

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

APPLICATION NOTE

Page 1 of 22

1. Overview
The following article shows sample of general-purpose startup program used into 32170/32174 group, 32171 group, 32176 group.

2. Introduction
The explanation of this issue is applied to the following condition:

• Microcomputer: 32170/32174 Group
32171 Group
32176 Group

• Operation frequency: 20 to 40 MHz

32170/32174 Group, 32171 Group, 32176 Group
Example of Startup Program

REJ05B0671-0100/Rev.1.00 Jan 2006

REJ05B0671-0100/Rev.1.00 Jan 2006 Page 2 of 22

32170/32174 Group, 32171 Group, 32176 Group
Example of Startup Program

3. Summary of the startup program
For an embedded application program to be run on the target system, you must have a startup program to initialize the
target system, in addition to the user program and an EIT (Exception, Interrupt, Trap) handler routine.
EIT handler is detailed in chapter 4, “The Outline of EIT”

3.1 Method for Creating a Startup Program
To run an embedded application on the target system, you must have a program known as the “startup program” which
calls up the user program (main function). The startup program performs initialization and processing, items (1) through
(12) below.

(1) EIT Vector Entry
(2) Set Protect ID
(3) ICU Vector Table
(4) Allocate memory for the SFR area
(5) EIT handler processing
(6) Allocate memory for the stack area
(7) Set microprocessor operation mode
(8) Set the stack pointer
(9) Set the data area sections (B, D)
(10) Set Base register
(11) Call the main function
(12) IE bit Operation Function

The need for these processing varies with the contents of the actual application program.
Additional processing may be required, or some of the above processing may not be necessary.
In case the C standard library is used, it may be required to incorporate initializing and terminating.
For details refer to the “CC32R User's Manual C Compiler”.

REJ05B0671-0100/Rev.1.00 Jan 2006 Page 3 of 22

32170/32174 Group, 32171 Group, 32176 Group
Example of Startup Program

3.1.1 EIT Vector Entry
(Lines 10 through 63 in Chapter 5, “Sample Programming Code”)
EIT vector entry is placed at the head of an internal ROM area or an extended area, and allocates a branch instruction to
the processing handler start address (Note) of each EIT phenomenon. (Note: It is not branch address)
For details about EIT phenomenon refer to chapter 4, “The Outline of EIT”.

3.1.2 Setting Protect ID
(Lines 65 through 67 in Chapter 5, “Sample Programming Code”)
As general-purpose serial programmer, writing and erasing tools of internal flash memory in emulators and so on are in
used, it checks out ID inputted with the tool against ID in an internal flash memory. Unless it is inputted right ID, writing
and erasing operation are not accepted. (In some tools, after erasing all areas, it becomes possible to use tool operation
and to write in internal flash memory.)
If it is not necessary to protect internal flash memory, set all checking ID areas for protection of an internal flash memory
(H'0000 0084 to H'0000 0093) up as H'FF. It is assumed that protect ID is not necessary in this sample program.

3.1.3 ICU Vector Table
(Lines 70 through 109 in Chapter 5, “Sample Programming Code”)
Set ICU Vector Table (in the case of 32170, it is the address from H'0000 0094 to H'0000 010F) up as the start address of
the interrupt handler of each internal peripheral I/O. As an interrupt request is accepted, set address of low 16 bits for
ICU vector table that corresponds to sources of acception for it up as an Interrupt Vector Register (IVECT). As for EIT
handler, the address of an ICU vector table is acquired by reading out the contents of this IVECT register under LDH
command.

3.1.4 Allocating memory for the SFR area
(Lines 111 through 116 in Chapter 5, “Sample Programming Code”)
The register of internal peripheral I/O is allocated from address H'0080 0000. 16K bytes of SFR (Special Function
Register) area is allocated here.

3.1.5 EIT handler processing
(Lines 120 through 197 in Chapter 5, “Sample Programming Code”)
If an EIT phenomenon occurs, the program that was being run till then is interrupted, and after running a hardware
preprocessing (after-mentioned), it will branch to EIT handler processing.
In the case of this sample program, the EIT handler of external interrupt (EI) is realized.
For details refer to chapter 4.3, “Procedure for Processing of External Interrupts (EI) by EIT Handler”.
As system break interruption, exception and trap are occurred, handler processing is infinite loop processing.
In those cases, please describe the start address (label name) of the processing in the part where an EIT vector entry
corresponds.

REJ05B0671-0100/Rev.1.00 Jan 2006 Page 4 of 22

32170/32174 Group, 32171 Group, 32176 Group
Example of Startup Program

3.1.6 Allocating memory for the stack area
(Lines 218 through 227 in Chapter 5, “Sample Programming Code”)
Allocate memory for the stack area required for the operation of the application. This generally is accomplished by
declaring a stack area section with the pseudo-instruction. [.SECTION] and allocating memory for the stack area with the
pseudo-instruction [.RES] in an assembly program.
The stack size required for the operation of the application is determined by considering the relationship between
function calls and the stack size used by each function.
However, because it is difficult to find the exact stack size, a more practical method is adopted in which the necessary
amount of stack is examined by actually running the application in the debug and evaluation processes. (For example, an
ample stack area is allocated at the initial stage and then the necessary amount of stack is examined using a debugger.)
In addition, there is also the method of using a stack size calculation utility (stk32R). Stk32R is able to calculate stack
size for operating program with adding “-stack” option and processing outputted stack quantity consumed indication file
when compile. For details refer to the “CC32R User's Manual C Compiler”.
Because the stack is used in units of WORD (4 bytes), the stack area must be allocated in units of 4 bytes.
In this sample program 2048 bytes of stack area is secured. (It is necessary to secure a suitable stack area by the program
in fact)

3.1.7 Setting microprocessor operation mode
(Lines 234,235,297 through 299 in Chapter 5, “Sample Programming Code”)
Specify which stack to use and whether or not to enable interrupts for the target microprocessor by using the Processor
Status Word (PSW) register.
The Processor Status Word (PSW) register indicates the status of the CPU, and consists of a normally used PSW field
and a BPSW field used to save the PSW field when an EIT occurs.
In this sample program, settings are made to “disable interrupts” immediately after program execution, and to “use the
interrupt stack” and “enable interrupts” immediately before calling the main function.

