

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

AN0303006/Rev1.00 September 2003 Page 1 of 16

PRELIMINARY

H8/300L
Driving of Stepper Motor (Stepper)

Introduction
A stepper motor translates current pulses into motor rotation. A typical stepper motor contains 4 winding coils. Applying voltage to
these coils forces the motor to rotate step by step.

In normal operation, two winding coils are activated at the same time. The stepper motor moves clockwise one step per change in
winding activated. If the sequence is applied in reverse order, the motor will run counterclockwise.

The speed of rotation is controlled by the frequency of the pulses. Every time a pulse is applied to the stepper motor the motor will
rotate a fixed distance. A typical step rotation is 18 degrees. With 18 degrees rotation in each step will complete one rotation of the
motor (360 degrees) require 20 steps. By changing the interval time, the speed of the motor can be regulated, and by counting the
number of steps, the rotation angle can be controlled.

I/O port 5 [bit 3 ..bit 0] of H8/38024 MCU is used to drive the 2 phase / 4 phase stepper motor driver circuit. Two types stepper
motor driver circuit will be introduce here, first is stepper motor driver IC (L298N) and second is power MOSFET transistor
(2SK1095).

This application note demonstrated the use of H8/38024F SLP MCU in driving a 2 phase / 4 phase stepper motor. Two types of
hardware driver circuits are discussed.

Target Device
H8/300L Super Low Power – H8/38024 Series

H8/300L
Driving of Stepper Motor (Stepper)

AN0303006/Rev1.00 September 2003 Page 2 of 16

PRELIMINARY

Contents

1. HARDWARE OVERVIEW... 3
1.1 Hardware Circuit Option 1:.. 3
1.2 Hardware Circuit Option 2:.. 7

2. Software Overview.. 9
2.1 Software description for Example source code 1 ... 9
2.2 Software description for example source code with timer interrupt .. 14

3. Other Consideration .. 14

Reference.. 14

H8/300L
Driving of Stepper Motor (Stepper)

AN0303006/Rev1.00 September 2003 Page 3 of 16

PRELIMINARY

1. HARDWARE OVERVIEW

Stepper
Motor
Driver
circuit

2 / 4 phase

stepper
motor

H8/38024
MCU P5[3..0]

2a

2b

1a

1b

Figure 1 Hardware Block Diagram

Basically, there are 3 components in the stepper motor control circuit:
Micro-controller - used to generate the stepper motor control waveforms
Motor Driver - used to drive the stepper motor
Stepper Motor - used to evaluate the control waveform from MCU

1.1 Hardware Circuit Option 1:
In hardware design, the most complicated part is stepper motor driver circuit design. This motor driver design depends on the stepper
motor characteristic. The most common way to design a stepper motor driver is using a “Stepper Motor Driver IC”. The stepper
motor that I choose is SAIA-UAG2 which can connect 2-phase or 4-phase. Table 1 and table 2 show the technical data of two
different stepper motor which can be used in this application note.

The L298N stepper motor driver circuit diagram (2-phase) is show by figure 2 and the R1 and R2 value depend from the load current.
The protection diodes also can be reduce by changing the IC L298N to L293D.

H8/300L
Driving of Stepper Motor (Stepper)

AN0303006/Rev1.00 September 2003 Page 4 of 16

PRELIMINARY

Table 1 Technical data of SAIA-UAG2 stepper motor:

Item Value

Step per resolution 20

Winding type Unipolar

Rated Voltage 6 volt 12 volt 24 volt

Resistance per winding 35 Ω 170 Ω 700 Ω

Maximum Power Consumption 0.4 Watt

Winding temperature 130°C

Duty Cycle 100%

Holding torque 0.5 cNm

Detent torque 0.14 cNm

Direction of rotation Reversible

Rotor inertia 0.31 gcm2

Table 2 Technical data of Step-Syn (type:103H546-0440) stepping motor:

Item Value

Step per resolution 200

Rated Voltage 3.15 volt

Resistance per winding 3.15 Ω

Current per phase 1 Ampare

Holding torque 1.5 kg.cm

Direction of rotation Reversible

Rotor inertia 31 gcm2

Weight 0.2 kg

H8/300L
Driving of Stepper Motor (Stepper)

