Introduction

The DK-S128 Out-Of-Box (OOB) Demonstration Kit shows a multithreaded application that reads the analog values present on the potentiometer, light sensor, and temperature sensor, and displays these values on the kit’s Pmod™ LCD. This guide covers the application and its DK-S128 development kit implementation using the Renesas Synergy™ Software Package (SSP).

This document also describes how to import the project, so that you can recreate the application using the e² studio Integrated Solutions Development Environment (ISDE) or IAR Embedded Workbench® for Renesas Synergy™.

Minimum PC Requirements

- Microsoft® Windows® 7 or 10
- 8 GB memory RAM
- 2 GB free space on hard disk or SSD
- USB 2.0

Required Resources

The example application targets Renesas Synergy S128 MCUs. To build and run the application, you will need:

- Synergy DK-S128 Development Kit
- e² studio ISDE v6.2.0 or greater or IAR EW for Synergy v8.21.1 or greater
- SSP v1.4.0 or greater and Synergy Standalone Configurator (SSC) v6.2.0 or greater
- SEGGER J-Link® USB driver
- Okaya Pmod™ LCD display (included with the DK-S128 kit)
- Micro USB cables

You can download the required Synergy software and development tools from the Synergy Solutions Gallery: renesassynergy.com/solutionsgallery.

Prerequisites and Intended Audience

This OOB demonstration assumes you have some experience with the Renesas e² studio ISDE, or the IAR EW for Synergy, and the SSP. For example, before you perform the procedure in this application note, you should follow the procedure to build and run the Blinky application project. By doing so, you will become familiar with e² studio and the SSP, and ensure that the debug connection to your board is functioning properly.

The intended audience are users who want to evaluate features of the S128 Synergy MCU using SSP.
Contents

1. Application Overview ... 3
 1.1 Application software architecture .. 3
 1.1.1 Input Thread .. 4
 1.1.2 LCD Thread .. 5
 1.1.3 LED Thread .. 6

2. Procedure to Create DK-S128 OOB Project ... 6

3. Running the Pre-existing DK-S128 Application Demonstration ... 11
 3.1 Powering up the Board .. 11
 3.2 Importing, building and running the project .. 11
 3.3 Verifying the demonstration .. 12

4. Next Steps ... 14

5. Limitations and Assumptions ... 14
1. Application Overview

The DK-S128 kit contains several analog sensors along with a 3-axis accelerometer connected to the I2C bus. The analog sensors include a potentiometer, a temperature sensor, and a light sensor. This OOB application continuously reads the analog values provided by these sensors and displays them on the Pmod LCD screen. It also flashes the three on-board LEDs in proportion to the analog voltage being produced by the potentiometer or the light sensor. The LEDs may be programmed to flash in unison or chase each other. The selection of which sensor drives the flashing rate and whether the LEDs flash or chase is controlled by push button switches S1 and S2 (found in the lower right corner of the DK-S128 kit).

The application illustrates the use of Synergy peripheral drivers to read the sensor values along with demonstrating how easy it is to setup a multithreaded application. The application has separate threads to read the sensors, display the values to the LCD and flash the LEDs based on pushbutton and sensor inputs.

1.1 Application software architecture

The following table shows the main software components of the applications.

<table>
<thead>
<tr>
<th>Thread Name</th>
<th>Thread Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED Thread</td>
<td>Controls flashing/chasing of the 3 onboard LEDs</td>
</tr>
<tr>
<td>LCD Thread</td>
<td>Updates the LCD as new data arrives from 3 analog sensors</td>
</tr>
<tr>
<td>Inputs Thread</td>
<td>Periodically polls the switch inputs and reads the analog sensor voltages</td>
</tr>
</tbody>
</table>

The input thread periodically samples the state of the pushbuttons and the voltage values present on the analog sensors. It makes this data available to the other threads through two access functions, eliminating the need for global variables.

While both pushbuttons are connected to hardware pins with interrupt capability, this application uses a thread to periodically poll the switch states by reading the I/O port pins connected to the switches. This simple technique provides basic switch debouncing by reading the state of the switch at an interval longer than the typical mechanical switch bounce time (50 ms).
1.1.1 Input Thread

The following figure shows the logic implemented in the inputs thread. To be responsive, the inputs thread samples the sensors and switch inputs every 50 ms. The LCD thread periodically updates the Pmod LCD screen with the current mode, selected by the pushbuttons, and the latest sensor values.
1.1.2 LCD Thread

The LCD thread periodically wakes up, reads the current mode and sensor values, and displays these values to the Pmod LCD screen. The following figure shows the logic implemented in the LCD thread. The mode and sensor values are obtained by calling the two access functions provided by the inputs thread.