3.1.8 Setting the stack pointer
(Lines 240 through 243 in Chapter 5, “Sample Programming Code”)
Set the most significant address of the allocated stack area in the stack pointer.
Because it has described that setting of interrupt stack is only used (stack mode bit (SM) is always “0”) on the
assumption, stack for users is not set up.

REJ05B0671-0100/Rev.1.00 Jan 2006 Page 5 of 22

32170/32174 Group, 32171 Group, 32176 Group
Example of Startup Program

3.1.9 Setting the data area sections (B, D)
Embedded applications require initializing the data area without initial values (section B) and the data area with initial
values (section D).
Perform the following operations when linking the application and when executing the startup program:
(1) When linking the application

• Locate sections D and B in the RAM area. (Only allocate memory, without data output.).
• Locate the initial value data area for section D (ROM_D) in the ROM area.

(2) When initializing the startup program
• Initialize section B in the RAM area by clearing it to “0” (filling the area with 0s).

(Lines 246 through 257 in Chapter 5, “Sample Programming Code”)
• Initialize the data located in the ROM_D section of the ROM area by transferring it into section D in the RAM

area.
(Lines 260 through 273 in Chapter 5, “Sample Programming Code”)

3.1.10 Setting base register
(Lines 276 through 292 in Chapter 5, “Sample Programming Code”)
If the “-rel16” option is added when compiling, R11, R12, R13-based register relative indirect instruction is outputted for
access to symbols for sections D and B.
Here, the program sets the R12 register and defines “_ _REL_BASE12” required for it. Because in this sample program,
H'0080 8000 is defined for “_ _REL_BASE12”, the register relative indirect instruction is output for the area ±32KB
from H'0080 8000. And in case of adding “-access” option, an access control file is required in addition to setup the
above-mentioned base register.
For details refer to the “CC32R User’s Manual C Compiler”.

3.1.11 Calling the main function
(Lines 301 in Chapter 5, “Sample Programming Code”)
A subroutine call is set at the start address of the main function. For programs comprised not to return from the main
function, a simple jump instruction can suffice.
For details, refer to the “CC32R User’s Manual C Compiler”.

3.1.12 IE bit operation function
(Lines 309 through 323 in Chapter 5, “Sample Programming Code”)

• Interrupt enable function (EnInt)
Interruption is enabled by setting the interrupt enable bit (IE) of PSW to “1”.

• Interrupt disable function (DisInt)
Interruption is disabled by clearing IE bit of PSW to “0”.

REJ05B0671-0100/Rev.1.00 Jan 2006 Page 6 of 22

32170/32174 Group, 32171 Group, 32176 Group
Example of Startup Program

4. The Outline of EIT
In process of CPU is running the usual program, if a certain phenomenon occurs, it may be necessary to interrupt the
program and run another program. Such a phenomenon is generically called an EIT (Exception, Interrupt, and Trap)
phenomenon.

4.1 Causes of EIT
There are following causes of EIT for the M32R/ECU.

(1) Exception
Exception occurs for errors or violations encountered during instruction execution, and include the following.

• Reserved Instruction Exception (RIE)
This Exception occurs when an unimplemented instruction is detected.

• Address Exception (AE)
This Exception occurs when an attempt is made to access non-aligned addresses in load or store instructions.

(2) Interrupt
Interrupts are generated for hardware causes or sources of the microcomputer, and include the following:

• Reset Interrupt (RI)
It is generated when a reset signal is accepted.
Reset interrupt has the highest priority.

• System Break Interrupt (SBI)
This is an emergency interrupt generated when power-down condition is detected or when a faulty state is
notified by an external watchdog timer, etc. This interrupt can only be used in cases where the interrupt
handler does not return to the main routine.

• External Interrupt (EI)
Interrupt request from each internal peripheral I/Os controlled by interrupt controller. The interrupt controller
controls interrupt by 8 level priority order include interrupt disable.

(3) Trap
This refers to a software interrupt generated by executing the TRAP instruction in the program.

REJ05B0671-0100/Rev.1.00 Jan 2006 Page 7 of 22

32170/32174 Group, 32171 Group, 32176 Group
Example of Startup Program

4.2 The Outline of EIT processing
As EIT phenomenon occurs, EIT processing takes place. In EIT processing there are areas which the hardware processes
automatically or which the user routine program (EIT handler) processes.
EIT Processing Procedure except for Interrupt Reset is below.

(1) Processing in hardware when an EIT is accepted
• Register transfer: PC => BPC
• Register transfer: PSW => BPSW

(2) EIT handler
• Executes the instruction in the appropriate EIT vector entry for the cause of occurrence (branch instruction to

the appropriate EIT handler, Lines 10 through 63 in Chapter 5, “Sample Programming Code”)
• After executing the EIT handler, the processor exits from it with the RTE instruction. (except SBI)

(3) Processing in hardware after Command RTE
• Register transfer: BPSW => PSW
• Register transfer: BPC => PC

Figure 4.2.1 Outline of EIT Processing Procedure

Instruction

A

PC BPC

PSW (B)PSW

EIT vector
entry EIT handler except for SBI

RTE

instruction

Program suspended
and EIT request
accepted

Instruction
processing-canceled

type (RIE, AE)

Instruction processing-completed
type (EI, TRAP)

Program execution restarted

EIT request
generated

Hardware preprocessing

BPC, (B)PSW

and general-purpose

registers are saved

to the stack

(Note 1)

Branch

instruction

General-purpose

registers, (B)PSW

and BPC are restored

from the stack

Hardware postprocessing

(SBI) Program terminated
or system is reset

User created EIT handler

(B)PSW PSW

BPC PC

Processing

by handler

Note 1: This is a branch instruction, and not the jump address.
Note 2: (B)PSW indicates the BPSW field for the PSW register.