AN0303006/Rev1.00 September 2003 Page 5 of 16

PRELIMINARY

D
7

1
N

4
1

4
8

D
5

1
N

4
1

4
8

+12V

D
1

1
N

4
1

4
8

P53

R1
10

R2
10

P50

M1
SAIA-UAG1/2

P52

VCC
P51

VCC

C2
100n

L298N
U1

L298N

4

2

3

5

7

10

12

81 1
5

13

14

9

11

6

V
s

OUT1

OUT2

In1

In2

In3

In4

G
N

D

S
E

N
S

E
 A

S
E

N
S

E
 B

OUT3

OUT4

+
V

ss

EnB

EnA

D
2

1
N

4
1

4
8

D
8

1
N

4
1

4
8

C1
100n

D
6

1
N

4
1

4
8

D
4

1
N

4
1

4
8

D
3

1
N

4
1

4
8

Figure 2 L298N Stepper Motor Driver Circuit(2-phase)

Table 3: Full-step sequencing

Step P53 P52 P51 P50 PDR5

0 1 0 0 1 0x09

1 1 0 1 0 0x0A

2 0 1 1 0 0x06

3 0 1 0 1 0x05

Table 4: Half-step sequencing

Step P53 P52 P51 P50 PDR5

0 1 0 0 0 0x08

1 1 0 1 0 0x0A

2 0 0 1 0 0x02

3 0 1 1 0 0x06

4 0 1 0 0 0x04

5 0 1 0 1 0x05

6 0 0 0 1 0x01

7 1 0 0 1 0x09

H8/300L
Driving of Stepper Motor (Stepper)

AN0303006/Rev1.00 September 2003 Page 6 of 16

PRELIMINARY

OUT4

OUT3

OUT2

OUT1

10
01

10
10

01
10

01
01

Figure 3 Waveform for Hardware circuit option 1 with example program 1

H8/300L
Driving of Stepper Motor (Stepper)

AN0303006/Rev1.00 September 2003 Page 7 of 16

PRELIMINARY

1.2 Hardware Circuit Option 2:
Besides using the stepper motor driver IC, stepper motor can be drive by 4 N-channel MOSFET 2SK1095. Figure 4 shown the
MOSFET stepper motor driver circuit(4-phase). The stepper motor control waveform are driven through AND gates.

The signals are input to the gates of 4 N-Ch. MOSFET transistors (type 2SK1095), alternately switching them on and off. These
transistors act as a drain for the current generated across the stepper motor coils. Four protection diodes (type HRP-22) are used to
keep the voltage drop between the drain and the source to 0.55V. Motor make a lot of electrical noise so C1 and C2 is used to
suppress the noise spikes.

Finally, power is supplied to the motor windings from a +12V* power supply through a pair of resistor to limit the coils current.
Since the MOSFET’s switching time is extremely fast, therefore a dead-time is needed between inverting phase signals (A and A-, B
and B-) so that A- and B- signal will be slightly reduce before A and B are turned on. User can also increase the dead-time delay to
achieve Half-step sequent. Note that R6, R7, R8 and R9 are pulled down, if MCU is trigger to standby mode, I/O port is in high
impedance thus all phase will be in inactive mode.

Vcc

R2
68

D1
HRP22

D2
HRP22

A

Q1
2SK10953

1

2

Figure 4 MOSFET Stepper Motor Driver Circuit

* User may change the +12V supply and R2, R3, R4, R5 value to suit different stepper motor. For example: Power supply = 3 volt,
R2=R3=R4=R5=1Ω when use Step-syn stepper motor to achieve rated holding torque.

