDD

Figure 6: Set to VDD

3. Set to Ground GND

Figure 7: Set to GND

4. Configurable Button:

The Configurable Button has 3 aspects to it. The user can configure the button to establish the connection as

VDD, GND or Hi-Z. If the user wants the GPIO to be a fixed connection to VDD, then user needs to select the

LATCH option. The LATCH option will make sure that the GPIO is connected to a particular signal (VDD/GND/Hi-

Z) unless changed. This will enable the button to be LATCHED to VDD, unless changed. (See Figure 8a-b)

The default connection option is VDD/GND, but it can be changed to Hi-Z by selecting Hi-Z option from the Upper

Connection or the Lower Connection option as per the need from the context menu. In Figure 8b, you can see that

the Upper Connection "U" corresponds to Hi-Z, and the Bottom Connection "B" corresponds to GND.

Say, you configure the button as UNLATCHED and set the default connection as Upper Connection "U" which

equals to Hi-Z and the Bottom Connection "B" to GND. Whenever the button is pressed, there will be toggle in the

waveform between Hi-Z and GND at that very moment with the default waveform being at Hi-Z. (see Figure 8b)

Figure 8a: Latched Button with Upper Connection as VDD

4-bit Counter

R19AN0189EU0101 Rev.3.00
Jul 31, 2024

 Page 6

Figure 8b: Unlatched Button with Upper Connection as Hi-Z

5.Synchronous Logic Generator

Figure 9: Synchronous Logic Generator

Right click on the NC of the desired GPIO and from the context menu select the Synchronous Logic Generator

option. The synchronous Logic Generator is used for generating the logic pulses and waveforms for each GPIOs.

The 'Edit' Button allows the configuring of the signal. (Figure 9-10)

Figure 10: Signal Wizard for Synchronous Logic Generator

Below are the different features in the Signal Wizard for Synchronous Logic Generator (Figure 12)

1. Used Points: Amounts of points which are already used by patterns on all channels. Point indicates a moment
when generator changes a state on at least on channel.

2. Used Bandwidth: Percentage of used resources needed to successfully execute generator's pattern.

3. Pattern: 0-low/ 1-high level. We can set the pattern of pulse levels.

4. Repeat: One Shot / Cyclic / Custom

5. T / levels: it sets the duration of each pulse

6. Insert: To insert pulse before selected position

7. Remove: remove pulse from the selected position

4-bit Counter

R19AN0189EU0101 Rev.3.00
Jul 31, 2024

 Page 7

8. Invert: to invert the pattern from 1010 to 0101

9. Level Count: to insert the total number of pulses to be generated

4. Logic Analyzer

The logic analyzer allows the user test how the design behaves on the ForgeFPGA silicon during emulation

whether testing mode without external tools. The user can pop up the logic analyzer (Figure 12) by clicking the

Logic analyzer button on the ForgeFPGA tool bar (Figure 11).

Figure 11: ForgeFPGA tool bar

To run Logic Analyzer, need to press the Start button during Emulation or Test mode. Below are the different

features in the Logic analyzer:

• Mode - Trigger Mode – Single, Auto, Normal

• Samples per second – data reading frequency.

• Trigger – opens Trigger configurations.

• View options – opens GPIO view options tab.

• Debugging Controls – To select between Emulation or Test Mode

• Measurements – Measures the width of the signal at each GPIO

• Protocol Analyzer – Used to analyze signal through I2C, SPI or UART Protocols

• Start – to start the Logic Analyzer

Figure 12: Logic Analyzer window

4-bit Counter

R19AN0189EU0101 Rev.3.00
Jul 31, 2024

 Page 8

5. Ingredients

■ ForgeFPGA Device SLG47910V

■ FPGAPAK Development Board with USB cable and power supply

■ FPGAPAK Socket Adaptor Board

■ Latest Revision of ForgeFPGA Workshop software

6. Verilog Code

Shown below is the (*top*) module named counter. It’s written in Verilog language and it describes how to design

a 4-bit Up & Down Counter. It is available for download (AN_FG_001 4-bit Counter.ffpga).

(* top *) module counter(
(* iopad_external_pin, clkbuf_inhibit *) input clk,
 (* iopad_external_pin *) input nreset,
 (* iopad_external_pin *) input up_down,
 (* iopad_external_pin *) output [3:0]out_oe,
 (* iopad_external_pin *) output osc_en,
 (* iopad_external_pin *) output[3:0] counter
);

 reg [3:0] counter_up_down;
 //Output enable need to be specified only for outputs
 assign out_oe = 1;

 //OSC
 assign osc_en = 1'b1;

 always @(posedge clk or negedge nreset) begin
 if (!nreset)
 counter_up_down <= 4'h0;
 else if (up_down)
 counter_up_down <= counter_up_down + 4'd1; // if up_down = 1
 else
 counter_up_down <= counter_up_down - 4'd1; // if up_down = 0
 end

 assign counter = counter_up_down;

endmodule

7. Testbench

A testbench is written to test the functionality of the design without going through the hassle of programming or

emulating the part. For simulation, GoConfigure is configured to work with GTKWave to display the waveforms of

simulation. Below is the testbench for testing the stimulus written to test the counter. The testbench is written

under the module name as counter_tb for it be recognized as a testbench by the software.

