LENESAS

>
T
=2
=
Q
=
o
-
Z
o
—
9

RX64M Group

Firmware Integration Technology (FIT) Tutorial
For e” studio

8
N

RENESAS MCU
RX Family / 64M Series

All information contained in these materials, including products and product specifications, represents
information on the product at the time of publication and is subject to change by Renesas Electronics
Corporation without notice. Please review the latest information published by Renesas Electronics
Corporation through various means, including the Renesas Electronics Corporation website
(http://www.renesas.com).

Renesas Electronics
Www.renesas.com Rev. 1.00 May 2014

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the
operation of semiconductor products and application examples. You are fully responsible for the incorporation of these
circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for
any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas
Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever
for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property
rights of third parties by or arising from the use of Renesas Electronics products or technical information described in
this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other
intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or
in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such
alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High
Quality”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade,
as indicated below.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio
and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial
robots etc.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster
systems; anticrime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a
direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may
cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality
grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas
Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable
for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for
which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas
Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage
range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no
liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified
ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products
have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to
implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire
in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including
but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or
any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please
evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all
applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation,
the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your
noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not
use Renesas Electronics products or technology described in this document for any purpose relating to military
applications or use by the military, including but not limited to the development of weapons of mass destruction. When
exporting the Renesas Electronics products or technology described in this document, you should comply with the
applicable export control laws and regulations and follow the procedures required by such laws and regulations.

10. Itis the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or
otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set
forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as
a result of unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of
Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its
majority owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)

Disclaimer

By using this Renesas Starter Kit+ (RSK+), the user accepts the following terms:

The RSK+ is not guaranteed to be error free, and the entire risk as to the results and performance of the RSK+ is
assumed by the User. The RSK+ is provided by Renesas on an “as is” basis without warranty of any kind whether
express or implied, including but not limited to the implied warranties of satisfactory quality, fitness for a particular
purpose, title and non-infringement of intellectual property rights with regard to the RSK+. Renesas expressly
disclaims all such warranties. Renesas or its affiliates shall in no event be liable for any loss of profit, loss of data,
loss of contract, loss of business, damage to reputation or goodwill, any economic loss, any reprogramming or recall
costs (whether the foregoing losses are direct or indirect) nor shall Renesas or its affiliates be liable for any other
direct or indirect special, incidental or consequential damages arising out of or in relation to the use of this RSK+,
even if Renesas or its affiliates have been advised of the possibility of such damages.

Precautions

The following precautions should be observed when operating any RSK+ product:

This Renesas Starter Kit+ is only intended for use in a laboratory environment under ambient temperature and
humidity conditions. A safe separation distance should be used between this and any sensitive equipment. Its use
outside the laboratory, classroom, study area or similar such area invalidates conformity with the protection
requirements of the Electromagnetic Compatibility Directive and could lead to prosecution.

The product generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio
communications. However, there is no guarantee that interference will not occur in a particular installation. If this
equipment causes harmful interference to radio or television reception, which can be determined by turning the
equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures;

e ensure attached cables do not lie across the equipment

e reorient the receiving antenna

e increase the distance between the equipment and the receiver

e connect the equipment into an outlet on a circuit different from that which the receiver is connected
e power down the equipment when not in use

e consult the dealer or an experienced radio/TV technician for help NOTE: It is recommended that wherever
possible shielded interface cables are used.

The product is potentially susceptible to certain EMC phenomena. To mitigate against them it is recommended that the
following measures be undertaken;

e The user is advised that mobile phones should not be used within 20m of the product when in use.
e The user is advised to take ESD precautions when handling the equipment.

The Renesas Starter Kit does not represent an ideal reference design for an end product and does not fulfil the
regulatory standards for an end product.

How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of how to use the e’ studio IDE to create a
working project using Renesas Firmware Integration Technology (FIT) modules. The document presents, in
tutorial form, the steps required to create a working firmware program for the RSK+RX64M platform, starting
from a FIT Board Support Package (BSP), adding a FIT module (Flash Library), then integrating code from the
peripheral code generator built into e studio.

The firmware described in this document is the RSK+ sample System_Input_Capture, which captures inputs
from the RX64M temperature sensor, ADC and RTC and logs this data in non-volatile storage, for later
retrieval over a serial port. The document is written for the RSK+RX64M specifically, but the steps required to
create and import FIT modules and code generator files into a working project are applicable across the RX
family.

The manual comprises of step-by-step instructions to generate code, but does not intend to be a complete
guide to software development on the RSK+ platform. Further details regarding operating the RX64M
microcontroller may be found in the Hardware Manual and within the provided sample code.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body
of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of
the manual for details.

The following documents apply to the RX64M Group. Make sure to refer to the latest versions of these
documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web
site.

Document Type Description Document Title Document No.
User’s Manual Describes the technical details of the RSK+ RSK+RX64M User's R20UT2593EG
hardware. Manual
Tutorial Provides a guide to setting up RSK+ environment, RSK+RX64M R20UT2594EG
running sample code and debugging programs. Tutorial Manual
Quick Start Guide Provides simple instructions to setup the RSK+ and RSK+RX64M Quick R20UT2595EG
run the first sample. Start Guide
Code Generator Provides a guide to code generation and importing RSK+RX64M Code R20UT2930EG
Tutorial into the e? studio IDE. Generator Tutorial
Manual
Schematics Full detail circuit schematics of the RSK+. RSK+RX64M R20UT2589EG
Schematics
Hardware Manual Provides technical details of the RX64M RX64M Group RO1UHO0377EJ
microcontroller. Hardware Manual
Application Note Provides technical details of the FIT Flash API RX64M Group Flash RO1ANO319EG
Module for RX64M. API for RX
Application Note Provides a guide to creating a project a FIT-based RSK+RX64M FIT RO1ANO319EG
(this document) from scratch within the e® studio IDE. Tutorial Manual

The following documents are applicable across the RX family and relate to the FIT architecture. Make sure to
refer to the latest versions of these documents. The newest versions of the documents listed may be obtained
from the Renesas Electronics Web site.

Document Type

Description

Document Title

Document No.

Application Note Describes the technical details of the FIT Board RX Family Board RO1AN1865EG
Support Package for the RX family. Support Package
Module Using
Firmware Integration
Technology
Application Note Describes how to add and configure a FIT module to RX Family Adding RO1AN1723EG

an e’ studio project. .

Firmware Integration
Technology Modules
to Projects

2. List of Abbreviations and Acronyms

Abbreviation Full Form
API Application Programming Interface
BSP Board Support Package
CMT Compare Match Timer
CPU Central Processing Unit
DVD Digital Versatile Disc
El On-chip Debugger
FIT Renesas Firmware Integration Technology
IDE Integrated Development Environment
LCD Liquid Crystal Display
LED Light Emitting Diode
MCU Micro-controller Unit
NVM Non Volatile Memory
RSK Renesas Starter Kit
SCI Serial Communications Interface

Table of Contents

L. OVBIVIBW.. ..ottt oo et ettt ettt e oo e e e e e e et ettt e e e e e e e e et eeaeta e e e e e e e e eeeanbna e e eeeeaees 8
R R T o 0] 8
A T 11U | =T TP TP PP PP TPPPPPPPPN 8
2. INEFOTUCTION ... s 9
3. Creating an Empty Project and Importing the BSP ..o 10
3.1 Creating the EMPLY PrOJECT..... .. ettt e e e e s bbbt e e e e e e e snbbaaeeeaeeeaannes 10
3.2 Importing the BSP iNt0 the PrOJECT........ii e e e e s e e e e e s s snnbnee e e e e e e eannnes 16
4. Importing the Flash Library FIT Module.............ooovuiiiiiii e 21
5. Using the Code Generator for Peripheral FUNCLIONSccovvviiiiiiiiii e 25
6. Completing the System_Input_Capture ApPplCAtION...........ccooviiiiiiiiiiiiiiieieeeee e 32

Yo o [1nTo]t M T a) {0110 4 T=1 1o] o [T 37

ENESANS

RSK+RX64M R20AN0319EG0100
Rev. 1.00
RENESAS STARTER KIT May 31, 2014

1. Overview

1.1 Purpose

This RSK+ is an evaluation tool for Renesas microcontrollers. This manual describes how use FIT modules
and peripheral code generator modules for RX together with the e” studio IDE to create a working project for
the RSK+ platform.

1.2 Features

This RSK+ provides an evaluation of the following features:
« Creation of a base project using the RSK+RX64M Board Support Package (BSP) FIT module.

« Integration of the Flash library FIT module into the project.
« Peripheral Code Generation and integration using e’ studio for RX64M.
« Project Building with e” studio.

The RSK+ board contains all the circuitry required for microcontroller operation.