(Note 2)

SBI
(System Break

Interrupt processing)

Instruction

B

Instruction

C

Instruction

C

Instruction

D

REJ05B0671-0100/Rev.1.00 Jan 2006 Page 8 of 22

32170/32174 Group, 32171 Group, 32176 Group
Example of Startup Program

4.3 Procedure for Processing of External Interrupts (EI) by EIT Handler
The EIT handler processing procedure of external interrupts (EI) is shown below and also it is shown line 120 though
197 in chapter 5, “Sample Programming Code”.
 It has optimized so that it can run at the maximum high speed considering a motion of a pipeline and so on.

Figure 4.3.1 The example of EI handler processing operation from internal peripheral I/O of M32R/ECU

Note 1: For operations at EIT acceptance and return from EIT, also see Section 4.2, "The Outline of EIT Processing."

Note 2: Do not read the Interrupt Vector Register (IVECT) or write to the Interrupt Request Mask Register (IMASK)

 in the EIT handler unless interrupts are disabled.

Note 3: When multiple interrupts are disabled, execute processing in [4]. Processing in [4] is unnecessary if multiple

 interrupts are enabled by executing processing in [6] and [9].

Note 4: To enable multiple interrupts, execute processing in [6] and [9].

Note 5: To reenable interrupts (by setting the IE bit to "1") after reading the Interrupt Vector Register (IVECT),

 perform a dummy access to the internal memory, etc. before reenabling interrupts. In the example here,

 there is no need to add a dummy access because the ICU vector table is read after reading the IVECT register.

 Similarly, to reenable interrupts (by setting the IE bit to "1") after writing to the Interrupt Request Mask Register

 (IMASK), perform a dummy access to the internal memory, etc. before reenabling interrupts.

Note 6: Depend on groups of microcomputer. the address assigned by ICU Vector is different.

 (Here, 32170 is assumed to be an example.)

H'0000 0080 BRA instruction

Read Interrupt Vector

Register (IVECT)

Read ICU vector table

Branch to the interrupt handler

for each internal peripheral I/O

RTE

H'0080 0004

H'0000 0094

H'0000 010F

Interrupt

handler

EI (External Interrupt)

handler

EI (External Interrupt)

vector entry

Interrupt handler
start address

Program being

executed

Interrupt

generated

IVECT

Save BPC to the stack

Save PSW to the stack

Save general-purpose

registers to the stack

Restore BPC from the stack

Restore PSW from the stack

Restore general-purpose

registers from the stack

Read and save Interrupt

Request Mask Register

(IMASK) to the stack

IMASK

H'0080 0000

Set PSW register IE bit to "1"

Clear PSW register

IE bit to "0"

Restore Interrupt Request

Mask Register (IMASK)

from the stack

[1]

[2]

[3]

[5]

[7]

[8]

[9]

[6]

[10]

[11]

ICU vector table

(Note 1)

(Note 1)

Hardware preprocessing

when EIT is accepted

Hardware postprocessing
when RTE instruction

is executed

Read and overwrite

Interrupt Request Mask

Register (IMASK)
[4]

[12]

(Note 2)

(Note 6)

(Note 2)

(Note 3)

(Note 4)

(Note 5)

(Note 4)

(Note 2)

Interrupt

handler

[1] to [12]: Processing of EI

 by interrupt handler

REJ05B0671-0100/Rev.1.00 Jan 2006 Page 9 of 22

32170/32174 Group, 32171 Group, 32176 Group
Example of Startup Program

The External Interrupt (EI) in Figure 4.3.1 is explained here.

(1) Saving each registers to the stack
 (BPC, PSW, general-purpose registers, and accumulator)

• Backup PC (BPC) evacuates the value of a program counter (PC) when EIT occurs.
At that time, the value of PC just before that or next commanded is set, and the value of BPC is returned to
PC when “RTE command” runs.
(Lines 147,162 in Chapter 5, “Sample Programming Code”)

• PSW is the register that displays the status of M32R, and consists of PSW field usually used and BPSW field
for evacuating PSW field when EIT occurs. SM, IE, and C in PSW register are evacuated respectively to
BPSW, when EIT occurs.
(Lines 145,161 in Chapter 5, “Sample Programming Code”)

• General-purpose registers (R0 - R15) that are used in the EIT handler must always be saved. The registers
used in user processing executed from the EIT handler also need to be saved.
(Lines 129 through 132,134,144,146,148,156,157 in Chapter 5, “Sample Programming Code”)

• The accumulator (ACC) must always be saved if DSP feature instructions or the multiply instruction (MUL)
are used in the EIT handler.
(Lines 137 through 140 in Chapter 5, “Sample Programming Code”)

(2) Reading out the Interrupt Mask Register (IMASK) and saving to the stack
 (Lines 133,142,163 in Chapter 5, “Sample Programming Code”)

• Reading out the Interrupt Mask Register and saving to the stack

(3) Reading out the Interrupt Vector Register (IVECT)
 (Lines 143,150 in Chapter 5, “Sample Programming Code”)

• Reading out the IVECT.
• By reading out this IVECT, hardware set the interrupt priority level (ILEVEL) of the interrupt demand sources

received automatically to IMASK register as a new value.

(4) Reading out and overwrite IMASK
 (Lines 152 to 154 in Chapter 5, “Sample Programming Code”)

• Reading out IMASK and overwrite IMASK with the read value.
• This processing is not necessary in case of permitting multiple interruptions.

(5) Reading out the ICU vector table
 (Lines 159 in Chapter 5, “Sample Programming Code”)

• Read out the ICU vector table received interrupt demand sources. The address corresponding the ICU vector
table is obtained by zero expansion that expands the contents read in (3) above (address low 16 bits of the
ICU vector table which receives interrupt demand sources) of the interrupt vector table register.

(6) Permission of multiplex interrupt
 (Lines 135,165 in Chapter 5, “Sample Programming Code”)

• In case of permitting higher interrupt of a priority level during interrupt processing (permission of multiplex
interrupt), it sets IE bit of PSW to “1”. In this sample programming code, multiplex interrupt is set as
permission.

REJ05B0671-0100/Rev.1.00 Jan 2006 Page 10 of 22

32170/32174 Group, 32171 Group, 32176 Group
Example of Startup Program

(7) Branching to Interrupt handler of each Internal Peripheral I/Os
 (Lines 167 in Chapter 5, “Sample Programming Code”)

• It branches to the start address of the interrupt handler read in (5) above.

