

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ05B0663-0100 September 2005 Page 1 of 16

SH7206 Group
Example of Memory-to-Memory Transfer by the DMAC

Introduction
This application note describes an example of data transfer between memories using the direct memory access
controller (DMAC) in the SH7206.

Target Device
SH7206

Contents

1. Overview ... 2

2. Description of Sample Application .. 3

3. Sample Program Listing.. 9

4. Reference Documents .. 14

5. Website ... 14

SH7206 Group
Example of Memory-to-Memory Transfer by the DMAC

REJ05B0663-0100 September 2005 Page 2 of 16

1. Overview

1.1 Specifications
• Using the DMAC channel 0, data in on-chip RAM are transferred to external memory in cycle-steal mode.
• Auto-request mode (transfer request by software) is used to request DMA transfers.

1.2 MCU Functions Used
• Direct memory access controller (DMAC channel 0)

1.3 Conditions for Application
• MCU: SH7206 (R5S72060)
• Operating frequency: Internal clock: 200 MHz

 Bus clock: 66.67 MHz
 Peripheral clock: 33.33 MHz

• C compiler: SuperH RISC Engine Family C/C++ Compiler Package: version 9.00
 (from Renesas Technology Corp.)

• Compiler options: Default setting of HEW (-cpu = sh2a -debug -gbr = auto -global_volatile = 0
 -opt_range = all −infinite_loop = 0 −del_vacant_loop = 0
 -struct_alloc = 1)

1.4 Related Application Note
The operation of the sample program in this application note was confirmed with the configuration specified in the
application note "Example of SH7206 Initial Configuration". Please refer to that note in combination with this one.

SH7206 Group
Example of Memory-to-Memory Transfer by the DMAC

REJ05B0663-0100 September 2005 Page 3 of 16

2. Description of Sample Application
This sample program applies the direct memory access controller (DMAC) to transfer of data from on-chip RAM to
external memory.

2.1 Summary of MCU Functions Used
When DMA transfer requests are generated, the DMAC initiates transfer in accordance with the priority levels assigned
to its channels, and terminates the transfer when the transfer-end conditions are satisfied. There are three transfer
request modes: auto request, external request and on-chip peripheral module request. Either burst mode or cycle-steal
mode can be selected as the bus mode.

Table 1 summarizes the features of the DMAC. Figure 1 is a schematic view of the DMAC.

Table 1 Summary of the DMAC

Item Function
Number of channels 8 (CH0 to CH7)

Of these, four channels CH0 to CH3 can receive external requests.
Address space 4 Gbytes
Transfer data sizes Byte, word (2 bytes), longword (4 bytes), and 16 bytes (longword × 4)
Maximum transfer count 16,777,216 (24 bits)
Address modes Single-address mode and dual-address mode
Transfer requests Auto request, external request, and on-chip peripheral module request

(SCIF: 8 sources, IIC3: 2 sources, ADC: 2 sources, MTU2: 5 sources,
CMT: 2 sources)

Bus modes Cycle-steal mode and burst mode
Channel priority Fixed mode and round-robin mode
Interrupt request An interrupt is requested to the CPU upon completion of half- or full-data

transfer.
External request detection Detection of low or high level of the DREQ input, or rising or falling edge

of the DREQ input
Transfer request acknowledge
signal/transfer end signal

Selectable active levels of DACK and TEND signals

Note: For details on the DMAC, refer to section 9, Direct Memory Access Controller, of the SH7206 Group
Hardware Manual.

SH7206 Group
Example of Memory-to-Memory Transfer by the DMAC

REJ05B0663-0100 September 2005 Page 4 of 16

SCIF (8 sources)

IIC3 (2 sources)

ADC (2 sources)

MTU2 (5 sources)

CMT (2 sources)

On-chip modules

Activation control

Bus interface

Request priority
control

Interrupt request
DEIi

Note: i = 0 to 7

DMA reload transfer count register
(RDMATCR_i)

DMAC module

DMA transfer count register
(DMATCR_i)

DMA reload source address register
(RSAR_i)

DMA source address register
(SAR_i)

DMA reload destination address
register (RDAR_i)

DMA destination address register
(DAR_i)