R20AN0319EGO0100 Rev. 1.00 ’z NS Page 8 of 41
May 31, 2014 ENES

RSK+RX64M 2. Introduction

2. Introduction

This application note is designed to answer, in tutorial form, how to use FIT modules for the RX family
together with the e’ studio IDE to create a working project for the RSK platform. The tutorials help explain the
following:

e Creation of an empty e’ studio project and importing and configuring the BSP for RSK+RX64M
Importing and configuring an additional FIT Module

Using the e” studio peripheral code generator alongside FIT modules

Integration with custom code

Building the project e’ studio

The project generator will create a tutorial project with tow selectable build configurations:
e ‘HardwareDebug’ is a project built with the debugger support included. Optimisation is set to zero.
e ‘Release’is a project with optimised compile options, producing code suitable for release in a product.

Some of the illustrative screenshots in this document will show text in the form RXxxx. These are general
screenshots and are applicable across the whole RX family. In this case, simply substitute RXxxx for RX64M

These tutorials are designed to show you how to use the RSK+ and are not intended as a comprehensive introduction to
the e” studio debugger, compiler toolchains or the E1 emulator. Please refer to the relevant user manuals for more in-
depth information.

R20ANO0319EG0100 Rev. 1.00 ’z NS Page 9 of 41
May 31, 2014 ENES

RSK+RX64M

3. Creating an Empty Project and Importing the BSP

3. Creating an Empty Project and Importing the BSP

The following tutorial steps are taken from the two FIT reference documents r0lan1723eg and r0lan1685eg
contained on the RSK+ DVD. Refer to these documents for further technical details on the BSP and FIT. The
RSK+ installer will have already installed the FIT modules in the correct place in the e” studio install directory,
so these steps have been skipped in this tutorial.

3.1 Creating the Empty Project

Start e” studio and select a suitable location for the project workspace

e Start e° studio and select a
suitable location for the project
workspace.

¢ In the Welcome page, click ‘Go to
the workbench’.

Workspace Launcher @

Select a workspace

e studio stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: | [SENYEIEERT - Browse...

[Use this as the default and do not ask again

0] CiCes - ol studic =
ble Edd Source Refactor Hevgate Segrch Bregect Bum Window Help

) Welcome 17

Welcome
e2studio

Go 1o the workbench
RENESAS
e Create a new C project by right- [Project Explorer 53 = <3==5 :.
clicking in the Project Explorer
pave and selecting ‘New -> C
Project’ as shown. Alternatively, New » | FY% Project
use the menu item ‘File -> New -> -
C Project. 2y Import.. [cf CProject
L7 Export.. [C++ Project
Z1 Refresh F5 | Other. Ctri+M
R20ANO319EG0100 Rev. 1.00 RENESAS Page 10 of 41

May 31, 2014

RSK+RX64M 3. Creating an Empty Project and Importing the BSP

e Enter the project name |'ig# ¢ project o =
‘System_Input_Capture’. In . .
‘Project type:’ choose ‘Sample | ©Preiect <>
Project. In ‘Toolchains’ choose Create C project of selected type f
‘Renesas RXC Toolchain’. Click
‘Next'.

Project name: System_Input_Capture

Use default location
C:\Workspace\System_Input_Capture Browse...

Create Directory for Project

Project type: Toolchains:
Executable (Renesas) KPIT GMUARM-RZ-EABI Toolchain
® Sample Project KPIT GMURLT&-ELF Teclchain
Static Library (Renesas) KPIT GMURX-ELF Toolchain
& Sample Project KPIT GNUSH-ELF Toolchain

Debug-Only Project

Executable (TAR)

V800 Standalone Executable (Green Hills)
V800 Standalene Static Library (Green Hills)
V&00 ThreadX Executable (Green Hills)
Makefile project

L] | 1 "

Renesas SHC Toelchain

Show project types and teclchains enly if they are supported on the platform

@ < Back Net> || Finish || Cancel |

dialog, select the options as

e In the ‘Target Specific Settings’ | g cproject o ol
shown in the screenshot opposite.

e2 studio - Project Generation

Select Target Specific Settings |

Toolchain Version : ’\.Q.Ul.ﬂﬂ v] P

Debug Hardware: ’EI. v] .r“\“%‘

Data endian : ’Little—endian data '] S ‘!‘.{‘\
Select Target: RSFS64MLCHFC (=] %

Select Configurations:

[¥] Hardware Debug : Debug using hardware
[[] Debug using Simulator : Debug using simulator
i Project without any debug information

Build configurations will be created in the project only for the selected debug mode
options, however by default the project will be built for the active configuration i.e.,
first configuration selected from group. Based on the device selection you made
(RX600) the debug hardware (E1) and debug target (RSF564 MLCxFC),debug
configuration will be automatically created for you.

@ <Back | Med> |[Enish][Cancel

R20ANO319EG0100 Rev. 1.00 RENESAS Page 11 of 41
May 31, 2014

RSK+RX64M

3. Creating an Empty Project and Importing the BSP

e In the ‘Code Generator Settings’
dialog, leave ‘Use Peripheral code

Generator’ unchecked.

e In ‘Select Additional CPU Options’
leave everything at default values.

C Project '?'@

e2 studio - Project Generation —

Code Generator Settings

[] Use Peripheral code Generator

The e2 studic peripheral code generator automatically generates programs (device drivers)
for MCU peripheral functions (clocks, timers, serial interfaces, A/D converters, DMA
controllers, etc.) based on settings entered via a graphical user interface (GUI). Functions
are provided as application programming interfaces (APIs) and are not limited to
initialization of peripheral functions.

s Automatic (~
UART Timer generation Application under
s3] of peripheral development
function . Software
A0 Port settings

[Middleware
DMA | Clock diver || RTOS |
m rrrrrrerrrerr - Microcontroller

DA

-

@:l < Back “ Mext > | ’ Finish] ’ Cancel]
C Project IEI@
el studio - Project Generation —

Select Additional CPU Options

Select Additienal CPU Options:

Round: ’Nearest V]
Precision of Double: ’Single precision V]
Sign of Char: ’Unsigned V]
Sign of bit Field: |Unsigned -
Allocate from Lower Bit ’Lower bit V]
Width of Divergence of Function: ’24 Bit V]

Specify Global Options:

[7] Denermalized number allowed as a result
[7] Replace from int with short

[7] Enum size is made the smallest

[] Pack structures, unions and classes

[T] Use try, throw and catch of C++

[T] Use dynamic cast and typeid of C++

@ <Back || Nea> §| Enish || Cancel

R20AN0319EG0100 Rev. 1.00

May 31, 2014

RENESAS Page 12 of 41

RSK+RX64M

e In the ‘Global Options Settings’
leave everything at default values.

e In the ‘Standard Header Files’

dialog, select C99 for ‘Library
Configuration’. Untick
‘new(EC++)’ and leave all others
at defaults.

e ‘new(EC++) is the library for C++
style heap memory and is not
used in this project.

3. Creating an Empty Project and Importing the BSP
C Project E=R(EcE
e2 studio - Project Generation —
Global Options Settings |
Patch code generation ’None v]
Fast interrupt vector register: ’None VI
ROM: ’None VI
RAM: ’None VI
Address (H'): 00000000
Address Register: IENone V]
@ <Back || Net> |[Emsn || conce |
C Project o=
e2 studio - Project Generation —
Standard Header Files
Library configuration: | C{C99) -
Select Header Files:
runtime : Runtime routines (Checked and disabled by default)
[ctypeh : Character classification routines
[] math.h : Mathematical/trigonometric operations{double-precision)
[] mathf.h : Mathematical/trigonometric operations(single-precision)
[7] stdarg.h : Variable argument functions
stdio.h : Input/Output
stdlib.h : General purpose library features
string.h : String handling operations
[ios(EC++) : Input/Cutput Streams

] ; : Memory allocation and deallocation routines
[] complex(EC++) : Complex number operations
[T] string(EC++) : String manipulation operations
] complex.h(C99) : Performs complex number calculation
[ferw.h(C99) : Sets floating point environment
[[Jinttypes.h(C99) : Converts integer type format
[T wehar.h(C99) : Performs wide character
&} wetype.h(C939) : Performs wide character conversion
Select All || Deselect All
@ <Bck || Net> |[Enish [Cancel
R20AN0319EG0100 Rev. 1.00 RENESAS Page 13 of 41

May 31, 2014

RSK+RX64M 3. Creating an Empty Project and Importing the BSP

¢ In the next dialog, untick all check [e7] € Project ==
boxes as shown opposite. Click . . .
‘Finish’ e2 studio - Project Generation —_—

Set various Stack Areas and te add additicnal Supporting Files

Stack/Heap Configuration
[T Use User Stack

User's Stack Size: (H') 100

Interrupt Stack Size: (H) 300

[7] Use Heap Memory
Heap Size: (H) 400

Generation of Supporting Files
[]Vector Definition Files

[C]i70 Register Definition Files:

Generate Hardware Setup Function | MNone

'C?:' Mext = Finish l ’ Cancel]

e A summary dialog will appear, 'Summaﬁ, @
click ‘OK’ to complete the project
generation. Project Summary:
-------- PROJECT GEMERATOR, -------- »
PROJECT NAME : Systern_Input_Capture
PROJECT DIRECTORY : ChWorkspacehSystem_Input_Ca
CPLU SERIES : RA600
CPUTYPE: RxB4M
TOOLCHAIM MAME : Renesas RXC Toolchain

TOOLCHAIN VERSIOM: +2.01.00
GEMERATION FILES:

ChWorkspacehSystem_Input_CapturesrchSystem_Input_Cag
Main Program
ChWorkspaceSystem_Input_Capturehsrchdbsct.c
Setting of B and R sections
ChWorkspace\System_Input_Capturehsrcitypedefine.h
Aliases of Integer Type

4 L1 k

Click OK to generate the project or Cancel to abort.

