

RX23E-B Group, **RX23E-A Group**

Differences Between the RX23E-B Group and the RX23E-A Group

Introduction

This application note is intended as a reference to points of difference between the peripheral modules, I/O registers, and pin functions of the RX23E-B Group and RX23E-A Group, as well as a guide to key points to consider when migrating between the two groups.

Unless specifically otherwise noted, the information in this application note applies to the 48-pin package versions of the RX23E-B Group and RX23E-A Group. To confirm the differences in electrical specifications, usage notes, and setting procedures, refer to the User's Manual: Hardware for the product in question.

Target Device

RX23E-B Group and RX23E-A Group

Contents

1.	Comparison of Built-In Functions of RX23E-B Group and RX23E-A Group	3
2.	Comparative Overview of Specifications	4
2.1	Voltage Detection Circuit	4
2.2	Clock Generation Circuit	8
2.3	Clock Frequency Accuracy Measurement Circuit	11
2.4	Low Power Consumption	13
2.5	Register Write Protection Function	
2.6	Interrupt Controller	17
2.7	Buses	
2.8	Event link controller	21
2.9	I/O ports	25
2.10	Multi-Function Pin Controller	
2.11	Low-Power Timer	
2.12	Serial communication interface	
2.13	Serial peripheral interface	
2.14	Analog Front-End	
2.15	24-Bit Delta-Sigma A/D Converter	54
2.16	12-bit A/D converter	
2.17	Packages	64
3.	Comparison of Pin Functions	65
3.1	48-Pin Packages	
3.2	40-Pin Packages	
4.	Important Information when Migrating Between MCUs	69
4.1	Notes on Function Configuration	
4.1.1	-	
4.1.2		
~		
5.	Reference Documents	
Rev	ision History	72

1. Comparison of Built-In Functions of RX23E-B Group and RX23E-A Group

A comparison of the built-in functions of the RX23E-B Group and RX23E-A Group is provided below. For details of the functions, refer to section 2, Comparative Overview of Specifications and section 5, Reference Documents.

Table 1.1 is Comparison of Built-In Functions of RX23E-A Group and RX23E-B Group.

Table 1.1 Comparison of Built-In Functions of RX23E-A Group and RX23E-B Group

Function	RX23E-A	RX23E-B	
CPU	(5	
Operating Mode	(C	
Address Space	(C	
Reset	(C	
Option-Setting Memory (OFSM)	(C	
Voltage Detection Circuit (LVDAb)			
Clock generation circuit			
Clock Frequency Accuracy Measurement Circuit (CAC)			
Low power consumption		/▲	
Register write protection function			
Exception Handling	(C	
Interrupt controller (ICUb)			
Buses		/	
Memory-Protection Unit (MPU))	
DMA Controller (DMACA)	(C	
Data Transfer Controller (DTCa)	(C	
Event Link Controller (ELC)		/	
I/O ports		/▲	
Multi-Function Pin Controller (MPC)		/	
Multi-function timer pulse unit 2 (MTU2a)	(0	
Port Output Enable 2 (POE2a)	0		
8-bit Timer (TMRa)	(C	
Compare Match Timer (CMT)	(C	
Realtime Clock (RTCc) ×			
Low-Power Timer (LPT)			
Independent Watchdog Timer (IWDTa)	(C	
Serial Communication Interface (SCIg and SCIh)	(
I ² C Bus Interface (RIICa)	(C	
CAN Module (RSCAN)	(C	
Serial Peripheral Interface (RSPIb for RX23E-A and RSPIc for RX23E-B)		/ 🔺	
CRC Calculator (CRC)	(C	
LCD Controller/Driver (LCDC)	×	0	
Analog Front-End (AFE for RX23E-A and AFEA for RX23E-B)		/	
24-Bit Delta-Sigma A/D Converter (DSADA for RX23E-A and DSADB for RX23E-B)		\ /	
12-Bit A/D Converter (S12ADE)			
16-Bit D/A Converter (R16DA)	×	0	
Data Operation Circuit (DOC)	(Ċ	
RAM	(C	
Flash Memory (FLASH)	0		
Packages			

 \bigcirc : Available, \times : Unavailable, \bigcirc : Differs due to added functionality,

▲ : Differs due to change in functionality, ■: Differs due to removed functionality.

2. Comparative Overview of Specifications

This section presents a comparative overview of specifications, including registers.

In the comparative overview, red text indicates functions which are included only in one of the MCU groups and also functions for which the specifications differ between the two groups.

In the register comparison, red text indicates differences in specifications for registers that are included in both groups and **black text** indicates registers which are included only in one of the MCU groups. Only differences in register specifications are listed.

2.1 Voltage Detection Circuit

Table 2.1 is Comparative Overview of Voltage Detection Circuits, and Table 2.2 is Comparison of Voltage Detection Circuit Registers.

Table 2.3 is Comparison of Vdet2 Monitor Configuration Procedures, and Table 2.4 is Comparison of Operation Configuration Procedures for the Bits Related to Voltage Monitoring 2 Interrupt and Voltage Monitoring 2 Reset.

		RX23E-A (LVDA	b)		RX23E-B (LVDAb)			
Item		Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2	Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2	
VCC monitoring	Monitored voltage	Vdet0	Vdet1	Vdet2	Vdet0	Vdet1	Vdet2	
	Detection target	When voltage drops below Vdet0	When voltage rises above or drops past Vdet1	When voltage rises above or drops past Vdet2	When voltage drops below Vdet0	When voltage rises above or drops past Vdet1	When voltage rises above or drops past Vdet2	
							LVCMPCR. Switching between VCC and the voltage input on the CMPA2 pin can be accomplished using the LVCMPCR.EXV CCINP2 bit.	
	Detection voltage	Selectable from four levels using the OFS1 register	Selectable from 14 levels using LVDLVLR.LVD1 LVL[3:0] bits	Selectable from four levels using LVDLVLR.LVD2 LVL[1:0] bits	0	Selectable from 14 levels using LVDLVLR.LVD1 LVL[3:0] bits	Selectable from four levels using LVDLVLR.LVD2 LVL[1:0] bits	
	Monitoring flag	_	LVD1SR.LVD1 MON flag: Monitors whether voltage is higher or lower than Vdet1 LVD1SR.LVD1 DET flag:	LVD2SR.LVD2 MON flag: Monitors whether voltage is higher or lower than Vdet2 LVD2SR.LVD2 DET flag:	_	LVD1SR.LVD1 MON flag: Monitors whether voltage is higher or lower than Vdet1 LVD1SR.LVD1 DET flag:	LVD2SR.LVD2 MON flag: Monitors whether voltage is higher or lower than Vdet2 LVD2SR.LVD2 DET flag:	
			Vdet1 passage detection	Vdet2 passage detection		Vdet1 passage detection	Vdet2 passage detection	

Table 2.1 Comparative Overview of Voltage Detection Circuits

RX23E-B Group, RX23E-A Group Differences Between the RX23E-B Group and the RX23E-A Group

		RX23E-A (LVDAb)			RX23E-B (LVDAb)		
Item		Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2	Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2
Voltage detection processing	Reset	Voltage Monitoring 0 Reset	Voltage Monitoring 1 Reset	Voltage Monitoring 2 Reset	Voltage Monitoring 0 Reset	Voltage Monitoring 1 Reset	Voltage Monitoring 2 Reset
		Reset triggered when Vdet0 > VCC: CPU restarts when a specified time elapses after the following condition is met: VCC > Vdet0	Reset triggered when Vdet1 > VCC: CPU restarts when a specified time elapses after the following condition is met: VCC > Vdet1 or Vdet1 > VCC (selectable)	Reset triggered when Vdet2 > VCC: CPU restarts when a specified time elapses after the following condition is met: VCC > Vdet2 or Vdet2 > VCC (selectable)	Reset triggered when Vdet0 > VCC: CPU restarts when a specified time elapses after the following condition is met: VCC > Vdet0	Reset triggered when Vdet1 > VCC: CPU restarts when a specified time elapses after the following condition is met: VCC > Vdet1 or Vdet1 > VCC (selectable)	Reset triggered when Vdet2 > VCC or CMPA2 pin: CPU restarts when a specified time elapses after the following condition is met: VCC or CMPA2 pin > Vdet2 or Vdet2 > VCC or CMPA2 pin (selectable)
	Interrupt	-	Voltage Monitoring 1 Interrupt	Voltage Monitoring 2 Interrupt	_	Voltage Monitoring 1 Interrupt	Voltage Monitoring 2 Interrupt
			Selectable between non- maskable or maskable interrupt	Selectable between non- maskable or maskable interrupt		Selectable between non- maskable or maskable interrupt	Selectable between non- maskable or maskable interrupt
			Condition "Vdet1 > VCC" or "VCC > Vdet1", or both, can be used as a trigger to issue an interrupt request	Condition "Vdet2 > VCC" or "VCC > Vdet2", or both, can be used as a trigger to issue an interrupt request		Condition "Vdet1 > VCC" or "VCC > Vdet1", or both, can be used as a trigger to issue an interrupt request	Condition "Vdet2 > VCC or CMPA2 pin" or "VCC or CMPA2 pin > Vdet2", or both, can be used as a trigger to issue an interrupt request
Event link function —		-	Available: Event output at Vdet1 passage detection	Available: Event output at Vdet2 passage detection	—	Available: Event output at Vdet1 passage detection	Available: Event output at Vdet2 passage detection

Register	Bit	RX23E-A (LVDAb)	RX23E-B (LVDAb)
LVD2CR1	LVD2IDTSEL [1:0]	Bit for selecting the condition in which the voltage monitoring 2 interrupt ELC event is generated	Bit for selecting the condition in which the voltage monitoring 2 interrupt ELC event is generated
		b1 b0 0 0: When VCC ≥ Vdet2 (rise) is detected 0 1: When VCC < Vdet2 (drop) is detected	b1 b0 0 0: When the following condition is detected: VCC or CMPA2 pin ≥ Vdet2 (rise) 0 1: When the following condition is detected: VCC or CMPA2 pin < Vdet2 (drop)
		1 0: When drop or rise is detected 1 1: Setting prohibited.	1 0: When drop or rise is detected 1 1: Setting prohibited.
LVD2SR	LVD2MON	Voltage monitoring 2 signal monitor flag	Voltage monitoring 2 signal monitor flag
		0: VCC < Vdet2 1: VCC ≥ Vdet2 or LVD2MON is disabled	0: VCC or CMPA2 pin < Vdet2 1: VCC or CMPA2 pin ≥ Vdet2 or LVD2MON is disabled
LVCMPCR	EXVCCINP2	-	Voltage detection 2 comparison voltage external input select bit
LVD2CR0	LVD2RN	Voltage monitoring 2 reset negation select bit	Voltage monitoring 2 reset negation select bit
		0: Negation follows a specified time (tLVD2) after detecting the "VCC > Vdet2" state.	0: Negation follows a specified time (tLVD2) after detecting the "VCC or CMPA2 pin > Vdet2" condition.
		1: Negation follows a specified time (tLVD2) after assertion of the voltage monitoring 2 reset.	1: Negation follows a specified time (tLVD2) after assertion of the voltage monitoring 2 reset.

Table 2.2	Comparison o	of Voltage Detection Circuit Registers
	e e inpanee in e	

Table 2.3 Comparison of Vdet2 Monitor Configuration Procedures

Item		RX23E-A (LVDAb)	RX23E-B (LVDAb)
Vdet2 monitor configuration procedure	1	Set the LVDLVLR.LVD2LVL[1:0] bit (detection voltage for voltage detection 2).	Set the LVDLVLR.LVD2LVL[1:0] bit (detection voltage for voltage detection 2).
	2	_	Set the LVCMPCR.EXVCCINP2 bit to "0" (VCC voltage) or "1" (CMPA2 pin input voltage).
	3	Set the LVCMPCR.LVD2E bit to "1" (enable the voltage detection 2 circuit).	Set the LVCMPCR.LVD2E bit to "1" (enable the voltage detection 2 circuit).
	4	Wait for at least td(E-A).	Wait for at least td(E-A).
	5	Set the LVD2CR0.LVD2CMPE bit to "1" (enable output of comparison results for the voltage monitoring 2 circuit).	Set the LVD2CR0.LVD2CMPE bit to "1" (enable output of comparison results for the voltage monitoring 2 circuit).

ltem		RX23E-A (LVDAb)	RX23E-B (LVDAb)
Voltage monitoring 2 interrupt	1	Use the LVDLVLR.LVD2LVL[1:0] bit to select the detection voltage.	Use the LVDLVLR.LVD2LVL[1:0] bit to select the detection voltage.
Output of the voltage monitoring 2 ELC	2	—	Set the LVCMPCR.EXVCCINP2 bit to "0" (VCC voltage) or "1" (CMPA2 pin input voltage).
event	3	Set the LVD2CR0.LVD2RI bit to "0" (voltage monitoring 2 interrupt).	Set the LVD2CR0.LVD2RI bit to "0" (voltage monitoring 2 interrupt).
	4	Use the LVD2CR1.LVD2IDTSEL[1:0] bit to select the interrupt request timing. Use the LVD2CR1.LVD2IRQSEL bit to select the interrupt type.	Use the LVD2CR1.LVD2IDTSEL[1:0] bit to select the interrupt request timing. Use the LVD2CR1.LVD2IRQSEL bit to select the interrupt type.
	5	Set the LVCMPCR.LVD2E bit to "1" (enable the voltage detection 2 circuit).	Set the LVCMPCR.LVD2E bit to "1" (enable the voltage detection 2 circuit).
	6	Wait for at least td(E-A).	Wait for at least td(E-A).
	7	Set the LVD2CR0.LVD2CMPE bit to "1" (enable output of comparison results for the voltage monitoring 2 circuit).	Set the LVD2CR0.LVD2CMPE bit to "1" (enable output of comparison results for the voltage monitoring 2 circuit).
	8	Wait for at least 2 µs.	Wait for at least 2 µs.
	9	Set the LVD2SR.LVD2DET bit to "0".	Set the LVD2SR.LVD2DET bit to "0".
	10	Set the LVD2CR0.LVD2RIE bit to "1" (enable voltage monitoring 2 interrupt/reset).	Set the LVD2CR0.LVD2RIE bit to "1" (enable voltage monitoring 2 interrupt/reset).
Voltage monitoring 2 reset	1	Use the LVDLVLR.LVD2LVL[1:0] bit to select the detection voltage.	Use the LVDLVLR.LVD2LVL[1:0] bit to select the detection voltage.
	2		Set the LVCMPCR.EXVCCINP2 bit to "0" (VCC voltage) or "1" (CMPA2 pin input voltage).
	3	Set the LVD2CR0.LVD2RI bit to "1" (voltage monitoring 2 reset). Use the LVD2CR0.LVD2RN bit to select the reset negation type.	Set the LVD2CR0.LVD2RI bit to "1" (voltage monitoring 2 reset). Use the LVD2CR0.LVD2RN bit to select the reset negation type.
	4	Set the LVD2CR0.LVD2RIE bit to "1" (enable voltage monitoring 2 interrupt/reset).	Set the LVD2CR0.LVD2RIE bit to "1" (enable voltage monitoring 2 interrupt/reset).
	5	Set the LVCMPCR.LVD2E bit to "1" (enable the voltage detection 2 circuit).	Set the LVCMPCR.LVD2E bit to "1" (enable the voltage detection 2 circuit).
	6	Wait for at least td(E-A).	Wait for at least td(E-A).
	7	Set the LVD2CR0.LVD2CMPE bit to "1" (enable output of comparison results for the voltage monitoring 2 circuit).	Set the LVD2CR0.LVD2CMPE bit to "1" (enable output of comparison results for the voltage monitoring 2 circuit).

Table 2.4	Comparison of Operation Configuration Procedures for the Bits Related to Voltage
	Monitoring 2 Interrupt and Voltage Monitoring 2 Reset

2.2 Clock Generation Circuit

Table 2.5 is Comparative Overview of Clock Generation Circuits, and Table 2.6 is Comparison of Clock Generation Circuit Registers.

Table 2.5	Comparative	Overview of Clock	Generation Circuits
-----------	-------------	-------------------	---------------------

Item	RX23E-A	RX23E-B
Use	Generates the system clock (ICLK) to be supplied to the CPU, DMAC, DTC, ROM, and RAM.	 Generates the system clock (ICLK) to be supplied to the CPU, DMAC, DTC, ROM, and RAM.
	 Generates peripheral module clocks PCLKA, PCLKB, and PCLKD supplied to the peripheral modules. Peripheral module clock PCLKA is the operating clock for the MTU2. Peripheral module clock PCLKD is the operating clock for the S12AD. Peripheral module clock PCLKB is the operating clock for peripheral modules other than the MTU2 and S12AD. 	 Generates peripheral module clocks PCLKA, PCLKB, PCLKC, and PCLKD supplied to peripheral modules. Peripheral module clock PCLKA is the operating clock for the MTU2. Peripheral module clock PCLKC is the operating clock for the DSAD. Peripheral module clock PCLKD is the operating clock for the S12AD. Peripheral module clock PCLKB is the operating clock for peripheral modules other than the MTU2, DSAD, and S12AD.
	Generates the FlashIF clock (FCLK) to be supplied to the FlashIF.	 Generates the FlashIF clock (FCLK) to be supplied to the FlashIF.
	• Generates the CAC clock (CACCLK) to be supplied to the CAC.	• Generates the CAC clock (CACCLK) to be supplied to the CAC.
	Generates the IWDT-dedicated clock (IWDTCLK) to be supplied to the IWDT	 Generates the IWDT-dedicated clock (IWDTCLK) to be supplied to the IWDT.
	• Generates the CAN clock (CANMCLK) to be supplied to the CAN.	• Generates the CAN clock (CANMCLK) to be supplied to the CAN.
		 Generates the RTC-dedicated subclock (RTCSCLK) to be supplied to the RTC.
	• Generates the LPT clock (LPTCLK) to be supplied to the LPT.	Generates the LPT clock (LPTCLK) to be supplied to the LPT.
		 Generates the LCD source clock (LCDSRCCLK) to be supplied to the LCD.