DMA channel control register
(CHCR_i)

DMA operation register
(DMAOR)

DMA extension resource selectors
0 to 3 (DMARS0 to DMARS3)

Interrupt request

DMA transfer
acknowledge signal

DMA transfer
request signal

DMA transfer
acknowledge signal

DMA transfer
request signal

External requests
DREQ0 to DREQ3

DACK0 to DACK3
TEND0 and TEND1

HEIi

Figure 1 Schematic View of the DMAC

SH7206 Group
Example of Memory-to-Memory Transfer by the DMAC

REJ05B0663-0100 September 2005 Page 5 of 16

2.2 Procedure for Setting the MCU Modules
This section describes the initial setting procedure for memory-to-memory transfer by the DMAC in response to an
auto request. Figure 2 shows an example flow of making initial settings of the DMAC. For details on the settings of
individual registers, refer to the SH7206 Group Hardware Manual.

START

END

Set the DMA reload destination
address register (RDAR_i).

Set the DMA destination address
register (DAR_i).

Set the DMA reload source address
register (RSAR_i).

Set the DMA source address register
(SAR_i).

Set the DMA channel control register
(CHCR_i).

Set the standby control register 2
(STBCR2).

• Enable clock supply to DMACi (STBCR2)
 Clear the MSTP8 (module stop 8) bit to 0.
 [Function] Supplies clock to DMACi.

• Disable DMA transfer (CHCR_i)
 Clear the DE (DMA enable) bit to 0.
 [Function] Disables DMA transfer.
• Set DMA transfer source address (SAR_i)
 [Function] Specifies DMA transfer source address.

• Set DMA transfer source reload address (RSAR_i)
 [Function] Specifies DMA transfer source address to be reloaded.
• Set DMA transfer destination address (DAR_i)
 [Function] Specifies DMA transfer destination address.

• Set DMA transfer destination reload address (RDAR_i)
 [Function] Specifies DMA transfer destination address to be reloaded.

Set the DMA transfer count register
(DMATCR_i).

• Set DMA transfer count (DMATCR_i)
 [Function] Sets the number of DMA transfers.

Set the DMA reload transfer
count register (RDMATCR_i).

• Set DMA reload transfer count (RDMATCR_i)
 [Function] Sets the number of DMA transfers to be reloaded.

Set the DMA channel control register
(CHCR_i).

• Select DMA transfer modes (CHCR_i)
 Set the TC (transfer count mode) bit to 1.
 [Function] Specifies that data are transferred for the number of times
 set by DMATCR_i in response to a transfer request.
 Set the RLD (reload function enable/disable) bit.
 [Function] Enables or disables the reload function.
 Set the DM (destination address mode) bits.
 [Function] Specifies that the DMA transfer destination address
 is fixed, incremented, or decremented.
 Set the SM (source address mode) bits.
 [Function] Specifies that the DMA transfer source address
 is fixed, incremented, or decremented.
 Set the RS (resource select) bits to B'0100.
 [Function] Selects auto request as the DMA transfer request source.

 Set the TB (transfer bus mode) bit.
 [Function] Selects either cycle steal mode or burst mode as the bus
 mode for DMA transfer.
 Set the TS (transfer size) bit.
 [Function] Selects the unit for DMA transfer from among byte, word,
 longword, and 16 bytes.
 Set the IE (interrupt enable) bit.
 [Function] Disables or enables interrupt requests.

Set the DMA operation register
(DMAOR).

• Set DMA operation register (DMAOR).
 Read the AE (address error flag) bit, and then clear it to 0.
 [Function] Clears the address error flag.
 Read NMIF (NMI flag) bit, and then clear it to 0.
 [Function] Clears the NMI flag.
 Set the DME (DMA master enable) bit to 1.
 [Function] Enables DMA transfer for all channels.

Set the DMA channel control register
(CHCR_i).

• Enable DMA transfer.
 Set the DE (DMA enable) bit to 1.
 [Function] Starts DMA transfer.