QK] [Cancel

R20ANO319EG0100 Rev. 1.00 RENESAS Page 14 of 41
May 31, 2014

RSK+RX64M 3. Creating an Empty Project and Importing the BSP

e In the Project Explorer pane, [ProjectEploer 2 8% =8
expand into the ‘src’ folder, select B ‘::‘9;]F::'u—;'::"t—“‘"‘"’f["ﬂ'd‘“'EDEW
‘dbsct.c’ and ‘typedefine.h’ and Py [o7] Delete Resources ===
delete them from the pI‘OJeCt : % :::tc:r::_lnput_ 6' Are you sure you want to delete the 2 selected resources from the file system?

> [h] typedefine.h
custom. bat

7] System_Input_Cap
7] System_Input_Cap

Preview >] | oK ‘ [Cancel]
e From the ‘Project’ menu, select | fsemsismamipn Cone =
‘Properties’. Expand ‘C/C++ Build’ Sy i A
and select ‘Settings’. Under ‘Tool Contgeson: [FardmareDebug Acive])
Settings’ select ‘Linker -> Section’. Chunge Tookhin Ve
. g::.:dm_.scan) Tool Settings | 5 Guid Sieps | Budd Artifact | o) Binary Parsers | @ Erroe Parsers
e Select the ‘PResetPRG’ section e TS Corvin
H N . y aaina 4 urce Sexctrons viewer.
and click the Re_move Section ,,,.., Seurce e e ———
button. The section C1 should - Gerars . Z
. Project Referenzes
now be assigned to address g Sty 2
O0xFFC00000. - 82
e Select the ‘PIntPRG’ section and) . —
: .) + 8 pusenbl R
click the ‘Remove Section 5 Soure . femmiscien
= €2 Mave Up
e Click on the ‘P’ section and . —
change it to ‘P*. The use of the *’ o
character acts as a wildcard and Pt
will catch all ‘P’ sections used in - o
the project. ity peseTvect
Overmide Linker Script:
? [
e Click ‘Apply’. The linker sections | s torsmening citue SRR
should be the same as shown in A it T
the screenshot opposite o b Contiguaton: Fudwarelibag | Actue]) st
Build Yariables
e We will now setup the linker to fill e Vs | = :
A) X dency Scan) Tool Sestings | = Buikd Steps | Build Acdtoct | oy inaey Parsess | @ Erroc Parsers
in unused interrupt vectors with Dot L Compie
the address of the s e e
undefined_interrupt_source_isr() Py oot "
function. o ¥
Tatk Repository Rl
B2
R2
B MdSuh:-|
- FFCO0000 :l Rémove Section
c2
< Mave Up
s v
‘l Mave Down
1 ek EEFFFRO) :u FOTVECT
'\\ Advanted DuFFFFFFFC FRESETVECT
& List
*© B taaoces
’ ; : _ = .S\I::-\helhlz Crvrerde Liriker Scrpt Browse
7 [o][conea
R20AN0319EG0100 Rev. 1.00 RENESANS Page 15 of 41

May 31, 2014

RSK+RX64M

3. Creating an Empty Project and Importing the BSP

e Under ‘Tool Settings’ select ‘Linker
-> User’.
e Click the ‘Add’ button (with green

‘+’ symbol) and in the window that
pops up enter:

-vect=_undefined_interrupt_source_isr

e Click 'OK'. In the ‘Properties
dialog, click ‘OK’. The project is
now ready to import the BSP.

Resource
Builders User-defined opticns oWl ¥
WA . foomessge]
Build Variables nelage
Change Toolchain Vers
Dependency Scan r
* o Enter Value =

Envieaaea B Mecrllaneaun User-dufined options
Legging 4
Seftmgs gt
e » 3 oo
Tocd Chasn Edtor -
(B Advanced

i Ginersl)
1 PP
Preject References = PIC/PID

o & Assemibles

3.2 Importing the BSP into the Project

The two FIT modules required for this Tutorial have been installed with e’ studio.

e From the ‘File’ menu, select ‘New
-> Renesas FIT Module’. The
dialog opposite will be displayed.

e In the project name pull-down
select ‘System_Input_Capture’.

e In the ‘Family’ pull-down select
‘RX..

e In the ‘Target Board’ pull-down

BuryDicbug Setting —
Tak Repusitory L_QE'__] Mo
a (5 Optimize
(5 Advanced
o (5 Section
B Symbed file
8
o Subeommand file
» (2 Output
i Advanced
a [Standard Library
B made
. ' .
? {.Ik__: Cancel
Add FIT Module o ===
FIT Modules
Select FIT Modules to add to the selected project
Mame of the project to add FIT modules: -

Family Any - Target Board Any * Function Any -

Series Any ¥ Toolchain Any - Application Any -

select ‘RSKRX64M'. Group Any -
e In the ‘Series’ pull-down select Moclule Version Description
‘RX600’ r_bsp 2.50 Board Support Packages.
’ r_flash_api_rx 1.00 Data Flash and Code Flash API
e In the ‘Group’ pull-down select
‘RX64M’.
Details
@:‘ Mext = Einish
R20ANO319EG0100 Rev. 1.00 RENESAS Page 16 of 41

May 31, 2014

RSK+RX64M 3. Creating an Empty Project and Importing the BSP

e In the main list view select the [e7] Add FIT Module E=R(ECR(F=S
‘r_bsp’ module, the ‘Finish’ button FIT Modules
WI” then b.e enabled' Ve”fy that Select FIT Modules to add to the selected project
the dialog is as shown opposite.
L] Click ‘Finish’. Mame of the project to add FIT medules: System_Input_Capture -
Family RX = Target Board RSKRXG4M + Function Any -
Series RXG00 - Toolchain Any - Application Any A
Group RX64M -
Module Version Description
irbsp 250 Board Support Packages.
r_flash_api_rx 1.00 Data Flash and Code Flash API
Details
Dependencies: None -

The r_bsp package provides a foundation for code te be built on top of. It provides startup code,
iodefines, and MCU information for different boards. There are 2 folders that make up the r_bsp package.
The 'meu’ folder contains files that are common to a MCU group. These files provide functionality such

-

e A ‘Project Updated’ dialog will [T} proiect Undated
appear, indicating that include @ Pro g @

paths and source locations have

been updated. Click "OK'. Paths for C Includes and Source Locations have been updated.

Press OK to continue

QK | ’ Cancel

R20ANO319EG0100 Rev. 1.00 RENESAS Page 17 of 41
May 31, 2014

RSK+RX64M

3. Creating an Empty Project and Importing the BSP

e The newly added paths and
symbols will be displayed in a
Properties dialog. Click ‘OK’

e In the Project Explorer pane,
expand the ‘r_bsp’ folder and
‘board’ and ‘mcu’ folders.

e Verify that the ‘rskrx64m’ folder
has been added to the ‘board’
folder.

e Verify that the ‘rx64m’ folder has
been added to the ‘mcu’ folder.

|| Properties for System Input_Capture o |[-@-] 3]
Paths and Symbols - S
+ Resource
Builders
s €/Co Build Configuration: [HardwareDebug [Active] ~| [Manage Configurations..
4 C/C++ General
» Code Analysis
Documentation (3 Includes | # symbols | Z3 Source Location | | References
File Types
Formatter Languages Include directories Add..
Indexer . GNU C (= $(TCINSTALL/include
f”:”“: 2"“:'”'95 GNU Ce+ = /${ProjName}/r_bsp
aths and Symbols Assembly S /$tProi. fi Delete
ot e B 8tproiamere.cont
Project References
Run/Debug Settings
+ Task Repository
Move Up
@ "Preprocessor Include Paths, Macros etc.” property page may define additional entries
Move Ds
[¥] Show built-in values
[% Import Settings.. | [i Export Settings..
g - Restore Defaults Apply
@
|._|>_‘| Project Explorer &3 [—] ﬂ={> | o

4 = Syste Workspace e [HardwareDebug]
s [l Incliee

a |2 r_bsp
4 [= board
> = rskrdddm

b [USEer
» = doc
4 [= mcu

' |E;-E||
> E;-Dcﬁ*ir‘ﬂ

» |n| platform.h
readme.bet
> 28 sre
> = r_config
custorn.bat
|| System_Input_Capture HardwareDebug.launch
| 7| Systermn_Input_Capture Releaselaunch