Item	RX23E-A	RX23E-B
Operating	• ICLK: 32 MHz (max)	• ICLK: 32 MHz (max)
frequency	PCLKA: 32 MHz (max)	PCLKA: 32 MHz (max)
	PCLKB: 32 MHz (max)	PCLKB: 32 MHz (max)
		PCLKC: 32 MHz (max)
	PCLKD: 32 MHz (max)	PCLKD: 32 MHz (max)
	FCLK:	FCLK:
	— 1 to 32 MHz	— 1 to 32 MHz
	(for programming and erasing the ROM and E2 DataFlash)	(for programming and erasing the ROM and E2 DataFlash)
	— 32 MHz (max)	— 32 MHz (max)
	(at a read from the E2 DataFlash)	(at a read from the E2 DataFlash)
	CACCLK: Same as clock from	CACCLK: Same as clock from
	respective oscillators	respective oscillators
	IWDTCLK: 15 kHz	IWDTCLK: 15 kHz
	CANMCLK: 20 MHz (max)	CANMCLK: 20 MHz (max)
		RTCSCLK: 32.768 kHz
	LPTCLK: Same as clock from selected oscillator	LPTCLK: Same as clock from selected oscillator
		LCDSRCCLK: Same as clock from respective oscillators
Main clock	Resonator frequency:	Resonator frequency:
oscillator	1 to 20 MHz (VCC ≥ 2.4 V),	1 to 20 MHz (VCC ≥ 2.4 V)
	1 to 8 MHz (VCC < 2.4 V)	1 to 8 MHz (VCC < 2.4 V)
	External clock input frequency: 20 MHz (max)	External clock input frequency: 20 MHz (max)
	Connectable resonator or additional circuit:	Connectable resonator or additional circuit:
	Ceramic resonator, crystal	Ceramic resonator, crystal
	Connection pins: EXTAL and XTAL	Connection pins: EXTAL and XTAL
	Oscillation stop detection function: When a main clock oscillation stop is detected, the system clock source is switched to LOCO and the MTU pin can be forcedly driven to high-	 Oscillation stop detection function: When a main clock oscillation stop is detected, the system clock source is switched to LOCO and the MTU pin can be forcedly driven to high-
	impedance.	impedance.
	 Drive capacity switching function 	 Drive capacity switching function
Subclock		Resonator frequency: 32.768 kHz
oscillator		Connectable resonator or additional circuit: Crystal
		Connection pins: XCIN and XCOUT
PLL Circuit	Input clock source: Main clock	Input clock source: Main clock
	 Input clock source: Main clock Input pulse frequency division ratio: Selectable from 1, 2, and 4 	 Input clock source. Main clock Input pulse frequency division ratio: Selectable from 1, 2, and 4
	 Input frequency: 4 to 8 MHz 	 Input frequency: 4 to 8 MHz
	 Frequency multiplication ratio: Selectable from 4 to 8 (increments of 	 Frequency multiplication ratio: Selectable from 4 to 8 (increments of
	0.5)	0.5)
	Oscillation frequency:	Oscillation frequency:
	24 to 32 MHz (VCC ≥ 2.4 V)	24 to 32 MHz (VCC ≥ 2.4 V)
High-speed on- chip oscillator	Oscillation frequency: 32 MHz	Oscillation frequency: 32 MHz
(HOCO)		

Item	RX23E-A	RX23E-B
Low-speed on- chip oscillator (LOCO)	Oscillation frequency: 4 MHz	Oscillation frequency: 4 MHz
IWDT-dedicated on-chip oscillator	Oscillation frequency: 15 kHz	Oscillation frequency: 15kHz

Table 2.6 Comparison of Clock Generation Circuit Registers

Register	Bit	RX23E-A	RX23E-B
SCKCR	—	System clock control register	System clock control register
		Initial value after a reset differs.	
	PCKC[3:0]	-	Peripheral module clock (PCLKC) select bit
SCKCR3	CKSEL[2:0]	Clock source select bit	Clock source select bit
		b10 b8 0 0 0: LOCO is selected.	b10 b8 0 0 0: LOCO is selected
		0 0 1: HOCO is selected	0 0 1: HOCO is selected
		0 1 0: Main clock oscillator is selected.	 0 1 0: Main clock oscillator is selected. 0 1 1: Subclock oscillator is selected.
		1 0 0: PLL circuit is selected. Settings other than the above are prohibited.	1 0 0: PLL circuit is selected. Settings other than the above are prohibited.
SOSCCR	_	·	Subclock oscillator control register
LCDSCLKCR	_	_	LCD source clock control register
LCDSCLKCR2	—	-	LCD source clock control register 2
CKOCR	CKOSEL[3:0]	CLKOUT output source select bit	CLKOUT output source select bit
		b11 b8 0 0 0 0: LOCO clock 0 0 0 1: HOCO clock 0 0 1 0: Main clock 0 1 0 0: PLL Settings other than the above are	 b11 b8 0 0 0 0: LOCO clock 0 0 1: HOCO clock 0 1 0: Main clock 0 1 1: Subclock 0 1 0 0: PLL Settings other than the above are
		prohibited.	prohibited.

2.3 Clock Frequency Accuracy Measurement Circuit

Table 2.7 is Comparative Overview of Clock Frequency Accuracy Measurement Circuits, and Table 2.8 is Comparison of Clock Frequency Accuracy Measurement Registers.

	Table 2.7	Comparative Ov	erview of Clock	Frequency A	Accuracy M	leasurement Circuits
--	-----------	----------------	-----------------	-------------	------------	----------------------

Item	RX23E-A (CAC)	RX23E-B (CAC)
Measurement	The frequency of the following clocks can	The frequency of the following clocks can
target clocks	be measured:	be measured:
	Main clock	Main clock
		Subclock
	HOCO clock	HOCO clock
	LOCO clock	LOCO clock
	IWDT-dedicated clock (IWDTCLK)	 IWDT-dedicated clock (IWDTCLK)
	Peripheral module clock B (PCLKB)	Peripheral module clock B (PCLKB)
Measurement	External clock input to the CACREF	External clock input to the CACREF
reference clocks	pin	pin
	Main clock	Main clock
		Subclock
	HOCO clock	HOCO clock
	LOCO clock	LOCO clock
	IWDT-dedicated clock (IWDTCLK)	 IWDT-dedicated clock (IWDTCLK)
	Peripheral module clock B (PCLKB)	Peripheral module clock B (PCLKB)
Selectable	Digital filter function	Digital filter function
functions		
Interrupt sources	 Measurement end interrupt 	Measurement end interrupt
	Frequency error interrupt	Frequency error interrupt
	Overflow interrupt	Overflow interrupt
Low power	Ability to transition to module stop state	Ability to specify module stop state
consumption		
function		

Register	Bit	RX23E-A (CAC)	RX23E-B (CAC)
CACR1	FMCS[2:0]	Measurement target clock select	Measurement target clock select
		bits	bits
		b3 b1	b3 b1
		0 0 0: Main clock	0 0 0: Main clock
			0 0 1: Subclock
		0 1 0: HOCO clock	0 1 0: HOCO clock
		0 1 1: LOCO clock	0 1 1: LOCO clock
		1 0 0: IWDT-dedicated clock (IWDTCLK)	1 0 0: IWDT-dedicated clock (IWDTCLK)
		1 0 1: Peripheral module clock B (PCLKB)	1 0 1: Peripheral module clock B (PCLKB)
		Settings other than the above are prohibited.	Settings other than the above are prohibited.
CACR2	RSCS[2:0]	Measurement reference clock	Measurement reference clock
		select bits	select bits
		b3 b1	b3 b1
		0 0 0: Main clock	0 0 0: Main clock
			0 0 1: Subclock
		0 1 0: HOCO clock	0 1 0: HOCO clock
		0 1 1: LOCO clock	0 1 1: LOCO clock
		1 0 0: IWDT-dedicated clock (IWDTCLK)	1 0 0: IWDT-dedicated clock (IWDTCLK)
		1 0 1: Peripheral module clock B (PCLKB)	1 0 1: Peripheral module clock B (PCLKB)
		Settings other than the above are prohibited.	Settings other than the above are prohibited.

2.4 Low Power Consumption

Table 2.9 is Comparative Overview of Low Power Consumption Functions, Table 2.10 is Comparison of Procedures for Entering and Exiting Low Power Consumption Modes and Operating States in Each Mode, and Table 2.11 is Comparison of Low Power Consumption Registers.

Item	RX23E-A	RX23E-B
Reducing power consumption by switching clock signals	The frequency division ratio can be set independently for the system clock (ICLK), high-speed peripheral module clock (PCLKA), peripheral module clock (PCLKB), S12AD clock (PCLKD), and FlashIF clock (FCLK).	The frequency division ratio can be set independently for the system clock (ICLK), high-speed peripheral module clock (PCLKA), peripheral module clock (PCLKB), DSAD clock (PCLKC), S12AD clock (PCLKD), and FlashIF clock (FCLK).
Module stop function	Each peripheral module can be stopped independently by the module stop control register.	Each peripheral module can be stopped independently by the module stop control register.
Function for transition to the power down state	Transition to the power down state in which the CPU, peripheral modules, or oscillators are stopped is enabled.	Transition to the power down state in which the CPU, peripheral modules, or oscillators are stopped is enabled.
Power down state	Sleep modeDeep sleep modeSoftware standby mode	Sleep modeDeep sleep modeSoftware standby mode
Function for lower operating power consumption	 Power consumption can be reduced in normal operation, sleep mode, and deep sleep mode by selecting an appropriate operating power control mode according to the operating frequency and operating voltage. Two operating power control modes are available High-speed operating mode Middle-speed operating mode 	 Power consumption can be reduced in normal operation, sleep mode, and deep sleep mode by selecting an appropriate operating power control mode according to the operating frequency and operating voltage. Three operating power control modes are available High-speed operating mode Middle-speed operating mode Low-speed operating mode

Table 2.9	Comparative	Overview of	Low Power	Consumption Functions
-----------	-------------	-------------	-----------	------------------------------

Table 2.10 Comparison of Procedures for Entering and Exiting Low Power Consumption Modes and Operating States in Each Mode

mode	Entering and Exiting Low Power Consumption Modes and Operating States	RX23E-A	RX23E-B
Sleep mode	Transition method	Control register + instruction	Control register + instruction
	Method of cancellation other than reset	Interrupts	Interrupts
	State after cancellation	Program execution state	Program execution state
	Main clock oscillator	(interrupt processing) Operation possible	(interrupt processing) Operation possible
	Subclock oscillator	—	Operation possible
	High-speed on-chip oscillator	Operation possible	Operation possible
	Low-speed on-chip oscillator	Operation possible	Operation possible
	IWDT-dedicated on-chip oscillator	Operation possible	Operation possible
	PLL	Operation possible	Operation possible

	Entoring and Exiting Law Dawar		
	Entering and Exiting Low Power Consumption Modes and Operating		
mode	States	RX23E-A	RX23E-B
Sleep mode	CPU	Stopped (retained)	Stopped (retained)
	RAM: 0000 0000h to 0000 FFFFh	Operation possible	Operation possible
		(retained)	(retained)
	DMAC	Operation possible	Operation possible
	DTC	Operation possible	Operation possible
	Flash memory	Operation	Operation
	Independent watchdog timer (IWDT)	Operation possible	Operation possible
	Realtime clock (RTC)		Operation possible
	Low-Power Timer (LPT)	Operation possible	Operation possible
	Voltage detection circuit (LVD)	Operation possible	Operation possible
	Power-on reset circuit	Operation	Operation
	Peripheral modules	Operation possible	Operation possible
	I/O ports	Operation	Operation
	RTCOUT output		Operation possible
	CLKOUT output	Operation possible	Operation possible
	LCD controller/driver		Operation possible
Deep sleep	Transition method	Control register +	Control register +
mode		instruction	instruction
	Method of cancellation other than reset	Interrupts	Interrupts
	State after cancellation	Program execution	Program execution
		state	state
		(interrupt processing)	(interrupt processing)
	Main clock oscillator	Operation possible	Operation possible
	Subclock oscillator	—	Operation possible
	High-speed on-chip oscillator	Operation possible	Operation possible
	Low-speed on-chip oscillator	Operation possible	Operation possible
	IWDT-dedicated on-chip oscillator	Operation possible	Operation possible
	PLL	Operation possible	Operation possible
	CPU	Stopped (retained)	Stopped (retained)
	RAM: 0000 0000h to 0000 FFFFh	Stopped (retained)	Stopped (retained)
	DMAC	Stopped (retained)	Stopped (retained)
	DTC	Stopped (retained)	Stopped (retained)
	Flash memory	Stopped (retained)	Stopped (retained)
	Independent watchdog timer (IWDT)	Operation possible	Operation possible
	Realtime clock (RTC)	_	Operation possible
	Low-Power Timer (LPT)	Operation possible	Operation possible
	Voltage detection circuit (LVD)	Operation possible	Operation possible
	Power-on reset circuit	Operation	Operation
	Peripheral modules	Operation possible	Operation possible
	I/O ports	Operation	Operation
	RTCOUT output	<u> </u>	Operation possible
	CLKOUT output	Operation possible	Operation possible
	LCD controller/driver		Operation possible
			L D D D D D D D D D D D D D D D D D D D

	Entering and Exiting Low Power		
mede	Consumption Modes and Operating	RX23E-A	RX23E-B
mode	States		
Software	Transition method	Control register +	Control register +
standby mode		instruction	instruction
	Method of cancellation other than reset	Interrupts	Interrupts
	State after cancellation	Program execution	Program execution
		state	state
		(interrupt processing)	(interrupt processing)
	Main clock oscillator	Stopped	Stopped
	Subclock oscillator	<u> </u>	Operation possible
	High-speed on-chip oscillator	Stopped	Stopped
	Low-speed on-chip oscillator	Stopped	Stopped
	IWDT-dedicated on-chip oscillator	Operation possible	Operation possible
	PLL	Stopped	Stopped
	CPU	Stopped (retained)	Stopped (retained)
	RAM: 0000 0000h to 0000 FFFFh	Stopped (retained)	Stopped (retained)
	DMAC	Stopped (retained)	Stopped (retained)
	DTC	Stopped (retained)	Stopped (retained)
	Flash memory	Stopped (retained)	Stopped (retained)
	Independent watchdog timer (IWDT)	Operation possible	Operation possible
	Realtime clock (RTC)	—	Operation possible
	Low-Power Timer (LPT)	Operation possible	Operation possible
	Voltage detection circuit (LVD)	Operation possible	Operation possible
	Power-on reset circuit	Operation	Operation
	Peripheral modules	Stopped (retained)	Stopped (retained)
	I/O ports	Retained	Retained
	RTCOUT output		Operation possible
	CLKOUT output	Stopped	Operation possible
	LCD controller/driver	_	Operation possible

"Operation possible" means that whether the state is operating or stopped is controlled by the control register setting.

"Stopped (retained)" means that internal register values are retained and internal operations are suspended.

Table 2.11	Comparison of Low Power Consumption Registers
------------	---

Register	Bit	RX23E-A	RX23E-B
MSTPCRA	MSTPA19	_	16-bit D/A converter 0 module stop bit
	MSTPA26	DSAD1 module stop bit	—
MSTPCRB	MSTPB31	_	Serial communication interface 0 module stop bit
MSTPCRC	MSTPC26	_	Serial communication interface 9 module stop bit
	MSTPC27	_	Serial communication interface 8 module stop bit
MSTPCRD	—	—	Module stop control register D
SOPCCR		—	Sub operating power control register

2.5 Register Write Protection Function

Table 2.12 is Comparative Overview of Register Write Protection Functions.