Figure 2 Simplified flowchart of Input Thread
1.1.3 LED Thread
The LED thread must refresh the LEDs at a periodic rate driven by the voltage value present on either the light sensor or the potentiometer depending on the current mode selected by the operator. The standard `tx_thread_sleep()` call is used as the periodic delay.

When the LED thread wakes up it calls two different access functions, `inputs_get_sensor_values()` and `inputs_get_mode()`, to obtain the current sensor values. This is one of the benefits of threads, shared memory space. It allows the inputs thread to maintain a local copy of these variables while still providing access to those variables to the LED thread. The access functions eliminate the use of global variables and allow the sensor variables to have local scope inside the inputs thread.

2. Procedure to Create DK-S128 OOB Project
The following steps are used to recreate the DK-S128 OOB application project from scratch using the e² studio ISDE or IAR EW for Synergy.

Step 1: Create a new project with RTOS included.

1. Create a new Synergy project by clicking **File->New->Synergy C/C++ Project**.
2. Select ‘**Renesas Synergy C Executable Project**’.
3. Enter the project name and setup the Synergy license file.
4. Choose **Board S128 DK**.
5. Choose **BSP** option in the project template selection window.
Step 2: Create Input thread

1. Under the **Thread** tab, click the ‘**New Thread**’ to create a new thread.
2. Set the property of this new thread as shown in the following figure.
3. In the **Inputs Thread Stacks** window, click the ‘**New Stack**’ to add the ADC driver module **ADC Driver on r_adc** as shown in the following figure.

4. Go to the **Properties** tab for the ADC driver and select the resolution and channels as shown in the following figure. For details on the ADC driver properties, see the *ADC Module Guide*. Use the keyword `r_adc` in this link to download the *ADC Module Guide* document.
Step 3: Create LCD Thread

1. Under the Thread tab, click the ‘New Thread’ to create a new thread.
2. Set the property of this new thread as shown below.
3. In the LCD Thread Stacks window, click the ‘New Stack’ to add the SPI driver module SPI Driver on r_sci_spi as shown in the figure below.
4. Go to the Properties tab for the SPI driver and select the channel. Set the interrupt priorities in the figure below.
Step 4: Create LED Thread

1. Go to the **Thread** tab, click the + sign to create a new thread.
2. Go to the **Properties** tab of LED thread and set the property of this new thread shown in the following figure.

![Figure 8 Led Thread properties tab](image)

Step 5: Update Pin Configurations

Go to the **Pins** tab and change the pin configurations for the following ports shown in the following figure.

- P205 to Output mode (PMOD_SS)
- P302 to Output mode (PMOD_EN)
- P111 to Output mode (PMOD_RST)
- P303 to Output mode (PMOD_DC)
- P201 to Output mode (LED2)
Step 6: Generate Project Content
Click the **Generate Project Content** button to generate the project files using the configuration options you selected.

Figure 9 Pin Configuration

Step 7: Application Project files
1. After Step 7, the e2 studio ISDE generates the application project files with the configuration chosen.
2. Go to the **Project Explorer** window, under your project, open the **src** folder. The following figure shows the files generated for this application project.

Figure 10 Generated Files
3. The files are placeholders for adding your application code. You can either write your own application functions for these threads or copy the existing `dk_s128_oob` demo application project source files to recreate this OOB demonstration.

4. If you are recreating this OOB demonstration, go to the existing `dk_s128_oob` project `src` folder and copy the following files/folders contents to your newly created project.

```
lcd_setup (folder)
led_thread_entry.c
inputs_thread_entry.c
inputs.h
lcd_thread_entry.c
system_cfg.h
```

![Figure 11 DK-S128 OOB Files](image)

Step 8: Compiling the project

Build the application project by clicking the **hammer** icon as seen in the menu bar in the following figure.

![Figure 12 Build button](image)

3. Running the Pre-existing DK-S128 Application Demonstration

3.1 Powering up the Board

This section describes how to connect the board to power, the J-Link debugger to the PC, and the board to the PC USB port, and how to run the debug application to see it in action.

To connect to the board:

1. Connect the Micro USB end of the supplied USB cable to the DK-S128 board J12 connector (DEBUG_USB).

 Note: The kit contains a SEGGER J-Link® OB (On-board). J-Link provides full debug and programming capabilities for the DK-S128 kit.

2. Connect the other end of the USB cable to the USB port on your workstation. Wait for LED4 to turn solid green, indicating a good connection.