P51

R3
68

R4
33

P53

R1
1k

Q3
2SK10953

1

2

R5
33

B

+12V

C2
470uF

B

D3
HRP22

P50

R9
10k

A

Q4
2SK10953

1

2

Q2
2SK10953

1

2

&

U1

7408

1
2

4
5

9
10

12
13

3

6

8

11

M1
SAIA-UAG1/2

R7
10k

C1
0.1uF

D4
HRP22

R8
10k

R6
10k

P52

H8/300L
Driving of Stepper Motor (Stepper)

AN0303006/Rev1.00 September 2003 Page 8 of 16

PRELIMINARY

Table 5: Full-step sequencing

Step P53 P52 P51 P50 PDR5

0 1 0 0 1 0x09

1 1 0 1 0 0x0A

2 0 1 1 0 0x06

3 0 1 0 1 0x05

Table 6: Dead-time sequencing

Step P53 P52 P51 P50 PDR5

0 0 0 0 1 0x01

1 1 0 0 0 0x08

2 0 1 0 0 0x02

3 0 0 1 0 0x04

B’

A’

B

A

Figure 5 Waveform for Hardware circuit option 2 with example program 2

H8/300L
Driving of Stepper Motor (Stepper)

AN0303006/Rev1.00 September 2003 Page 9 of 16

PRELIMINARY

2. Software Overview
Once the desired port pins on the MCU are connected to the input pins on the stepper motor driver IC, the stepping sequence is
easily implemented into software. Any I/O port on the MCU can be used to provide the input signal to the driver IC. In this example,
the lower 4 bit of Port 5 is connected to the input pin of the driver IC (Hardware Circuit Option 1). To energize a winding the
programmer set the “In1” pin high (binary 1) and the “In2” pin low (binary 0). The following code in figure 6 gives an example on
how programmer can cause the stepper motor to continuously rotate, using the Full Stepping sequence as described in Table 3.

#include "iodefine.h"
#include <machine.h>

unsigned int loop_count, delay, max_step;
//an array of the positions used in the Full Stepping sequence
unsigned char motor_data[4] = {0x09,0x0a,0x06,0x05};
void main(void)
{
 P_IO.PCR5.BYTE = 0xFF; //set port 5 as output port
 P_IO.PDR5.BYTE = 0x00; //set port 5 data as 0000 0000
 loop_count = 0; max_step = 4; //Initialises the variable

 while(1)
 {
 //output stepping sequence
 P_IO.PDR5.BYTE = motor_data[loop_count++];
 //Coil energizing time
 for (delay=0 ; delay<0x300; delay++) ;
 //return to beginning
 if (loop_count==max_step) loop_count = 0;
 }
}

Figure 6 Example source code 1 for stepper motor control

2.1 Software description for Example source code 1

To use a different stepping sequence, simply change the motor_data and max_step value, e.g. for the Half stepping sequence,
max_steps should be changed to 8 and motor_data[4] change to motor_data[8]={0x08, 0x0a, …,0x01,0x09}; (follow the Table
5).

As the MCU executes each command within microseconds, a delay need to be inserted in between each step, otherwise the rotor
will not be able to rotate as the winding is not fully energise. This has been implemented with the line

for (delay=0 ; delay<0x300; delay++) ;

H8/300L
Driving of Stepper Motor (Stepper)

AN0303006/Rev1.00 September 2003 Page 10 of 16

PRELIMINARY

where the value of delay affects the speed and torque of the motor. If the value of delay were increased, it would cause the winding
to be energised for longer which would increases the torque, but because the winding is being energised for longer the speed of the
motor is reduced. If the value of delay is decreased, the speed of the motor is increased however this causes the torque to be reduced
and the motor may not be able to rotate or be in control.

Thus, for Hardware circuit option 2, a dead-time sequence need to be insert before each stepping sequence. The example source code
(shown in Figure 6) has to be modified to suit the hardware circuit option 2. The following source code in Figure 7 show the
modification of the stepper motor control source code.

