

RX140 Group, RX113 Group

Differences Between the RX140 Group and the RX113 Group

Introduction

This application note is intended as a reference to points of difference between the peripheral functions, I/O registers, and pin functions of the RX140 Group and RX113 Group, as well as a guide to key points to consider when migrating between the two groups.

Unless specifically otherwise noted, the information in this application note applies to the 80-pin package version of the RX140 Group and the 100-pin package version of the RX113 Group as the maximum specifications. To confirm details of differences in the specifications of the electrical characteristics, usage notes, and setting procedures, refer to the User's Manual: Hardware of the products in question.

Target Devices

RX140 Group and RX113 Group

Contents

1.	Comparison of Built-In Functions of RX140 Group and RX113 Group	4
2.	Comparative Overview of Specifications	6
2.1	CPU	6
2.2	Operating Modes	7
2.3	Address Space	8
2.4	Resets	9
2.5	Option-Setting Memory	10
2.6	Voltage Detection Circuit	11
2.7	Clock Generation Circuit	14
2.8	Low Power Consumption	19
2.9	Register Write Protection Function	24
2.10	Exception Handling	25
2.11	Interrupt Controller	26
2.12	Buses	28
2.13	Data Transfer Controller	29
2.14	Event Link Controller	31
2.15	I/O Ports	34
2.16	Multi-Function Pin Controller	37
2.17	Compare Match Timer	60
2.18	Realtime Clock	61
2.19	Low-Power Timer	62
2.20	Serial Communications Interface	64
2.21	I ² C bus Interface	70
2.22	Serial Peripheral Interface	71
2.23	Capacitive Touch Sensing Unit	74
2.24	12-Bit A/D Converter	85
2.25	D/A Converter	92
2.26	Temperature Sensor	93
2.27	RAM	94
2.28	Flash Memory	95
2.29	Packages	99
3.	Comparison of Pin Functions	100
3.1	64-Pin Package	100
4.	Important Information when Migrating Between MCUs	103
4.1	Notes on Functional Design	103
4.1.1	Mode Setting Pins	103
4.1.2	PLL Circuit	103
4.1.3	12-Bit AD Converter	103

4.1.4	Exception Vector Table	103
4.1.5	Restrictions on Comparison Function.....	103
4.1.6	Port Direction Register (PDR) Initialization.....	104
4.1.7	Scan Conversion Time of 12-Bit A/D Converter	104
5.	Reference Documents.....	105
	Revision History	107

1. Comparison of Built-In Functions of RX140 Group and RX113 Group

A comparison of the built-in functions of the RX140 Group and RX113 Group is provided below. For details of the functions, see section 2, Comparative Overview of Specifications and section 5, Reference Documents.

Table 1.1 is a comparison of built-in functions of RX140 Group and RX113 Group.

Table 1.1 Comparison of Built-In Functions of RX140 Group and RX113 Group

Function	RX113	RX140
CPU	●	
Operating modes	●	
Address space	▲	
Resets	●	
Option-setting memory (OFSM)	▲	
Voltage detection circuit (LVDAa): RX113, (LVDAb): RX140	●	
Clock generation circuit	●/■	
Clock frequency accuracy measurement circuit (CAC)	○	
Low power consumption	●	
Register write protection function	●/■	
Exception handling	●	
Interrupt controller (ICUb)	▲	
Buses	▲	
Data transfer controller (DTCa): RX113, (DTCb): RX140	●	
Event link controller (ELC)	●	
I/O ports	●/■	
Multi-function pin controller (MPC)	▲/■	
Multi-function timer pulse unit 2 (MTU2a)	○	
Port output enable 2 (POE2a)	○	
8-bit timer (TMR): RX113, (TMRa): RX140	■	
Compare match timer (CMT)	■	
Realtime clock (RTCA): RX113, (RTCc): RX140	■	
Low-power timer (LPT): RX113, (LPTa): RX140	●	
Independent watchdog timer (IWDTa)	○	
USB 2.0 Host/Function module	○	✗
Serial communications interface (SClē, SClf): RX113, (SClē¹, SClk, SClh): RX140	●	
IrDA interface	○	✗
I²C bus interface (RIIC): RX113, (RIICa): RX140	■	
Serial sound interface (SSI)	○	✗
CAN module (RSCAN)	✗	○ ¹
Serial peripheral interface (RSPI): RX113, (RSPIc): RX140	●/▲	
CRC calculator (CRC)	○	
LCD controller/driver	○	✗
Capacitive touch sensing unit (CTSUa): RX113, (CTSU2SL¹, CTSU2L): RX140	●	
AESA	✗	○
RNGA	✗	○
12-bit A/D converter (S12ADb): RX113, (S12ADE): RX140	●	
12-bit D/A converter (S12ADb): RX113, D/A converter (DAa): RX140	▲	
Temperature sensor (TEMPSA)	▲	
Comparator B (CMPBa)	○	
Data operation circuit (DOC)	○	
RAM	●/■	

Function	RX113	RX140
Flash memory (FLASH)	●/■	
Packages	●/■	

○: Available, ✗: Unavailable, ●: Differs due to added functionality,
▲: Differs due to change in functionality, ■: Differs due to removed functionality.

Note: 1. Not implemented on products with ROM capacity of 64 KB.

2. Comparative Overview of Specifications

This section presents a comparative overview of specifications, including registers.

In the comparative overview, **red text** indicates functions which are included only in one of the MCU groups and also functions for which the specifications differ between the two groups.

In the register comparison, **red text** indicates differences in specifications for registers that are included in both groups and **black text** indicates registers which are included only in one of the MCU groups. Differences in register specifications are not listed.