(8) Processing Interrupt handler of each Internal Peripheral I/Os

(9) Prohibiting interrupt
 (Lines 169,170 in Chapter 5, “Sample Programming Code”)

• By clearing IE bit to “0”, Interrupt is prohibited.

(10) Restoring the Interrupt Mask Register
 (Lines 172,173,178 in Chapter 5, “Sample Programming Code”)

• Restore the Interrupt Mask Register that is saved in (2).

(11) Restoring each registers from the stack
 (Accumulator, general-purpose registers, PSW, BPC.)
 (Lines 171,172,174 through 177, 179 through 195 in Chapter 5, “Sample Programming Code”)

• Restore the Register that is saved in (1).

(12) Completion of external interrupt processing
 (Lines 197 in Chapter 5, “Sample Programming Code”)

• Complete external interrupt processing by RTE command.

REJ05B0671-0100/Rev.1.00 Jan 2006 Page 11 of 22

32170/32174 Group, 32171 Group, 32176 Group
Example of Startup Program

Interrupt Vector Register

(IVECT)

Interrupt Request Mask

Register (IMASK)

NEW_IMASK

External Interrupt (EI)

request generated

(maskable)

IMASK
compari-
son

ILEVEL

System Break Interrupt (SBI)

request generated

(nonmaskable)

SBI#

EI

SBI

Interrupt Controller (ICU)

Interrupt Control Register

SBI Control Register

(SBICR)
SBIREQ

IREQ

IREQ

IREQ

IREQ

IREQ

IREQ

Peripheral circuits

Edge

Interrupt

control circuit

Edge

Edge

Level

Interrupt request

Interrupt request

Interrupt request

Level

Level

To the CPU core

To the CPU core

Interrupt

control circuit

Interrupt

control circuit

P
ri
o

ri
ty

 r
e

s
o

lv
e

d
 b

y
 i
n

te
rr

u
p

t
p

ri
o

ri
ty

 l
e

v
e

ls
 s

e
t

P
ri
o

ri
ty

 r
e

s
o

lv
e

d
 b

y
 f

ix
e

d
 h

a
rd

w
a

re
 p

ri
o

ri
ty

4.4 Interrupts from Internal Peripheral I/Os
Interrupts from the internal peripheral I/Os are taken care of by the Interrupt Controller (ICU) along with system break
interrupts, and are notified as external interrupt (EI) to the M32R CPU.
The 32170 has a total of 31 sources for interrupts from the internal peripheral I/Os, which are assigned priority in levels
up to 8 (including interrupts disabled) for management purposes. When multiple interrupts with the same priority occur
simultaneously, they are resolved by predetermined hardware priority. The source for an interrupt request generated from
internal peripheral I/Os can be identified by reading the internal peripheral I/Os' interrupt status register.

Figure 4.4.1 Block Diagram of the Interrupt Controller

REJ05B0671-0100/Rev.1.00 Jan 2006 Page 12 of 22

32170/32174 Group, 32171 Group, 32176 Group
Example of Startup Program

4.4.1 Interrupt Sources of Internal Peripheral I/Os
The interrupt controller receives as its inputs the interrupt requests from MJT (multijunction timer), DMAC, serial
interface, A/D converter, RTD, and CAN.
For details about these interrupts, refer each section at user’s manual in which the relevant internal peripheral I/O is
described.

Table 4.4.1 32170 Interrupt Sources of Internal Peripheral I/Os

Note 1: ICU type of input source
 Edge-type: Interrupt requests are generated on a falling edge of the interrupt signal applied to the ICU.
 Level-type: Interrupt requests are generated when the interrupt signal applied to the ICU is held low.
 For these level-recognized interrupts, the ICU's Interrupt Control Register IRQ bit
 cannot be set or cleared in software.

Interrupt source Contents
Number
of Input
Source

ICU Type of
Input Source

(Note 1)

A/D0 converter interrupt Single-shot operation of A/D0 converter’s scan mode completed,
single mode completed, or comparator mode completed 1 Edge-type

A/D1 converter interrupt Single-shot operation of A/D1 converter’s scan mode completed,
single mode completed, or comparator mode completed 1 Edge-type

SIO0 transmit interrupt SIO0 transmit buffer empty interrupt 1 Edge-type
SIO0 receive interrupt SIO0 reception completed or receive error interrupt 1 Edge-type
SIO1 transmit interrupt SIO1 transmit buffer empty interrupt 1 Edge-type
SIO1 receive interrupt SIO1 reception completed or receive error interrupt 1 Edge-type
SIO2, 3 transmit/
receive interrupt

SIO2, 3 reception completed or receive error interrupt,
Transmit buffer empty 4 Level-type

SIO4, 5 transmit/ receive
interrupt

SIO4, 5 reception completed or receive error interrupt,
Transmit buffer empty 4 Level-type

TID0 output interrupt TID0 output 1 Edge-type
TID1 output interrupt TID1 output 1 Edge-type
TID2 output interrupt TID2 output 1 Edge-type
TOD0 output interrupt TOD0_0 - TOD0_7 outputs 8 Level-type
TOD1+TOM0 output
Interrupt TOD1_0 - TOD1_7 outputs + TOM0_0 - TOM0_7 outputs 16 Level-type

TML1 input interrupt TML1 input (TIN30 - TIN33 inputs) 4 Level-type
RTD interrupt RTD interrupt generation command 1 Edge-type
DMA transfer interrupt 0 DMA0 - 4 transfers completed 5 Level-type
DMA transfer interrupt 1 DMA5 - 9 transfers completed 5 Level-type

CAN0 transmit/receive &
error interrupt

CAN0 transmission completed, CAN0 reception completed
CAN0 error passive, CAN0 error bus off, CAN0 bus error