Note: i = 0 to 7

Figure 2 Example Flow for Initial Settings of the DMAC

SH7206 Group
Example of Memory-to-Memory Transfer by the DMAC

REJ05B0663-0100 September 2005 Page 6 of 16

2.3 Operation of Sample Program
In the sample program, channel 0 of the DMAC is activated in response to the auto request, and data are transferred
from on-chip RAM to external memory in cycle-steal mode. In cycle-steal mode, the DMAC releases the bus
mastership to the CPU after each data transfer.

Figure 3 illustrates the timing of the sample program operation.

Read

DMAC0

Bus
mastership
status

DMA transfer request
(When DMA master
enable bit (DME) is 1)

DMA transfer count
register (DMATCR)

Transfer end flag (TE)

Set by software (auto request)

CPU

Internal bus

External bus

1 data
transfer

1 data
transfer

1 data
transfer

1 data
transfer

Write

Read

Internal
signal

Write

Read

Internal
signal

Write

Read

Internal
signal

Write

Read

Write

H'19 H'18 H'17 H'00

Read

Write

Read

Write

Read

Write

[Legend]

: A DMA request is accepted

Figure 3 Timing of Sample Program Operation

SH7206 Group
Example of Memory-to-Memory Transfer by the DMAC

REJ05B0663-0100 September 2005 Page 7 of 16

2.4 Notes on Sample Program Usage
• In the sample program, absolute addresses are used to clarify the start addresses of the data transfer source and

destination. When allocating memory areas by absolute addresses, be careful so that they do not overlap with the
sections used by other programs.

• In DMA transfer with the operand cache enabled, coherency must be kept by disabling or writing back the cache. In
the sample program, coherency is kept because non-cacheable space is accessed from the CPU.

2.5 Register Settings and Processing Sequence of Sample Program
In the sample program, the 100 bytes of data stored in on-chip RAM are transferred to external memory by DMA
transfer. Completion of DMA transfer is detected by checking the transfer-end flag (TE bit).

The register settings of the sample program are shown in table 2, macro definitions used in the sample program are
listed in table 3, and processing flow of the sample program is shown in figure 4.

Table 2 Register Settings in the Sample Program

Register Name Address Setting Description
Standby control
register 2 (STBCR2)

H'FFFE0018 H'00 MSTP8 = 0: The DMAC runs.

H'FFFE100C H'00000000 DE = 0: DMA transfer is disabled DMA channel control
register_0 (CHCR_0) H'80005410 TC = 1: Transfer by the number of times set in

DMATCR0 in response to a DMA request.
RLD = 0: Reload function is disabled.
DM = B'01: Destination address is incremented.
SM = B'01: Source address is incremented.
RS = B'0100: Auto request
TB = 0: Cycle-steal mode
TS = B'10: Longword transfer
IE = 0: Interrupt requests are disabled.

 H'80005411 DE = 1: DMA transfer is enabled.
DMA source address
register_0 (SAR_0)

H'FFFE1000 H'FFF90000 Transfer source start address: Address in on-chip
RAM area is specified.

DMA destination
address register_0
(DAR_0)

H'FFFE1004 H'0C000000 Transfer destination start address: Address in
external memory area* is specified.

DMA transfer count
register_0
(DMATCR_0)

H'FFFE1008 H'64 Number of transfers: 100 (H'64)

DMA operation
register (DMAOR)

H'FFFE1200 H'0001 DME = 1: DMA transfer is enabled on all
channels.

Note: * The address of the external memory area depends on the target board to be used.

SH7206 Group
Example of Memory-to-Memory Transfer by the DMAC

REJ05B0663-0100 September 2005 Page 8 of 16

Table 3 Macro Definitions in the Sample Program

Macro Definition Setting Description
SDRAM_DST_ADR H'0C00 0000 SDRAM start address
SRAM_SRC_ADR H'FFF9 0000 On-chip RAM start address
SIZE H'64 Transfer count
DMA_SIZE_BYTE H'0000 Byte transfer
DMA_SIZE_WORD H'0001 Word transfer
DMA_SIZE_LONG H'0002 Longword transfer
DMA_SIZE_LONGx4 H'0003 16-byte transfer
DMA_INT_DISABLE H'0000 DMA transfer end interrupt is not used
DMA_INT_ENABLE H'0010 DMA transfer end interrupt is used

START

END

Initialize transfer source memory

Initialize transfer
destination memory

Initialize DMAC:
io_init_dma0()

Start DMA transfer

Yes

No
DMA transfer ended?