2.1 CPU

Table 2.1 is a comparative overview of CPU, and Table 2.2 is a comparison of CPU registers.

Table 2.1 Comparative Overview of CPU

Item	RX113	RX140
CPU	<ul style="list-style-type: none"> • Maximum operating frequency: 32 MHz • 32-bit RX CPU • Minimum instruction execution time: One instruction per clock cycle • Address space: 4 GB, linear • Register set of the CPU <ul style="list-style-type: none"> — General purpose: Sixteen 32-bit registers — Control: Eight 32-bit registers — Accumulator: One 64-bit register • Basic instructions: 73 • DSP instructions: 9 • Addressing modes: 10 • Data arrangement <ul style="list-style-type: none"> — Instructions: Little endian — Data: Selectable between little endian or big endian • On-chip 32-bit multiplier: $32 \times 32 \rightarrow 64$ bits • On-chip divider: $32 / 32 \rightarrow 32$ bits • Barrel shifter: 32 bits 	<ul style="list-style-type: none"> • Maximum operating frequency: 48 MHz • 32-bit RX CPU (RXv2) • Minimum instruction execution time: One instruction per clock cycle • Address space: 4 GB, linear • Register set of the CPU <ul style="list-style-type: none"> — General purpose: Sixteen 32-bit registers — Control: Ten 32-bit registers — Accumulator: Two 72-bit registers • Basic instructions: 75, variable-length instruction format • Floating point instructions: 11 • DSP instructions: 23 • Addressing modes: 11 • Data arrangement <ul style="list-style-type: none"> — Instructions: Little endian — Data: Selectable between little endian or big endian • On-chip 32-bit multiplier: $32 \times 32 \rightarrow 64$ bits • On-chip divider: $32 / 32 \rightarrow 32$ bits • Barrel shifter: 32 bits
FPU	—	<ul style="list-style-type: none"> • Single-precision floating-point (32 bits) • Data types and floating-point exceptions conform to IEEE 754 standard

Table 2.2 Comparison of CPU Registers

Register	Bit	RX113	RX140
EXTB	—	—	Exception table register
FPSW	—	—	Floating-point status word
ACC (RX113) ACCO, ACC1 (RX140)	—	Accumulator	Accumulator 0, accumulator 1

2.2 Operating Modes

Table 2.3 is a comparative overview of operating modes.

Table 2.3 Comparative Overview of Operating Modes

Item	RX113	RX140
Operating modes specified by mode setting pins	Single-chip mode	Single-chip mode
	Boot mode (SCI interface)	Boot mode (SCI interface)
	Boot mode (FINE interface)	Boot mode (FINE interface)
	Boot mode (USB interface)	

2.3 Address Space

Figure 2.1 is a comparative memory map of single-chip mode.