19 Level-type

MJT output interrupt 7 MJT output interrupt group 7 (TMS0 and TMS1 outputs) 2 Level-type
MJT output interrupt 6 MJT output interrupt group 6 (TOP8 and TOP9 outputs) 2 Level-type
MJT output interrupt 5 MJT output interrupt group 5 (TOP10 outputs) 1 Edge-type
MJT output interrupt 4 MJT output interrupt group 4 (TIO4 - TIO7 outputs) 4 Level-type
MJT output interrupt 3 MJT output interrupt group 3 (TIO8 and TIO9 outputs) 2 Level-type
MJT output interrupt 2 MJT output interrupt group 2 (TOP0 - TOP5 outputs) 6 Level-type
MJT output interrupt 1 MJT output interrupt group 1 (TOP6 and TOP7 outputs) 2 Level-type
MJT output interrupt 0 MJT output interrupt group 0 (TIO0 - TIO3 outputs) 4 Level-type
MJT input interrupt 4 MJT input interrupt group 4 (TIN3 - TIN6 inputs) 4 Level-type
MJT input interrupt 3 MJT input interrupt group 3 (TIN20 - TIN23 inputs) 4 Level-type
MJT input interrupt 2 MJT input interrupt group 2 (TIN12 - TIN19 inputs) 8 Level-type
MJT input interrupt 1 MJT input interrupt group 1 (TIN0 - TIN2 inputs) 3 Level-type
MJT input interrupt 0 MJT input interrupt group 0 (TIN7 - TIN11 inputs) 5 Level-type

REJ05B0671-0100/Rev.1.00 Jan 2006 Page 13 of 22

32170/32174 Group, 32171 Group, 32176 Group
Example of Startup Program

Interrupts signaled to the ICU are recognized by either edge or level. Each type of interrupt is schematically explained below.

Figure 4.4.2 Interrupt Sources Signaled to the ICU (Edge Type)

Figure 4.4.3 Interrupt Sources Signaled to the ICU (Level Type)

Interrupt request from
each internal peripheral I/O

Interrupt enabled

ILEVEL

(levels 0-7)

Data bus

b5-7 or b13-15

3

F/F

Set

Set/clear

IREQ

Interrupt priority

resolving circuit
F/F

Reset
IVECT read

IMASK write

Clear

To the CPU core

b3 or b11

Set EI

Interrupt request from each

group internal peripheral I/O

Interrupt enabled

b3 or b11Data bus

b5-7 or b13-15

Read

3

IREQ

Read-only circuit

ILEVEL

(levels 0-7)

Group interrupt

Interrupt priority

resolving circuit
F/F

Clear

To the CPU core
Set EI

Reset
IVECT read

IMASK write

REJ05B0671-0100/Rev.1.00 Jan 2006 Page 14 of 22

32170/32174 Group, 32171 Group, 32176 Group
Example of Startup Program

(1) Edge-type interrupt sources

For edge-type interrupt sources, the ICU's internal Interrupt Control Register interrupt request bit can be set and cleared
by writing to the register in software. The bit can also be cleared by reading out the Interrupt Vector Register (IVECT).

(2) Level-type interrupt sources

The level-type interrupt sources differ from the other type in that two or more interrupt sources are grouped into a single
source as they are mapped to the interrupt vector table. These interrupt sources are controlled for interrupt request and
resolved for interrupt input by an interrupt control register in each internal peripheral I/O before being fed into the ICU.
Therefore, the ICU's internal interrupt request bits function only as an interrupt-enabled interrupt request judgment bit
and cannot be set or reset by writing in software. The diagram below shows example configuration of Interrupt request
status register and Mask register.

Figure 4.4.4 Example configuration of Interrupt request status register and Mask register (MJT)

• Internal peripheral I/O interrupt request status bit

This status bit is used to determine whether any interrupt is requested. This bit is set in hardware when an interrupt
request occurs, but cannot be set in software. The status bit is cleared by writing as “0” but does not change its state by
writing as “1”. Because this bit behaves independently of interrupt mask bits, it can also be used to verify the operation
of peripheral functions. During interrupt processing, make sure that of the grouped interrupt request status flags, only the
flag for which interrupt has been serviced is cleared. Clearing any flag for which interrupt has not been serviced yet
results in the pending interrupt requests being also cleared. When all interrupt request status flags for grouped interrupt
sources are cleared, the level-type interrupt request for that interrupt group is cleared.

To the Interrupt

Controller

Timer or TIN input

Interrupt request

Interrupt request status

Data bus

Set

Group interrupt

Interrupt request enabled

clear
F/F

F/F

Data = 0

REJ05B0671-0100/Rev.1.00 Jan 2006 Page 15 of 22

32170/32174 Group, 32171 Group, 32176 Group
Example of Startup Program

Figure 4.4.5 Example for Clearing Interrupt Status

b4 5 b7

Interrupt request status

Initial state

Event occurs on bit 6

Interrupt request

Event occurs on bit 4

Only bit 6 cleared

Bit 4 data retained

b4 5 b7

1 1 0 1

Write to the interrupt request status

Example for clearing interrupt request status

0 0 0 0

0 0 1 0

1 0 1 0

1 0 0 0

Program example

ISTREG = 0xfd; /* Clear ISTAT1 (0x02 bit) only */

• To clear the Interrupt Request Status Register 0 (ISTREG) interrupt request status 1, ISTAT1 (0x02 bit)

To clear an interrupt request status, always be sure to write "1" to all other interrupt request status bits. At this time,

avoid using a logic operation like the one shown below. Because it requires three step-ISTREG read, logic operation

and write, if another interrupt request occurs between the read and write, status may be inadvertently cleared.

b4 5 6 b7

Interrupt request status

Event occurs on bit 6

Event occurs on bit 4

Only bit 6 cleared

Bit 4 also cleared

0 0 1 0

1 0 1 0

0 0 0 0

Read

0 0 1 0

0 0 0 0

Clear bit 6 (AND'ing with 1101)

Write

6

6

ISTREG &= 0xfd; /* Clear ISTAT1 (0x02 bit) only */

REJ05B0671-0100/Rev.1.00 Jan 2006 Page 16 of 22

32170/32174 Group, 32171 Group, 32176 Group
Example of Startup Program

5. Sample Programming Code
The sample program of a startup program (startup.ms) is shown below.
Depending on the contents of an application program, there may be some processing that should be added or deleted
besides the following processing,