Figure 4 Processing Flow of the Sample Program

SH7206 Group
Example of Memory-to-Memory Transfer by the DMAC

REJ05B0663-0100 September 2005 Page 9 of 16

3. Sample Program Listing
1. Sample Program Listing: main.c (1)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

/**""FILE COMMENT""**
*
* System Name: SH7206 Sample Program
* File Name : main.c
* Version : 1.00.00
* Contents : DMAC sample program
* Model : M3A-HS60
* CPU : SH7206
* Compiler : SHC9.0.00
*
* Note : Sample program for transferring data by DMAC0
* : Triggered by software, the DMAC transfers 100 bytes of data from on-chip
* : SRAM to external SDRAM.
*
* <Caution>
* This sample program is for reference
* and its operation is not guaranteed.
* Customers should use this sample program for technical reference
* in software development.
*
* COPYRIGHT (C) 2004 RENESAS TECHNOLOGY CORP. ALL RIGHTS RESERVED
* AND RENESAS SOLUTIONS CORP. ALL RIGHTS RESERVED
*
* history : 2004.10.28 ver.1.00.00
""FILE COMMENT END""/
#include "iodefine.h" /* iodefine.h is automatically created by HEW */

/* ==== Macro declarations ==== */
#define SDRAM_DST_ADR ((void *)0x2c000000) /* External SDRAM start address */
#define SRAM_SRC_ADR ((void *)0xfff90000) /* On-chip SRAM start address */
#define SIZE 100 /* 100 bytes of data are transferred */

#define DMA_SIZE_BYTE 0x0000u
#define DMA_SIZE_WORD 0x0001u
#define DMA_SIZE_LONG 0x0002u
#define DMA_SIZE_LONGx4 0x0003u
#define DMA_INT_DISABLE 0x0000u
#define DMA_INT_ENABLE 0x0010u
#define DMA_INT (DMA_INT_ENABLE >> 4u)

/* ==== Prototype declarations ==== */
void main(void);
void io_init_dma0 (void *src, void *dst, unsigned int size, unsigned int mode);
void io_dma0_trans(void);
void io_dma0_stop (void);

SH7206 Group
Example of Memory-to-Memory Transfer by the DMAC

REJ05B0663-0100 September 2005 Page 10 of 16

2. Sample Program Listing: main.c (2)

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106

/*""FUNC COMMENT""**
* ID :
* Module summary: Main function of the sample program
*---
* Include :
*---
* Declaration : void main(void)
*---
* Functional description:
* Sample program for transferring 100-byte data from on-chip SRAM to external SDRAM.
* Completion of DMA transfer is detected through the DMA transfer-end flag.
* When DMA transfer ends, the processing enters infinite loop.
*---
* Argument : None
*---
* Return value : None
*---
* Notes : In the sample program, absolute addresses are used to clarify
* : the start addresses of the data transfer source and destination.
* : When allocating memory areas by absolute addresses, be careful so that
* : they do not overlap with the sections used by user programs.
* : In DMA transfer with the operand cache enabled,
* : coherency must be kept by disabling or writing back the cache.
* : In the sample program, coherency is kept because non-cacheable space is
* : accessed from the CPU.
*""FUNC COMMENT END""**/
void main(void)
{
 int i;
 unsigned char *ptr;

 /* ==== Transfer source memory initialization ==== */
 ptr = SRAM_SRC_ADR;
 for(i=0; i < SIZE; i++){
 ptr++ = 0x55; / Fill the transfer source memory with 0x55 */
 }

 /* ==== Transfer destination memory initialization ==== */
 ptr = SDRAM_DST_ADR;
 for(i=0; i < SIZE; i++){
 ptr++ = 0; / Clear transfer destination memory to all 0 */
 }

 /* ==== DMAC initialization ==== */
 io_init_dma0(SRAM_SRC_ADR, SDRAM_DST_ADR, SIZE , DMA_SIZE_LONG | DMA_INT_DISABLE);

 /* ---- Start DMA transfer ---- */
 io_dma0_trans();