R20AN0319EG0100 Rev. 1.00
May 31, 2014

RENESAS

Page 18 of 41

RSK+RX64M 3. Creating an Empty Project and Importing the BSP

. :jn g:e I_PLOJecthExplo‘relr fpani,, [R *platform.h 53
houd e-(;_llc . the p;\t of_rlm.. 115 = /* RSKRX63@ */
eader file icon to open the file in 11e J/#include . /board/rskrx630/r_bsp.h”
the edit pane 117
e Scroll down to the line shown 118 = /7 RSKRXG3N =/ _ _ .
. 119 Jf/#include . /board/rskrx63n/r_bsp.h
opposite and uncomment the 1on -
include directive for the 121 S /* RSKRX63T G4PIN */
RSK+RX64M board. 22 /f#include "./board/rskrx63t_B4pin/r_bsp.h"
123
124 = /* RSKRXG3T_144PIN */
125 J/#include ", /board/rskrx63t_l44pin/r_bsp.h"
126
27 = /* RDKRXG3N */
28 f/#include . /board/rdkrxe3n/r_bsp.h"
129
13@ /* RSKRXG4M */
131 Binclude "./board/rskrxéam/r_bsp.h"
132
133 = /* RSKRX21e */
134 f/#include . /board/rskrx218/r_bsp.h"
135
136 = /* HSBRX21AP =/
137 J/#include . /board/hsbrx2lap/r_bsp.h"
138
e The FIT project folder structure |G ProjectExplorer 52 = 8 [H platformh 2
includes an ‘r_config’ folder, E&|e ~ 115 = /* RSKRX63@ */ _
- = 116 //#include ™. /board/rskrxe
where each FIT module’s 4 1% System_Input_Capture [HardwareDebug 127
configuration header file resides. > i Includes us S/* RSKRXGZN */
. s . a (2 r_bsp 119 J//#include “./board/rskrx6
The ‘r_bsp’ FIT module contains 4 (> board 120
an ‘r_bsp_config_reference.h’ file 4 @ rskndm e e = fhoardyrekrs
which we will need to copy into : %:“Z‘ 123
‘ H.r} > wsetup.c 124 = /* RSKRX63T_144PIN */
the r_Conflg folder. o B hwsetup.h 125 //#include *./board/rskrxé
e Copy and paste this file into the %:2:':':‘(- A
‘r_config’ folder as shown [lowsrch e = : —
OppOSIte. > | [n| r_bsp_config_reference.h
> B r_bsp_interrupt_config_n Easy Shell L
o b r_bsp.h Open
>] resetprg.c Open With ’
o B rsknddm.h
> [g| shrk.c = Copy Ctrl+C
| T - . PR— 29
e Right-click the newly copied [Project Explorer &2 = g [0 *platform.h &2
‘r_bsp_config_reference.h’ file | ¥ 115 S/ RSKRX630 */ _
and select ‘Rename..’” from the 4 22 System_Input_Capture [HardwareDebug o //#include ©. /board/rske
context menu. Rename the > B Includes 118 S /* RSKRXE3N */
‘ . y 2 r_bsp 119 //#include "./board/rskr
resource to ‘r_bsp_config.h’ as OB e 120
shown opposite. Click ‘OK'. 4 (= 1_config 121 8 /= RSKRMG3T BdPIM =
o The ‘r_bsp_config.h’ file is used to b £t confi [eference 123 e
.= — ' . . readme.tt 124 S /* RSKRXG63T 144PIN */
configure the BSP as described in custom bat 125 //#include ™. fboard/rske
Section 3.2 of r01an1685eu. For | 7] System_Input_Capture HardwareDebug 126 I
the purposes of this pr-oject we | 7] Systern_Input_Capture Releaselaunch 1fm _::'*"‘f;EE:EESg“" ..:'bca’d’.'dk'
will leave the file unchanged. Rename Resource e
6
Mew name: r_bsp_config.h
Preview >] [OK] [Cancel
141
R20AN0319EG0100 Rev. 1.00 RENESAS Page 19 of 41

May 31, 2014

RSK+RX64M 3. Creating an Empty Project and Importing the BSP

e Repeat the above steps for the [Project Explorer 52 = O [W *platform.h 52
‘r_bsp_interrupt_config_reference B%|e ~ 115 S /* RSKRX630 */ _
.h' file, found in the ‘r_bSp -> 4 1% System_Input_Capture [HardwareDebug . //sinclude T Jboard/rsl
board -> rskrx64m’ folder [} Includes S /% RSKRX63N */
i)) » 2 r_bsp 119 J/#include . /board/rsl
e The ‘r_bsp_interrupt_config.h’ file . 8 sre 120 _ _
is used to configure the BSP 4 (= r_config - et tnge = Mhomrdire]
interrupts. For the purposes of i r_bsp_config.h 123 . h '

H H 7 : In| r_bsp_interrupt_config_reference.h 124 = /* RSKRX63T 144PIN */
this project, we will leave the file e o e T he)
UnChanged. custom.bat —EE N _

= S: Rename Resource = @ I
Mew name: r_bsp_i nterrupt_conﬁglh
’ Preview =] [QK] ’ Cancel |
e Click the top level
- l% - - - -
‘System_Input_Capture’ folder 4 ¥»¥-0-G
again, and then the arrow next to v 1 HardwareDebug
the build button (hammer icon), 7 Release L
and select the ‘HardwareDebug’
option.
o ¢ studio will now build the code.
R20AN0319EG0100 Rev. 1.00 RENESANS Page 20 of 41

May 31, 2014

RSK+RX64M

4. Importing the Flash Library FIT Module

4.Importing the Flash Library FIT Module

e From the ‘File’ menu, select ‘New - [efl Add FIT Module [B
> Renesas FIT Module’. The FIT Modules
d|a|0g OppOSIte WI” be dlsplayed' Select FIT Modules to add to the selected project
e The dialog will be populated with
the preVIOUS seleCtlonS from §32 Marme of the project ta add FIT madules: System_Input_Capture -
e In the main list view select the
‘r flash apl rx’ module. the ‘Finish’ Family RX = Target Board RSKRXE4M * Function Ay -
button will then be enabled. Verify Series RX60) v Toolchain Any - Application Any =
that the dialog is as shown Group RXGAM =
opposite.
. Click ‘Finish’. Module Wersion Description
tr_bsp 2.50 Board Support Packages,
it flash_api 100 Data Flash and Code Flash API
Details
Dependency: r_bsp wersion(s) 2,40 -
This module implements Data Flash and Code Flash functionality
@ Einsh | [Cancel
R20AN0319EG0100 Rev. 1.00 RENESAS Page 21 of 41

May 31, 2014

RSK+RX64M 4. Importing the Flash Library FIT Module

e A ‘Module Information’ dialog will [- ér
Module Informat
appear, indicating that the Flash & L

API FIT module has a dependency
on the BSP FIT module. Click ‘OK’.

Selected modules have dependencies on the
following rmodules which are already installed:

t_flash_api_re r_bspwersion(s) 2.40

Please inspect your project for these compatible wversions,

oKk || cancel |

L

-

e A ‘Project Updated’ dialog will [T} proiect Undated
appear, indicating that include @ Proj . @

paths and source locations have

been updated. Click "OK'. Paths for CIncludes and Source Locations have been updated.

Press OK to continue

QK | ’ Cancel

R20ANO319EG0100 Rev. 1.00 RENESAS Page 22 of 41
May 31, 2014

RSK+RX64M 4. Importing the Flash Library FIT Module

e The newly added paths and | e i
symbols will be displayed in a | . i
Properties dialog. Click ‘OK’ ot [RotweDebug (Ac] =] [anoas Conputoms. |
I3 inchoder [1 Smbehs | G5 Soveea Locwon |) Refarances
o T — s
s ;EEEZ::{;%
ISP pleneds bt ot =
riptiens r——— -
R Lefalty Bty
@ ok][G
e In the Project Explorer pane, :
expand the J‘r_flash_i)lpi_rx’ lPoIder (2 Project Explorer 32 = Q:M .
and ‘ref’ and ‘src’ folders. 4= System_Input_Capture [HardwareDebug]
e The screenshot opposite shows the - 4%, Binaries
Flash APl FIT module files have + [njt! Includes
been installed correctly. » B r_bsp
4 |2 ¢ flash_api_rx
» = doc
a = ref
b @ t_flash_api_rs_config_reference.h
PR
¢ = targets
. @ t_flash_api_rx.c
+ [\ r_flash_api_rzh
- R r_flash_api_r_if.h
readrme. b
s B src
R20ANO0319EG0100 Rev. 1.00 REN ESNS Page 23 of 41

May 31, 2014

RSK+RX64M

4. Importing the Flash Library FIT Module

e The ‘r_flash_api_rx’ FIT module
installer has placed a
‘r_flash_api_rx_config.h’ file in the
‘r_config’ folder.

e Double-click this file and set the
#defines for
FLASH CFG_CODE_FLASH ENA
BLE and
FLASH _CFG_CODE_FLASH BG
O to 0 as shown opposite.

e Refer to r01an2072 for details of
these configuration options.

e Click the top level
‘System_Input_Capture’ folder
again, and then the arrow next to
the build button (hammer icon), and
select the ‘HardwareDebug’ option.

e ¢ studio will now build the code.