#include "iodefine.h"
#include <machine.h>

unsigned int loop_count, delay, max_step;
//an array of the positions used in the Full Stepping sequence
unsigned char motor_data[8] = {0x01, //Dead-time sequence 0
 0x09, //stepping sequence 0
 0x08, //Dead-time sequence 1
 0x0A, //stepping sequence 1
 0x02, //Dead-time sequence 2
 0x06, //stepping sequence 2
 0x04, //Dead-time sequence 3
 0x05 //stepping sequence 3
 };
void main(void)
{
 P_IO.PCR5.BYTE = 0xFF; //set port 5 as output port
 P_IO.PDR5.BYTE = 0x00; //set port 5 data as 0000 0000
 loop_count = 0; max_step = 8; //Initialises the variable
 while(1)
 {
 P_IO.PDR5.BYTE = motor_data[loop_count++]; //output deadtime sequence
 for (delay=0 ; delay<0x10; delay++) ; //small delay
 P_IO.PDR5.BYTE = motor_data[loop_count++]; //output stepping sequence
 for (delay=0 ; delay<0x300; delay++) ; //Coil energizing time
 if (loop_count==max_step) loop_count = 0;
 //return to beginning
 }

}

Figure 7 Example source code 2 for stepper motor control

H8/300L
Driving of Stepper Motor (Stepper)

AN0303006/Rev1.00 September 2003 Page 11 of 16

PRELIMINARY

The example source code 1 and 2 above demonstrates a simple method of implementing the stepper motor control. A more efficient
method to reduce the MCU load, would be to make use of the “Timer Interrupt” to generate the stepper motor control stepping
sequence. Let’s modify the example source code 2 to become a timer interrupt driven method. In this example, Timer F is choose to
generate the stepper motor control waveform.

There are 2 part of programming when timer interrupt is using:

a. Main program - void main(void)

b. Interrupt service routine - __interrupt(vect=15) void INT_TimerFH(void)

*Please refer to figure 8 and figure 9 for the detail source code.

#include "iodefine.h"
#include <machine.h>
void init_stepper_motor_io(void);
void init_timer_F(void);

unsigned int loop_count, delay, max_step;
//an array of the positions used in the Full Stepping sequence
unsigned char motor_data[8] = {0x01, //Dead-time sequence 0
 0x09, //stepping sequence 0
 0x08, //Dead-time sequence 1
 0x0A, //stepping sequence 1
 0x02, //Dead-time sequence 2
 0x06, //stepping sequence 2
 0x04, //Dead-time sequence 3
 0x05 //stepping sequence 3
 };
void main(void)
{
 init_stepper_motor_io(); //initialise I/O port
 init_timer_F(); //initialise Timer F with interrupt
 while(1)
 {
 //user program start here
 }
}
void init_stepper_motor_io(void)
{
 P_IO.PCR5.BYTE = 0xFF;
 //set port 5 as output port

 P_IO.PDR5.BYTE = 0x00;
 //set port 5 data as 0000 0000
}

H8/300L
Driving of Stepper Motor (Stepper)

AN0303006/Rev1.00 September 2003 Page 12 of 16

PRELIMINARY

void init_timer_F(void)
{
 set_imask_ccr(1); //disable interrupt request
 P_TMRF.TCRF.BYTE = 0x04; //set timer F 16bit mode, counting on TCFL
 //overflow signal
 P_TMRF.TCSRF.BIT.CCLRH = 1; //TCF clearing by compare match

 P_TMRF.OCRF.BYTE.H = 0x00;
 P_TMRF.OCRF.BYTE.L =0x30; //set output compare register value

 P_SYSCR.IENR2.BIT.IENTFH = 1; //Enable Timer F interrupt
 P_SYSCR.IRR2.BIT.IRRTFH = 0; //clear Timer F interrupt request flag
 set_imask_ccr(0); //enable interrupt request
}

Figure 8 Main program for stepper motor control (with timer interrupt)

#include "iodefine.h"
#include <machine.h>
extern unsigned char motor_data[8];
extern unsigned char loop_count;
#pragma section IntPRG
// vector 1 Reserved

// vector 2 Reserved

// vector 3 Reserved

// vector 4 IRQ0
__interrupt(vect=4) void INT_IRQ0(void) { /* sleep(); */ }
.
.
.
.