Item	RX23E-A	RX23E-B
PRC0 bit	 Registers related to the clock generation circuit: SCKCR, SCKCR3, PLLCR, PLLCR2, MOSCCR, LOCOCR, ILOCOCR, HOCOCR, OSTDCR, OSTDSR, CKOCR, LOCOTRR, ILOCOTRR, HOCOTRR0 	 Registers related to the clock generation circuit: SCKCR, SCKCR3, PLLCR, PLLCR2, MOSCCR, SOSCCR, LOCOCR, ILOCOCR, HOCOCR, OSTDCR, OSTDSR, CKOCR, LCDSCLKCR, LCDSCLKCR2, LOCOTRR, ILOCOTRR, HOCOTRR0
PRC1 bit	 Registers related to the operating modes: SYSCR1 Registers related to the low power consumption functions: SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, OPCCR 	 Registers related to the operating modes: SYSCR1 Registers related to the low power consumption functions: SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, MSTPCRD, OPCCR, SOPCCR, RSTCKCR
	 Registers related to the clock generation circuit: MOFCR, MOSCWTCR Software reset register: SWRR 	 Registers related to the clock generation circuit: MOFCR, MOSCWTCR Software reset register: SWRR
PRC2 bit	 Registers related to the low power timer: LPTCR1, LPTCR2, LPTCR3, LPTPRD, LPCMR0, LPWUCR 	 Registers related to the low power timer: LPTCR1, LPTCR2, LPTCR3, LPTPRD, LPCMR0, LPWUCR
PRC3 bit	 Registers related to LVD: LVCMPCR, LVDLVLR, LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR 	 Registers related to LVD: LVCMPCR, LVDLVLR, LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR

Table 2.12 Comparative Overview of Register Write Protection Functions

2.6 Interrupt Controller

Table 2.13 is Comparative Overview of Interrupt Controllers.

ltem		RX23E-A (ICUb)	RX23E-B (ICUb)
Interrupts	Peripheral module interrupts	 Interrupts from peripheral modules Interrupt detection: Edge detection/level detection The detection method is fixed for each connected peripheral module source. 	 Interrupts from peripheral modules Interrupt detection: Edge detection/level detection The detection method is fixed for each connected peripheral module source.
	External pin interrupts	 Interrupts from pins IRQ0 to IRQ7 Number of sources: 8 Interrupt detection: Detection of low level, falling edge, rising edge, or both (rising and falling) edges can be set for each detection source. Digital filter function: Supported 	 Interrupts from pins IRQ0 to IRQ7 Number of sources: 8 Interrupt detection: Detection of low level, falling edge, rising edge, or both (rising and falling) edges can be set for each detection source. Digital filter function: Supported
	Software interrupts	 Interrupt generated by writing to a register Number of sources: 1 	 Interrupt generated by writing to a register Number of sources: 1
	Event link interrupts	An ELSR8I, ELSR18I, or ELSR19I interrupt can be generated by an ELC event.	An ELSR8I, ELSR18I, or ELSR19I interrupt can be generated by an ELC event.
	Interrupt priority level Fast interrupt	Specified by registers. Faster interrupt handling by the	Specified by registers. Faster interrupt handling by the
	function	CPU can be specified for a single interrupt source only.	CPU can be specified for a single interrupt source only.
Nez	DTC/DMAC control	The DTC and DMAC can be activated by an interrupt source.	The DTC and DMAC can be activated by an interrupt source.
Non- maskable interrupts	NMI pin interrupt	 Interrupt from the NMI pin Interrupt detection: Falling edge or rising edge Digital filter function: Supported 	 Interrupt from the NMI pin Interrupt detection: Falling edge or rising edge Digital filter function: Supported
	Oscillation stop detection interrupts	Interrupt on detection of oscillation having stopped	Interrupt on detection of oscillation having stopped
	IWDT underflow/refresh error interrupt	Interrupt on an underflow of the down counter or occurrence of a refresh error	Interrupt on an underflow of the down counter or occurrence of a refresh error
	Voltage monitoring 1 interrupt	Voltage monitoring interrupt of voltage detection circuit 1 (LVD1)	Voltage monitoring interrupt of voltage detection circuit 1 (LVD1)
	Voltage monitoring 2 interrupt	Voltage monitoring interrupt of voltage detection circuit 2 (LVD2)	Voltage monitoring interrupt of voltage detection circuit 2 (LVD2)

Table 2.13 Comparative Overview of Interrupt Con	ntrollers
--	-----------

Item		RX23E-A (ICUb)	RX23E-B (ICUb)
Exit from the power down state	Sleep mode Deep sleep mode	The system exits the mode by all non-maskable interrupts and all interrupts.	The system exits the mode by all non-maskable interrupts and all interrupts.
	Software standby mode	The system exits the mode by the following interrupts (except oscillation stop detection interrupts): non-maskable interrupts, external pin interrupts (IRQ0 to IRQ7), peripheral module interrupts (voltage monitoring 1 and voltage monitoring 2), and ELSR8I interrupts (LPT-dedicated interrupts)	The system exits the mode by the following interrupts (except oscillation stop detection interrupts): non-maskable interrupts, external pin interrupts (IRQ0 to IRQ7), peripheral module interrupts (voltage monitoring 1, voltage monitoring 2, and RTC alarm/cycle), and ELSR8I interrupts (LPT-dedicated interrupts)

2.7 Buses

Table 2.14 is Comparative Overview of Buses.

Table 2.14 Comparati	ve Overview of Buses
----------------------	----------------------

ltem		RX23E-A	RX23E-B
CPU buses	Instruction bus Operand	 Connected to the CPU (for instructions) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) Connected to the CPU (for 	 Connected to the CPU (for instructions) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) Connected to the CPU (for
	Buses	 Connected to the CFO (toroperands) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) 	 operands) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK)
Memory	Memory bus 1	Connected to RAM	Connected to RAM
buses Internal main buses	Memory bus 2 Internal main bus 1	 Connected to ROM Connected to CPU Operates in synchronization with the system clock (ICLK) 	 Connected to ROM Connected to CPU Operates in synchronization with the system clock (ICLK)
	Internal main bus 2	 Connected to the DTC and DMAC Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) 	 Connected to the DTC and DMAC Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK)
Internal peripheral buses	Internal peripheral bus 1	 Connected to peripheral modules (DTC, DMAC, interrupt controller, and bus error monitoring section) Operates in synchronization with the system clock (ICLK) 	 Connected to peripheral modules (DTC, DMAC, interrupt controller, and bus error monitoring section) Operates in synchronization with the system clock (ICLK)
	Internal peripheral bus 2	 Connected to peripheral modules (peripheral modules other than those connected to internal peripheral buses 1, 3, and 4) Operates in synchronization with the peripheral-module clock (PCLKB) 	 Connected to peripheral modules (peripheral functions other than those connected to internal peripheral buses 1, 3, and 4) Operates in synchronization with the peripheral-module clock (PCLKB)
	Internal peripheral bus 3	 Connected to peripheral modules (RSCAN, DSAD0, DSAD1, and AFE) Operates in synchronization with the peripheral-module clock (PCLKB) 	 Connected to peripheral modules (RSCAN, DSAD, AFE, LCDC, and R16DA) Operates in synchronization with the peripheral-module clock (PCLKB)

Item		RX23E-A	RX23E-B	
Internal peripheral buses	Internal peripheral bus 4	 Connected to a peripheral module (MTU2) Operates in synchronization with the peripheral-module clock (PCLKA) 	 Connected to a peripheral module (MTU2) Operates in synchronization with the peripheral-module clock (PCLKA) 	
	Internal peripheral bus 6	 Connected to flash control module and E2 data flash memory Operates in synchronization with the FlashIF clock (FCLK) 	 Connected to flash control module and E2 data flash memory Operates in synchronization with the FlashIF clock (FCLK) 	

2.8 Event link controller

Table 2.15 is Comparative Overview of Event Link Controllers, Table 2.16 is Comparison of Event Link Controller Registers, Table 2.17 is Correspondence between ELSRn Registers and Peripheral Modules, and Table 2.18 is Correspondence Between Values Set in ELSRn.ELS[7:0] Bits and Event Signal Names.

Table 2.15	Comparative Overview of Event Link Controllers
------------	--

Item	RX23E-A (ELC)	RX23E-B (ELC)
Event link function	 56 types of event signals can be directly connected to peripheral modules. How peripheral timer modules behave when an event signal is input is selectable. Event link operation is possible for port B. Single port*1: Event link operation can be enabled for a single specified port 	 61 types of event signals can be directly connected to peripheral modules. How peripheral timer modules behave when an event signal is input is selectable. Event link operation is possible for port B and port E. — Single port*1: Event link operation can be enabled for a single specified port — Port group*1: Event link operation can be enabled for multiple specified ports within a group of up to eight ports.
Low power consumption function	Transition to the module stop state is possible.	Transition to the module stop state is possible.

Note: 1. For a single port or port group that is set for input use, an event is generated when the signal input to the corresponding pin changes. For an 80-pin or 64-pin package product of the RX23E-B Group, if PC2 is selected for the port switching register B (PSRB), event link operation with PB1 is not possible.

Table 2.16 Comparison of Event Link Controller Registers

Register	Bit	RX23E-A (ELC)	RX23E-B (ELC)
ELSRn	_	Event link setting register n (n = 1 to 4, 7, 8, 10, 12, 15, 18, 19, 24, 25, 28, 29, 46, or 47)	Event link setting register n (n = 1 to 4, 7, 8, 10, 12, 15, 16, 18 to 29, or 46)
PGRn	—	—	Port group specification register n $(n = 1 \text{ or } 2)$
PGCn	—	—	Port group control register n (n = 1 to 2)
PDBFn	—	—	Port buffer register n (n = 1 or 2)
PELm	_	Event connection port specification register n (m = 0 or 1)	Event connection port specification register n (m = 0 to 3)
	PSP[1:0]	Port number specification bit	Port number specification bit
		b4 b3	b4 b3
		0 0: Setting disabled.	0 0: Setting disabled.
		0 1: Port B (corresponding to the PGR1 register)	0 1: Port B (corresponding to the PGR1 register)
		1 0: Setting prohibited.	1 0: Port E (corresponding to the PGR2 register)
		1 1: Setting prohibited.	1 1: Setting prohibited.

Register	RX23E-A (ELC)	RX23E-B (ELC)
ELSR1	MTU1	MTU1
ELSR2	MTU2	MTU2
ELSR3	MTU3	MTU3
ELSR4	MTU4	MTU4
ELSR7	CMT1	CMT1
ELSR8	ICU (LPT-dedicated interrupt)*1	ICU (LPT-dedicated interrupt)*1
ELSR10	TMR0	TMR0
ELSR12	TMR2	TMR2
ELSR15	S12AD	S12AD
ELSR16	—	DAO
ELSR18	ICU (interrupt 1)*2	ICU (interrupt 1)*2
ELSR19	ICU (interrupt 2)*2	ICU (interrupt 2)*2
ELSR20	—	Output port group 1
ELSR21	—	Output port group 2
ELSR22	—	Input port group 1
ELSR23	—	Input port group 2
ELSR24	Single port 0*3	Single port 0*3
ELSR25	Single port 1*3	Single port 1 ^{*3}
ELSR26	—	Single port 2*3
ELSR27	—	Single port 3*3
ELSR28	Clock source switching to LOCO	Clock source switching to LOCO
ELSR29	POE	POE
ELSR46	DSAD0	DSAD0
ELSR47	DSAD1	_

Table 2.17	Correspondence between	ELSRn Registers and	Peripheral Modules
------------	------------------------	----------------------------	--------------------

Notes: 1. Specify an event signal of 32h (LPT compare match).

2. For the RX23E-A Group, specify an event signal in the range from 65h to 6Ah. For the RX23E-B Group, specify an event signal in the range from 63h to 6Ah. Do not set any values other than the above.

3. For the RX23E-A Group, do not set a the 6Ah signal, which indicates that the DOC data operation condition was met, in the ELSR24 and ELSR25 registers. For the RX23E-B Group, do not set the 6Ah signal in the ELSR24, ELSR25, ELSR26, and ELSR27 registers.

Value of ELS[7:0] bits	Peripheral modules	RX23E-A (ELC)	RX23E-B(ELC)
08h	Multi-function	MTU1 compare match 1A	MTU1 compare match 1A
09h	timer pulse unit	MTU1 compare match 1B	MTU1 compare match 1B
0Ah	2	MTU1 overflow	MTU1 overflow
0Bh		MTU1 underflow	MTU1 underflow
0Ch		MTU2 compare match 2A	MTU2 compare match 2A
0Dh		MTU2 compare match 2B	MTU2 compare match 2B
0Eh		MTU2 overflow	MTU2 overflow
0Fh		MTU2 underflow	MTU2 underflow
10h		MTU3 compare match 3A	MTU3 compare match 3A
11h		MTU3 compare match 3B	MTU3 compare match 3B
12h		MTU3 compare match 3C	MTU3 compare match 3C
13h	-	MTU3 compare match 3D	MTU3 compare match 3D
14h	-	MTU3 overflow	MTU3 overflow
15h	-	MTU4 compare match 4A	MTU4 compare match 4A
16h	-	MTU4 compare match 4B	MTU4 compare match 4B
17h	-	MTU4 compare match 4C	MTU4 compare match 4C
18h	-	MTU4 compare match 4D	MTU4 compare match 4D
19h	-	MTU4 overflow	MTU4 overflow
1Ah	-	MTU4 underflow	MTU4 underflow
1Fh	Compare match timer	CMT1 compare match 1	CMT1 compare match 1
22h	8-bit timer	TMR0 compare match A0	TMR0 compare match A0
23h		TMR0 compare match B0	TMR0 compare match B0
24h		TMR0 overflow	TMR0 overflow
28h		TMR2 compare match A2	TMR2 compare match A2
29h		TMR2 compare match B2	TMR2 compare match B2
2Ah		TMR2 overflow	TMR2 overflow
2Eh	Realtime clock		RTC periodic event (select 1/256, 1/128, 1/64, 1/32, 1/16, 1/8, 1/32, 1/16, 1/8, 1/4, 1/2, 1, or 2 seconds)
31h	Independent watchdog timer	IWDT underflow or refresh error	IWDT underflow or refresh error
32h	Low-power timer (LPT)	LPT compare match	LPT compare match
34h	12-bit A/D converter	S12AD comparison conditions are met	S12AD comparison conditions are met
35h		S12AD comparison conditions are not met	S12AD comparison conditions are not met
3Ah	Serial communication interface	SCI5 error (receive error or error signal detection)	SCI5 error (receive error or error signal detection)
3Bh	7	SCI5 receive data full	SCI5 receive data full
3Ch]	SCI5 transmit data empty	SCI5 transmit data empty
3Dh		SCI5 transmit end	SCI5 transmit end

Table 2.18 Correspondence Between Values Set in ELSRn.ELS[7:0] Bits and Event Signal Names

Value of	Peripheral		
ELS[7:0] bits	modules	RX23E-A (ELC)	RX23E-B(ELC)
4Eh	I ² C bus interface	RIIC0 communication error or	RIIC0 communication error or
		event generation	event generation
4Fh		RIIC0 receive data full	RIIC0 receive data full
50h		RIIC0 transmit data empty	RIIC0 transmit data empty
51h		RIIC0 transmit end	RIIC0 transmit end
52h	Serial peripheral	RSPI0 error (mode fault, overrun,	RSPI0 error (mode fault, overrun,
	interface	or parity error)	or parity error)
53h		RSPI0 idle	RSPI0 idle
54h		RSPI0 receive buffer full	RSPI0 receive buffer full
55h		RSPI0 transmit buffer empty	RSPI0 transmit buffer empty
56h		RSPI0 transmit end	RSPI0 transmit end
58h	12-bit A/D converter	S12AD A/D conversion end	S12AD A/D conversion end
5Bh	Voltage	LVD1 voltage detection	LVD1 voltage detection
5Ch	detection circuit	LVD2 voltage detection	LVD2 voltage detection
5Dh	DMA controller	DMAC0 transfer end	DMAC0 transfer end
5Eh		DMAC1 transfer end	DMAC1 transfer end
5Fh		DMAC2 transfer end	DMAC2 transfer end
60h	-	DMAC3 transfer end	DMAC3 transfer end
61h	Data transfer controller	DTC transfer end	DTC transfer end
62h	Clock generation circuit	Oscillation stop detection of the clock generation circuit	Oscillation stop detection of the clock generation circuit
63h	I/O ports	_	Input edge detection of input port group 1
64h		_	Input edge detection of input port group 2
65h	-	Input edge detection of single input port 0	Input edge detection of single input port 0
66h		Input edge detection of single input port 1	Input edge detection of single input port 1
67h			Input edge detection of single input port 2
68h		—	Input edge detection of single input port 3
69h	Event link controller	Software event	Software event
6Ah	Data operation circuit	DOC data operation condition met	DOC data operation condition met
Settings other th	han the above are p	rohibited.	

2.9 I/O ports

Table 2.19 to Table 2.20 provide comparative overviews of I/O ports. Table 2.21 shows Comparison of I/O Port Functions. Table 2.22 shows Comparison of I/O Port Registers.

Port symbol	RX23E-A (48-pin)	RX23E-B (48-pin)
PORT1	P14 to P17	P14 to P17
PORT2	P26 and P27	P26 and P27
PORT3	P30, P31, and P35 to P37	P30, P31, and P35 to P37
PORT5	—	P54 and P55
PORT6	—	P66 and P67
PORTB	PB0 and PB1	PB0 and PB1
PORTC	PC4 to PC7	PC7
PORTH	PH0 to PH3	—

Table 2.19 Comparative Overview of I/O Ports (48-Pin)

Table 2.20 Comparative Overview of I/O Ports (40-Pin)

		RX23E B (40-pin)	RX23E B (40-pin)		
Port symbol	RX23E-A (40-pin)	High voltage input pins included	High voltage input pins not included		
PORT1	P14 to P17	P14 to P17	P14 to P17		
PORT2	P26 and P27	P26 and P27	P26 and P27		
PORT3	P30, P31, and P35 to P37	P30, P31, and P35 to P37	P30, P31, and P35 to P37		
PORTB	PB0 and PB1	PB0 and PB1	PB0 and PB1		
PORTC	PC4 and PC5	PC7	PC7		
PORTE	—		PE0		
PORTH	PH0 and PH1	—	—		

Item	Port symbol	RX23E-A	RX23E-B
Input pull-up function	PORT1	P14 to P17	P12 to P17
	PORT2	P26 and P27	P20 to P27
	PORT3	P30, P31, P36, and P37	P30, P31, P36, and P37
	PORT5	—	P54 and P55
	PORT6	—	P66 and P67
	PORTB	PB0 and PB1	PB0 and PB1
	PORTC	PC4 to PC7	PC0 to PC7
	PORTH	PH0 to PH3	
Open-drain output	PORT1	P14 to P17	P12 to P17
function	PORT2	P26 and P27	P20 to P27
	PORT3	P30, P31, P36, and P37	P30, P31, P36, and P37
	PORT5	—	P54 and P55
	PORT6	—	P66 and P67
	PORTB	PB0 and PB1	PB0 and PB1
	PORTC	PC4 to PC7	PC0 to PC7
	PORTH	PH0 to PH3	—
Driving ability switching	PORT1	P14 to P17	P12 to P17
function	PORT2	P26 and P27	P20 to P27
	PORT3	P30, P31, P36, and P37	P30, P31, P36, and P37
	PORT5	—	P54 and P55
	PORT6	—	P66 and P67
	PORTB	PB0 and PB1	PB0 and PB1
	PORTC	PC4 to PC7	PC0 to PC7
	PORTH	PH0 to PH3	
5 V tolerant	PORT1	P16 and P17	P16 and P17
	PORT6		P60 and P61

Table 2.21	Comparison of I/O Port Functions
------------	----------------------------------