[Project Explorer 52 = <~1=’=':>| >

a4 = System_Input_Capture [HardwareDebug]

o :j;gp' Binaries
= gl Includes
> 2 r_bsp
a [rflash_api_mx
» 2= doc
4 = ref
» @ t_flash_api_re_config_reference.h
PR
» =% targets
» @ t_flash_api_rec
» E| t_flash_api_reh
s @ t_flash_api_r_if.h
readrre tet
s 2 sre
> = HardwareDebug
4 [= r_config
t_bsp_config.h
l] r_bsp_interrupt_config.h
Ia| r_flash_api_rx_config.h
readrre bt

1] platform.h [E] readme (€] dhset.c 8] ¥_flash_api_n_configh 53
2 @® * DISCLATMER]]
13 =
20 * File Name : r_flash_api_rx_config.h
21 * Description : Configures the FLASH API module.
22
23 e/
24 * History : DD.MM.YYYY Version Description
25 * : 12.84.2014 1.08 First Release
26
27 - #ifndef FLASH_CONFIG_HEADER_FILE
28 #define FLASH_CONFIG_HEADER FILE
29
30 e/
31 Configuration Options
32
33 = f* SPECTIFY WHETHER TO INCLUDE CODE FOR APT PARAMETER CHECKING */
34 f/ setting to BSP_CFG_PARAM CHECKING EMABLE utilizes the system default setting
35 £/ Setting to 1 includes parameter checking; @ compiles out parameter checking
36 #define FLASH_CFG_PARAM_CHECKING_ENABLE (BSP_CFG_PARAM_CHECKING_ENABLE)
37
38
EE = f* SPECIFY WHETHER TO CONFIGURE API for CODE FLASH OPERATION */f
48 £/ Setting to 1 configures the APT for Code Flash operatiens like Erase and Program
a1 f/ setting to @ disables Code Flash Support.
4z f/ Irrespective of this define, Dsta Flash operations are aluays supported
a3 #define FLASH_CFG_CODE_FLASH_EMAELE (@)
a4
as = f* SPECIFY WHETHER TO CONFIGLRE API for CODE FLASH BGO OPERATION */
a6 #/ setting to 1 configures the API for Code Flash BGO operation’
47 In this case, ensure that the MCU has more than 2 ME of Code Flashy
a8 and the flash API does not reside in the same 2 MB block as the area that it is programming.'
49 For example if the Flash APT is placed in the first 2 M8 block, then all Code Flash operstions)
5o supported by the FLASH API must be performed only on the area over 2 MB.\
51 The FLASH APT will NOT be copied into RAM
52 #/ setting to @ disables Code Flash BGO cperation’
53 £/ In this case, the FLASH APT will be copied into RAM for execution and will returnd
54 only after the operation is completed.
s #define FLASH_CFG_CODE_FLASH_BGO (@)

D

v 1 HardwareDebug |

2 Release

R20AN0319EG0100 Rev. 1.00
May 31, 2014

RENESAS

Page 24 of 41

RSK+RX64M

5. Using the Code Generator for Peripheral Functions

5.Using the Code Generator for Peripheral Functions

The System_Input_Capture sample applications uses a number of peripheral functions of the RX64M MCU.
The drivers for each of these peripheral functions are created by the in-built Code Generator for e studio.
The Code Generator is normally used to create a stand-alone project from scratch. Since we have created
this project using a FIT BSP, it is necessary to exclude some of the code generator start-up files from the build
and manually add some include paths in order to properly integrate the code generator files within the FIT

software architecture.

In this section of the Tutorial, the steps required to generate the peripheral drivers required for the sample are
presented, together with the additional steps required to build the project.

e Right-click the top level
‘System_Input_Capture’ and select
‘New -> Code Generator’.

e After a few seconds, a ‘Code
Generator’ node will appear in the
project explorer pane.

e Expand the ‘Code Generator ->
Peripheral Functions’ node, and
double-click the Compare Match
Timer node.

e The ‘Peripheral Functions’ tab will
be activated in the Build Pane as
shown opposite.

[Project Explorer 53 B &| v =g platform.h readme bt dhsct.c
4 [1:5 System_Input_Capture [HardwareDebug] 2 @ * DISCLAIMER[]
; e
- 45 Binaries Mews » |9 Project.. |
>) Includes
= GoInto 4 File E
4 (5 1 flash_api_rx Easy Shell v | [Filefrom Template
> = dor Open in Mew Window 9 Falder
o = ref L
s sre 2 Copy Ctrl+C [(& Class A
> L] r_flash_api_rc if.h Paste Ctrl+4 | [K] Header File B
s) readme.nt ¥ Delete Delete ¢ SourceFile
.8 sre
= MardwsreDebug Remove from Context Ctrl+w<+Shift+Down | @9 Source Folder
»
4 [r_config Saurce B CProject
r_bsp_config.h Maove... B
r_bsp_interrupt_config b =] | €oe Fiajec L
[r_bsp_i pt_conmg. Rename... F2 | e
r_flash_api_rx_config.h 2§ Code Generator |
0% €/Ces - System Inpuet Capeure/y_config/r Mash_api_or_confith - &2 studio ="
File [t Souece Refactor Bwvigaste Segech Prepect fum Wndew Help
i B I R B T B e SOPSte B s e WO 0) I8 2 N, B
E £ | (=]
B 1 Plach_bpir_configh 5l
View % il
£4 Penpreral Funchicns
& Clock Genrater
VoHa ok
#r
g F
" F

wifndef FLASH_COW
BdaFine FLASH CON

WLADLR_FILE
WEADER_FILE

Bdefine FLASH_CFG_PARNM_CHICKING ENAULE (58 _CFG_PARNY_CHECKIN

53 Periphenal Fu, 1

T teneme coe

w1 itemn selected System Inpn_Capture/Code Genera.ctions/Compare Mateh Timen CMT0

R20ANO319EG0100 Rev. 1.00
May 31, 2014

RENESAS

Page 25 of 41

RSK+RX64M

5. Using the Code Generator for Peripheral Functions

e Right-click the top level
‘System_Input_Capture’ and select
‘Import’.

e In the dialog that appears, expand
the ‘Code Generator’ node and
select ‘Code Generator Setting'.
Click ‘Next'.

e The dialog shown opposite will be
displayed.

e The file
‘System_Input_Capture.cgp’ is
provided on the DVD and has been
installed with the sample project in
the directory
‘System_Input_Capture’.

e Detailed use of the Code Generator
GUI to configure MCU peripherals
is outside the scope of this
document, since it is covered in the
Code Generator Tutorial r20ut2930.

e Locate this file and copy it into the
local workspace for this project.

e Browse to this file using the
‘browse’ button, then click ‘Finish’.

¢ Inthe warning dialog, click ‘OK’.

o/ import = o

Select \

Import Code Generator setting ‘ E - 5]

Select an import source:

type filter text

. [= General
v = CfC++
4 = Code Generator
=% Code Generator Setting
- = CVS
- = Git
- [= IAR Embedded Workbench
- = Install
+ [Run/Debug
. = SVN
+ [= Tasks
. [Team

iy —
l“?jl < Back Mext = Finish Cancel

o 5]

Code Generator Setting Import

file path: C\Workspace\Systern_Input_Capture\System_Input_Capture.cgp

™ ——
'\‘?_,' < Back Mext = Finish l I Cancel

R20ANO319EG0100 Rev. 1.00
May 31, 2014

RENESAS Page 26 of 41

RSK+RX64M 5. Using the Code Generator for Peripheral Functions

° Expand the ‘COde Genel’atOI’ > ¥, Problems % Tacks) Conscle [Peoperties [Memery Usage [§] Stack Anahyin | Tl Periphersi F_ 30 20 Device Lt Vi 23 Davice Top V. (::_:::‘o: ‘ [
Peripheral Functions’ node, and i o | cura [ot i

Comparn malch Smer opeimbon sclieg

double-click the Compare Match o & s
Timer node again. o = =

e Notice how the CMT settings have e : T
been imported for CMTO-3. S

e Settings for the Compare Match prerttrafed e :

Timer, Realtime Clock, Serial

Communications Interface, 12C Bus

Interface and 12-bit A/D Converter ; s .
have been imported.

e In the right of the Peripheral @GE”EFE’EE Code
Functions dialog, click ‘Generate

Code’ .
)) [* Problems 4% Tasks [Console £2 | £ Properties Memory Usage [fz] Stack Analysis 2
e The ‘Console’ tab in the Build Pane Code Generator Console