 /* ---- Stop DMA transfer ---- */
 io_dma0_stop();

 while(1){
 /* End of program */
 }
}

SH7206 Group
Example of Memory-to-Memory Transfer by the DMAC

REJ05B0663-0100 September 2005 Page 11 of 16

3. Sample Program Listing: main.c (3)

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

/*""FUNC COMMENT""***
* ID :
* Module summary: Initial settings for memory-to-memory transfer by the DMAC
*--
* Include : #include "iodefine.h"
*--
* Declaration : io_init_dma0(void *src, void *dst, size_t size, unsigned int mode)
*--
* Functional description:
* Transfers 'size'-byte data from source address 'src' to destination address 'dst'
* by the DMAC. The transfer is executed by auto request.
* Transfer size and use of interrupts are specified in 'mode'.
*--
* Arguments : void *src : Source address
* : void *dst : Destination address
* : size_t size : Transfer size (byte)
* : unsigned int mode: Transfer mode; following modes are specified
 by logical OR.
* : DMA_SIZE_BYTE(0x0000) Byte transfer
* : DMA_SIZE_WORD(0x0001) Word transfer
* : DMA_SIZE_LONG(0x0002) Longword transfer
* : DMA_SIZE_LONGx4(0x0003) 16-byte transfer
* : DMA_INT_DISABLE(0x0000) DMA transfer end interrupt is not used.
* : DMA_INT_ENABLE(0x0010) DMA transfer end interrupt is used.
*--
* Return value : None
*--
* Note : Correct operation cannot be guaranteed if the transfer data size does not
* : agree with alignment of source and destination addresses. When interrupts
* : are used, the corresponding interrupt routine must be prepared.
*""FUNC COMMENT END""***/
void io_init_dma0(void *src, void *dst, unsigned int size, unsigned int mode)
{
 unsigned int ts;
 unsigned long ie;

 ts = mode & 0x3u;
 ie = (mode & 0x00f0u) >> 4u;

 /* ==== Set standby control register 2 (STBCR2) ==== */
 CPG.STBCR2.BIT.MSTP8 = 0x0; /* Cancel module stop mode of the DMAC */

 /* ---- Set DMA channel control register ---- */
 DMAC.CHCR0.BIT.DE = 0ul; /* Disable DMA transfer */

 /* ---- Set DMA source address register ---- */
 DMAC.SAR0.LONG = (unsigned long)src;

 /* ---- Set DMA reload source address register ---- */
 DMAC.RSAR0.LONG = (unsigned long)src;

 /* ---- Set DMA destination address register ---- */
 DMAC.DAR0.LONG = (unsigned long)dst;

 /* ---- Set DMA reload destination address register ---- */
 DMAC.RDAR0.LONG = (unsigned long)dst;

SH7206 Group
Example of Memory-to-Memory Transfer by the DMAC

REJ05B0663-0100 September 2005 Page 12 of 16

4. Sample Program Listing: main.c (4)

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

 /* ---- Set DMA transfer count register ---- */
 /* ---- Set DMA reload transfer count register ---- */

 if(ts != DMA_SIZE_LONGx4){
 DMAC.DMATCR0.LONG = size >> ts; /* Set transfer count */
 DMAC.RDMATCR0.LONG = size >> ts;
 }
 else{
 DMAC.DMATCR0.LONG = size >> 4u; /* Set transfer count (1/16) */
 DMAC.RDMATCR0.LONG = size >> 4u;
 }

 /* ---- Set DMA channel control register ---- */
 DMAC.CHCR0.LONG = 0x80005400ul | (mode << 3u) | (ie << 2u) ;
 /*
 bit31 : TC DMATCR transfer: 1--------- DMA transfer count specified in DMATCR
 bit30-29: reserve 0
 bit28 : RLD OFF : 0------------------- Disable reload function
 bit27-24: reserve 0
 bit23 : DO over run0 : 0-------------- Unused
 bit22 : TL TEND active low : 0-------- Unused
 bit21-20: reserve 0
 bit19 : HE :0------------------------- Unused
 bit18 : HIE :0------------------------ Unused
 bit17 : AM :0------------------------- Unused
 bit16 : AL :0------------------------- Unused
 bit15-14: DM1:0 DM0:1------------------- Increment destination address
 bit13-12: SM1:0 SM0:1------------------- Increment source address
 bit11-8 : RS : auto request : B'0100---- Auto request
 bit7 : DL : DREQ level : 0 ---------- Unused
 bit6 : DS : DREQ select: 0 Low level- Unused
 bit5 : TB :cycle :0------------------ Cycle-steal mode
 bit4-3 : TS : transfer size :B'10------ Longword transfer
 bit2 : IE : interrupt enable: 0------ Disable interrupt
 bit1 : TE : transfer end: 0
 bit0 : DE : DMA enable bit: 0-------- Disable DMA transfer
 */