`timescale 1ns / 1ps

module counter_tb;

4-bit Counter

R19AN0189EU0101 Rev.3.00
Jul 31, 2024

 Page 9

reg clk;
reg nreset;
reg up_down;
wire [3:0] counter;

counter cnt1(.clk(clk), .nreset(nreset), .up_down(up_down), .counter(counter));

 initial begin

 $dumpfile ("counter_tb.vcd");
 $dumpvars (0, counter_tb);

forever #10 clk = ~clk;
end
 initial begin

assign up_down = 1'b1;
assign nreset = 1'b0;

clk = 1'b0;

#30;
assign nreset = 1'b1;
#20;
#100;

assign up_down = 1'b0;
#30;
#50
$finish;
 end

endmodule

8. Floorplan: CLB Utilization

Figure 13: Floorplan

4-bit Counter

R19AN0189EU0101 Rev.3.00
Jul 31, 2024

 Page 10

9. Design Steps

1. Launch the latest version of the Go Configure Software Hub. Select the SLG47910V device and the

ForgeFPGA Workshop software will load.

2. From the ForgeFPGA tool bar (Figure 12) select the FPGA Editor tab.

3. Enter the Verilog code into the HDL editor and save the code using the save button on the top left corner of

the FPGA Editor.

4. Open the IO planner tab on the FPGA editor. Assign the IOs that are in the Verilog code to GPIO pins on

the device and save.

5. Next select the Synthesize button on the lower left side of the FPGA editor.

6. Select the Generate Bitstream button on the lower left side of the FPGA editor. Check the Logger and

Issues tabs to make sure that the bit steam was generated correctly. Now click on the Floorplan tab and

see the CLB utilization Press the Ctrl and the mouse wheel to zoom-in. Confirm that the IOs selected in

the IO Planner (Figure 14). are shown in the floorplan (Figure 13). The IO Planner has been set in such a

way that the board uses an external clock instead of the OSC clock on-board.

Figure 14: IO Planner

7. To simulate the testbench, make sure that the software is linked to the GTKWave software in the software

settings.[4]. To run simulation, user can click on the respective button on the toolbar to initiate the
simulation process. If there are no errors, then the GTKWave software should open automatically.

8. Users can observe the waveforms in GTKWave. See Figure 15

4-bit Counter

R19AN0189EU0101 Rev.3.00
Jul 31, 2024

 Page 11

Figure 15. Simulated waveforms in GTKWave

9. The counter design is now ready to load onto the FPGA using the development board. Connect the
ForgeFPGA Development Board attached with the Adapter Board and the SLG47910 part placed in the
socket mounted on to the board.

10. Close the FPGA Editor and go to the ForgeFPGA widow (Figure 16). Selecting the Debug tab will enable
the debug controls. Double click on the VDD pin and set VDD= 1.2v. Then double click on VDDIO pin and
set VDDIO= 1.8v.

11. In the ForgeFPGA Workshop window, select Change platform on the Debugging Controls tab. Choose the
ForgeFPGA Development Platform then select Emulation. The Emulation button will toggle the design on
and off.

12. The IO planner has GPIO0 configured as an input. In the ForgeFPGA window, left click on the blue circle
of GPIO0 and select Button. Now the input up_down can be toggled to count-up or count-down.

Figure 16: Forge FPGA Window

4-bit Counter

R19AN0189EU0101 Rev.3.00
Jul 31, 2024

 Page 12

13. Now the counter is loaded onto the FPGA device. GPIO [4:1] will have the outputs of the counter on them.

Apply oscilloscope probes to GPIO [4:1] to view the counter output (Figure 17).

Figure 17: Waveforms of 4-bit counter after Emulation

10. Conclusion

The procedure outlined in this application example can be applied to any circuit design that is implemented in

Verilog Code. The Emulation and the Test Points can be manipulated as per the application and all the output can

be observed with the help of ForgeFPGA Development Board. The testbench is written to test out the functionality

of the design with waveforms on GTKWave. The 4- Bit Counter.ffpga design file can be downloaded as an example

of the emulation features discussed in this application note. If interested, please contact the ForgeFPGA business

Support Team.

4-bit Counter

R19AN0189EU0101 Rev.3.00
Jul 31, 2024

 Page 13

11. Revision History

Revision Date Description

1.00 July 29, 2022 Initial release.

2.00 Feb 15, 2024 Updated as per BB revision

3.00 July 07,2024 Updated as per ForgeFPGA Workshop v6.43

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