Register	Bit	RX23E-A	RX23E-B
PDR	B0 to B7	Pm0 to 7 I/O select bits	Pm0 to 7 I/O select bits
		(m = 1 to 3, B, C, or H)	(m = 1 to 3, 5 to 7, or A to E)
PODR	B0 to B7	Pm0 to Pm7 output data storage	Pm0 to Pm7 output data storage
		bits	bits
		(m = 1 to 3, B, C, or H)	(m = 1 to 3, 5 to 7, or A to E)
PIDR	B0 to B7	Pm0 to Pm7 bits	Pm0 to Pm7 bits
		(m = 1 to 3, B, C, or H)	(m = 1 to 3, 5 to 7, or A to E)
PMR	B0 to B7	Pm0 to Pm7 pin mode control bits	Pm0 to Pm7 pin mode control bits
		(m = 1 to 3, B, C, or H)	(m = 1 to 3, 5 to 7, or A to E)
ODR0	B0	Pm0 output type select bits	Pm0 output type select bits
		(m = 3, B, H)	(m = 1 to 3, 6, 7, or A to E)
	B2	Pm1 output type select bits	Pm1 output type select bits
		(m = 3, B, H)	(m = 1 to 3, 6, 7, or A to E)
		• P31, PH1	
		b2	
		0: CMOS output	0: CMOS output
		1: N-channel open drain	1: N-channel open drain
		b3	
	B3	This bit is read as 0. The write	Reserved bit
		value should be 0.	
		• PB1	
		b3 b2	
		0 0: CMOS output	
		0 1: N-channel open drain	
		1 0: P-channel open drain	
		1 1: Setting prohibited.	
	B4	Pm2 output type select bits	Pm2 output type select bits
		(m = 3, B, H)	(m = 1 to 3, 6, 7, or A to E)
	B6	Pm3 output type select bits	Pm3 output type select bits
		(m = 3, B, H)	(m = 1 to 3, 6, 7, or A to E)
ODR1	B0	Pm4 output type select bits (m =	Pm4 output type select bits
		1 to 3, or C)	(m = 1 to 3, 5 to 7, A, or C to E)
	B2	Pm5 output type select bits	Pm5 output type select bits
		(m = 1 to 3, or C)	(m = 1 to 3, 5 to 7, A, or C to E)
			 P15,P55,P65,PC5
			b2
			0: CMOS output
			1: N-channel open drain
			b3
	B3	Reserved bit	This bit is read as 0. The write value should be 0.
			• P25
			b3 b2
			0 0: CMOS output
			0 1: N-channel open drain
			1 0: P-channel open drain

Table 2.22	Comparison of I/O Port Registers
------------	----------------------------------

Register	Bit	RX23E-A	RX23E-B
ODR1	B4	Pm6 output type select bits	Pm6 output type select bits
		(m = 1 to 3, or C)	(m = 1 to 3, 5 to 7, A, or C to E)
	B6	Pm7 output type select bits	Pm7 output type select bits
		(m = 1 to 3, or C)	(m = 1 to 3, 5 to 7, A, or C to E)
			 P27,P37,P67,PC7 b2 0: CMOS output 1: N-channel open drain b3
	Β7	Reserved bit	 This bit is read as 0. The write value should be 0. P17 b7 b6 0 0: CMOS output 0 1: N-channel open drain 1 0: P-channel open drain 1 1: Setting prohibited.
PCR	B0 to B7	Pm0 to Pm7 input pull-up resistance control bits (m = 1 to 3, B, C, or H)	Pm0 to Pm7 input pull-up resistance control bits (m = 1 to 3, 5 to 7, or A to E)
PSRB	_		Port switching register B
DSCR	B0 to B7	Pm0 to 7 driving ability control bits (m = 1 to 3, B, C, or H)	Pm0 to 7 driving ability control bits (m = 1 to 3, 5 to 7, or A to E)

2.10 Multi-Function Pin Controller

Table 2.23 shows Comparison of Multiplexed Pin Assignments. Table 2.24 to Table 2.35 shows comparisons of the multi-function pin controller registers between the RX23E-B and RX23E-A Groups.

In the multiplexed-pin assignment comparison table below, the pins indicated in **blue** exist on the RX23E-B Group only and the pins indicated in **orange** exist on the RX23E-A Group only. A circle (O) indicates that a function is assigned, a cross (x) that the pin does not exist or that no function is assigned, and grayed out items mean that the function is not implemented.

In the comparison tables for pin function control registers, a pin for which different values are set between the groups is indicated in **green**.

		Port	RX23E-A		RX23E-B	
Module/Function	Pin Function	Allocation	48-Pin	40-Pin	48-Pin	40-Pin
Interrupts	NMI (input)	P35	0	0	0	0
	IRQ0 (input)	P30	0	0	0	0
		PH1	0	0	X	X
	IRQ1 (input)	P31	0	0	0	0
		PH2	0	X	X	X
	IRQ2 (input)	P26	0	0	0	0
	IRQ3 (input)	P27	0	0	0	0
	IRQ4 (input)	PB0	0	0	X	X
		P14	0	0	0	0
	IRQ5 (input)	P15	0	0	0	0
	IRQ6 (input)	P16	0	0	0	0
	IRQ7 (input)	P17	0	0	0	0
		PC7	X	X	0	0
Clock generation	CLKOUT (output)	PH1	0	0	X	X
circuit		P14	X	X	0	0
Multi-function timer	MTIOC0A	P30	0	0	X	X
unit 2	(input/output)	P26	X	X	0	0
	MTIOC0B	P15	0	0	X	X
	(input/output)	P14	X	X	0	0
	MTIOC0C	PB0	0	0	X	X
	(input/output)	P15	X	X	0	0
	MTIOC0D	PH0	0	0	X	X
	(input/output)	P17	Х	X	0	0
	MTIOC1A (input/output)	P31	0	0	0	0
	MTIOC1B	PB1	0	0	X	X
	(input/output)	PB0	X	X	0	0
	MTIOC2A	P26	0	0	X	X
	(input/output)	PB1	0	0	X	X
		P30	X	X	0	0
	MTIOC2B (input/output)	P27	0	0	0	0
	МТІОСЗА	P14	0	0	X	X
	(input/output)	P17	0	0	0	0
		PC7	0	×	X	X
		PB1	×	X	0	0

 Table 2.23
 Comparison of Multiplexed Pin Assignments

		Port RX23E-A		<u> </u>	RX23E-E	3
Module/Function	Pin Function	Allocation	48-Pin	40-Pin	48-Pin	40-Pin
Multi-function timer	MTIOC3B	P17	0	0	0	0
unit 2	(input/output)	PC5	0	0	X	X
		P14	×		0	0
	MTIOC3C	P16	0	X O	0	0
	(input/output)					Ŭ
	MTIOC3C	PC6	0	X	X	X
	(input/output)	PB0	X	X	0	0
	MTIOC3D	P16	0	0	0	0
	(input/output)	PC4	0	0	X	X
		PC7	X	X	0	0
	MTIOC4A	P27	0	0	0	0
	(input/output)	P67	X	X	0	X
	MTIOC4B	P30	0	0	0	0
	(input/output)	PC7	X	X	0	0
	MTIOC4C	P26	0	0	0	0
	(input/output)	P66	X	X	0	X
		PB1	X	X	0	0
	MTIOC4D	P31	0	Ô	0	0
	(input/output)	P15	X	×	0	0
	MTIC5U (input)	PH1	0	×	×	×
		PC7	×	X	0	0
	MTIC5V (input)	PH2	0	X	×	×
		P54	×	×	0	X
		PB1	X	X	0	0
	MTIC5W (input)	PH3	0	X	×	×
		P55	×	X	0	X
		PB0	X	X	0	0
	MTCLKA (input)	P14	0	0	0	0
		PH2	0	X	X	X
		PC6	0	×	X	X
		PE0	×	×	×	
	MTCLKB (input)	P15	Ô	$\overline{0}$	0	0
		PH3	0			
		PC7	0	×	X X	X X
		P31	×	X	0	0
	MTCLKC (input)	PH0	0	0		×
		PC4	0	0	X X	
		P26	×	×	0	× 0
	MTCLKD (input)	PH1	0	0	×	
		PC5				X
		PC5 P30	0	0	×	X
Port output enable 2	POE0# (input)	P30 PC4	X	X	0	0
For output enable 2		PC4 PC7	0	0	×	×
	DOE1# (incut)		X	X	0	0
	POE1# (input)	PB1	0	0	0	0
	POE2# (input)	PH1	0	0	X	X
		PH3	0	X	×	X
		P27	X	X	0	0
	POE3# (input)	PB0	0	0	0	0

		Port	RX23E-A	1	RX23E-E	3
Module/Function	Pin Function	Allocation	48-Pin	40-Pin	48-Pin	40-Pin
Port output enable 2	POE8# (input)	P17	0	0	X	X
·		P30	0	0	0	0
8-bit timer	TMO0 (output)	P26	0	0	0	0
		PH1	0	0	X	Х
		P55	X	X	0	X
	TMCI0 (input)	PB0	0	0	X	Х
		PH3	0	Х	X	Х
		PC7	Х	Х	0	0
	TMRI0 (input)	PH0	0	0	X	Х
		PH2	0	Х	X	Х
		P54	X	X	0	×
		PB1	X	X	0	0
	TMO1 (output)	P17	0	0	0	0
	TMCI1 (input)	PC4	0	0	X	×
		PB1	X	X	0	0
	TMRI1 (input)	PB1	0	0	X	\times
		PB0	X	X	0	0
	TMO2 (output)	P16	0	0	0	0
		PC7	0	X	X	\times
	TMCI2 (input)	P15	0	0	0	0
		PC6	0	X	X	X
		P66	Х	X	0	\times
	TMRI2 (input)	P14	0	0	0	0
		PC5	0	0	X	X
		P67	Х	X	0	×
	TMO3 (output)	P31	0	0	0	0
	TMCI3 (input)	P30	0	0	0	0
	TMRI3 (input)	P27	0	0	0	0
Serial	RXD1 (input)	P15	0	0	X	Х
communication	SMISO1 (input/output)	P30	0	0	0	0
interface	SSCL1 (input/output)	PB1	X	×	0	0
	TXD1 (output)	P16	0	0	X	×
	SMOSI1 (input/output)	P26	0	0	0	0
	SSDA1 (input/output)	PC7	X	X	0	0
	SCK1 (input/output)	P17	0	0	X	Х
		P27	0	0	X	Х
		P14	X	X	0	0
	CTS1# (input) /	P14	0	0	Х	Х
	RTS1# (output) /	P31	0	0	Х	X
	SS1# (input)	P15	X	X	0	0
	RXD5 (input)	PH0	0	0	X	X
	SMISO5 (input/output) SSCL5 (input/output)	P30	×	×	0	0
	TXD5 (output)	PH1	0	0	X	Х
	SMOSI5 (input/output) SSDA5 (input/output)	P31	×	×	0	0
	SCK5 (input/output)	PH2	0	X	X	X
		PC5	0	0	X	X
		P27	×	X	0	0

		Port	RX23E-A		RX23E-E	8	
Module/Function	Pin Function	Allocation	48-Pin	40-Pin	48-Pin	, 40-Pin	
Serial	CTS5# (input) /	PC4	0	0	×	× ×	
communication	RTS5# (output) / SS5# (input)	P26	×	×	0	0	
	RXD6 (input)	PC6	0	X	X	X	
	SMISO6 (input/output) SSCL6 (input/output)	P66	×	X	0	X	
	TXD6 (output)	PC7	0	X	Х	X	
	SMOSI6 (input/output) SSDA6 (input/output)	P67	×	×	0	×	
	SCK6 (input/output)	PC5	0	Х	X	×	
		P54	X	Х	0	×	
	CTS6# (input) /	PH3	0	X X	X	X X	
	RTS6# (output) / SS6# (input)	P55	×	×	0	×	
	RXD12 (input)	PB0	0	0	X	Х	
	SMISO12 (input/output) SSCL12 (input/output) RXDX12 (input)	P16	×	×	× O	0	
	TXD12 (output)	PB1	0	0	X	X	
	SMOSI12 (input/output) SSDA12 (input/output) TXDX12 (output) SIOX12 (input/output)	P17	×	×	0	0	
	SCK12 (input/output)	PC5	0	0	X	X	
		P26	X	X	0	0	
	CTS12# (input)	PC4	0	0	X	X	
	RTS12# (output) SS12# (input)	P27	×	×	0	0	
I ² C bus interface	SCL (input/output)	P16	0	0	0	0	
	SDA (input/output)	P17	0	0	0	0	
Serial peripheral	RSPCKA (input/output)	PH3	0	X	X	Х	
interface		PC5	0	0	X	\times	
		P31	X	X	0	0	
		PB0	X	X	0	0	
	MOSIA (input/output)	P16	0	0	0	0	
		PH2	0	X	Х	×	
		PC6	0	Х	Х	×	
	MISOA (input/output)	P17	0	0	0	0	
		PC7	0	X	Х	×	
	SSLA0 (input/output)	PH1	0	0	×	X	
		PC4	0	0	X	X	
		P15	X	X	0	0	
	SSLA1 (input/output)	P15	0 0 X >				
		PC7	X	X	0	0	
	SSLA2 (input/output)	PH0	0	0	X	Х	
		PB1	X	X	0	0	
	SSLA3 (input/output)	P14	0	0	X	X	
		P54	X	Х	0	X	
		PE0	X	X	X	0*1	
12-bit A/D converter	ADTRG0# (input)	P16	0	0	0	0	

		Port	RX23E-A		RX23E-E	}
Module/Function	Pin Function	Allocation	48-Pin	40-Pin	48-Pin	40-Pin
Clock frequency	CACREF (input)	PC7	0	X	X	X
accuracy		PH0	0	0	X	X
measurement circuit		P31	X	Х	0	0
		PE0	X	Х	X	O*1
RSCAN(RX23E-A)	CTXD0 (output)	P14	0	0	0	0
CAN module (RX23E-B)	CRXD0 (input)	P15	0	0	0	0
LVD voltage detection input	CMPA2 (input)	PB0			0	0

Note: 1. This pin does not exist on a 40-pin product provided with high-voltage input pins.

Register	Bit	RX23E-A (n = 4 to 7)	RX23E-B (n = 2 to 7)
P12PFS	_		P12 pin function select bits
P13PFS	_		P13 pin function select bits
P14PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00001b: MTIOC3A	00001b: MTIOC <mark>0B</mark>
		00010b: MTCLKA	00010b: MTIOC3B
			00011b: MTCLKA
			01001b: CLKOUT
			01010b: SCK1
		01011b: CTS1#/RTS1#/SS1# 01101b: SSLA3	
			11000b: SEG15
P15PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00001b: MTIOC0B	00001b: MTIOC0 <mark>C</mark>
		00010b: MTCLKB	00010b: MTIOC4D
			00011b: MTCLKB
		01010b: RXD1/SMISO1/SSCL1	01010b: CTS1#/RTS1#/SS1#
		01101b: SSLA1	01101b: SSLA <mark>0</mark>
			11000b: SEG14
P16PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00001b: MTIOC3C	
		00010b: MTIOC3D	00010b: MTIOC3C
			00011b: MTIOC3D
		01010b: TXD1/SMOSI1/SSDA1	
		OTOTOD. TXD //SMOST//SSDAT	01100b: RXD12/SMISO12/
			SSCL12/RXDX12
			11000b: SEG13
P17PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00001b: MTIOC3A	00001b: MTIOC <mark>0D</mark>
		00010b: MTIOC3B	00010b: MTIOC3A
			00011b: MTIOC3B
		00111b: POE8#	
		01010b: SCK1	
			01100b: TXD12/SMOSI12/
			SSDA12/TXDX12/
			SIOX12
			11000b: SEG12

Table 2.24 Comparison of P1n Pin Function Control Registers (P1nPFS)

Register	Bit	RX23E-A (n = 6, 7)	RX23E-B (n = 0 to 7)
P20PFS	—	—	P20 pin function select bits
P21PFS	—	—	P21 pin function select bits
P22PFS	—	—	P22 pin function select bits
P23PFS	—	—	P23 pin function select bits
P24PFS	—	—	P24 pin function select bits
P25PFS	—	—	P25 pin function select bits
P26PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00001b: MTIOC2A	00001b: MTIOC <mark>0A</mark>
			00011b: MTCLKC
			01011b: CTS5#/RTS5#/SS5#
			01100b: SCK12
P27PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		01010b: SCK1	00111b: POE2#
		ororob. Servi	01011b: SCK5
			01100b: CTS12#/RTS12#/SS12#
P2nPFS	ISEL	Interrupt input function select bit	Interrupt input function select bit
		0: Not used as IRQn input pin	0: Not used as IRQn input pin
		1: Used as IRQn input pin	1: Used as IRQn input pin
		1. Osed as interimptit pin	P22: IRQ4 (100/80-pin)
			P23: IRQ5 (100/80-pin)
			P24: IRQ6 (100/80-pin)
			P25: IRQ7 (100/80-pin)
		P26: IRQ2	P26: IRQ2 (100/80/64/48/40pin)
		P27: IRQ3	P27: IRQ3 (100/80/64/48/40pin)

Table 2.25	Comparison of P2n Pin Function Control Registers (P2nPFS)
------------	---

Table 2.26 Comparison of P3n Pin Function Control Registers (P3nPFS)

Register	Bit	RX23E-A (n = 0, 1)	RX23E-B (n = 0, 1)
P30PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00001b: MTIOC4B 00010b: MTIOC0A	00001b: MTIOC2A 00010b: MTIOC4B 00011b: MTCLKD
P31PFS	PSEL[4:0]	Pin function select bits	01011b: RXD5/SMISO5/SSCL5 Pin function select bits
FJIFFJ	FSEL[4.0]		
		00001b: MTIOC4D	00001b: MTIOC1A
		00010b: MTIOC1A	00010b: MTIOC4D
			00011b: MTCLKB
			00111b: CACREF
		01011b: CTS1#/RTS1#/SS1#	01011b: TXD5/SMOSI5/SSDA5
			01101b: RSPCKA

Table 2.27 Comparison of P5n Pin Function Control Registers (P5nPFS)

Register	Bit	RX23E-A	RX23E-B (n = 4, 5)
P5nPFS	_	_	P5n pin function control register

Table 2.28 Comparison of P6n Pin Function Control Registers (P6nPFS)

Register	Bit	RX23E-A	RX23E-B (n = 0 to 7)
P6nPFS	—	-	P6n pin function control register

Table 2.29 Comparison of P7n Pin Function Control Registers (P7nPFS)

Register	Bit	RX23E-A	RX23E-B (n = 0 to 4)
P7nPFS	—	—	P7n pin function control register

Table 2.30 Comparison of PAn Pin Function Control Registers (PAnPFS)

Register	Bit	RX23E-A	RX23E-B (n = 0 to 4)
PAnPFS	—	—	PAn pin function control register

Table 2.31 Comparison of PBn Pin Function Control Registers (PBnPFS)