 /* ---- Set DMA operation register ---- */
 DMAC.DMAOR.WORD &= 0xfff9u; /* Clear AE, NMIF bits */

 if(DMAC.DMAOR.BIT.DME == 0){ /* Enable DMA transfer on all channels */
 DMAC.DMAOR.BIT.DME = 1;
 }

}

SH7206 Group
Example of Memory-to-Memory Transfer by the DMAC

REJ05B0663-0100 September 2005 Page 13 of 16

5. Sample Program Listing: main.c (5)

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

/*""FUNC COMMENT""***
* ID :
* Module summary: Activating DMAC
*--
* Include : #include "iodefine.h"
*--
* Declaration : void io_dma0_trans(void)
*--
* Functional description: Executes DMA transfer and detects the end of transfer.
*--
* Argument : None
*--
* Return value : None
*--
* Notes :
*""FUNC COMMENT END""**/
void io_dma0_trans(void)
{
 /* ---- Execute DMA transfer ---- */
 DMAC.CHCR0.BIT.DE = 1ul; /* Enable DMA transfer */

 /* Detect the end of transfer */;
 while(DMAC.CHCR0.BIT.TE == 0ul){ /* Wait until the TE bit is set */
 }
}

/*""FUNC COMMENT""***
* ID :
* Module summary: Stopping DMAC
*--
* Include : #include "iodefine.h"
*--
* Declaration : void io_dma0_stop(void)
*--
* Functional description: Stops DMA transfer.
*--
* Argument : None
*--
* Return value : None
*--
* Notes :
*""FUNC COMMENT END""***/
void io_dma0_stop(void)
{
 /* ---- Stop DMA transfer ---- */
 DMAC.CHCR0.BIT.DE = 0ul; /* Disable transfer by DMA0 */
}

/* End of File */

SH7206 Group
Example of Memory-to-Memory Transfer by the DMAC

REJ05B0663-0100 September 2005 Page 14 of 16

4. Reference Documents
• SH-2A SH2A-FPU Software Manual (Rev.3.00)

(Download the latest edition from the website of Renesas Technology Corp.)

• SH7206 Group Hardware Manual (Rev. 1.00)
(Download the latest edition from the website of Renesas Technology Corp.)

5. Website
• Website of Renesas Technology Corp.

http://www.renesas.com/

SH7206 Group
Example of Memory-to-Memory Transfer by the DMAC

REJ05B0663-0100 September 2005 Page 15 of 16

Revision Record
Description

Rev.

Date Page Summary

1.00 Sep.05.05 — First edition issued

SH7206 Group
Example of Memory-to-Memory Transfer by the DMAC

REJ05B0663-0100 September 2005 Page 16 of 16

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corp. product best suited to the customer's application; they do not convey any license
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corp. without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or
an authorized Renesas Technology Corp. product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising
from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means,
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

	Cover
	Introduction
	Target Device
	Contents
	1. Overview
	1.1 Specifications
	1.2 MCU Functions Used
	1.3 Conditions for Application
	1.4 Related Application Note

	2. Description of Sample Application
	2.1 Summary of MCU Functions Used
	2.2 Procedure for Setting the MCU Modules
	2.3 Operation of Sample Program
	2.4 Notes on Sample Program Usage
	2.5 Register Settings and Processing Sequence of Sample Program

	3. Sample Program Listing
	4. Reference Documents
	5. Website
	Revision Record
	Keep safety first in your circuit designs!
	Notes regarding these materials