 1 ;""FILE COMMENT"" **
 2 ;* M32R C Programming Rev. 1.01
 3 ;* < Sample startup Program for 32170/32171/32174/32176 >
 4 ;*
 5 ;* Copyright (c) 2003 Renesas Technology Corporation
 6 ;* And Renesas Solutions Corporation
 7 ;* All Rights Reserved
 8 ;**
 9 ;
 10 ;**
 11 ; EIT Vector Entry
 12 ;**
 13 ;
 14 .SECTION EITVECT, CODE, ALIGN=4
 15 ;
 16 .EXPORT reset, EIT_reset, EIT_loop
 17 ;
 18 reset:
 19 BRA EIT_reset:24 ; H'0000 0000 Reset Interrupt (RI)
 20 NOP
 21 NOP
 22 NOP
 23 NOP
 24 NOP
 25 NOP
 26 BRA EIT_loop:24 ; H'0000 0010 System Break Interrupt (SBI)
 27 NOP
 28 NOP
 29 NOP
 30 NOP
 31 NOP
 32 NOP
 33 BRA EIT_loop:24 ; H'0000 0020 Reserved Instruction Exception (RIE)
 34 NOP
 35 NOP
 36 NOP
 37 NOP
 38 NOP
 39 NOP
 40 BRA EIT_loop:24 ; H'0000 0030 Address Exception (AE)
 41 NOP
 42 NOP
 43 NOP
 44 NOP
 45 NOP
 46 NOP
 47 BRA EIT_loop:24 ; H'0000 0040 Trap 0
 48 BRA EIT_loop:24 ; H'0000 0044 Trap 1
 49 BRA EIT_loop:24 ; H'0000 0048 Trap 2
 50 BRA EIT_loop:24 ; H'0000 004C Trap 3
 51 BRA EIT_loop:24 ; H'0000 0050 Trap 4
 52 BRA EIT_loop:24 ; H'0000 0054 Trap 5
 53 BRA EIT_loop:24 ; H'0000 0058 Trap 6
 54 BRA EIT_loop:24 ; H'0000 005C Trap 7
 55 BRA EIT_loop:24 ; H'0000 0060 Trap 8
 56 BRA EIT_loop:24 ; H'0000 0064 Trap 9
 57 BRA EIT_loop:24 ; H'0000 0068 Trap 10
 58 BRA EIT_loop:24 ; H'0000 006C Trap 11
 59 BRA EIT_loop:24 ; H'0000 0070 Trap 12
 60 BRA EIT_loop:24 ; H'0000 0074 Trap 13
 61 BRA EIT_loop:24 ; H'0000 0078 Trap 14
 62 BRA EIT_loop:24 ; H'0000 007C Trap 15
 63 BRA EIT_ei:24 ; H'0000 0080 External Interrupt (EI)
 64 ;
 65 .SECTION PROTECTID, DATA, ALIGN=1
 66 .DATA.B H'FF,H'FF,H'FF,H'FF,H'FF,H'FF,H'FF,H'FF ; H'0000 0084 Protect ID
 67 .DATA.B H'FF,H'FF,H'FF,H'FF,H'FF,H'FF,H'FF,H'FF ;
 68 ;
 69 ;
 70 ;**
 71 ; ICU Vector Table
 72 ;**
 73 ;
 74 .SECTION ICUVECT, DATA, ALIGN=4
 75 ;
 76 ;
 77 vectbl:
 78 .DATA.W EIT_reset ; H'0000 0094 MJT Input Interrupt 4:TIN3-TIN6
 79 .DATA.W EIT_reset ; H'0000 0098 MJT Input Interrupt 3:TIN20-TIN23