Register	Bit	RX23E-A (n = 0, 1)	RX23E-B (n = 0, 1)
PB0PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00001b: MTIOC <mark>0C</mark>	00001b: MTIOC1B
			00010b: MTIOC3C
			00011b: MTIC5W
		00101b: TMCI0	
			00110b: TMRI1
		01100b: RXD12/RXDX12/	
		SMISO12/SSCL12	
			01101b: RSPCKA
PB1PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00001b: MTIOC2A	00001b: MTIOC <mark>4C</mark>
		00010b: MTIOC1B	00010b: MTIOC3A
			00011b: MTIC5V
		00101b: TMRI1	00101b: TMRI0
			00110b: TMCI1
			01010b: RXD1/SMISO1/SSCL1
		01100b: TXD12/TXDX12/SIOX12/	
		SMOSI12/SSDA12	
			01101b: SSLA2
PBnPFS	—	Interrupt input function select bit	
		—	Analog function select bit

Register	Bit	RX23E-A (n = 4 to 7)	RX23E-B (n = 0 to 7)
PC0PFS	—	—	PC0 pin function select bits
PC1PFS	—	—	PC1 pin function select bits
PC2PFS	—	—	PC2 pin function select bits
PC3PFS	—	—	PC3 pin function select bits
PC4PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00001b: MTIOC3D 00010b: MTCLKC 00101b: TMCI1 00111b: POE0#	00001b: MTIOC4B 00111b: POE3#
		01011b: CTS5#/RTS5#/SS5# 01100b: CTS12#/RTS12#/SS12# 01101b: SSLA0	01011b: RXD8/SMISO8/SSCL8
			11000b: SEG23
PC5PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00001b: MTIOC3B 00010b: MTCLKD 00101b: TMRI2	00001b: MTIOC <mark>4C</mark>
			00111b: POE2#
		01010b: SCK5 01011b: SCK6 01100b: SCK12	01011b: TXD8/SMOSI8/SSDA8
		01101b: RSPCKA	11000b: SEG22
PC6PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00001b: MTIOC3C 00010b: MTCLKA 00101b: TMCl2	00001b: MTIOC <mark>4A</mark>
			00111b: POE1#
		01011b: RXD6/SMISO6/SSCL6 01101b: MOSIA	01010b: RXD1/SMISO1/SSCL1
			11000b: SEG21
PC7PFS	PSEL[4:0]	Pin function select bits	Pin function select bits
		00001b: MTIOC3A	00001b: MTIOC4B
		00010b: MTCLKB	00010b: MTIOC3D 00011b: MTIC5U
		00101b: TMO2	00101b: TMCI0
		00111b: CACREF	00111b: POE0#
			01010b: TXD1/SMOSI1/SSDA1
		01011b: TXD6/SMOSI6/SSDA6 01101b: MISOA	01101b: SSLA1
PCnPFS		_	Interrupt input function select bit

Table 2.32 Comparison of PCn Pin Function Control Registers (PCnPFS)

Table 2.33 Comparison of PDn Pin Function Control Registers (PDnPFS)

Register	Bit	RX23E-A	RX23E-B (n = 0 to 4)
PDnPFS	—	—	PDn pin function select registers

Table 2.34 Comparison of PEn Pin Function Control Registers (PEnPFS)

Register	Bit	RX23E-A	RX23E-B (n = 0 to 4)
PEnPFS	—	_	PEn pin function select registers

Table 2.35 Comparison of PHn Pin Function Control Registers (PHnPFS)

Register	Bit	RX23E-A (n = 0 to 3)	RX23E-B (n = 0 to 4)
PHnPFS	—	PHn pin function select registers	—

2.11 Low-Power Timer

Table 2.36 is Comparative Overview of Low-Power Timer, and Table 2.37 is Comparison of Low-Power Timer Registers.

Item	RX23E-A (LPT)	RX23E-B (LPT)
Number of channels	1 channel	1 channel
Clock source	IWDT-dedicated clock	Subclock and IWDT-dedicated clock
Clock division ratio	1/2, 1/4, 1/8, 1/16, and 1/32	1/2, 1/4, 1/8, 1/16, and 1/32
Counter operation	 Counting-up using a 16-bit up-counter Counting continues even in software standby mode. 	 Counting-up using a 16-bit up-counter Counting continues even in software standby mode.
Compare match	Compare match 0 (Compare match signals occur in only software standby mode.)	Compare match 0 (Compare match signals occur in only software standby mode.)
Event link function (output)	Compare match 0 (Compare match signals occur in only software standby mode.)	Compare match 0 (Compare match signals occur in only software standby mode.)

Table 2.36 Comparative Overview of Low-Power Timer

Table 2.37 Comparison of Low-Power Timer Registers

Register	Bit	RX23E-A (LPT)	RX23E-B (LPT)
LPTCR1	LPCNTCKSEL	Clock source select bit	Clock source select bit
		0: No clock 1: IWDT-dedicated clock (IWDTCLK)	0: Subclock 1: IWDT-dedicated clock

2.12 Serial communication interface

Table 2.38 is Comparative Overview of Serial Communication Interfaces, and Table 2.39 is Comparison of Channels for Serial Communication Interfaces.

Item		RX23E-A (SCIg, SCIh)	RX23E-B (SCIg, SCIh)	
Number of cha	nnels	SCIg: 3 channels	SCIg: 6 channels	
		SCIh: 1 channel	SCIh: 1 channel	
Serial communications modes		Asynchronous	Asynchronous	
		Clock synchronous	Clock synchronous	
		Smart card interface	Smart card interface	
		Simple I ² C bus	Simple I ² C bus	
		Simple SPI bus	Simple SPI bus	
Transfer speed		Bit rate specifiable by on-chip	Bit rate specifiable by on-chip	
		baud rate generator.	baud rate generator.	
Full-duplex con	nmunication	Transmitter:	Transmitter:	
		Continuous transmission	Continuous transmission	
		possible using double-buffer	possible using double-buffer	
		structure.	structure.	
		Receiver:	Receiver:	
		Continuous reception possible	Continuous reception possible	
		using double-buffer structure.	using double-buffer structure.	
Data transfer		Selectable as LSB first or MSB	Selectable as LSB first or MSB	
		first transfer.	first transfer.	
Interrupt source	es	Transmission ended, transmit data	Transmission ended, transmit data	
		empty, receive data full, receive error, or completion of generation	empty, receive data full, receive error, or completion of generation	
		of a start condition, restart	of a start condition, restart	
		condition, or stop condition (for	condition, or stop condition (for	
		simple I^2C mode)	simple I ² C mode)	
Low power con	sumption	Transition to the module stop state	Transition to the module stop state	
function	oumption	can be set for each channel.	can be set for each channel.	
Asynchronous	Data length	7, 8, or 9 bits	7, 8, or 9 bits	
mode	Transmission	1 or 2 bits	1 or 2 bits	
	stop bits			
	Parity	Even parity, odd parity, or no parity	Even parity, odd parity, or no parity	
	Receive error	Parity error, overrun error, or	Parity error, overrun error, or	
	detection	framing error	framing error	
	function			
	Hardware flow	CTSn# and RTSn# pins can be	CTSn# and RTSn# pins can be	
	control	used in controlling	used in controlling	
	Start bit	transmission/reception.	transmission/reception.	
	Start-bit detection	Low level or falling edge is selectable.	Low level or falling edge is selectable.	
	Break detection	When a framing error occurs, a	When a framing error occurs, a	
		break can be detected by directly	break can be detected by directly	
		reading the level of the RXDn pin.	reading the level of the RXDn pin.	
	Clock source	An internal or external clock	An internal or external clock	
		can be selected.	can be selected.	
		The transfer rate clock can be	• The transfer rate clock can be	
		input from the TMR (SCI5 or SCI6).	input from the TMR (SCI5 or SCI6).	

 Table 2.38
 Comparative Overview of Serial Communication Interfaces

Item		RX23E-A (SCIg, SCIh)	RX23E-B (SCIg, SCIh)
Asynchronous mode	Double-speed mode	Double-speed mode can be selected for the baud rate generator.	Double-speed mode can be selected for the baud rate generator.
	Multi-processor communication function	Serial communication among multiple processors	Serial communication among multiple processors
	Noise cancellation	The signal paths from input on the RXDn pins incorporate digital noise filters.	The signal paths from input on the RXDn pins incorporate digital noise filters.
Clock	Data length	8 bits	8 bits
synchronous mode	Receive error detection	Overrun error	Overrun error
	Hardware flow control	CTSn# and RTSn# pins can be used in controlling transmission/reception.	CTSn# and RTSn# pins can be used in controlling transmission/reception.
Smart card interface mode	Error handling	 An error signal can be automatically transmitted when detecting a parity error during reception. Data can be automatically retransmitted when receiving an error signal during transmission. 	 An error signal can be automatically transmitted when detecting a parity error during reception. Data can be automatically retransmitted when receiving an error signal during transmission.
	Data type	Both direct convention and inverse convention are supported.	Both direct convention and inverse convention are supported.
Simple I ² C mode	Communication format	I ² C bus format	I ² C bus format
	Operating mode	Master (single-master operation only)	Master (single-master operation only)
	Transfer speed	Fast-mode supported	Fast-mode supported
	Noise cancellation	 The signal paths from input on the SSCLn and SSDAn pins incorporate digital noise filters. The interval for noise cancellation is adjustable. 	 The signal paths from input on the SSCLn and SSDAn pins incorporate digital noise filters. The interval for noise cancellation is adjustable.
Simple SPI	Data length	8 bits	8 bits
mode	Detection of errors	Overrun error	Overrun error
	SS input pin function	Applying the high level to the SSn# pin can cause the output pins to enter the high-impedance state.	Applying the high level to the SSn# pin can cause the output pins to enter the high-impedance state.
	Clock settings	Four kinds of settings for clock phase and clock polarity are selectable.	Four kinds of settings for clock phase and clock polarity are selectable.

Item		RX23E-A (SCIg, SCIh)	RX23E-B (SCIg, SCIh)
Extended serial mode (supported by SCI12 only)	Start frame transmission Start frame	 Break field low width output and generation of interrupt on completion Detection of bus collision and generation of interrupt on detection Detection of break field low 	 Break field low width output and generation of interrupt on completion Detection of bus collision and generation of interrupt on detection Detection of break field low
	reception	 width and generation of interrupt on detection Data comparison of control fields 0 and 1 and generation of interrupt when they match Ability to specify two kinds of data for comparison (primary and secondary) in control field 1 Ability to specify priority interrupt bit in control field 1 Support for start frames that do not include a break field Support for start frames that do not include a control field 0 Function for measuring bit rates 	 width and generation of interrupt on detection Data comparison of control fields 0 and 1 and generation of interrupt when they match Ability to specify two kinds of data for comparison (primary and secondary) in control field 1 Ability to specify priority interrupt bit in control field 1 Support for start frames that do not include a break field Support for start frames that do not include a control field 0 Function for measuring bit rates
	I/O control function Timer function	 Ability to select polarity or TXDX12 and RXDX12 signals Ability to specify digital filtering of RXDX12 signal Half-duplex operation employing RXDX12 and TXDX12 signals multiplexed on the same pin Ability to select receive data sampling timing of RXDX12 pin 	 Ability to select polarity or TXDX12 and RXDX12 signals Ability to specify digital filtering of RXDX12 signal Half-duplex operation employing RXDX12 and TXDX12 signals multiplexed on the same pin Ability to select receive data sampling timing of RXDX12 pin
Dit roto an a du la		Usable as reloading timer	Usable as reloading timer
Bit rate modula		Correction of outputs from the on- chip baud rate generator can reduce errors.	Correction of outputs from the on- chip baud rate generator can reduce errors.
Event link function (supported by SCI5 only)		 Output of error events (receive error or error signal detection) Output of receive buffer full events Output of transmit data empty events 	 Output of error events (receive error or error signal detection) Output of receive buffer full events Output of transmit data empty events
		Output of transmit end events	Output of transmit end events

Item	RX23E-A (SCIg, SCIh)	RX23E-B (SCIg, SCIh)
Asynchronous mode	SCI1, SCI5, SCI6, SCI12	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9, SCI12
Clock synchronous mode	SCI1, SCI5, SCI6, SCI12	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9, SCI12
Smart card interface mode	SCI1, SCI5, SCI6, SCI12	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9, SCI12
Simple I ² C mode	SCI1, SCI5, SCI6, SCI12	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9, SCI12
Simple SPI mode	SCI1, SCI5, SCI6, SCI12	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9, SCI12
Extended serial mode	SCI12	SCI12
TMR clock input	SCI5, SCI6, SCI12	SCI5, SCI6, SCI12
Event link function	SCI5	SCI5

Table 2.39	Comparison of	Channels for	Serial Communi	cation Interfaces
------------	---------------	--------------	----------------	-------------------

2.13 Serial peripheral interface

Table 2.40 is Comparative Overview of Serial Peripheral Interfaces, and Table 2.41 is Comparison of Serial Peripheral Interface Registers.

ltem	RX23E-A (RSPIb)	RX23E-B (RSPIc)
Number of channels	1 channel	1 channel
RSPI transfer functions	 Use of MOSI (Master out/slave in), MISO (Master in/slave out), SSL (slave select), and RSPCK (RSPI clock) signals allows serial communications through SPI operation (4-wire method) or clock synchronous operation (3-wire method). Communication mode: Full-duplex or simplex (transmit-only) can be selected. Switching of the polarity of RSPCK Switching of the phase of RSPCK 	 Use of MOSI (Master out/slave in), MISO (Master in/slave out), SSL (slave select), and RSPCK (RSPI clock) signals allows serial communications through SPI operation (4-wire method) or clock synchronous operation (3-wire method). Communication mode: Full-duplex or simplex (transmit-only) can be selected. Switching of the polarity of RSPCK Switching of the phase of RSPCK
Data format	 MSB first/LSB first selectable Transfer bit length is selectable as 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 128-bit transmit/receive buffers Up to four frames can be transferred in one round of transmission/reception (each frame consisting of up to 32 bits). 	 MSB first/LSB first selectable Transfer bit length is selectable as 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 128-bit transmit/receive buffers Up to four frames can be transferred in one round of transmission/reception (each frame consisting of up to 32 bits). Byte swapping of transmit and receive data is selectable
Bit rate	 In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the division ratio ranges from 1/2 to 1/4096). In slave mode, the minimum PCLK clock divided by 6 can be input as RSPCK (the maximum frequency of RSPCK is that of PCLK divided by 6). Width at high level: 3 cycles of PCLK Width at low level: 3 cycles of PCLK 	 In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the division ratio ranges from 1/2 to 1/4096). In slave mode, the minimum PCLK clock divided by 4 can be input as RSPCK (the maximum frequency of RSPCK is that of PCLK divided by 4). Width at high level: 2 cycles of PCLK Width at low level: 2 cycles of PCLK
Buffer configuration	 Double buffer configuration for the transmit/receive buffers 128 bits for the transmit/receive buffers 	 Double buffer configuration for the transmit/receive buffers 128 bits for the transmit/receive buffers
Error detection	 Mode fault error detection Overrun error detection*1 Parity error detection Underrun error detection 	 Mode fault error detection Overrun error detection*1 Parity error detection Underrun error detection

 Table 2.40
 Comparative Overview of Serial Peripheral Interfaces

Item	RX23E-A (RSPIb)	RX23E-B (RSPIc)
SSL control function	 Four SSL pins (SSLA0 to SSLA3) for each channel In single-master mode, SSLA0 to SSLA3 pins are output. 	 Four SSL pins (SSLA0 to SSLA3) for each channel In single-master mode, SSLA0 to SSLA3 pins are output.
	 In multi-master mode: SSLA0 pin is used for input, and SSLA1 to SSLA3 pins are used for output or unused. In slave mode: 	 In multi-master mode: SSLA0 pin is used for input, and SSLA1 to SSLA3 pins are used for output or unused. In slave mode:
	SSLA0 pin for input, and SSLA1 to SSLA3 pins are unused.	SSLA0 pin for input, and SSLA1 to SSLA3 pins are unused.
	 Controllable delay from SSL output assertion to RSPCK operation (RSPCK delay) 	 Controllable delay from SSL output assertion to RSPCK operation (RSPCK delay)
	 Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) Controllable delay from RSPCK stop 	 Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) Controllable delay from RSPCK stop
	to SSL output negation (SSL negation delay)	to SSL output negation (SSL negation delay)
	 Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) Controllable wait for next-access SSL 	 Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) Controllable wait for next-access SSL
	output assertion (next-access delay) — Range: 1 to 8 RSPCK cycles — (set in RSPCK-cycle units)	output assertion (next-access delay) — Range: 1 to 8 RSPCK cycles — (set in RSPCK-cycle units)
	Function for changing SSL polarity	Function for changing SSL polarity
Control in master transfer	 A transfer of up to eight commands can be executed sequentially in looped execution. The following items can be set in each 	 A transfer of up to eight commands can be executed sequentially in looped execution. The following items can be set in each
	command: — SSL signal value, bit rate, RSPCK polarity/phase, transfer data length, MSB/LSB first, burst, RSPCK delay, SSL negation delay, and next-access delay	command: — SSL signal value, bit rate, RSPCK polarity/phase, transfer data length, MSB/LSB first, burst, RSPCK delay, SSL negation delay, and next-access delay
	 A transfer can be initiated by writing to the transmit buffer. MOSI signal value specifiable in SSL negation 	 A transfer can be initiated by writing to the transmit buffer. MOSI signal value specifiable in SSL negation
	RSPCK auto-stop function	RSPCK auto-stop function
Interrupt sources	 Interrupt sources Receive buffer full interrupt 	 Interrupt sources Receive buffer full interrupt
	Transmit buffer empty interrupt	Transmit buffer empty interrupt
	Error interrupt (mode fault, overrun, underrun, or parity error)	Error interrupt (mode fault, overrun, underrun, or parity error)
	Idle interrupt	Idle interrupt

Item	RX23E-A (RSPIb)	RX23E-B (RSPIc)
Event link function (output)	The following events can be output to the event link controller (RSPI0): Receive buffer full event Transmit buffer empty event Error event (mode fault, overrun, underrun, or parity error)	The following events can be output to the event link controller (RSPI0): Receive buffer full event Transmit buffer empty event Error event (mode fault, overrun, underrun, or parity error)
	Idle event Transmission completion event	Idle event Transmission completion event
Other functions	Function for initializing the RSPILoop back mode	Function for initializing the RSPILoop back mode
Low power consumption function	Ability to specify module stop state	Ability to specify module stop state

Note: 1. During master reception with the RSPCK auto-stop function enabled, no overrun error occurs because the transfer clock stops when an overrun error is detected.