3.2 Importing, building and running the project

See *Importing a Renesas Synergy Project* ([r11an0023eu0119-synergy-ssp-import-guide.pdf](link)) for instructions on importing the project into e² studio ISDE, or IAR EW for Synergy, and building and running the project. It is also included in this package.

Note: You need to select the `dk_s128_oob Debug` GDB Hardware Debugging configuration for debugging.
3.3 Verifying the demonstration

1. Connect the Pmod LCD display (included as part of DK-S128 kit) to the Pmod connector J4.
2. Verify that the J3 header near the battery has two jumpers to make the connections, see the following figure.

![Figure 13 J3 Jumper setting](image)

Refer to the following figure for the software settings needed to run this OOB demonstration.

![Figure 14 SW4/5/6/7 Settings for OOB Demonstration](image)

Once the DK-S128 kit is plugged in, the board powers up and loads the OOB Demonstration. The three LEDs, LED1, LED2, and LED3 start flashing and the display shows a simple splash screen in the following figure on the Pmod™ LCD for 2 seconds.

This splash screen displays the board number and the version of the Out-of-Box software that shipped with this kit.
After two seconds, the screen changes to the analog measurement screen shown in the following figure. The Out-of-Box application uses the A/D converter to read the voltage values present on the potentiometer (POT), the light sensor U3 (APDS-9005) and the temperature sensor U1 (TMP35). The program displays the raw hex values read from the light sensor and the potentiometer, and the program converts the analog value read from the temperature sensor to the equivalent Fahrenheit temperature.

You may interact with the Out-of-Box program in the following ways:

1. **Toggle LEDs to alternate between flashing and chasing.**

 The three LEDs, LED1, LED2, and LED3 all flash at once or chase each other. **Pushing the button S2** causes the LEDs to alternate between flashing and chasing. The bottom left corner of the screen indicates which mode the LEDs are operating in; FLASH/CHASE.

2. **Toggle LED flash rate using either the light sensor or potentiometer.**

 The flashing rate of the LEDs is determined by the value read from the light sensor or the potentiometer. You toggle between these two by **pushing the button S1**. The bottom right corner of the screen indicates which sensor is driving the LEDs flashing rate; POT/LIGHT.

3. **Increase or decrease LED flashing using POT mode.**

 With the POT mode selected **push S1**, rotate POT clockwise and counterclockwise.

 The flashing of the LEDs increases or decreases accordingly. The screen displays the raw value reported by the A/D converter.

4. **Increase or decrease LED flashing using LIGHT mode.**

 With the LIGHT mode selected **push S1**, move a light source (for example, a flashlight) closer and farther away from light sensor U3. Observe that the flashing rate of the LEDs changes. The raw hex value displayed to the screen also changes.
4. **Next Steps**

2. Visit renesassynergy.com/tools to learn more about development tools & utilities.
4. To learn more about:

5. **Limitations and Assumptions**

For this application project, DIP switch 1 (LED_DIS) in SW6 is set to OFF. You cannot use the Reset button (SW3) to restart the kit if DIP switch 1 (LED_DIS) in SW6 is set to OFF, since in DK-S128 schematics, P2_1 is shared between LED2 and boot mode.
Website and Support

Support: https://synergygallery.renesas.com/support

Technical Contact Details:

- America: https://www.renesas.com/en-us/support/contact.html
- Europe: https://www.renesas.com/en-eu/support/contact.html
- Japan: https://www.renesas.com/ja-ja/support/contact.html

All trademarks and registered trademarks are the property of their respective owners.
Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Page</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Aug 18, 2017</td>
<td>-</td>
<td>Initial version</td>
</tr>
<tr>
<td>1.01</td>
<td>Jan 19, 2018</td>
<td>-</td>
<td>Updated for the SSP v1.3.3</td>
</tr>
<tr>
<td>1.02</td>
<td>Mar 22, 2018</td>
<td>-</td>
<td>Updated to SSP v1.4.0</td>
</tr>
</tbody>
</table>
Renesas Electronics Corporation

SALES OFFICES

Refer to "http://www.renesas.com" for the latest and detailed information.

Renesas Electronics America Inc.
1091 Murphy Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-9351

Renesas Electronics Canada Limited
9221 Yonge Street, Suite 6305 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH
Arcadistrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1769 Quantum Plaza, No.27 ZhuhuiLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1105, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Times, 669 Lanzhao Road, Pudong District, Shanghai, 200033 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1603-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852-2255-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886-2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit 00-02 Hyflex Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-6390, Fax: +60-3-7955-9190

Renesas Electronics India Pvt. Ltd.
No.177C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
17F, RAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06285 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

© 2018 Renesas Electronics Corporation. All rights reserved.

Colophon 7.0