REJ05B0671-0100/Rev.1.00 Jan 2006 Page 17 of 22

32170/32174 Group, 32171 Group, 32176 Group
Example of Startup Program

 80 .DATA.W EIT_reset ; H'0000 009C MJT Input Interrupt 2:TIN12-TIN19
 81 .DATA.W EIT_reset ; H'0000 00A0 MJT Input Interrupt 1:TIN0-TIN2
 82 .DATA.W EIT_reset ; H'0000 00A4 MJT Input Interrupt 0:TIN7-TIN11
 83 .DATA.W EIT_reset ; H'0000 00A8 MJT Output Interrupt 7:TMS0,TMS1
 84 .DATA.W EIT_reset ; H'0000 00AC MJT Output Interrupt 6:TOP8,TOP9
 85 .DATA.W EIT_reset ; H'0000 00B0 MJT Output Interrupt 5:TOP10
 86 .DATA.W EIT_reset ; H'0000 00B4 MJT Output Interrupt 4:TIO4-TIO7
 87 .DATA.W EIT_reset ; H'0000 00B8 MJT Output Interrupt 3:TIO8,TIO9
 88 .DATA.W EIT_reset ; H'0000 00BC MJT Output Interrupt 2:TOP0-TOP5
 89 .DATA.W EIT_reset ; H'0000 00C0 MJT Output Interrupt 1:TOP6,TOP7
 90 .DATA.W EIT_reset ; H'0000 00C4 MJT Output Interrupt 0:TIO0-TIO3
 91 .DATA.W EIT_reset ; H'0000 00C8 DMAC0-4 Interrupt:DMA0-DMA4
 92 .DATA.W EIT_reset ; H'0000 00CC SIO1 Receive Interrupt
 93 .DATA.W EIT_reset ; H'0000 00D0 SIO1 Transmit Interrupt
 94 .DATA.W EIT_reset ; H'0000 00D4 SIO0 Receive Interrupt
 95 .DATA.W EIT_reset ; H'0000 00D8 SIO0 Transmit Interrupt
 96 .DATA.W EIT_reset ; H'0000 00DC A-D0 Conversion Interrupt
 97 .DATA.W EIT_reset ; H'0000 00E0 TID0 Output Interrupt
 98 .DATA.W EIT_reset ; H'0000 00E4 TOD0 Output Interrupt
 99 .DATA.W EIT_reset ; H'0000 00E8 DMAC5-9 Interrupt:DMA5-DMA9
 100 .DATA.W EIT_reset ; H'0000 00EC SIO2,3 Transmit/Receive Interrupt
 101 .DATA.W EIT_reset ; H'0000 00F0 RTD Interrupt
 102 .DATA.W EIT_reset ; H'0000 00F4 TID1 Output Interrupt
 103 .DATA.W EIT_reset ; H'0000 00F8 TOD1,TOM0 Output Interrupt
 104 .DATA.W EIT_reset ; H'0000 00FC SIO4,5 Transmit/Receive Interrupt
 105 .DATA.W EIT_reset ; H'0000 0100 A-D1 Conversion Interrupt
 106 .DATA.W EIT_reset ; H'0000 0104 TID2 Output Interrupt
 107 .DATA.W EIT_reset ; H'0000 0108 TML1 Input Interrupt
 108 .DATA.W EIT_reset ; H'0000 010C CAN0 Transmit/Receive & Error Interrupt
 109 .DATA.W EIT_reset ; H'0000 0110 CAN1 Transmit/Receive & Error Interrupt
 110 ;
 111 ;**
 112 ; Set SFR Address
 113 ;**
 114 ;
 115 .SECTION SFR, DATA, ALIGN=1
 116 .RES.B H'4000
 117 ;
 118 IMASK .EQU H'00800004 ; IMASK Address
 119 ;
 120 ;**
 121 ; External Interrupt Handler
 122 ;**
 123 ;
 124 .SECTION EIT_P, CODE, ALIGN=4
 125 ;
 126 .EXPORT EIT_ei
 127 ;
 128 EIT_ei:
 129 ST R0,@-R15 ; PUSH R0 (R0)
 130 ;
 131 ST R1,@-R15 ; PUSH R1 (R1)
 132 ST R2,@-R15 ; PUSH R2 (R2)
 133 LD24 R0,#IMASK ;
 134 ST R3,@-R15 ; PUSH R3 (R3)
 135 LDI R3,#H'40 ;
 136 ;
 137 MVFACHI R1 ; PUSH Accumulator
 138 MVFACLO R2 ;
 139 ST R1,@-R15 ; (AccH)
 140 ST R2,@-R15 ; (AccL)
 141 ;
 142 LDB R2,@R0 ; Read IMASK(H'0080 0004) Register
 143 ADDI R0,#-4 ;
 144 ST R4,@-R15 ; PUSH R4 (R4)
 145 MVFC R4,PSW ;
 146 ST R5,@-R15 ; PUSH R5 (R5)
 147 MVFC R5,BPC ;
 148 ST R6,@-R15 ; PUSH R6 (R6)
 149 ;
 150 LDH R1,@R0 ; Read IVECT(H'0080 0000) Register
 151 ;
 152 LD24 R0,#IMASK ; Overwrite IMASK Register
 153 LDB R6,@R0 ;
 154 STB R6,@R0 ;
 155 ;
 156 ST R7,@-R15 ; PUSH R7 (R7)
 157 ST R14,@-R15 ; PUSH Link Register (R14)
 158 ;
 159 LD R1,@R1 ; Read ICU Vector Table
 160 ;
 161 ST R4,@-R15 ; PUSH PSW (PSW)
 162 ST R5,@-R15 ; PUSH BPC (BPC)
 163 ST R2,@-R15 ; PUSH IMASK Register (IMASK)
 164 ;
 165 MVTC R3,PSW ; Enable Interrupt
 166 ;

REJ05B0671-0100/Rev.1.00 Jan 2006 Page 18 of 22

32170/32174 Group, 32171 Group, 32176 Group
Example of Startup Program

 167 JL R1 ; Call Interrupt Handler
 168 ;
 169 LDI R5,#H'00 ;
 170 MVTC R5,PSW ; Disable Interrupt
 171 ;
 172 LD24 R3,#IMASK ;
 173 LD R2,@R15+ ; POP IMASK (IMASK)
 174 LD R1,@R15+ ; POP BPC (BPC)
 175 LD R0,@R15+ ; POP PSW (PSW)
 176 ;
 177 LD R14,@R15+ ; POP Link Register (R14)
 178 STB R2,@R3 ;
 179 LD R7,@R15+ ; POP R7 (R7)
 180 MVTC R1,BPC ;
 181 LD R6,@R15+ ; POP R6 (R6)
 182 LD R5,@R15+ ; POP R5 (R5)
 183 LD R4,@R15+ ; POP R4 (R4)
 184 ;
 185 LD R2,@R15+ ; POP Accumulator (AccL)
 186 LD R1,@R15+ ; (AccH)
 187 MVTC R0,PSW ;
 188 MVTACLO R2 ;
 189 MVTACHI R1 ;
 190 ;
 191 LD R3,@R15+ ; POP R3 (R3)
 192 LD R2,@R15+ ; POP R2 (R2)
 193 LD R1,@R15+ ; POP R1 (R1)
 194 ;
 195 LD R0,@R15+ ; POP R0 (R0)
 196 ;
 197 RTE
 198 ;
 199 ;**
 200 ; EIT_loop
 201 ;**
 202 ;
 203 EIT_loop:
 204 BRA EIT_loop
 205 ;
 206 ;**
 207 ; Start Up Program
 208 ;**
 209 ;
 210 .IMPORT $main
 211 ;
 212 .SECTION C, DATA, ALIGN=4
 213 .SECTION D, DATA, ALIGN=4
 214 .SECTION B, DATA, ALIGN=4
 215 .SECTION ROM_D, DATA, ALIGN=4
 216 ;
 217 ;++
 218 ; Set Interrupt Stack
 219 ;
 220 .SECTION SPINT, DATA, ALIGN=4
 221 .RES.B 2048 ; Interrupt Stack Area
 222 ;
 223 ;++
 224 ; Set User Stack
 225 ;
 226 .SECTION SPUSR, DATA, ALIGN=4
 227 ; .RES.B 2048 ; User Stack Area
 228 ;
 229 ;++
 230 ; Startup & Exit
 231 ;
 232 .SECTION P, CODE, ALIGN=4
 233 EIT_reset:
 234 LDI R0, #H'00 ;
 235 MVTC R0, PSW ; Disable Interrupt
 236 LDI R0, #7 ;
 237 LD24 R1, #IMASK ;
 238 STB R0, @R1 ;
 239 ;
 240 ; LD24 R1, #(SPUSR+sizeof(SPUSR)) ;
 241 LD24 R2, #(SPINT+sizeof(SPINT)) ;
 242 ; MVTC R1, SPU ; Set User Stack Pointer
 243 MVTC R2, SPI ; Set Interrupt Stack Pointer
 244 ;
 245 ;++
 246 ; Clear B Section
 247 ;
 248 LD24 R5, #sizeof(B)
 249 BLEZ R5, loop_cnt0
 250 LD24 R4, #B
 251 LDI R0, #0
 252 loop0:
 253 STB R0, @R4