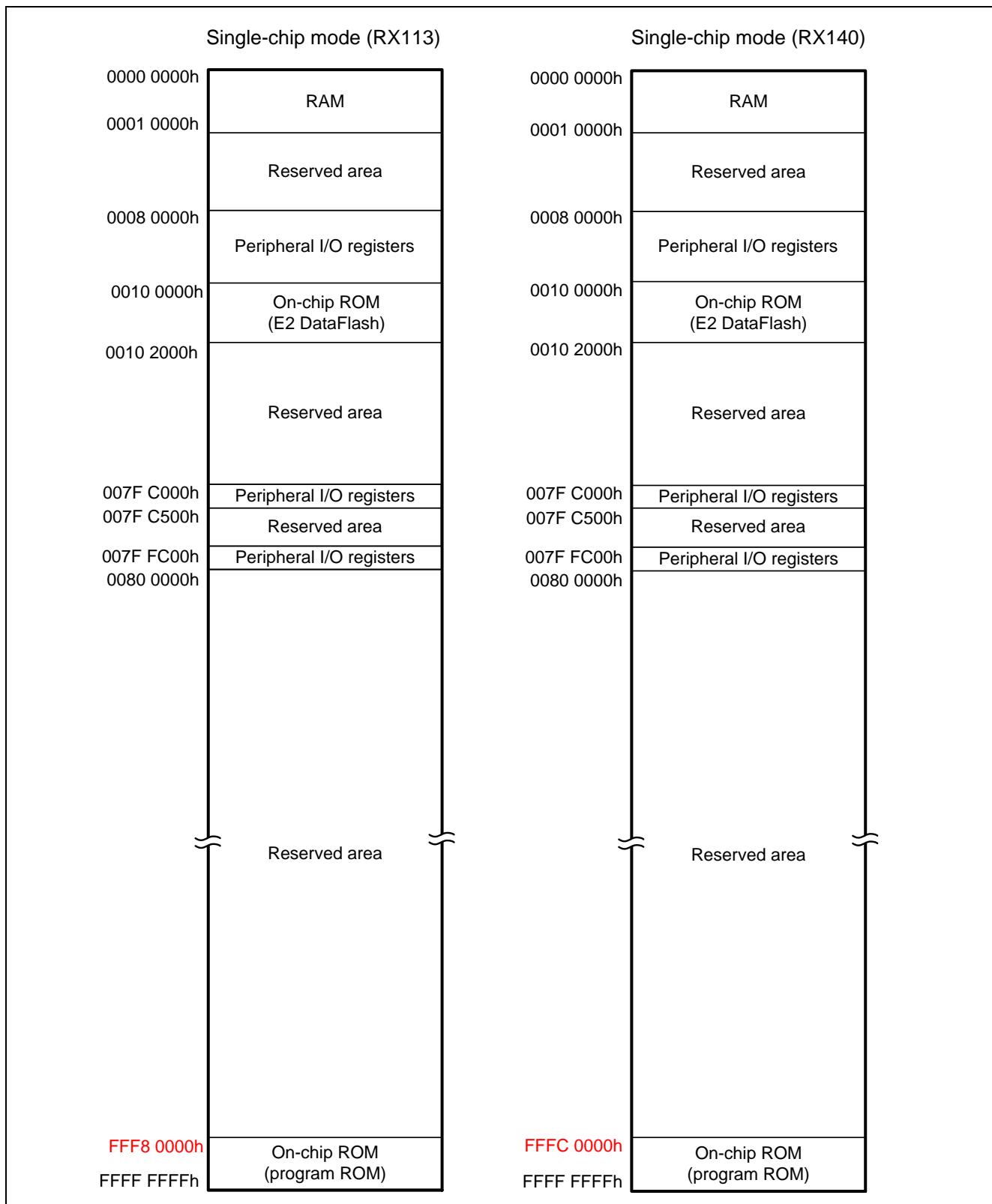


Figure 2.1 Comparative Memory Map of Single-Chip Mode

2.4 Resets

Table 2.4 is a comparative overview of resets, and Table 2.5 is a comparison of reset-related registers.

Table 2.4 Comparative Overview of Resets

Item	RX113	RX140
RES# pin reset	Voltage input to the RES# pin is driven low.	Voltage input to the RES# pin is driven low.
Power-on reset	VCC rises (voltage detection: VPOR).	VCC rises (voltage detection: VPOR).
Voltage monitoring 0 reset	—	VCC falls (voltage detection: Vdet0).
Voltage monitoring 1 reset	VCC falls (voltage detection: Vdet1).	VCC falls (voltage detection: Vdet1).
Voltage monitoring 2 reset	VCC falls (voltage detection: Vdet2).	VCC falls (voltage detection: Vdet2).
Independent watchdog timer reset	The independent watchdog timer underflows or a refresh error occurs.	The independent watchdog timer underflows or a refresh error occurs.
Software reset	Register setting	Register setting

Table 2.5 Comparison of Reset-Related Registers

Register	Bit	RX113	RX140
RSTSRO	LVD0RF	—	Voltage monitor 0 reset detect flag

2.5 Option-Setting Memory

Table 2.6 is a comparison of option-setting memory registers.

Table 2.6 Comparison of Option-Setting Memory Registers

Register	Bit	RX113	RX140 (OFSM)
OFS1	FASTSTUP	Power-on fast startup time bit (b0)	Power-on fast startup time bit (b3)
	VDSEL[1:0]	—	Voltage detection 0 level select bits
	LVDAS	—	Voltage detection 0 circuit start bit
	STUPLVD1REN	Startup voltage monitoring 1 reset enable bits	—
	STUPLVD1LVL [3:0]	Startup voltage monitoring 1 reset detection level select bits	—
	HOCOFQ[1:0]	—	HOCO frequency selection bits

2.6 Voltage Detection Circuit

Table 2.7 is a comparative overview of the voltage detection circuits, and Table 2.8 is a comparison of voltage detection circuit registers.

Table 2.7 Comparative Overview of Voltage Detection Circuits

Item	RX113 (LVDAa)		RX140 (LVDAb)		
	Voltage Monitoring 1	Voltage Monitoring 2	Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2
VCC monitoring	Monitored voltage	Vdet1	Vdet2	Vdet0	Vdet1
	Detection target	When voltage rises above or drops past Vdet1	When voltage rises above or drops past Vdet2	When voltage drops below Vdet0	When voltage rises above or drops past Vdet1
			Switching between VCC and the voltage input on the CMPA2 pin can be accomplished using the LVCMPPCR.EXV CCINP2 bit.		Switching between VCC and the voltage input on the CMPA2 pin can be accomplished using the LVCMPPCR.EXV CCINP2 bit.
	Detection voltage	Selectable from ten levels using LVDLVL.R.LVD1 LVL[3:0] bits	Selectable from four levels using LVDLVL.R.LVD2 LVL[1:0] bits	Selectable from four levels using the OFS1 register	Selectable from 14 levels using LVDLVL.R.LVD1 LVL[3:0] bits
Monitoring flags	LVD1SR.LVD1M ON flag: Monitors whether voltage is higher or lower than Vdet1	LVD2SR.LVD2M ON flag: Monitors whether voltage is higher or lower than Vdet2	—	LVD1SR.LVD1M ON flag: Monitors whether voltage is higher or lower than Vdet1	LVD2SR.LVD2M ON flag: Monitors whether voltage is higher or lower than Vdet2
	LVD1SR.LVD1D ET flag: Vdet1 passage detection	LVD2SR.LVD2D ET flag: Vdet2 passage detection	—	LVD1SR.LVD1D ET flag: Vdet1 passage detection	LVD2SR.LVD2D ET flag: Vdet2 passage detection
Voltage detection processing	Reset	Voltage monitoring 1 interrupt	Voltage monitoring 2 interrupt	Voltage monitoring 0 interrupt	Voltage monitoring 1 interrupt
		Reset when Vdet1 > VCC: CPU restart timing selectable between after specified time with VCC > Vdet1 or Vdet1 > VCC	Reset when Vdet2 > VCC or CMPA2 pin: CPU restart timing selectable among after specified time with VCC or CMPA2 pin > Vdet2 or after specified time with Vdet2 > VCC or CMPA2 pin	Reset when Vdet0 > VCC: CPU restart timing after specified time with VCC > Vdet0	Reset when Vdet1 > VCC: CPU restart timing selectable between after specified time with VCC > Vdet1 or Vdet1 > VCC