Table 2.41	Comparison of Serial Peripheral Interface Registers
------------	---

Register	Bit	RX23E-A (RSPIb)	RX23E-B (RSPIc)
SPDR	—	RSPI data register	RSPI data register
		 Supported access sizes Longword (SPDCR.SPLW=1) Word access (SPDCR.SPLW=0) 	Supported access sizes Longword (SPDCR.SPLW=1, SPDCR.SPBYT=0) Word access (SPDCR.SPLW=0, SPDCR.SPBYT=0) Byte access (SPDCR.SPBYT=1)
SPDCR	SPBYT	—	RSPI byte access specification bit
SPDCR2	—	—	RSPI data control register 2

2.14 Analog Front-End

Table 2.42 is Comparative Overview of Analog Front-End, and Table 2.43 is Comparison of Analog Front-End Registers.

Item	RX23E-A (AFE)	RX23E-B (AFEA)
Number of channels	6 channel	8 channels
24 bit delta-sigma A/D converter (DSAD)	 2 circuits (DSAD0 and DSAD1) Fourth-order sinc filter On-board programmable gain 	 1 circuit (DSAD0) Fourth-order sinc filter, fourth-order sinc filter + fourth order sinc filter, fifth-order sinc filter, or fifth-order sinc filter + first-order sinc filter On-board programmable gain
	 on-board programmable gain amplifier (PGA) Operating mode: single scan, continuous scan, or one-shot High-speed conversion: 15.625 kSPS Low noise: 30 nVRMS (typ.) (equivalent input noise) (fMOD= 500 kHz, DR = 7.6 SPS, Gain = 128) Oversampling ratio: 32 to 65,536 (only a multiple of 16) 	 amplifier (PGA) Operating mode: single scan, continuous scan, or one-shot High-speed conversion: 125 kSPS, maximum Low noise: 7 nVRMS (typ.) (equivalent input noise) (fMOD= 4 MHz, DR = 3.814 SPS, Gain = 128) Oversampling ratio: First stage: 32 to 256 (only a multiple of 16) Second stage: 1 to 4,096
12-bit successive approximation type A/D converter (S12AD)	 Analog signal input select circuit (up to 6 pins) Maximum conversion clock frequency: 32 MHz (conversion rate: 1.4 µs) Operating mode: single scan, continuous scan, or group scan Reference voltage is selectable. High potential side: VREFH0 or AVCC0 Low potential side: VREFL0 or AVSS0 	 Analog signal input select circuit (up to 8 pins) Maximum conversion clock frequency: 32 MHz (conversion rate: 1.4 µs) Operating mode: single scan, continuous scan, or group scan Reference voltage is selectable. High potential side: VREFH0 or AVCC0 Low potential side: VREFL0 or AVSS0
16-bit D/A converter (R16DA)	_	 16-bit resolution Low-impedance output (with an output buffer)

Table 2.42 Comparative Overview of Analog Front-End

Item	RX23E-A (AFE)	RX23E-B (AFEA)
Operation control circuit	 Operation of the following circuits can be controlled individually: 24-bit delta-sigma A/D converter (DSAD0, DSAD1) Excitation current source (IEXC) Bias voltage generation circuit (VBIAS) Reference voltage source (VREF) Temperature sensor (TEMPS) The DSAD operating voltage can be set. 	 Operation of the following circuits can be controlled individually: 24-bit delta-sigma A/D converter (DSAD0) Excitation current source (IEXC) Bias current source (IREF) Bias voltage generation circuit (VBIAS) Reference voltage source (VREF) Temperature sensor (TEMPS)
High-voltage analog signal input circuit (HVAC)		Signals at ± 10 V can be input. A resistor divider with a division ratio of 10:1 is built into the board. Input impedance: 1 M Ω (min.)
Analog multiplexer (AMUX)	 For DSAD0 and DSAD1, the following items can be selected for each channel: positive-side input signal (ANDSnmP), negative-side input signal (ANDSnmN), positive-side reference voltage (VRnmP), and negative-side reference voltage (VRnmN) (n = 0 or 1, m = 0 to 5) ANDSnmP and ANDSnmN are selected from the AIN0 to AIN11 pins. VRnmP is selected from the REF0P pin, the REF1P pin*1, AVCC0 or REFOUT. VRnmN is selected from the REF0N pin, the REF1N pin*1, or AVSS0. TEMPS can be selected as the input to DSAD0. 	 For DSAD0, the following items can be selected for each channel (m = 0 to 7): positive-side input signal (ANDS0mP), negative-side input signal (ANDS0mP), negative-side reference voltage (VR0mP), and negative-side reference voltage (VR0mN). ANDS0mP and ANDS0mN are selectable from among those on the AIN0 to AIN15, HVAIN0 to HVAIN3, AVSS0, HVCOM, and DA0 pins and AVSS0 voltage for 16-bit D/A converter. VR0mP is selected from the REF0P pin, the REF1N pin*1, AVCC0 and REF0UT*2. VR0mN is selected from the REF0P pin, the REF1N pin*1, and AVSS0. TEMPS can be selected as the input to DSAD0.
Low-side switch circuit (LSW)	Switch connecting the LSW pin and AVSS0 On-resistance: 10 Ω (max.)	Switch connecting the LSW pin and AVSS0 On-resistance: 10 Ω (max.)
Reference voltage source (VREF)*3	Generation voltage: 2.5 V Maximum load current: ±10 mA Output from the REFOUT pin	Generation voltage: 2.5 V Maximum load current: ±10 mA Output from the REFOUT pin

Item		RX23E-A (AFE)	RX23E-B (AFE <mark>A</mark>)
Bias voltage ge (VBIAS)	eneration circuit	Output voltage: (AVCC0 + AVSS0) / 2 Generated voltage can be output from any of the AIN0 to AIN11	Output voltage: (AVCC0 + AVSS0) / 2 Generated voltage can be output from the AIN2 or AIN10 pin.
Temperature sensor (TEMPS)		pins. Temperature measured and calculated for each chip at the time of shipment from the factory is stored in a register.	Temperature measured and calculated for each chip at the time of shipment from the factory is stored in a register.
Excitation current source (IEXC)		 2-channel or 4-channel fixed currents can be output from the AIN0 to AIN11 pins. 2-channel output mode: IEXC0 and IEXC1 are output from any two of the AIN0 to AIN11 pins. Output current: 50 μA, 100 μA, 250 μA, 500 μA, 750 μA, or 1,000 μA 4-channel output mode: IEXC0 and IEXC3 are output from any four of the AIN0 to AIN11 pins. Output current: 50 μA, 100 μA, 250 μA, or 500 μA, 100 μA, 250 μA, or 500 μA 	2-channel fixed currents (IEXC0 and IEXC1) are output either from the AIN2 and AIN3 pins or from the AIN8 and AIN9 pins. Output current: 50 μA, 100 μA, 250 μA, 500 μA, 750 μA, or 1,000 μA
Bias current so (IREF)	ource	_	High-precision bias current is generated for the 16-bit D/A converter.
Voltage detection circuit (VDET)	Low power- supply voltage detection circuit (LVDET)	Voltage reduction of AVCC0 was detected. 2 circuits (LVDET0 and LVDET1) are provided for each detection level. The detection level can be changed by using a register.	Voltage reduction of AVCC0 was detected. 2 circuits (LVDET0 and LVDET1) are provided for each detection level. The detection level for LVDET0 can be changed by using a register. The detection level for LVDET1 is fixed at 3.80 V.
	DSAD input voltage error detection circuit (DSIDET)	Voltage errors on the positive and negative sides are detected for DSAD0 and DSAD1. 4 circuits (DS0PDET, DS0NDET, DS1PDET, and DS1NDET)	Voltage errors on the positive and negative sides are detected for DSAD0. 2 circuits (DS0PDET and DS0NDET)
	DSAD reference voltage error detection circuit (DSRDET)	Reference voltage errors on the positive and negative sides are detected for DSAD0 and DSAD1. Detection of disconnection between the external reference voltage source and MCU is assisted. 2 circuits (DS0RDET and DS1RDET)	Reference voltage errors on the positive and negative sides are detected for DSAD0. Detection of disconnection between the external reference voltage source and MCU is assisted. 1 circuit (DS0RDET)
	Excitation current source disconnection detection circuit (IEXCDET)	Detection of disconnection between the external sensor and MCU is assisted. 4 circuits (IEXC0DET, IEXC1DET, IEXC2DET, and IEXC3DET)	Detection of disconnection between the external sensor and MCU is assisted. 2 circuits (IEXC0DET and IEXC1DET)

Item		RX23E-A (AFE)	RX23E-B (AFE <mark>A</mark>)
Voltage detection circuit (VDET)	High-voltage analog common input disconnection detection circuit (HVCOMDET)		Detection of disconnection with the common voltage input pin of the high-voltage analog signal input circuit is assisted. 1 circuit

Notes: 1. For the RX23E-A Group, the REF1P pin is also used as the AIN5 pin. The REF1N pin is also used as the AIN4 pin. For the RX23E-B Group, the REF1P pin is also used as the AIN13 pin. The REF1N pin is also used as the AIN12 pin.

- 2. REFOUT is used to output the reference voltage (VREF).
- 3. To use the reference voltage, connect the REFOUT pin to AVSS0 via a 0.47 μF capacitor.

Table 2.43	Comparison of Analog Fre	ont-End Registers
------------	--------------------------	-------------------

Register	Bit	RX23E-A (AFE)	RX23E-B (AFE <mark>A</mark>)
OPCR	DSAD1EN	DSAD1 operation enable bit	—
	CLKSEL[3:0]	-	Peripheral clock frequency select bits
	DSADLVM	DSAD operation voltage select bits	_
VDETCR	—	Voltage detection circuit register	Voltage detection circuit register
		Initial value after a reset differs.	
	DET1LVL[1:0]	LVDET1 detection level setting bits	_
	VR1PDISA	Disconnection detection assist bit	—
	VR1PDISC	VR1P disconnection detection charge mode setting bit	_
	VR1NDISA	VR1N disconnection detection assist bit	—
	VR1NDISC	VR1N disconnection detection charge mode setting bit	_
VDETER	IEXC2DET	IEXC2DET operation enable bit	
	IEXC3DET	IEXC3DET operation enable bit	—
	DS1PDET	DS1PDET operation enable bit	—
	DS1NDET	DS1NDET operation enable bit	—
	DS1RDET	DS1RDET operation enable bit	
	HVCOMDET	—	HVCOMDET operation enable bit
VBOSR	VBIASEN0	AIN0 pin VBIAS output control bit	—
	VBIASEN1	AIN1 pin VBIAS output control bit	—
	VBIASEN3	AIN3 pin VBIAS output control bit	—
	VBIASEN4	AIN4 pin VBIAS output control bit	—
	VBIASEN5	AIN5 pin VBIAS output control bit	—
	VBIASEN6	AIN6 pin VBIAS output control bit	—
	VBIASEN7	AIN7 pin VBIAS output control bit	—
	VBIASEN8	AIN8 pin VBIAS output control bit	—
	VBIASEN9	AIN9 pin VBIAS output control bit	—
	VBIASEN11	AIN11 pin VBIAS output control bit	—
DS0mISR*1	—	DSAD0 channel m input select register	DSAD0 channel m input select register
		(m = 0 to 5)	(m = 0 to 7)
		Initial value after a reset differs.	

Register	Bit	RX23E-A (AFE)	RX23E-B (AFE <mark>A</mark>)
DS0mISR*1	PSEL[3:0]	Positive-side input signal select bit	Positive-side input signal select bit
	(RX23E-A)		
	PSEL[4:0]	b3 b0	b4 b0
	(RX23E-B)	0 0 0 0: AIN0 pin	0 0 0 0 0: AIN0 pin
		0 0 0 1: AIN1 pin	0 0 0 0 1: AIN1 pin
		0 0 1 0: AIN2 pin	0 0 0 1 0: AIN2 pin
		0 0 1 1: AIN3 pin	0 0 0 1 1: AIN3 pin
		0 1 0 0: AIN4 pin	0 0 1 0 0: AIN4 pin
		0 1 0 1: AIN5 pin	0 0 1 0 1: AIN5 pin
		0 1 1 0: AIN6 pin	0 0 1 1 0: AIN6 pin
		0 1 1 1: AIN7 pin	0 0 1 1 1: AIN7 pin
		1 0 0 0: AIN8 pin	0 1 0 0 0: AIN8 pin
		1 0 0 1: AIN9 pin	0 1 0 0 1: AIN9 pin
		1 0 1 0: AIN10 pin	0 1 0 1 0: AIN10 pin
		1 0 1 1: AIN11 pin	0 1 0 1 1: AIN11 pin
		1 1 0 0: Offset error measurement setting*2	0 1 1 0 0: AIN12 pin
			0 1 1 0 1: AIN13 pin
			0 1 1 1 0: AIN14 pin
		1 1 1 1: No connection	0 1 1 1 1: AIN15 pin
			1 0 0 0 0: HVAIN0 pin
			1 0 0 0 1: HVAIN1 pin
			1 0 0 1 0: HVAIN2 pin
			1 0 0 1 1: HVAIN3 pin
			1 1 0 0 0: AVSS0 pin
			1 1 0 0 1: HVCOM pin
			1 1 0 1 0: AVSS0 voltage for the
			16-bit D/A converter
			1 1 0 1 1: DA0 pin
			1 1 1 0 0: Offset error
			measurement setting*2
			1 1 1 1 1: No connection
		Other than above: Setting prohibited.	Other than above: Setting prohibited.
	I	promoteu.	promibileu.

Register	Bit	RX23E-A (AFE)	RX23E-B (AFEA)
DS0mISR*1	NSEL[3:0]	Negative-side input signal select	Negative-side input signal select
	(RX23E-A)	bit	bit
	NSEL[4:0]		
	(RX23E-B)	b7 b4	b12 b8
		0 0 0 0: AIN0 pin	0 0 0 0 0: AIN0 pin
		0 0 0 1: AIN1 pin	0 0 0 0 1: AIN1 pin
		0 0 1 0: AIN2 pin	0 0 0 1 0: AIN2 pin
		0 0 1 1: AIN3 pin	0 0 0 1 1: AIN3 pin
		0 1 0 0: AIN4 pin	0 0 1 0 0: AIN4 pin
		0 1 0 1: AIN5 pin	0 0 1 0 1: AIN5 pin
		0 1 1 0: AIN6 pin	0 0 1 1 0: AIN6 pin
		0 1 1 1: AIN7 pin	0 0 1 1 1: AIN7 pin
		1 0 0 0: AIN8 pin	0 1 0 0 0: AIN8 pin
		1 0 0 1: AIN9 pin	0 1 0 0 1: AIN9 pin
		1 0 1 0: AIN10 pin	0 1 0 1 0: AIN10 pin
		1 0 1 1: AIN11 pin	0 1 0 1 1: AIN11 pin
			0 1 1 0 0: AIN12 pin
			0 1 1 0 1: AIN13 pin
			0 1 1 1 0: AIN14 pin
		1 1 1 1: No connection	0 1 1 1 1: AIN15 pin
			1 0 0 0 0: HVAIN0 pin
			1 0 0 0 1: HVAIN1 pin
			1 0 0 1 0: HVAIN2 pin
			1 0 0 1 1: HVAIN3 pin
			1 1 0 0 0: AVSS0 pin
			1 1 0 0 1: HVCOM pin
			1 1 0 1 0: AVSS0 voltage for the 16-bit D/A converter
			1 1 0 1 1: DA0 pin
			1 1 1 1 1: No connection
		Other than above: Setting	Other than above: Setting
		prohibited.	prohibited.
	RSEL[3:0]	Reference voltage select bits	Reference voltage select bits
	(RX23E-A)		
	RSEL[4:0]	b8	b16
	(RX23E-B)	0: Positive-side reference buffer disabled	0: Positive-side reference buffer disabled
		1: Positive-side reference buffer	1: Positive-side reference buffer
		enabled	enabled
		b9	b17
		0: Negative-side reference buffer disabled	0: Negative-side reference buffer disabled
		1: Negative-side reference buffer enabled	1: Negative-side reference buffer enabled
		b11 b10	b20 b18
		0 0: AVCC0/AVSS0*3	0 0 0: AVCC0/AVSS0*3
		0 1: REFOUT/AVSS0*3	0 0 1: REFOUT/AVSS0*3
		1 0: REF0P/REF0N	0 1 0: REF0P/REF0N
		1 1: REF1P/REF1N	0 1 1: REF1P/REF1N
			1 0 0: REF0N/REF0P
			1 0 1: REF1N/REF1P
			Other than above: Setting
			prohibited.

Register	Bit	RX23E-A (AFE)	RX23E-B (AFE <mark>A</mark>)
DS1mISR	_	DSAD1 channel m input select register (m = 0 to 5)	_
EXCCR	MODE	Operating mode select bit	
EXCOSR	_	Excitation current output select register	Excitation current output select register
	IEXC0SEL[3:0]	IEXC0 to IEXC3 output pin select bits	IEXC0 output pin select bits
	IEXC1SEL[3:0]	These bits select the pins to be used for output from the excitation current sources. b3 b0 0 0 0 0: AIN0 pin 0 0 0 1: AIN1 pin 0 0 1 0: AIN2 pin 0 1 0: AIN2 pin 0 1 0 0: AIN4 pin 0 1 0 0: AIN4 pin 0 1 0 1: AIN5 pin 0 1 1 0: AIN6 pin 0 1 1 1: AIN7 pin 1 0 0 0: AIN8 pin 1 0 0 0: AIN8 pin 1 0 1 0: AIN10 pin 1 0 1 1: AIN11 pin 1 1 1 1: Output stop Other than above: Setting prohibited.	These bits select the pins to be used for output from the excitation current sources. b3 b0 0 0 1 0: AIN2 pin 1 0 0 0: AIN8 pin 1 1 1 1: Output stop Other than above: Setting prohibited. IEXC1 output pin select bits These bits select the pins to be used for output from the excitation current sources. b7 b4 0 0 1 1: AIN3 pin 1 0 0 1: AIN9 pin 1 1 1 1: Output stop Other than above: Setting prohibited.
	IEXC2SEL[3:0]		—
	IEXC3SEL[3:0]		

Notes: 1. Before programming this register, set the OPCR.DSAD0EN bit to "1" (DSAD0 operation enable).For the RX23E-B Group, do not program the register that corresponds to the channel that is being used for A/D conversion.