REJ05B0671-0100/Rev.1.00 Jan 2006 Page 19 of 22

32170/32174 Group, 32171 Group, 32176 Group
Example of Startup Program

 254 ADDI R4, #1
 255 ADDI R5, #-1
 256 BNEZ R5, loop0
 257 loop_cnt0:
 258 ;
 259 ;++
 260 ; Data Set (ROM_D Section => D Section)
 261 ;
 262 LD24 R6, #sizeof(ROM_D)
 263 BLEZ R6, loop_cnt1
 264 LD24 R4, #D
 265 LD24 R5, #ROM_D
 266 loop1:
 267 LDB R0, @R5
 268 STB R0, @R4
 269 ADDI R4, #1
 270 ADDI R5, #1
 271 ADDI R6, #-1
 272 BNEZ R6, loop1
 273 loop_cnt1:
 274 ;
 275 ;++
 276 ; Set Base Register
 277 ;
 278 ; .EXPORT __REL_BASE13
 279 .EXPORT __REL_BASE12
 280 ; .EXPORT __REL_BASE11
 281 ;__REL_BASE13 .EQU 0x00808000
 282 __REL_BASE12 .EQU 0x00808000
 283 ;__REL_BASE11 .EQU 0x00808000
 284 ;
 285 ; SETH R13, #HIGH(__REL_BASE13)
 286 ; OR3 R13, R13, #LOW(__REL_BASE13)
 287 ;
 288 SETH R12, #HIGH(__REL_BASE12)
 289 OR3 R12, R12, #LOW(__REL_BASE12)
 290 ;
 291 ; SETH R11, #HIGH(__REL_BASE11)
 292 ; OR3 R11, R11, #LOW(__REL_BASE11)
 293 ;
 294 ;++
 295 ; Call main()
 296 ;
 297 ; LDI R0, #H'C0 ; Enable Interrupt, Use User Stack
 298 LDI R0, #H'40 ; Enable Interrupt, Use Interrupt Stack
 299 MVTC R0, PSW
 300 ;
 301 BL $main ; Call C(main) Routine
 302 ;
 303 ;++
 304 ;
 305 endless:
 306 BRA endless ; Dummy
 307 ;
 308 ;++
 309 ; Set/Clear IE Flag Routine
 310 ;
 311 .EXPORT $EnInt
 312 .EXPORT $DisInt
 313 $EnInt:
 314 MVFC R0, PSW
 315 OR3 R0, R0, #H'0040
 316 MVTC R0, PSW
 317 JMP R14
 318 ;
 319 $DisInt:
 320 MVFC R0, PSW
 321 AND3 R0, R0, #H'FFBF
 322 MVTC R0, PSW
 323 JMP R14
 324 ;
 325 .END

REJ05B0671-0100/Rev.1.00 Jan 2006 Page 20 of 22

32170/32174 Group, 32171 Group, 32176 Group
Example of Startup Program

6. Reference of Document
• 32170/32174 Group User's Manual Rev.2.10
• 32171 Group User's Manual Rev.2.00
• 32176 Group User's Manual Rev.1.01
• M32R Family Software Manual Rev.1.20
• M3T-CC32R V.4.30 User's Manual (Compiler)
• M3T-AS32R V.4.30 User's Manual (Assembler)

(Please get the latest one from Renesas Technology Corp. website.)

7. Website and Support Center
• Renesas Technology Corp. website

http://www.renesas.com/

• Customer Support Center for all Products and Technical Support Center for M32R Family
Customer Support Center: csc@renesas.com

REJ05B0671-0100/Rev.1.00 Jan 2006 Page 21 of 22

32170/32174 Group, 32171 Group, 32176 Group
Example of Startup Program

Revision Record

Rev. Date
Description

Page Summary
1.00 Jan 13, 2006 − First Edition issued

REJ05B0671-0100/Rev.1.00 Jan 2006 Page 22 of 22

32170/32174 Group, 32171 Group, 32176 Group
Example of Startup Program

Keep safety first in your circuit designs!

Notes regarding these materials

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with
them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with ap-
propriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-
flammable material or (iii) prevention against any malfunction or mishap.

1. These materials are intended as a reference to assist our customers in the selection of the
Renesas Technology Corp. product best suited to the customer's application; they do not
convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of
any third-party's rights, originating in the use of any product data, diagrams, charts, pro-
grams, algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, pro-
grams and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corp. without notice due to
product improvements or other reasons. It is therefore recommended that customers con-
tact Renesas Technology Corp. or an authorized Renesas Technology Corp. product dis-
tributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other
loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by vari-
ous means, including the Renesas Technology Corp. Semiconductor home page (http://
www.renesas.com).

4. When using any or all of the information contained in these materials, including product
data, diagrams, charts, programs, and algorithms, please be sure to evaluate all informa-
tion as a total system before making a final decision on the applicability of the information
and products. Renesas Technology Corp. assumes no responsibility for any damage, liabil-
ity or other loss resulting from the information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at
stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology
Corp. product distributor when considering the use of a product contained herein for any
specific purposes, such as apparatus or systems for transportation, vehicular, medical,
aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or repro-
duce in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions,
they must be exported under a license from the Japanese government and cannot be im-
ported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/
or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the
products contained therein.