Item		RX113 (LVDAa)		RX140 (LVDA b)	
		Voltage Monitoring 1	Voltage Monitoring 2	Voltage Monitoring 0	Voltage Monitoring 1
Voltage detection processing	Interrupts	Voltage monitoring 1 interrupt	Voltage monitoring 2 interrupt	—	Voltage monitoring 1 interrupt
		Selectable between non-maskable or maskable interrupt	Selectable between non-maskable or maskable interrupt		Selectable between non-maskable or maskable interrupt
		Interrupt request issued when Vdet1 > VCC, VCC > Vdet1, or both	Interrupt request issued when Vdet2 > VCC or CMRA2 pin, VCC or CMRA2 pin > Vdet2, or both		Interrupt request issued when Vdet1 > VCC, VCC > Vdet1, or both
Event link function		Available: Event output at Vdet passage detection	—	—	Available: Event output at Vdet passage detection

Table 2.8 Comparison of Voltage Detection Circuit Registers

Register	Bit	RX113 (LVDAa)	RX140 (LVDA b)
LVDLVL	LVD1LVL[3:0]	Voltage detection 1 level select bits (Standard voltage during drop in voltage) b3 b0 0 1 0 0: 3.10 V 0 1 0 1: 3.00 V 0 1 1 0: 2.90 V 0 1 1 1: 2.79 V 1 0 0 0: 2.68 V 1 0 0 1: 2.58 V 1 0 1 0: 2.48 V 1 0 1 1: 2.06 V 1 1 0 0: 1.96 V 1 1 0 1: 1.86 V Settings other than the above are prohibited.	Voltage detection 1 level select bits (Standard voltage during drop in voltage) b3 b0 0 0 0 0: 4.29 V 0 0 0 1: 4.16 V 0 0 1 0: 4.03 V 0 0 1 1: 3.86 V 0 1 0 0: 3.10 V 0 1 0 1: 3.00 V 0 1 1 0: 2.90 V 0 1 1 1: 2.80 V 1 0 0 0: 2.68 V 1 0 0 1: 2.59 V 1 0 1 0: 2.48 V 1 0 1 1: 2.20 V 1 1 0 0: 1.96 V 1 1 0 1: 1.86 V Settings other than the above are prohibited.
	LVD2LVL[1:0]	Voltage detection 2 level select bits (Standard voltage during drop in voltage) b5 b4 0 0: 2.90 V 0 1: 2.60 V 1 0: 2.00 V 1 1: 1.80 V* ¹	Voltage detection 2 level select bits (Standard voltage during drop in voltage) b5 b4 0 0: 4.32 V 0 1: 4.17 V 1 0: 4.03 V 1 1: 3.84 V

Note: 1. When the value of the LVCMPPCR.EXVCCINP2 bit is 0 (power supply voltage (VCC)), the setting value of 11b is prohibited.

2.7 Clock Generation Circuit

Table 2.9 is a comparative overview of the clock generation circuits, and Table 2.10 is a comparison of clock generation circuit registers.

Table 2.9 Comparative Overview of Clock Generation Circuits

Item	RX113	RX140
Use	<ul style="list-style-type: none"> Generates the system clock (ICLK) to be supplied to the CPU, DTC, ROM, and RAM. Of the peripheral module clocks (PCLKB and PCLKD) supplied to the peripheral modules, PCLKD is the operating clock for the S12AD, and PCLKB is the operating clock for modules other than S12AD. Generates the FlashIF clock (FCLK) to be supplied to the FlashIF. Generates the clock (UCLK) to be supplied to the USB. Generates the CAC clock (CACCLK) to be supplied to the CAC. Generates the RTC-dedicated sub-clock (RTCSCLK) to be supplied to the RTC. Generates the IWDT-dedicated clock (IWDTCLOCK) to be supplied to the IWDT. Generates the LCD source clock (LCDSRCCLK) to be supplied to the LCD. Generates the SSI clock (SSISCK) to be supplied to the SSI. Generates the LPT clock (LPTCLK) to be supplied to the LPT. 	<ul style="list-style-type: none"> Generates the system clock (ICLK) to be supplied to the CPU, DTC, ROM, and RAM. Of the peripheral module clocks (PCLKB and PCLKD) supplied to the peripheral modules, PCLKD is the operating clock for the S12AD, and PCLKB is the operating clock for modules other than S12AD. Generates the FlashIF clock (FCLK) to be supplied to the FlashIF. Generates the CAC clock (CACCLK) to be supplied to the CAC. Generates the CAN clock (CANMCLK) to be supplied to the CAN. Generates the RTC-dedicated sub-clock (RTCSCLK) to be supplied to the RTC. Generates the IWDT-dedicated clock (IWDTCLOCK) to be supplied to the IWDT Generates the LPT clock (LPTCLK) to be supplied to the LPT.
Operating frequency	<ul style="list-style-type: none"> ICLK: 32 MHz (max.) PCLKB: 32 MHz (max.) PCLKD: 32 MHz (max.) FCLK: <ul style="list-style-type: none"> 1 MHz to 32 MHz (for programming and erasing the ROM and E2 DataFlash) 32 MHz (max.) (for reading from the E2 DataFlash) UCLK: 48 MHz CACCLK: Same as clock from respective oscillators RTCSCLK: 32.768 kHz IWDTCLOCK: 15 kHz LCDSRCCLK: Same as clock from each oscillator LPTCLK: Same as clock from selected oscillator 	<ul style="list-style-type: none"> ICLK: 48 MHz (max.) PCLKB: 32 MHz (max.) PCLKD: 48 MHz (max.) FCLK: <ul style="list-style-type: none"> 1 MHz to 48 MHz (for programming and erasing the ROM and E2 DataFlash) 48 MHz (max.) (for reading from the E2 DataFlash) CACCLK: Same as clock from respective oscillators CANMCLK: 20 MHz (max.) RTCSCLK: 32.768 kHz IWDTCLOCK: 15 kHz LPTCLK: Same as clock from selected oscillator