- 2. For the RX23E-A Group, a voltage of (AVCC0 + AVSS0) / 2 is applied to the positive-side and negative-side input pins for DSAD0 if the PSEL[3:0] bits are set to "11100b". For the RX23E-B Group, this occurs if the PSEL[4:0] bits are set to "11100b". If A/D conversion is performed in this state, the offset error can be measured. At this time, for the RX23E-A Group, make sure that the NSEL[3:0] bits are set to "11111b". For the RX23E-B Group, make sure that the NSEL[3:0] bits are set to "11111b".
- 3. If AVCC0/AVSS0 and REFOUT/AVSS0 are selected, the reference buffer is disabled.

2.15 24-Bit Delta-Sigma A/D Converter

Table 2.44 is Comparative Overview of 24-Bit Delta-Sigma A/D Converters, and Table 2.45 is Comparison of 24-Bit Delta-Sigma A/D Converter Registers.

ltem	RX23E-A (DSADA)	RX23E-B (DSAD <mark>B</mark>)	
Number of units	2 units	1 unit	
Input channels	6 channels (12 input channels in total)	8 channels (16 input channels in total)	
A/D conversion	Delta-sigma type	Delta-sigma type	
method			
Resolution	24-bit	24 bits	
Analog input	 The input method can be selected for each channel by using an analog multiplexer (AMUX). Differential operation input Pseudo-differential operation input Single-end input 	 The input method can be selected for each channel by using an analog multiplexer (AMUX). Differential operation input Pseudo-differential operation input Single-end input 	
Modulator clock	Normal mode: 500 kHz	125 kHz to 4 MHz	
frequency (fMOD)	Low-power mode: 125 kHz		
Programmable gain amplifier (PGA)	 The PGA gain can be set for each channel (x1, x2, x4, x8, x16, x32, x64, x128) Direct input to DSAD bypassing PGA is possible. Input to DSAD via an analog input buffer (BUF) bypassing PGA is possible. 	 The PGA gain can be set for each channel (x1, x2, x4, x8, x16, x32, x64 x128) Direct input to DSAD bypassing PGA is possible. Input to DSAD via an analog input buffer (BUF) bypassing PGA is possible. 	
Data register	 A/D conversion result register x 1, average-value calculation result data register x 1 The channel number corresponding to the A/D conversion result can be checked by using a register that is provided for its use only. An overflow flag for the A/D 	 A/D conversion result register x 1 The channel number corresponding to the A/D conversion result can be checked by using a register that is provided for its use only. An overflow flag for the A/D 	
	 conversion result is provided. The format of the output code can be selected from the following: 2's complement or straight binary. 	 conversion result is provided. The format of the output code can be selected from the following: 2's complement or straight binary. 	
Operating clock	 Normal mode: 4 MHz Low-power mode: 1 MHz The clock is generated by dividing PCLKB by 1, 2, 3, 4, 5, 6, 7.5, or 8. 	500 kHz to 16 MHz The clock is generated by dividing PCLKC by 1, 2, 3, 4, 5, 6, 8, 12, 16, 20, or 32.	
Conversion start	Software trigger	Software trigger	
condition	Hardware trigger	Hardware trigger	
Inter-unit synchronous start	Units 0 and 1 can synchronously start.		

Table 2.44 Comparative Overview of 24-Bit Delta-Sigma A/D Converters

ltem	RX23E-A (DSADA)	RX23E-B (DSAD <mark>B</mark>)
Operating mode	Continuous scan mode (Operation continues until auto-scan stops.)	Continuous scan mode (Operation continues until auto-scan stops.)
	Single scan mode (Operation stops	Single scan mode (Operation stops
	each time an auto-scan cycle ends.)	each time an auto-scan cycle ends.)
	One-shot operation (Operation stops	One-shot operation (Operation stops
	after A/D conversion ends.)	after A/D conversion ends.)
Conversion mode	Normal operation	Normal operation
0	Single-cycle settling	Single-cycle settling
Oversampling ratio (OSR)	• Selectable from 64, 128, 256, 512, 1024, 2048, or a user-defined value.	 First stage sinc filter: 16 to 256 (only a multiple of 16)
	 [User-defined value] 	 Second stage sinc filter:
	32 to 65,536 (only a multiple of 16)	Bypass or 2 to 4,096
		 Total oversampling ratio:
		32 to 1,048,576
	Settable on a per-channel basis	Settable on a per-channel basis
Number of times	The number of times A/D conversion is	The number of times A/D conversion is
A/D conversion is performed	performed per auto-scan cycle can be set for each channel.	performed per auto-scan cycle can be set for each channel.
	• 1 to 8,032 or 1 to 255 can be set by	• 1 to 8,191 can be set by configuring
	configuring the register.	the register.
Averaging of A/D	Setting 0 enables one-shot operation.	Setting 0 enables one-shot operation.
Averaging of A/D conversion results	 One of the following averaging-related operations can be selected: 	—
	— Do not perform averaging.	
	— Perform averaging and end A/D	
	conversion.	
	An interrupt is generated each time	
	A/D conversion is performed.	
	 Perform averaging and end A/D conversion. 	
	An interrupt is generated when the average value is stored.	
	The number of data pieces to be	
	averaged can be selected (8, 16,	
	32, or 64) for each channel.	
Interrupt sources	 A/D conversion end interrupt (ADI0 or ADI1) 	A/D conversion end interrupt (ADI0)
		 Channel switching interrupt (CHCHG0)
	 Scan end interrupt (SCANEND0 or SCANEND1) 	Scan end interrupt (SCANEND0)
Scan operation	Only the channels for which A/D	Only the channels for which A/D
	conversion is permitted are subject to	conversion is permitted are subject to
	conversion (from the channel with the smallest channel number).	conversion (from the channel with the smallest channel number).
Digital filter	Fourth-order sinc filter	One of the following configurations can
		be selected:
		 Fourth-order sinc filter Fourth-order sinc filter + fourth-
		order sinc filter
		— Fifth-order sinc filter
		 — Fifth-order sinc filter + first-order
		sinc filter

Item	RX23E-A (DSADA)	RX23E-B (DSADB)
Sinc filter gain correction	_	Automatically corrects the gain generated by the Sinc filter using the value set in the register.
Correction of offset errors and gain errors	Offset errors and gain errors are automatically corrected by using the value set in a register.	Offset errors and gain errors are automatically corrected by using the value set in a register.
Disconnection detection assist	 The disconnection detection assist function for input signals can be used. The disconnection detection current (0.5, 2, 4, or 20 µA) can be set for each channel. 	 The disconnection detection assist function for input signals can be used. The disconnection detection current (0.5, 2, 4, or 20 µA) can be set for each channel.
Error detection	If an error occurs in an A/D conversion result, the error is reported when the result is returned.	If an error occurs in an A/D conversion result, the error is reported when the result is returned.
Event link function	A/D conversion is started by a trigger from ELC (hardware trigger)	A/D conversion is started by a trigger from ELC (hardware trigger)
Low power consumption function	Ability to transition to module stop state	Ability to transition to module stop state

Register	Bit	RX23E-A (DSADA)	RX23E-B (DSAD <mark>B</mark>)
CCR	—	DSAD operating clock control	DSAD operating clock control
		register	register
		Initial value after a reset differs.	
	CLKDIV[3:0]	Operating clock division ratio setting bits	Operating clock division ratio setting bits
		b3 b0	b3 b0
		0 0 0 0: PCLKB (no division)	0 0 0 0: PCLKC (no division)
		0 0 0 1: PCLKB/2 (division by 2)	0 0 0 1: PCLKC/2 (division by 2)
		0 0 1 0: PCLKB/3 (division by 3)	0 0 1 0: PCLKC/3 (division by 3)
		0 0 1 1: PCLKB/4 (division by 4)	0 0 1 1: PCLKC/4 (division by 4)
		0 1 0 0: PCLKB/5 (division by 5) 0 1 0 1: PCLKB/6 (division by 6) 0 1 1 0: PCLKB/7.5 (division by	0 1 0 0: PCLKC/5 (division by 5) 0 1 0 1: PCLKC/6 (division by 6)
		7.5)	
		0 1 1 1: PCLKB/8 (division by 8)	0 1 1 1: PCLKC/8 (division by 8) 1 0 0 0: PCLKC/12 (division by 12)
			1 0 0 1: PCLKC/16 (division by 16)
			1 0 1 0: PCLKC/20 (division by 20)
			1 0 1 1: PCLKC/32 (division by 32)
		1 1 0 0: PCLKB (no division)	
		1 1 0 1: PCLKB/2 (division by 2)	
		Settings other than the above are	Settings other than the above are
		prohibited.	prohibited.
MD		Low-power mode setting bit	—
MR	SYNCST	Inter-unit synchronous start enable bit	-
	CH6EN	—	Channel 6 A/D conversion enable bit
	CH7EN	_	Channel 7 A/D conversion enable bit
MRm		Channel m operating mode	Channel m operating mode
		register	register
		(m = 0 to 5)	(m = 0 to 7)
		Initial value after a reset differs.	
	OSR[2:0]	Oversampling ratio setting bits	—
	DISAP	Positive-side input signal	—
	DIGAN	disconnection detection assist bit	
	DISAN	Negative-side input signal disconnection detection assist bit	-
	DISA[1:0]		Disconnection detection assist bits
	AVMD[1:0]	Averaging mode setting bits	
	AVDN[1:0]	Averaging target data count select bits	_
	FSEL		Sinc filter select bit

Table 2.45	Comparison of 24-Bit Delta-Sigma A/D Converter Registers
------------	--

Register	Bit	RX23E-A (DSADA)	RX23E-B (DSADB)
CRm	—	Channel m control register	Channel m control register
		(m = 0 to 5)	(m = 0 to 7)
	CNY[4:0]	A/D conversion count setting bits Y	_
	CNX[2:0]	A/D conversion count setting bits X A	_
	CNMD	A/D conversion count calculation mode bit	—
	CNT[12:0]	—	A/D conversion count setting bits
ADST	ADCE	—	A/D converter operation enable bit
DR	CCH[2:0] (RX23-A)	Conversion channel display bits	Conversion channel display bits
	CCH[3:0]	b31 b29	b31 b28
	(RX23-B)	0 0 0: No conversion or invalid	0 0 0 0: No conversion or invalid
		data	data
		0 0 1: Channel 0	0 0 0 1: Channel 0
		0 1 0: Channel 1	0 0 1 0: Channel 1
		0 1 1: Channel 2	0 0 1 1: Channel 2
		1 0 0: Channel 3	0 1 0 0: Channel 3
		1 0 1: Channel 4	0 1 0 1: Channel 4
		1 1 0: Channel 5	0 1 1 0: Channel 5
			0 1 1 1: Channel 6
			1 0 0 0: Channel 7
AVDR		Average value data register	_
SR	INIT		A/D conversion initialization
•			completion flag
OSRm		Channel m oversampling ratio	Channel m oversampling ratio
		setting register (m = 0 to 5)	setting register ($m = 0$ to 7)
	OSR1[3:0]		First stage sinc filter oversampling
	[]		ratio setting bits
	OSR2[11:0]	_	Second stage sinc filter
			oversampling ratio setting bits
SGCRm	_		Channel m sinc filter gain
			correction register ($m = 0$ to 7)
GCRm	—	Channel m gain correction register	Channel m gain correction register
		(m = 0 to 5)	(m = 0 to 7)
OFCRm	—	Channel m offset correction	Channel m offset correction
		register	register
	1	(m = 0 to 5)	(m = 0 to 7)

2.16 12-bit A/D converter

Table 2.46 is Comparative Overview of 12-Bit A/D Converters, and Table 2.47 is Comparison of 12-Bit A/D Converter Registers.

Item	RX23E-A (S12ADE)	RX23E-B (S12ADE)	
Number of units	1 unit	1 unit	
Input channels	6 channel	8 channels	
A/D conversion method	Successive approximation method	Successive approximation method	
Resolution	12-bit	12-bit	
Conversion time	1.4 μs per channel (when A/D conversion clock (ADCLK) = 32 MHz)	1.4 μs per channel (when A/D conversion clock (ADCLK) = 32 MHz)	
A/D conversion clock	Peripheral module clock PCLK and A/D conversion clock ADCLK can be set so that the frequency division ratio should be one of the following. — PCLKB to ADCLK frequency ratio = 1:1, 1:2, 2:1, 4:1, or 8:1 ADCLK is set using the clock generation circuit.	Peripheral module clock PCLK and A/D conversion clock ADCLK can be set so that the frequency division ratio should be one of the following. — PCLKB to ADCLK frequency ratio = 1:1, 1:2, 2:1, 4:1, or 8:1 ADCLK is set using the clock generation circuit.	
Data register	 6 registers for analog input and one register for A/D-converted data duplication in double trigger mode One register for self-diagnosis The results of A/D conversion are stored in 12-bit A/D data registers. 12-bit accuracy output for A/D conversion results The value obtained by adding up A/D-converted results is stored as a value in the number of bit for conversion accuracy + 2 bits/4 bits in the A/D data registers in A/D-converted value addition mode. Double trigger mode (selectable in single scan and group scan modes): The first piece of A/D-converted analog-input data on one selected channel is stored in the data register for the channel, and the second piece is stored in the duplication register. 	 8 registers for analog input and one register for A/D-converted data duplication in double trigger mode One register for self-diagnosis The results of A/D conversion are stored in 12-bit A/D data registers. 12-bit accuracy output for A/D conversion results The value obtained by adding up A/D-converted results is stored as a value in the number of bit for conversion accuracy + 2 bits/4 bits in the A/D data registers in A/D-converted value addition mode. Double trigger mode (selectable in single scan and group scan modes): The first piece of A/D-converted analog-input data on one selected channel is stored in the data register for the channel, and the second piece is stored in the duplication register. 	

Table 2.46 Comparative Overview of 12-Bit A/D Converters

Item	RX23E-A (S12ADE)	RX23E-B (S12ADE)
Operating mode	 Single scan mode: A/D conversion is performed only once on the analog inputs of up to 6 channels arbitrarily selected. Continuous scan mode: A/D conversion is performed repeatedly on the analog inputs of up to 6 channels arbitrarily selected. Group scan mode: Analog input of up to 6 channels arbitrarily selected is divided into two groups (groups A and B), and A/D conversion is performed only once for the analog input selected by group. For groups A and B, conversion can be independently started at different times by selecting a different conversion start condition (synchronization trigger) for each group. Group scan mode (when group A trigger is input during A/D conversion on group B is stopped and A/D conversion is performed on group B after completion of A/D conversion on group A can be specified. 	 Single scan mode: A/D conversion is performed only once on the analog input of up to 8 channels arbitrarily selected. Continuous scan mode: A/D conversion is performed repeatedly on the analog input of up to 8 channels arbitrarily selected. Group scan mode: Analog input of up to 8 channels arbitrarily selected. Group scan mode: Analog input of up to 8 channels arbitrarily selected is divided into two groups (groups A and B), and A/D conversion is performed only once for the analog input selected by group. For groups A and B, conversion can be independently started at different times by selecting a different conversion start condition (synchronization trigger) for each group. Group scan mode (when group A priority control is selected) If a group A trigger is input during A/D conversion on group B, the A/D conversion on group B is stopped and A/D conversion is performed on group A. Restart (rescan) of A/D conversion on group B after completion of A/D conversion on group A can be specified.
Conditions for A/D conversion start	 Software trigger Synchronous trigger Trigger by the multi-function timer pulse unit (MTU) or event link controller (ELC) Asynchronous trigger A/D conversion can be triggered by the external trigger ADTRG0# pin. 	 Software trigger Synchronous trigger Trigger by the multi-function timer pulse unit (MTU) or event link controller (ELC) Asynchronous trigger A/D conversion can be triggered by the external trigger ADTRG0# pin.

Item	RX23E-A (S12ADE)	RX23E-B (S12ADE)
Functions	 Variable sampling state count Self-diagnosis of 12-bit A/D converter Selectable A/D-converted value addition mode or average mode Analog input disconnection detection function (discharge function/precharge function) Double trigger mode (duplication of A/D conversion data) Automatic clear function for A/D data registers Compare function (window A and window B) Ring buffer for when the compare 	 Variable sampling state count Self-diagnosis of 12-bit A/D converter Selectable A/D-converted value addition mode or average mode Analog input disconnection detection function (discharge function/precharge function) Double trigger mode (duplication of A/D conversion data) Automatic clear function for A/D data registers Compare function (window A and window B) Ring buffer for when the compare
Interrupt sources	 function is used (x 16) In the modes except double trigger mode and group scan mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of single scan. In double trigger mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of double scan. In group scan mode, an A/D scan end interrupt request (S12ADI0) can be generated on completion of group A scan. An A/D scan end interrupt request (GBADI) for group B can be generated on completion of group B scan. When double trigger mode is selected in group scan mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of group B scan. When double trigger mode is selected in group scan mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of double scan of group A. An A/D scan end interrupt request (GBADI) for group B can be generated on completion of double scan of group A. An A/D scan end interrupt request (GBADI) for group B can be generated on completion of double scan of group A. An A/D scan end interrupt request (GBADI) for group B can be generated on completion of double scan be generated on completion of group B can be generated on completion	 function is used (x 16) In the modes except double trigger mode and group scan mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of single scan. In double trigger mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of double scan. In group scan mode, an A/D scan end interrupt request (S12ADI0) can be generated on completion of group A scan. An A/D scan end interrupt request (GBADI) for group B can be generated on completion of group B scan. When double trigger mode is selected in group scan mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of group B scan. When double trigger mode is selected in group scan mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of double scan. Startup of the DMA controller (DMAC) or data transfer controller (DTC) can be triggered by an S12ADI0 or GBADI interrupt.