__interrupt(vect=14) void INT_TimerFL(void) {/* sleep(); */}
// vector 15 Timer FH Overflow
__interrupt(vect=15) void INT_TimerFH(void)
{
 if (P_TMRF.TCSRF.BIT.CMFH == 1)
 {
 P_TMRF.TCSRF.BIT.CMFH = 0;
 if (loop_count%2 == 0) //DEAD-TIME_DATA
 {
 P_IO.PDR5.BYTE = motor_data[loop_count++];
 P_TMRF.OCRF.BYTE.H = 0x00;
 P_TMRF.OCRF.BYTE.L = 0x30;
 }
 else

H8/300L
Driving of Stepper Motor (Stepper)

AN0303006/Rev1.00 September 2003 Page 13 of 16

PRELIMINARY

 {
 P_IO.PDR5.BYTE = motor_data[loop_count++];
 P_TMRF.OCRF.BYTE.H = 0x03;
 P_TMRF.OCRF.BYTE.L = 0x00;
 }

 if (loop_count==8) loop_count = 0;
 }

P_SYSCR.IRR2.BIT.IRRTFH= 0;
}
// vector 16 Timer G Overflow
__interrupt(vect=16) void INT_TimerG(void) {/* sleep(); */}
// vector 17 Reserved

Figure 9 Interrupt program for stepper motor control (with timer interrupt)

H8/300L
Driving of Stepper Motor (Stepper)

AN0303006/Rev1.00 September 2003 Page 14 of 16

PRELIMINARY

2.2 Software description for example source code with timer interrupt
First, the MCU will initialize the stepper motor I/O port as output port with value 0x00. Then Timer F is initialized as 16-bit
free-running counter with timer clock is set to ∅/32. The Timer F counter value (TCF) will clear to 0x0000 when a compare-
match between OCRF and TCF occur. Finally the timer F interrupt is enable to allow the output compare-match interrupt
request from Timer F.

The process start by loading the startup count into the OCRF during the timer initialization code and Timer F interrupt service
routine will do the rest of the job. The Interrupt routine is serviced when the contents of OCRF match the contents TCF. Then,
the dead-time sequence data is output to Port 5, the OCRF is update for dead-time duration. After that, when OCRF match with
TCF again, the second time timer interrupt request occur, this time the stepper motor sequence data is output to port 5 and
OCRF is update again for dead-time duration.

Interrupt routine work as below:

a. When timer F interrupt request occur, the interrupt service routine will be executed.

b. Then check for compare-match flag for ‘1’ if yes continue the rest of the process

c. Clear CMFH flag

d. Check for loop_count value, if EVEN number then output dead-time sequence data and then setup OCRF value for dead-
time duration.

e. If the loop_count value is ODD then stepping data will output to port 5 and update the OCRF for coil energised duration.

f. Reset the loop_count when all the 8 sequence data was output to port 5.

g. Clear interrupt request flag to ‘0’.

3. Other Consideration
The driving of stepper motor can be further enhancement, depending on the need of the application. For example, the application
may need to drive the stepper motor to make numerous turns in a quickest possible time. In order to kick-start the motor, the initial
delay may be longer as higher torque is required to turn the motor load. This delay can be slowly reduced due to the motor rotating
inertia. In this manner, motor can be rotate in a faster speed. These delay data can be calculate based on the motor profile, load and
etc.

The stepper motor used in this AN is a general low power stepper motor (400mW max), user may need to changes the driver circuit
to suit the higher power stepper motor.

Reference
1. H8/38024 Series, H8/38024F-ZTAT Hardware Manual (ADE-602-231A)

2. H8/300 Using a H8/300 to control a stepper motor Application Note (AE-0057)

H8/300L
Driving of Stepper Motor (Stepper)

AN0303006/Rev1.00 September 2003 Page 15 of 16

PRELIMINARY

Revision Record
Description

Rev.

Date Page Summary

1.00 Sep.03 - First edition issued

H8/300L
Driving of Stepper Motor (Stepper)

AN0303006/Rev1.00 September 2003 Page 16 of 16

PRELIMINARY

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation
product distributor when considering the use of a product contained herein for any specific
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear,
or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

	HARDWARE OVERVIEW
	Hardware Circuit Option 1:
	Hardware Circuit Option 2:

	Software Overview
	Software description for Example source code 1
	Software description for example source code with timer inte

	Other Consideration
	Reference