Item	RX113	RX140
Main clock oscillator	<ul style="list-style-type: none"> Resonator frequency: 1 MHz to 20 MHz ($VCC \geq 2.4$ V), 1 MHz to 8 MHz ($VCC < 2.4$ V) External clock input frequency: 20 MHz (max.) Connectable resonator or additional circuit: ceramic resonator, crystal Connection pins: EXTAL, XTAL Oscillation stop detection function: When a main clock oscillation stop is detected, the system clock source is switched to LOCO and MTU pin can be forcedly driven to high-impedance. Drive capacity switching function 	<ul style="list-style-type: none"> Resonator frequency: 1 MHz to 20 MHz External clock input frequency: 20 MHz (max.) Connectable resonator or additional circuit: ceramic resonator, crystal Connection pins: EXTAL, XTAL Drive capacity switching function Oscillation stop detection function: When a main clock oscillation stop is detected, the system clock source is switched to LOCO and MTU pin can be forcedly driven to high-impedance. Drive capacity switching function
Sub-clock oscillator	<ul style="list-style-type: none"> Resonator frequency: 32.768 kHz Connectable resonator or additional circuit: crystal Connection pins: XCIN and XCOUT 	<ul style="list-style-type: none"> Resonator frequency: 32.768 kHz Connectable resonator or additional circuit: crystal Connection pins: XCIN and XCOUT Drive capacity switching function
PLL circuit	<ul style="list-style-type: none"> Input clock source: Main clock Input pulse frequency division ratio: Selectable from 1, 2, and 4 Input frequency: 4 MHz to 8 MHz Frequency multiplication ratio: Selectable between 6 and 8 Oscillation frequency: 32 MHz to 48 MHz ($VCC \geq 2.4$ V) 	<ul style="list-style-type: none"> Input clock source: Main clock Input pulse frequency division ratio: Selectable from 1, 2, and 4 Input frequency: 4 MHz to 12 MHz Frequency multiplication ratio: Selectable from 4 to 12 (increments of 0.5) Oscillation frequency: 24 MHz to 48 MHz
USB-dedicated PLL circuit	<ul style="list-style-type: none"> Input clock source: Main clock Input pulse frequency division ratio: Selectable from 1 and 2 Input frequency: 6 MHz and 8 MHz Frequency multiplication ratio: Selectable between 6 and 8 Oscillation frequency: 48 MHz ($VCC \geq 2.4$ V) 	—
High-speed on-chip oscillator (HOCO)	Oscillation frequency: 32 MHz	Oscillation frequency: 24 MHz, 32 MHz, 48 MHz
Low-speed on-chip oscillator (LOCO)	Oscillation frequency: 4 MHz	Oscillation frequency: 4 MHz
IWDT-dedicated on-chip oscillator	Oscillation frequency: 15 kHz	Oscillation frequency: 15 kHz

Table 2.10 Comparison of Clock Generation Circuit Registers

Register	Bit	RX113	RX140
PLLCR	STC[5:0]	Frequency multiplication factor select bits b13 b8 0 0 1 0 1 1: ×6 0 0 1 1 1 1: ×8 Settings other than the above are prohibited.	Frequency multiplication factor select bits b13 b8 0 0 0 1 1 1: ×4 0 0 1 0 0 0: ×4.5 0 0 1 0 0 1: ×5 0 0 1 0 1 0: ×5.5 0 0 1 0 1 1: ×6 0 0 1 1 0 0: ×6.5 0 0 1 1 0 1: ×7 0 0 1 1 1 0: ×7.5 0 0 1 1 1 1: ×8 0 1 0 0 0 0: ×8.5 0 1 0 0 0 1: ×9 0 1 0 0 1 0: ×9.5 0 1 0 0 1 1: ×10 0 1 0 1 0 0: ×10.5 0 1 0 1 0 1: ×11 0 1 0 1 1 0: ×11.5 0 1 0 1 1 1: ×12 Settings other than the above are prohibited.
SOSCCR	SOSTP	Sub-clock oscillator stop bit This bit is not initialized by reset sources other than a power-on reset.	Sub-clock oscillator stop bit This bit is not initialized by reset sources other than a power-on reset.
Initial value after a reset differs.			
UPLLCR	—	USB-dedicated PLL control register	—
UPLLCR2	—	USB-dedicated PLL control register 2	—
OSCOVFSR	UPLOVF	USB-dedicated PLL clock oscillation stabilization flag	—
LCDSCLKCR	—	LCD source clock control register	—
LCDSCLKCR2	—	LCD source clock control register 2	—