WI" be Updated. Me8489882:The generating source folder is: C:\Workspace\System Input Capture)
Me4e2eal:The following files were generated:
MBABI@Ra: srch\cg srchr cp main.c was generated.
Me489880:src\cg srchr cg dbsct.c was generated.
Meqeopee:src\cg srchr cg intprg.c was generated.
MB489088: src\cg srchr cg resetprg.c was generated.
Me489880:src\cg srchr cg sbrk.c was generated.
Meqeapee:src\cg srchr cg vecttbl.c was generated.
MB489@8@:src\cg srchr cg sbrk.h was generated.
Me489980:src\cg srchr cg stacksct.h was generated.
Me4eopee:src\cg srchr cg vect.h was generated.
MB489@88:src\cg srchr cg hardware setup.c was generated.
Me489880:src\cg srchr cg macrodriver.h was generated.
Me4eapee:src\cg srchr cg userdefine.h was generated.
MB489@88: src\cg srchr cg cgc.c was generated.
MB489980: srch\cg srchr cg cge user.c was generated.
Me4eopee:src\cg srchr cg cgc.h was generated.
MB489@88:src\cg srchr cg lpc.c was generated.
Me489980:srch\cg srchr cg lpc user.c was generated.
Meqeopee:src\cg srchr cg lpc.h was generated.
MB489@88: src\cg srchr cg icu.c was generated.
Me489980: srchcg srchr cg icu user.c was generated.
Meqeopel:src\cg srchr cg icu.h was generated.
MB489@88:src\cg srchr cg port.c was generated.
Me489880:src\cg srchr cg port user.c was generated.
Me4eopee:src\cg srchr cg port.h was generated.
MB489@88: src\cg srchr cg omt.c was generated.
Me489980: srch\cg srchr cg omt user.c was generated.
Me4eopee:src\cg srchr cg omt.h was generated.
MB489088: src\cg srchr cg rtc.c was generated.
Me489980: srch\cg srchr cg rtc user.c was generated.
Meqeopee:src\cg srchr cg rtc.h was generated.
MB489@88: src\cg srchr cg sci.c was generated.
Me489980:srch\cg srchr cg sci user.c was generated.
Meqeopee:src\cg srchr cg sci.h was generated.
MB489@88:src\cg srchr cg riic.c was generated.
Me489880:src\cg srchr cg riic user.c was generated.
Meqeopee:src\cg srchr cg riic.h was generated.
MB489@88: src\cg srchr cg sl2ad.c was generated.
Me489980:src\cg srchr cg sl2ad user.c was generated.
Me4eopee:src\cg srchr cg sl2ad.h was generated.
MB489@83:The operation of generating file was successful.

R20ANO319EG0100 Rev. 1.00 RENESAS Page 27 of 41
May 31, 2014

RSK+RX64M 5. Using the Code Generator for Peripheral Functions
e In the Project Explorer pane, [Project Explorer 52 =
expand the ‘src’ folder node. O ‘;I P 5% |
e The System_lnput_Capture.c’ file “ Ti?ﬂg‘“?m-_mp“t-capt“m Sanbwar:etng)
has been excluded from the build » 3, Binaries
as part of the code generation + [npl) Includes
operation. + 2 r_bsp
e All of the Code Generator files » [r_flash_api_nx
have been placed inside a new 4 [sre
sub-folder ‘cg_src’, under the ‘src’ . (= cgste
folder. [#] Systemn_Input_Capture.c
¢ = HardwareDebug
+ = r_config
e Right-click the greyed-out [ef] Properties for System Tnput Capture.c =8 e
‘System_Input_Capture.c’ node I Settings vRoo
and select ‘Properties’. Lo i -
Settings Configuration: [HardwareDebug [Active | v] [Managecgnﬁgurat\o

e Select ‘C/C++ Build’ and untick the
‘Exclude resource from build’,
check box. Click ‘OK’.

Teol Chain Editor
» C/C++ General
Run/Debug Settings

Exclude rescurce from build

B Tool Settings \,ﬁ Build Steps

4 & Compiler
4 (2 Source
(# Source file
(% Object
2 List
4 (2 Optimize
(2 Advanced
(3 Miscellaneous
(2 User
s (2 CPU
(2 Advanced
(2 PIC/PID

Command: ccmx

Alloptions: include="C:\PROGRA~1\Renesas\RX\2 1 O/include”
-include="C:\Workspace\System_Input_Capture ll=
\r_bsp” -include="C:\Workspace i
\System_Input_Capture\r_config” -include="C:

Expert settings:

Command

line pattern: S{COMMANDY] ${FLAGS} ${OUTPUT_FLAG} S{OUTPUT_P

n b

@
R20ANO319EG0100 Rev. 1.00 RENESAS Page 28 of 41

May 31, 2014

RSK+RX64M 5. Using the Code Generator for Peripheral Functions

e Since we are using [Project Explorer 52 S %% =8
‘System_Input_Capture.c’ for the » G2 1_flash_api_rx - 2
;) .
main() C function, and FIT BSP 4 (B sre o
. 4 = cg_src o
source files for start-up and B 21
interrupt handling, we need to Brcacoce 22
’ > r_cg_cge.c) —
exclude some code generator - [A r.cg_cgeh Dl ==
source ﬁles from the bulld + L4 rcg_cmt userc Exclude object(s) from build in the following configurations
@ r_cg_cmt.c
e In the Project Explorer pane, > [B r_cg_cmth Release;
expand the ‘System_Input_Capture : % '—‘9—:*":-‘ _ HardwareDebug
> r_.c ardware_setup.c
-> src -> cg_src’ folder node. B reaico e
e Using the CTRL key, select the > 18 regicuc
. . . > —_cg_icu.h
following files with the left mouse 5:;3 —
button: > g r:cg:lpc_user.c
I_cg_cgc_user.c . [regpec
> |h| r_cg_lpch
r_cg_cge.c > r_cg_macrodriver.h
r_Cg_CgC'h > [r_cg_main.c
r_Cg_dbSCt.C > [r_cg_port_user.c
r_cg_hardware_setup.c > 9 reg port.c
r_cg_intprg.c > B r.cg.porth
CQ p g. o [r_cg_resetprg.c
r_cg_main.c . [r.cg_riic_user.c [selectal || Deselectan |
I_cg_resetprg.c > 8] r_eg_riic.c
= |h| r_cg_riich o
r_cg_sgrt'ﬁ o [r_cg_rte_userc '@/I [oK l ’ Cancel]
I_CQg_SDbrk. 2 [rcg_rtec
r_cg_stacksct.h - [8 rcg_rtch =
r Cg Vect.h » % r_cg_sl2ad_user.c 5
- 5 r_cg_slZad.c .
r_cg_vecttbl.c . [B r.cq12sdh -
e Then right-click and select ‘Exclude > 18] 1.cg sbrkc
> r_cg_sbrk.h 5g

from build...". The dialog opposite . [§ rcq sci.userc
will be dlsplayed s g r:cg:sci._c

e Click the ‘Select All' button to rcg_scih

X r_cg_stacksct.h
exclude the selected files from the

r_cg_userdefine.h

build for Release and Hardware » 1] r_cq_vecth
Debug build configurations. > [r.cqvecttblc |
e Click OK.
R20ANO319EG0100 Rev. 1.00 RENESAS Page 29 of 41

May 31, 2014

RSK+RX64M

5. Using the Code Generator for Peripheral Functions

Verify that the files shown opposite
are excluded from the build
(greyed-out with a line through the
icon).

In Project Explorer, locate the file
‘iodefine.h’ as shown opposite,
right-click and select ‘Copy’.

Paste the file into the
‘System_Input_Capture -> src’
folder, using the right-click context
menu or the ‘Edit — Paste’ main
menu item.

[Project Explorer 53

4 = Cg_src

> @ r_cg_cmt_user.c

i @ r_cg_cmt.c

> [\ r_cg_cmth

o |8 rcg_icu_user.c

o € reg_icu.c

o [\ reg_icuh

> € rcg_lpc_userc

o € reg_lpec

s [\ rcg_lpch

> [\ r_cg_macrodriver.h

> @ r_cg_port_user.c

> @ r_cqg_part.c

> [\ r_cg_porth

> [r_cg_riic_user.c

> [r_eg_riic.c

> [\ r_cg_riic.h

o |8 rcg_rte_user.c

o [rcg_rte.c

o [\ reg_rteh

s @ r_cg_sl2ad_user.c

o[£ reg_sllad.c

> [\ r_cg_sl2adh

s @ F_Cg_sCi_USer.c

> [r_cg_scic

> [\ r_cg_scih

> [\ r_cg_userdefine.h
[r_cg_cge_userc
& r_cg_cgec
I r_cg_cgeh
[#] r_cg_dbsct.c
[#] r_cg_hardware_setup.c
[#[r_cg_intprg.c
[#[r_cg_main.c
& r_cg_resetprg.c
[# r_cg_shrk.c
B r_cg_shrkh
I r_cg_stacksct.h
B r_cg vecth
[# r_cq_vecttbl.c