Item	RX23E-A (S12ADE)	RX23E-B (S12ADE)
Event link function	 An ELC event is generated on completion of scans other than group B scan in group scan mode. An ELC event is generated on completion of group B scan in group scan mode. An ELC event is generated on completion of all scans. Scan can be started by a trigger output by the ELC. An ELC event is generated according to the event conditions of the window compare function in single scan mode. 	 An ELC event is generated on completion of scans other than group B scan in group scan mode. An ELC event is generated on completion of group B scan in group scan mode. An ELC event is generated on completion of all scans. Scan can be started by a trigger output by the ELC. An ELC event is generated according to the event conditions of the window compare function in single scan mode.
Low power consumption function	Ability to specify module stop state	Ability to specify module stop state

Table 2.47 Comparison of 12-Bit A/D Converter Registers

Register	Bit	RX23E-A (S12ADE)	RX23E-B (S12ADE)
ADDRy	—	A/D data register y (y = 0 to 5)	A/D data register y (y = 0 to 7)
ADCSR	DBLANS[4:0]	Double-trigger target channel select bits	Double-trigger target channel select bits
		One double-trigger target analog input channel is selected.	One double-trigger target analog input channel is selected.
		These bit settings take effect only when double trigger mode is selected.	These bit settings take effect only when double trigger mode is selected.
		b4 b0	b4 b0
		0 0 0 0 0: AN000	0 0 0 0 0: AN000
		0 0 0 0 0 1: AN000	0 0 0 0 0 1: AN000
		0 0 0 1 0: AN002	0 0 0 1 0: AN001
		0 0 0 1 1: AN002	0 0 0 1 1: AN003
		0 0 1 0 0: AN004	0 0 1 0 0: AN004
		0 0 1 0 1: AN005	0 0 1 0 1: AN005
			0 0 1 1 0: AN006
			0 0 1 1 1: AN007
ADANSA0	ANSA006		A/D conversion channel select bits
	ANSA007		A/D conversion channel select bits
ADANSB0	ANSB006		A/D conversion channel select bits
	ANSB007	—	A/D conversion channel select bits
ADADS0	ADS006	-	A/D-converted value addition/average function select bits
	ADS007	-	A/D-converted value addition/average function select bits
ADSSTRn	—	A/D sampling state register n (n = 0 to 5)	A/D sampling state register n (n = 0 to 7)

Deviator	D:4		
Register	Bit	RX23E-A (S12ADE)	RX23E-B (S12ADE)
ADCMPANSR	CMPCHA006	—	Compare window A channel
0			select bit
	CMPCHA007	—	Compare window A channel
			select bit
ADCMPLR0	CMPLCHA006	—	Compare window A comparison
			condition select bit
	CMPLCHA007	—	Compare window A comparison
			condition select bit
ADCMPSR0	CMPSTCHA00	_	Compare window A flag
	6		1 3
	CMPSTCHA00	_	Compare window A flag
	7		
ADCMPBNSR	CMPCHB[5:0]	Compare window B channel	Compare window B channel
		select bits	select bits
		These bits are used to select the	These bits are used to select the
		channels to be compared under	channels to be compared under
		the compare window B conditions.	the compare window B conditions.
		b5 b0	b5 b0
		0 0 0 0 0 0: AN000	0 0 0 0 0 0: AN000
		0 0 0 0 0 1: AN001	0 0 0 0 0 1: AN001
		0 0 0 0 1 0: AN002	0 0 0 0 1 0: AN002
		0 0 0 0 1 0. AN002	
		0 0 0 1 0 1: AN005	
			0 0 0 1 1 0: AN006
			0 0 0 1 1 1: AN007
		Settings other than the above are	Settings other than the above are
		prohibited.	prohibited.

2.17 Packages

As indicated in Table 2.48, there are discrepancies in the package drawing codes and availability of some package types, and this should be considered at the board design stage.

Table 2.48 Packages

	RENESAS Code	RENESAS Code	
Package type	RX23E-A	RX23E-B	
100-pin LFQFP	×	0	
100-pin TFBGA	×	0	
80-pin LFQFP	×	0	
64-pin LFQFP	×	0	

O: Package available (Renesas code omitted); X: Package not available

3. Comparison of Pin Functions

This section presents a comparative description of pin functions as well as a comparison of the pins for the power supply, clocks, and system control. Items that exist only on one group are indicated by **blue text**. Items that exist on both groups with different specifications are indicated by **red text**. Black text indicates there are no differences in item specifications between groups.

3.1 48-Pin Packages

Table 3.1 is a Comparative Listing of 48-Pin Package Pin Functions.

 Table 3.1
 Comparative Listing of 48-Pin Package Pin Functions

48-Pin LFQFP	RX23E-A	RX23E-B
1	AIN10/AN004/IEXC0 to IEXC3	DA0
2	AIN11/AN005/IEXC0 to IEXC3	AVSS0
3	AVSS0	AVCC0
4	AVCC0	MD/FINED
5	RES#	RES#
6	XTAL/P37	XTAL/P37
7	VSS	VSS
8	EXTAL/P36	EXTAL/P36
9	VCC	VCC
10	VCL	VCL
11	MD/FINED	P67/MTIOC4A/TMRI2/TXD6/SMOSI6/SSDA6
12	P35/NMI	P66/MTIOC4C/TMCI2/RXD6/SMISO6/SSCL6
13	P31/MTIOC1A/MTIOC4D/TMO3/CTS1#/ RTS1#/SS1#/IRQ1	P35/NMI
14	P30/MTIOC0A/MTIOC4B/TMCI3/POE8#/ RXD1/SMISO1/SSCL1/IRQ0	P31/MTIOC1A/MTIOC4D/MTCLKB/TMO3/ CACREF/TXD5/SMOSI5/SSDA5/RSPCKA/ IRQ1
15	P27/MTIOC2B/MTIOC4A/TMRI3/SCK1/IRQ3	P30/MTIOC2A/MTIOC4B/MTCLKD/TMCI3/ POE8#/RXD1/SMISO1/SSCL1/RXD5/ SMISO5/SSCL5/IRQ0
16	P26/MTIOC2A/MTIOC4C/TMO0/TXD1/ SMOSI1/SSDA1/IRQ2	P27/MTIOC2B/MTIOC4A/TMRI3/POE2#/ SCK5/CTS12#/RTS12#/SS12#/IRQ3
17	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/ SCK1/MISOA/SDA/IRQ7	P26/MTIOC0A/MTIOC4C/MTCLKC/TMO0/ TXD1/SMOSI1/SSDA1/CTS5#/RTS5#/SS5#/ SCK12/IRQ2
18	P16/MTIOC3C/MTIOC3D/TMO2/TXD1/ SMOSI1/SSDA1/MOSIA/SCL/IRQ6/ADTRG0#	P17/MTIOC0D/MTIOC3A/MTIOC3B/TMO1/ TXD12/SMOSI12/SSDA12/TXDX12/SIOX12/ MISOA/SDA/IRQ7
19	P15/MTIOC0B/MTCLKB/TMCI2/RXD1/ SMISO1/SSCL1/SSLA1/CRXD0/IRQ5	P16/MTIOC3C/MTIOC3D/TMO2/RXD12/ SMISO12/SSCL12/RXDX12/MOSIA/SCL/ ADTRG0#/IRQ6
20	P14/MTIOC3A/MTCLKA/TMRI2/CTS1#/ RTS1#/SS1#/SSLA3/CTXD0/IRQ4	P15/MTIOC0C/MTIOC4D/MTCLKB/TMCI2/ CTS1#/RTS1#/SS1#/SSLA0/CRXD0/IRQ5
21	PH3/MTIC5W/MTCLKB/TMCI0/POE2#/ CTS6#/RTS6#/SS6#/RSPCKA	P14/MTIOC0B/MTIOC3B/MTCLKA/TMRI2/ SCK1/CTXD0/CLKOUT/IRQ4
22	PH2/MTIC5V/MTCLKA/TMRI0/SCK5/MOSIA/ IRQ1	P55/MTIC5W/TMO0/CTS6#/RTS6#/SS6#
23	PH1/MTIC5U/MTCLKD/TMO0/POE2#/TXD5/ SMOSI5/SSDA5/SSLA0/IRQ0/CLKOUT	P54/MTIC5V/TMRI0/SSLA3/SCK6

48-Pin LFQFP	RX23E-A	RX23E-B
24	PH0/MTIOC0D/MTCLKC/TMRI0/CACREF/	PC7/MTIOC4B/MTIOC3D/MTIC5U/TMCI0/
	RXD5/SMISO5/SSCL5/SSLA2	POE0#/TXD1/SMOSI1/SSDA1/SSLA1/IRQ7
25	PC7/MTIOC3A/MTCLKB/TMO2/CACREF/	PB1/MTIOC4C/MTIOC3A/MTIC5V/TMRI0/
	TXD6/SMOSI6/SSDA6/MISOA	TMCI1/POE1#/RXD1/SMISO1/SSCL1/SSLA2
26	PC6/MTIOC3C/MTCLKA/TMCI2/RXD6/ SMISO6/SSCL6/MOSIA	VCC
27	PC5/MTIOC3B/MTCLKD/TMRI2/SCK5/SCK6/	PB0/MTIOC1B/MTIOC3C/MTIC5W/TMRI1/
	SCK12/RSPCKA	POE3#/RSPCKA/CMPA2
28	PC4/MTIOC3D/MTCLKC/TMCI1/POE0#/	VSS
	CTS5#/RTS5#/SS5#/CTS12#/RTS12#/	
	SS12#/SSLA0	
29	PB1/MTIOC1B/MTIOC2A/TMRI1/POE1#/	AVCC0
20	TXD12/TXDX12/SIOX12/SMOSI12/SSDA12	A)/000
30 31	VCC PB0/MTIOC0C/TMCI0/POE3#/RXD12/	AVSS0 REFOUT
31	RXDX12/SMISO12/SSCL12/IRQ4	REFOUT
32	VSS	AIN0/AN000
33	AVCC0	AIN1/AN001
34	AVSSO	VREFL0/AIN2/IEXC0/VBIAS
35	REFOUT	VREFH0/AIN3/IEXC1
36	LSW	LSW
37	REFON	REFON
38	REFOR	REFOP
39	AINO/IEXC0 to IEXC3	AIN4/AN002
40	AIN1/IEXC0 to IEXC3	AIN5/AN002
41	AIN2/IEXC0 to IEXC3	AIN8/IEXC0
42	AIN3/IEXC0 to IEXC3	AIN9/IEXC1
43	AIN4/IEXC0 to IEXC3/REF1N	AIN10/AN004/VBIAS
44	AIN5/IEXC0 to IEXC3/REF1P	AIN11/AN005
45	AIN6/AN000/IEXC0 to IEXC3	AIN12/AN006/REF1N
45	AIN7/AN00/IEXC0 to IEXC3	AIN12/AN007/REF1P
40	VREFL0/AIN8/AN002/IEXC0 to IEXC3	VREFH
47	VREFE0/AIN0/AIN002/IEXC0 to IEXC3	VREFL
40		VREFL

3.2 40-Pin Packages

Table 3.2 is a Comparative Listing of 40-Pin Package Pin Functions.

40-Pin HWQFN	RX23E-A	RX23E-B
1	AVSS0	DA0
2	AVCC0	AVSS0
3	RES#	AVCC0
4	XTAL/P37	MD/FINED
5	VSS	RES#
6	EXTAL/P36	XTAL/P37
7	VCC	VSS
8	VCL	EXTAL/P36
9	MD/FINED	VCC
10	P35/NMI	VCL
11	P31/MTIOC1A/MTIOC4D/TMO3/CTS1#/ RTS1#/SS1#/IRQ1	P35/NMI
12	P30/MTIOC0A/MTIOC4B/TMCI3/POE8#/ RXD1/SMISO1/SSCL1/IRQ0	P31/MTIOC1A/MTIOC4D/MTCLKB/TMO3/ CACREF/TXD5/SMOSI5/SSDA5/RSPCKA/ IRQ1
13	P27/MTIOC2B/MTIOC4A/TMRI3/SCK1/IRQ3	P30/MTIOC2A/MTIOC4B/MTCLKD/TMCI3/ POE8#/RXD1/SMISO1/SSCL1/RXD5/ SMISO5/SSCL5/IRQ0
14	P26/MTIOC2A/MTIOC4C/TMO0/TXD1/ SMOSI1/SSDA1/IRQ2	P27/MTIOC2B/MTIOC4A/TMRI3/POE2#/ SCK5/CTS12#/RTS12#/SS12#/IRQ3
15	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/ SCK1/MISOA/SDA/IRQ7	P26/MTIOC0A/MTIOC4C/MTCLKC/TMO0/ TXD1/SMOSI1/SSDA1/CTS5#/RTS5#/SS5#/ SCK12/IRQ2
16	P16/MTIOC3C/MTIOC3D/TMO2/TXD1/ SMOSI1/SSDA1/MOSIA/SCL/IRQ6/ADTRG0#	P17/MTIOC0D/MTIOC3A/MTIOC3B/TMO1/ TXD12/SMOSI12/SSDA12/TXDX12/SIOX12/ MISOA/SDA/IRQ7
17	P15/MTIOC0B/MTCLKB/TMCI2/RXD1/ SMISO1/SSCL1/SSLA1/CRXD0/IRQ5	P16/MTIOC3C/MTIOC3D/TMO2/RXD12/ SMISO12/SSCL12/RXDX12/MOSIA/SCL/ ADTRG0#/IRQ6
18	P14/MTIOC3A/MTCLKA/TMRI2/CTS1#/ RTS1#/SS1#/SSLA3/CTXD0/IRQ4	P15/MTIOC0C/MTIOC4D/MTCLKB/TMCI2/ CTS1#/RTS1#/SS1#/SSLA0/CRXD0/IRQ5
19	PH1/MTCLKD/TMO0/POE2#/TXD5/SMOSI5/ SSDA5/SSLA0/IRQ0/CLKOUT	P14/MTIOC0B/MTIOC3B/MTCLKA/TMRI2/ SCK1/CTXD0/CLKOUT/IRQ4
20	PH0/MTIOC0D/MTCLKC/TMRI0/CACREF/ RXD5/SMISO5/SSCL5/SSLA2	PC7/MTIOC4B/MTIOC3D/MTIC5U/TMCI0/ POE0#/TXD1/SMOSI1/SSDA1/SSLA1/IRQ7
21	PC5/MTIOC3B/MTCLKD/TMRI2/SCK5/ SCK12/RSPCKA	PB1/MTIOC4C/MTIOC3A/MTIC5V/TMRI0/ TMCI1/POE1#/RXD1/SMISO1/SSCL1/SSLA2
22	PC4/MTIOC3D/MTCLKC/TMCI1/POE0#/ CTS5#/RTS5#/SS5#/CTS12#/RTS12#/ SS12#/SSLA0	VCC
23	PB1/MTIOC1B/MTIOC2A/TMRI1/POE1#/ TXD12/TXDX12/SIOX12/SMOSI12/SSDA12	PB0/MTIOC1B/MTIOC3C/MTIC5W/TMRI1/ POE3#/RSPCKA/CMPA2
24	VCC	VSS
25	PB0/MTIOC0C/TMCI0/POE3#/RXD12/ RXDX12/SMISO12/SSCL12/IRQ4	PE0/MTCLKA/CACREF/SSLA3
26	VSS	AVCC0
27	AVCC0	AVSS0

 Table 3.2 Comparative Listing of 40-Pin Package Pin Functions

40-Pin		
HWQFN	RX23E-A	RX23E-B
28	AVSS0	REFOUT
29	REFOUT	VREFL0/AIN2/IEXC0/VBIAS
30	LSW	VREFH0/AIN3/IEXC1
31	REFON	REF0N
32	REF0P	REF0P
33	AIN0/IEXC0 to IEXC3	AIN4/AN002
34	AIN1/IEXC0 to IEXC3	AIN5/AN003
35	AIN4/IEXC0 to IEXC3/REF1N	AIN10/AN004/VBIAS
36	AIN5/IEXC0 to IEXC3/REF1P	AIN11/AN005
37	AIN6/AN000/IEXC0 to IEXC3	AIN12/AN006/REF1N
38	AIN7/AN001/IEXC0 to IEXC3	AIN13/AN007/REF1P
39	VREFL0/AIN8/AN002/IEXC0 to IEXC3	VREFH
40	VREFH0/AIN9/AN003/IEXC0 to IEXC3	VREFL

4. Important Information when Migrating Between MCUs

This section presents important information on differences between the RX23E-A Group and the RX23E-B Group.

Section 4.1, Notes on Function Configuration, presents information regarding the software.

4.1 Notes on Function Configuration

Some software that runs on the RX23E-A Group is compatible with the RX23E-B Group. Nevertheless, appropriate caution must be exercised due to differences in aspects such as operation timing and electrical characteristics.

This section provides software-related considerations regarding function settings that differ between the RX23E-A Group and RX23E-B Group.

For differences of modules and functions, refer to 2, Comparative Overview of Specifications. For further information, refer to the User's Manual: Hardware of the relevant MCU group, listed in 5, Reference Documents.

4.1.1 Initialization of Port Direction Register (PDR)

The method of initializing the PDR register differs between the RX130 Group and RX660 Group, even on products with the same pin count.

4.1.2 Operating Clock for DSAD

On the RX23E-B group, when the DSAD0 is to be used, set the frequency of peripheral module clock C (PCLKC) to divide by 2.

5. Reference Documents

User's Manual: Hardware

RX23E-A Group User's Manual: Hardware Rev.1.20 (R01UH0801EJ0120) (The latest version can be downloaded from the Renesas Electronics website.)

RX23E-B Group User's Manual: Hardware Rev.1.00 (R01UH0972EJ0100) (The latest version can be downloaded from the Renesas Electronics website.)

Related Technical Updates

This module reflects the content of the following technical updates:

Revision History

		Description	
Rev.	Date	Page	Summary
1.00	Oct.10.23	—	First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
- Electronics products. (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its of
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.