Register	Bit	RX113	RX140
MOSCWTCR	MSTS[4:0]	<p>Main clock oscillator wait time bits</p> <p>b4 b0</p> <p>0 0 0 0 0: Wait time = 2 cycles (0.5 µs)</p> <p>0 0 0 0 1: Wait time = 1,024 cycles (256 µs)</p> <p>0 0 0 1 0: Wait time = 2,048 cycles (512 µs)</p> <p>0 0 0 1 1: Wait time = 4,096 cycles (1.024 ms)</p> <p>0 0 1 0 0: Wait time = 8,192 cycles (2.048 ms)</p> <p>0 0 1 0 1: Wait time = 16,384 cycles (4.096 ms)</p> <p>0 0 1 1 0: Wait time = 32,768 cycles (8.192 ms)</p> <p>0 0 1 1 1: Wait time = 65,536 cycles (16.384 ms)</p> <p>Settings other than the above are prohibited. Wait time when LOCO = 4.0 MHz (0.25 µs, typ.)</p>	<p>Main clock oscillator wait time bits</p> <p>b4 b0</p> <p>0 0 0 0 0: Wait time = 0 cycles (0 µs)</p> <p>0 0 0 0 1: Wait time = 1,024 cycles (256 µs)</p> <p>0 0 0 1 0: Wait time = 2,048 cycles (512 µs)</p> <p>0 0 0 1 1: Wait time = 4,096 cycles (1.024 ms)</p> <p>0 0 1 0 0: Wait time = 8,192 cycles (2.048 ms)</p> <p>0 0 1 0 1: Wait time = 16,384 cycles (4.096 ms)</p> <p>0 0 1 1 0: Wait time = 32,768 cycles (8.192 ms)</p> <p>0 0 1 1 1: Wait time = 65,536 cycles (16.384 ms)</p> <p>0 1 0 0 0: Wait time = 131,072 cycles (32.768 ms)</p> <p>Settings other than the above are prohibited. Wait time when LOCO = 4.0 MHz (0.25 µs, typ.)</p>
LOFCR	—	—	Low-speed on-chip oscillator forced oscillation control register
HOCOWTCR	—	High-speed on-chip oscillator wait control register	—
CKOCR	CKOSEL[2:0] (RX113) CKOSEL[3:0] (RX140)	<p>CLKOUT output source select bits</p> <p>b10 b8</p> <p>0 0 0: LOCO clock</p> <p>0 0 1: HOCO clock</p> <p>0 1 0: Main clock oscillator</p> <p>0 1 1: Sub-clock oscillator</p> <p>Settings other than the above are prohibited.</p>	<p>CLKOUT output source select bits</p> <p>b11 b8</p> <p>0 0 0 0: LOCO clock</p> <p>0 0 0 1: HOCO clock</p> <p>0 0 1 0: Main clock oscillator</p> <p>0 0 1 1: Sub-clock oscillator</p> <p>0 1 0 0: PLL</p> <p>1 0 0 0: CTSU internal clock</p> <p>Settings other than the above are prohibited.</p>

Register	Bit	RX113	RX140
CKOCR	CKODIV[2:0]	<p>CLKOUT output division ratio select bits</p> <p>b14 b12</p> <p>0 0 0: No division</p> <p>0 0 1: $\times 1/2$</p> <p>0 1 0: $\times 1/4$</p> <p>0 1 1: $\times 1/8$</p> <p>1 0 0: $\times 1/16$</p> <p>Settings other than the above are prohibited.</p>	<p>CLKOUT output division ratio select bits</p> <p>b14 b12</p> <p>0 0 0: No division</p> <p>0 0 1: $\times 1/2$</p> <p>0 1 0: $\times 1/4$</p> <p>0 1 1: $\times 1/8$</p> <p>1 0 0: $\times 1/16$</p> <p>1 0 1: $\times 1/32$</p> <p>1 1 0: $\times 1/64$</p> <p>1 1 1: $\times 1/128$</p>
MOFCR	MODRV21	<p>Main clock oscillator drive capability switch bit</p> <p>VCC ≥ 2.4 V</p> <p>0: 1 MHz to 10 MHz</p> <p>1: 10 MHz to 20 MHz</p> <p>VCC < 2.4 V</p> <p>0: 1 MHz to 8 MHz</p> <p>1: Setting prohibited</p>	<p>Main clock oscillator drive capability switch bit</p> <p>0: 1 MHz to less than 10 MHz</p> <p>1: 10 MHz to 20 MHz</p>
LOCOTRR2	—	—	Low-speed on-chip oscillator trimming register 2
ILOCOTRR	—	—	IWDT-dedicated on-chip oscillator trimming register
HOCOTRRn	—	—	High-speed on-chip oscillator trimming register n (n = 0)
SOMCR	—	—	Sub-clock oscillator mode control register

2.8 Low Power Consumption

Table 2.11 is a comparative overview of the low power consumption functions, Table 2.12 is a comparison of procedures for entering and exiting low power consumption modes and operating states in each mode, and Table 2.13 is a comparison of low power consumption registers.

Table 2.11 Comparative Overview of Low Power Consumption Functions

Item	RX113	RX140
Reducing power consumption by switching clock signals	The frequency division ratio can be set independently for the system clock (ICLK), peripheral module clock (PCLKB), S12AD clock (PCLKD), and FlashIF clock (FCLK).	The frequency division ratio can be set independently for the system clock (ICLK), peripheral module clock (PCLKB), S12AD clock (PCLKD), and FlashIF clock (FCLK).
Module stop function	Each peripheral module can be stopped independently by the module stop control register.	Each peripheral module can be stopped independently by the module stop control register.
Function for transition to low power consumption mode	Transition to a low power consumption mode in which the CPU, peripheral modules, or oscillators are stopped is enabled.	Transition to a low power consumption mode in which the CPU, peripheral modules, or oscillators are stopped is enabled.
Low power consumption modes	<ul style="list-style-type: none"> • Sleep mode • Deep sleep mode • Software standby mode 	<ul style="list-style-type: none"> • Sleep mode • Deep sleep mode • Software standby mode • Snooze mode
Function for lower operating power consumption	<ul style="list-style-type: none"> • Power consumption can be reduced in normal operation, sleep mode, and deep sleep mode by selecting an appropriate operating power control mode according to the operating frequency and operating voltage. • Three operating power control modes are available <ul style="list-style-type: none"> — High-speed operating mode — Middle-speed operating mode — Low-speed operating mode 	<ul style="list-style-type: none"> • Power consumption can be reduced in normal operation, sleep mode, deep sleep mode, and snooze mode by selecting an appropriate operating power control mode according to the operating frequency and operating voltage. • Four operating power control modes are available <ul style="list-style-type: none"> — High-speed operating mode — Middle-speed operating mode — Middle-speed operating mode 2 — Low-speed operating mode