> [System_Input_Capture.c

[P Project Explorer 32 | [0 ‘& | ®
4 ::5 System_Input_Capture [HardwareDebug

> q-_';p' Binaries
> [t Includes
a (2 r_bsp
> [board
> (= doc
4 [mcu
s = all
4 = xgdm
4 [= register_access
> | [n] iodefine.h

v ="

=i

m

[& epu.c

[H cpu.h

[£] locking.c
[A] locking.h
[meu_info.h
[meu_init.c

(B mewinith | =

v W v W W W W

Mew

Easy Shell
Open
Open With

Copy

Ctrl+C

R20AN0319EG0100 Rev. 1.00
May 31, 2014

RENESAS

Page 30 of 41

RSK+RX64M

5. Using the Code Generator for Peripheral Functions

into the

Paste the file
‘System_Input_Capture -> src
folder, using the right-click context

7 Project Explorer &3
a % System_Input_Capture [HardwareDebug]

menu or the ‘Edit — Paste’ main - [Includes
menu item. . 2 r_bsp
This is required because the code - 2 r_flash_api_mx
generator generates the #include 4|02 src
“.\iodefine.h” directive in all of its
source files. & cgsre
. iodefine.h
- | System_Input_Capture.c
- = HardwareDebug
- [= r_config
custom.bat
|=| makefile.init
Svstermn Inout Capture HardwareDebua.launcl
e Click the to level
‘System_lnput_Capture[’) folder ﬁ "B~ ¥~ 0~ %_'
again, and then the arrow next to v 1 HardwareDebug

the build button (hammer icon), and

select the ‘HardwareDebug’ option. 2 Release

e € studio will now build the code.

The project now contains a combined FIT/Code Generator base for adding the application code for
System_Input_Capture. The steps described so far are also applicable to any user application that uses a FIT
BSP, one or more FIT modules and code generator code in combination.

The steps required to complete the sample are described in the next Section. The next part of the Tutorial is
more specific to the System_Input_Capture application, but is also applicable for customers who wish to build
a FIT-based application while still retaining the power and flexibility of the Renesas Code Generator.

R20ANO319EG0100 Rev. 1.00
May 31, 2014

RENESAS Page 31 of 41

RSK+RX64M 6. Completing the System_Input_Capture Application

6.Completing the System_Input_Capture Application

It is not the intention of this of this document to provide a detailed walkthrough of the System_Input_Capture
sample, not to provide a Tutorial on the use of the code generator built into e® studio. Therefore, rather than
inspect detailed application code in this document, it is sufficient to simply copy source files from the
completed System_Input_Capture sample into the user’s workspace. This applies to both top level application
source files as well as manual edits that have been made in the user code areas of the code generator source
files.

The reader is encouraged to inspect the application source files and the code added to the user area of the
code generator files. In the latter case, this is easily achieved with any diff tool.

e Locate the following files in the - L
I Project Expl &3 =
completed System_Input_Capture O .mJEC prore . =
sample (src folder) and copy them 4§ System Input_Capture;
into the src folder of your - 34" Binaries
workspace: - m Includes
.. - b
ascii.c '5 r‘ﬂs'ﬂh .
ascii.h + @ 1_flash_api_mx
r_okaya lcd.c 4 (B src
r_okaya_lcd.h - £g_src
r_rsk_data_flash.c ascii.c
r_rsI;_Qata_ﬂash.h asciih
r_rsk_iic_eeprom.c odefine.h

r_rsk_iic_eeprom.h
r_rsk_nvm.c
r_rsk_nvm.h
r_rsk_switch.c
r_rsk_switch.h

System_ Input_Capture.c

e Locate the following files in the
completed System_Input_Capture
sample (src/cg_src folder)and copy
them into the src/cg_src folder of
your workspace:

t_okaya_lcd.c
r_okaya_lcd.h
t_rsk_flash_data.c
t_tsk_flash_data.h
t_rsk_iic_eeprorm.c
r_rsk_iic_geprarn.h
r_rsk_rwm.e
t_rsk_rwm.h
r_rak_switch.c
t_rsk_switch.h

FERFFPREEFEFREEPREEEE I

r_cg_userdefine.h
r_cg_sci_user.c
r_cg_sci.h
r_cg_sl2ad user.c
r_cg_sl2ad.h
r_cg_rtc_user.c
r_cg_rtc.h
r_cg_riic_user.c
r_cg_riic.h
r_cg_riic.c
r_cg_icu_user.c
r_cg_icu.h
r_cg_icu.c
r_cg_cmt_user.c
r_cg_cmt.h
r_cg_cmt.c

Iystern_Input_Capture.c

R20AN0319EG0100 Rev. 1.00 RENESAS Page 32 of 41
May 31, 2014

RSK+RX64M 6. Completing the System_Input_Capture Application

° It is necessary to edit the FIT BSP [ty Project Bxplorer 52 (=) 5| & 7 = 8 [g platformh [e flh api rconfigh (5] hsetupc 5

4 1% System_Input_Capture [HardwareDebuy «

file hwsetup.c in order to initialise & Binares i S
our code generator peripheral i Descedption. + befines the inisiabizatian routines u
modules. 4 & foord .
. . . . “ ng”i:;:tc * History : DD.MALYYYY Version Description
e There are stub functions in this file v s : (07082015 9.0 | Tirst Relesse
provided for this purpose, where L et
we will add our initialisation code. i o Includes <system Tncludess , "Project Tncludes”
[lowerc.|
* Open the file r_bsp -> board -> § frocntama e i e
rskrx64m -> hwsetup.c’ by double- B b il : wrce_pacrodriver "
. . .y . . I resetprg.c
clicking it's node in the Project » [shoémh
Explorer pane. " B e
. . b [B vecttblh
e Add the following code as shown in b e
b = doc

the screenshot opposite.

#include "r_cg macrodriver.h"
#include "r_cg lpc.h"
#include "r_cg icu.h"
#include "r_cg port.h"
#include "r_cg cmt.h"
#include "r_cg rtc.h"
#include "r_cg sci.h"
#include "r_cg riic.h"
#include "r_cg sl2ad.h"

e Add the following code as shown in | @pstemh L cfshepinconfigh | Lo hsetupe 52

the screenshot opposite. o enable suecres. +/

e These API calls connect the BSP iﬁi:?ﬁipi&i P
interrupt architecture to the code- AR -
generator-supplied interrupt call G g RS e e
back functions for the required BLO S - 0
and BL1 interrupts. For more !
information on the RX64M group " Function name: interrupts_configure
interrupts refer to the hardware “irgments | one ST TR vt

* Return value : none

manual.

< static void interrupts_configure(void)

/* Add code here to setup additicnal interrupts */
R_BSP_Interruptirite(BSP_INT_SRC_BL@_SCI6 TEI6, (bsp_int_cb_t)r_sci6_transmitend interrupt);

R_BSP_Interruptiirite(BSP_INT_SRC L@ SCI7 TEL7, (bsp_int_cb_t)r_sci7_transmitend interrupt);

R_BSP_Interruptirite(BSP INT SRC BL@ SCI7 ERI7, (bsp_int cb_t)r sci7 receiveerror interrupt);

R_BSP_Interruptirite(BSP INT SRC BLI RIICZ TEI2, (bsp_int cb_t)r riic2 transmitend interrupt);

R _BSP InterruptWrite(BSP INT SRC BL1 RIICZ EEI2, p i ii i pt);

* Function name: peripheral_modules_enable
* Description : Enables and configures peripheral devices on the MCU

R_BSP_InterruptWrite(BSP_INT_SRC BLO_SCI6_TEI6, (bsp_int_cb_t)r_sci6_transmitend_interrupt);
R_BSP_InterruptWrite(BSP_INT_SRC BLO_SCI7 TEI7, (bsp_int_cb_t)r_sci7_transmitend_interrupt);
R_BSP_InterruptWrite(BSP_INT_SRC _BLO_SCI7 ERI7, (bsp_int_cb_t)r_sci7_receiveerror_interrupt);
R_BSP_InterruptWrite(BSP_INT_SRC BL1_RIIC2 TEI2, (bsp_int_cb_t)r_riic2_transmitend_interrupt);
R_BSP_InterruptWrite(BSP_INT_SRC BL1_RIIC2 EEI2, (bsp_int_cb_t)r_riic2_error_interrupt);

R20ANO319EG0100 Rev. 1.00 RENESANAS Page 33 of 41
May 31, 2014

RSK+RX64M 6. Completing the System_Input_Capture Application

e Add the following code as shown in Erstemh b fuhmimcontan | mocune

0

the ScreenShOt OppOSIte- : ;:22:::12?&: E:;;Eer:iang:ﬁ;Ui::b;:ripheral devices on the MCU
) * Arguments : none
e Is code is taken from the code- e vetue ene

= static void peripheral modules_enable(void)

generator-supplied
r_cg_hardware_setup.c file and is
necessary to initialise all of the
code generator peripherals used in
the project.

e Remember to save the edits (ctrl-

S).