Table 2.12 Comparison of Procedures for Entering and Exiting Low Power Consumption Modes and Operating States in Each Mode

Mode	Entering and Exiting Low Power Consumption Modes and Operating States	RX113	RX140
Sleep mode	Transition method	Control register + instruction	Control register + instruction
	Method of cancellation other than reset	Interrupt	Interrupt
	State after cancellation	Program execution state (interrupt processing)	Program execution state (interrupt processing)
	Main clock oscillator	Operation possible	Operation possible
	Sub-clock oscillator	Operation possible	Operation possible
	High-speed on-chip oscillator	Operation possible	Operation possible
	Low-speed on-chip oscillator	Operation possible	Operation possible
	IWDT-dedicated on-chip oscillator	Operation possible	Operation possible
	PLL	Operation possible	Operation possible
	USB-dedicated PLL	Operation possible	—
	CPU	Stopped (retained)	Stopped (retained)
	RAM0 (0000 0000h to 0000 3FFFh: RX113, 0000 0000h to 0000 FFFFh: RX140)	Operation possible (retained)	Operation possible (retained)
	DTC	Operation possible	Operation possible
	Flash memory	Operation	Operation
	Independent watchdog timer (IWDT)	Operation possible	Operation possible
	Realtime clock (RTC)	Operation possible	Operation possible
	Low-power timer (LPT)	Operation possible	Operation possible
	Voltage detection circuit (LVD)	Operation possible	Operation possible
	Power-on reset circuit	Operation	Operation
	Peripheral modules	Operation possible	Operation possible
	I/O ports	Operation	Operation
	RTCOUT output	Operation possible	Operation possible
	CLKOUT output	Operation possible	Operation possible
	Comparator B	Operation possible	Operation possible
	LCD controller/driver	Operation possible	—
Deep sleep mode	Transition method	Control register + instruction	Control register + instruction
	Method of cancellation other than reset	Interrupt	Interrupt
	State after cancellation	Program execution state (interrupt processing)	Program execution state (interrupt processing)
	Main clock oscillator	Operation possible	Operation possible
	Sub-clock oscillator	Operation possible	Operation possible
	High-speed on-chip oscillator	Operation possible	Operation possible
	Low-speed on-chip oscillator	Operation possible	Operation possible
	IWDT-dedicated on-chip oscillator	Operation possible	Operation possible
	PLL	Operation possible	Operation possible
	USB-dedicated PLL	Operation possible	—
	CPU	Stopped (retained)	Stopped (retained)
	RAM0 (0000 0000h to 0000 3FFFh: RX113, 0000 0000h to 0000 FFFFh: RX140)	Stopped (retained)	Stopped (retained)
	DTC	Stopped (retained)	Stopped (retained)

Mode	Entering and Exiting Low Power Consumption Modes and Operating States	RX113	RX140
Deep sleep mode	Flash memory	Stopped (retained)	Stopped (retained)
	Independent watchdog timer (IWDT)	Operation possible	Operation possible
	Realtime clock (RTC)	Operation possible	Operation possible
	Low-power timer (LPT)	—	Operation possible
	Voltage detection circuit (LVD)	Operation possible	Operation possible
	Power-on reset circuit	Operation	Operation
	Peripheral modules	Operation possible	Operation possible
	I/O ports	Operation	Operation
	RTCOUT output	Operation possible	Operation possible
	CLKOUT output	Operation possible	Operation possible
	Comparator B	Operation possible	Operation possible
	LCD controller/driver	Operation possible	—
Software standby mode	Transition method	Control register + instruction	Control register + instruction
	Method of cancellation other than reset	Interrupt	Interrupt
	State after cancellation	Program execution state (interrupt processing)	Program execution state (interrupt processing)
	Main clock oscillator	Stopped	Stopped
	Sub-clock oscillator	Operation possible	Operation possible
	High-speed on-chip oscillator	Stopped	Operation possible
	Low-speed on-chip oscillator	Stopped	Operation possible
	IWDT-dedicated on-chip oscillator	Operation possible	Operation possible
	PLL	Stopped	Stopped
	USB-dedicated PLL	Stopped	—
	CPU	Stopped (retained)	Stopped (retained)
	RAM0 (0000 0000h to 0000 3FFFh: RX113, 0000 0000h to 0000 FFFFh: RX140)	Stopped (retained)	Stopped (retained)
	DTC	Stopped (retained)	Stopped (retained)
	Flash memory	Stopped (retained)	Stopped (retained)
	Independent watchdog timer (IWDT)	Operation possible	Operation possible
	Realtime clock (RTC)	Operation possible	Operation possible
	Low-power timer (LPT)	—	Operation possible
	Voltage detection circuit (LVD)	Operation possible	Operation possible
	Power-on reset circuit	Operation	Operation
	Peripheral modules	Stopped (retained)	Stopped (retained)
	I/O ports	Retained	Retained
	RTCOUT output	Operation possible	Operation possible
	CLKOUT output	Operation possible	Operation possible
	Comparator B	Operation possible	Operation possible
	LCD controller/driver	Operation possible	—
Snooze mode	Transition method	—	Occurrence of snooze request condition while in software standby mode
	Method of cancellation other than reset	—	Interrupt + occurrence of snooze end condition