/* Add code here to enable peripherals used by the application */

/* Enable writing to registers related te operating modes, LPC, CGC and seftware reset */
5Y 1M.PRCR.WORD = BU;

/* Enable writing to MPC pin function control registers */
MPC.PWPR.BIT.BGW.
MPC.PWPR.BIT.

/* Initialize istent pins */
PORTS.PDR.BYTI

/* Set peripheral settings */
R_LPC_Create()

* Enable writing to registers related to operating modes, LPC, CGC and software reset */
1. PRCR. WORD = @xA

pin function control registers */
MPC.PWPR.BIT
MPC.PWPR.B

/* Initialize stent pins */
PORTS . PDR. BYTE = U;

/* Enable writing to registers related to operating modes, LPC, CGC and software reset */
SYSTEM.PRCR.WORD = OxA50BU;

/* Enable writing to MPC pin function control registers */
MPC.PWPR.BIT.BOWI = 0U;
MPC.PWPR.BIT.PFSWE = 1U;

/* Initialize non-existent pins */
PORT5.PDR.BYTE = 0x70U;

/* Set peripheral settings */
R_LPC_Create();
R_ICU Create();
R_PORT_Create();
R_CMTO_Create();
R_CMT1_Create();
R_CMT2_Create();
R_CMT3_Create();
R_RTC_Create();
R_SCI6_Create();
R_SCI7_Create();
R_RIIC2 Create();
R_S12AD@_Create();
R_S12AD1_Create();

/* Enable writing to registers related to operating modes, LPC, CGC and software reset */
SYSTEM.PRCR.WORD = OxA50BU;

/* Enable writing to MPC pin function control registers */
MPC.PWPR.BIT.BOWI = 0U;
MPC.PWPR.BIT.PFSWE = 1U;

/* Initialize non-existent pins */
PORTS5.PDR.BYTE = 0x70U;

R20ANO319EG0100 Rev. 1.00 RENESANAS Page 34 of 41
May 31, 2014

RSK+RX64M 6. Completing the System_Input_Capture Application

e Open the project properties from |« eeeksmmimtne =kl
the ‘Project -> Properties’ menu | o e i
item, or by selecting the project in sccbng Contgrten: et Acive | e —
the Project Explorer pane then ::,,“ﬁ, o s e R
clicking the button. g

e In the ‘Properties for P fos
System_Input_Capture’ dialog, Z.'KM,‘ s
browse to ‘C/C++ Build -> Settings ook Reposaoy
Tool Settings -> Compiler -> P =
Source’

e Click the £ button shown
opposite with the tool-tip.

= ' = _“‘o“:.:\mlm
3 oK Cancel

N In the ‘Add directory path' dialog,) Tool Settings | # Build Steps | 1" Build Artifact [[t Binary Parsers | @ Error Parsers|
CIiCk the ‘Workspace.) .. buttOI’l. 4 153 Compiler Include file directories LER S R= R

4 (B Source e —
5 Sourcefile S{TCINSTALL Y/include'
= "S{workspace_loc/S{ProjName}/r_bsp}’

e In the ‘Folder selection’ dialog’, (5 Ofiect

(2 Lid [6] Add directory path

browse and select the P

w Directory:

‘System_Input_Capture -> src -> =

cg_src’ folder. Click ‘OK'. LBl
. i = |&? Falder selection =3 ==
e In thfa A’dd directory path’ dialog, L2 00 [o [otipue | 55 o more Wokpace Pl

click ‘OK’. & s 4 5 System Input_Capture
4 (£ Object b (= settings

e Repeat the steps above to add the & Aduanced " & Hedvarcicbug

(2 List b = rbsp

path ‘System_Input_Capture -> src’ B Miscelnecus > & reonfiy

A 3 . . (5 User b 2 rflash_apim

to the list of Include file directories. “ B Linker e

a (2 Input b | cqsre
(2 Defines

e In the ‘Properties for & Advaneed ——

System_Input_Capture’ dialog, L5 e A
click ‘Apply’. 2 Advanced

a (2 Section
(% Symbol file

=]

m

R_PORT_Create();
o) ©

4

R20ANO319EG0100 Rev. 1.00 RENESAS Page 35 of 41
May 31, 2014

RSK+RX64M 6. Completing the System_Input_Capture Application

e Staying the ‘Tool Settings’ tab of the | le¥propetiesforsystemnput captare = o]
‘Properties for pefiterted Settings T
, . > Resource "
System_Input_Capture dialog, Builders
. - i~ . 4 C/C++ Build Configuration: [HardwareDabug [Active] '] lManagE Configurations..
navigate to ‘Compiler -> CPU -> Buld Variables
, Change Toolchain Vers
Advanced Dependency Scan 1 Tool Settings | # Build Steps | ' Build Artifact | (& Binary Parsers | @ Error Parsers|
R Device
e In ‘Other CPU options, ensure that Envicnment 4 Compier Patch code generation [ene 7]
. Logging 4 (% Source
‘Pack structures, unions and Settings & Sourcefie Round o [tearet o |
. . Tool Chain Editor (2 Object P f doubl Singl -
C|aSSGS’ is t|Cked e 5 o recision of double [ingle precision]
L. L. . Project References 4 (B Optimize Sign of char [insigned -
e This is to ensure efficient reading, Refactoring History 2 Advanced Sign o bitield = -]
.. Run/Debug Settings (Miscellaneous
writing and use of NVM. . Task Repostory & User Allocate from lower bit [Lonerb |
| th ‘P " f «3B C\EUM : Width of divergence of function 24 bit -]
e In e roperties or g O Advance 4
g PIC/PID
! i 4 1 Assembler Other CPU aptions:
SyStem—I npUt_Cath re dlalog' (3 Source [7] Denormalized number allowed as & result
click ‘OK’. 4 (% Object [Replace from int with shert
“@Advamd [Enum size is made the smallest
% :;ft | [#]$3ck stroctures, unions and classes |
g U::E aneous [Use try, throw and catch of C++
4 B Linker [7] Use dynamic_cast and typeid of C++
a (B Input
(% Defines
(2 Advanced
O [P0 g List =

@

e Click the top level
‘System_Input_Capture’ folder B~ -0~ Q-
again, and then the arrow next to % v 1 HardwareDebug |
the build button (hammer icon), and 3 Release
select the ‘HardwareDebug’ option.

e? studio will now build the code.

The application is now complete. For instructions on how to run the System_Input_Capture sample refer to
the Description.txt file contained in the completed sample. To use the e2 studio debugger, refer to the Tutorial
Manual r20ut2594eg.

R20ANO319EG0100 Rev. 1.00 RENESAS Page 36 of 41
May 31, 2014

RSK+RX64M

7. Additional Information

7.Additional Information

Technical Support

For details on how to use e’ studio, refer to
the help file by opening e’ studio, then
selecting Help > Help Contents from the
menu bar.

Window | Help

JE\
& v (& ldel Welcorme

{7} Help Contents
BT Search
Dyharmic Help

For information about the RX/64M series microcontrollers refer to the RX/64M Group Hardware Manual.

For information about the RX assembly language, refer to the RX Series Software Manual.

Technical Contact Details

Please refer to the contact details listed in section 9 of the “Quick Start Guide”

General information on Renesas microcontrollers can be found on the Renesas website at:

http://www.renesas.com/

Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective

companies or organisations.

Copyright

This document may be, wholly or partially, subject to change without notice. All rights reserved. Duplication of
this document, either in whole or part is prohibited without the written permission of Renesas Electronics

Europe Limited.

© 2014 Renesas Electronics Europe Limited. All rights reserved.
© 2014 Renesas Electronics Corporation. All rights reserved.
© 2014 Renesas Solutions Corp. All rights reserved.

R20AN0319EG0100 Rev. 1.00
May 31, 2014

RRENESAS

Page 37 of 41

http://www.renesas.com/

REVISION HISTORY

RSK RX64M Code Generator Tutorial Manual

Rev.

Date

Description

Page

Summary

1.00

May 31, 2014

First Edition issued

Renesas Starter Kit Manual: Code Generator Tutorial Manual

Publication Date: Rev. 1.00 May 31, 2014

Published by: Renesas Electronics Corporation

LENESAS

SALES OFFICES Renesas Electronics Corporatlon http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.

2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.

Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada

Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany

Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.

7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 301, Tower A, Central Towers, 555 LanGao Rd., Putuo District, Shanghai, China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.

13F, No. 363, Fu Shing North Road, Taipei, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949

Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.

12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea

Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2014 Renesas Electronics Corporation. All rights reserved.
Colophon 2.0

RX64M Group

RENESAS

Renesas Electronics Corporation R20ANO319EG0100

	1. Overview
	1.1 Purpose
	1.2 Features

	2. Introduction
	3. Creating an Empty Project and Importing the BSP
	3.1 Creating the Empty Project
	3.2 Importing the BSP into the Project

	4. Importing the Flash Library FIT Module
	5. Using the Code Generator for Peripheral Functions
	6. Completing the System_Input_Capture Application
	7. Additional Information