Mode	Entering and Exiting Low Power Consumption Modes and Operating States	RX113	RX140
Snooze mode	State after cancellation	—	Program execution state (interrupt processing)
	Main clock oscillator	—	Operation possible
	Sub-clock oscillator	—	Operation possible
	High-speed on-chip oscillator	—	Operation possible
	Low-speed on-chip oscillator	—	Operation possible
	IWDT-dedicated on-chip oscillator	—	Operation possible
	PLL	—	Operation possible
	USB-dedicated PLL	—	—
	CPU	—	Stopped (retained)
	RAM0 (0000 0000h to 0000 3FFFh: RX113, 0000 0000h to 0000 FFFFh: RX140)	—	Operation possible (retained)
	DTC	—	Operation possible
	Flash memory	—	Stopped (retained)
	Independent watchdog timer (IWDT)	—	Operation possible
	Realtime clock (RTC)	—	Operation possible
	Low-power timer (LPT)	—	Operation possible
	Voltage detection circuit (LVD)	—	Operation possible
	Power-on reset circuit	—	Operation
	Peripheral modules	—	Operation possible
	I/O ports	—	Operation
	RTCOUT output	—	Operation possible
	CLKOUT output	—	Operation possible
	Comparator B	—	Operation possible

Note: "Operation possible" means that whether the state is operating or stopped is controlled by the control register setting.

"Stopped (retained)" means that internal register values are retained and internal operations are suspended.

"Stopped (undefined)" means that internal register values are undefined and power is not supplied to the internal circuit.

Table 2.13 Comparison of Low Power Consumption Registers

Register	Bit	RX113	RX140
MSTPCRA	MSTPA14	Compare match timer 1 (unit 1) module stop bit	—
	MSTPA18	12-bit D/A converter module stop bit	—
	MSTPA19	—	D/A converter module stop bit
MSTPCRB	MSTPB0	—	CAN module module stop bit
	MSTPB19	USB0 module stop bit	—
	MSTPB29	Serial communication interface 2 module stop bit	—
	MSTPB31	Serial communication interface 0 module stop bit	—
MSTPCRC	—	Module stop control register C	Module stop control register C
		Initial value after a reset differs.	
	MSTPC20	IrDA module stop bit	—
	MSTPC26	Serial communication interface 9 module stop bit	Serial communication interface 9 module stop bit
	MSTPC27	Serial communication interface 8 module stop bit	Serial communication interface 8 module stop bit
MSTPCRD	—	Module stop control register D	Module stop control register D
		Initial value after a reset differs.	
	MSTPD11	LCD Controller module stop bit	—
	MSTPD15	Serial sound interface module stop bit	—
	MSTPD29	—	True random number generator module stop bit
OPCCR	OPCM[2:0]	Operating power control mode select bits b2 b0 0 0 0: High-speed operating mode 0 1 0: Middle-speed operating mode Settings other than the above are prohibited.	Operating power control mode select bits b2 b0 0 0 0: High-speed operating mode 0 1 0: Middle-speed operating mode 1 0 0: Middle-speed operating mode 2 Settings other than the above are prohibited.
	SNZCR	—	Snooze control register
	SNZCR2	—	Snooze control register 2

2.9 Register Write Protection Function

Table 2.14 is a comparative overview of the register write protection functions, and Table 2.15 is a comparison of register write protection function registers.

Table 2.14 Comparative Overview of Register Write Protection Functions

Item	RX113	RX140
PRC0 bit	Registers related to the clock generation circuit: SCKCR, SCKCR3, PLLCR, PLLCR2 MOSCCR, SOSCCR, LOCOCR, ILOCOCR, HOCOCR, OSTDCR, OSTDSR, CKOCR, UPLLCR , UPLLCR2 , LCDSCLKCR , LCDSCLKCR2	Registers related to the clock generation circuit: SCKCR, SCKCR3, PLLCR, PLLCR2, MOSCCR, SOSCCR, LOCOCR, ILOCOCR, HOCOCR, LOFCR , OSTDCR, OSTDSR, CKOCR, LOCOTRR2 , ILOCOTRR , HOCOTRR , SOMCR
PRC1 bit	<ul style="list-style-type: none"> Register related to the operating modes: SYSCR1 Registers related to the low power consumption functions: SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, MSTPCRD, OPCCR, RSTCKCR, SOPCCR Registers related to the clock generation circuit: MOFCR, MOSCWTCR Software reset register: SWRR 	<ul style="list-style-type: none"> Register related to the operating modes: SYSCR1 Registers related to the low power consumption functions: SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, MSTPCRD, OPCCR, RSTCKCR, SOPCCR, SNZCR, SNZCR2 Registers related to the clock generation circuit: MOFCR, MOSCWTCR Software reset register: SWRR
PRC2 bit	<ul style="list-style-type: none"> Registers related to the clock generation circuit: HOCOWTCR Registers related to the low power timer: LPTCR1, LPTCR2, LPTCR3, LPTPRD, LPCMRO, LPWUCR 	<ul style="list-style-type: none"> Registers related to the low power timer: LPTCR1, LPTCR2, LPTCR3, LPTPRD, LPCMRO, LPCMRO1, LPWUCR
PRC3 bit	Registers related to LVD: LVCMPCR, LVDLVLR, LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR	Registers related to LVD: LVCMPCR, LVDLVLR, LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR

Table 2.15 Comparison of Register Write Protection Function Registers

Register	Bit	RX113	RX140
PRCR	PRC2	Enables writing to the registers related to the low-power timer and clock generation circuit	Enables writing to the registers related to the low-power timer

2.10 Exception Handling

Table 2.16 is a comparative overview of exception handling, Table 2.17 is a comparative listing of vectors, and Table 2.18 is a comparative listing of instructions for returning from exception handling routines.

Table 2.16 Comparative Overview of Exception Handling

Item	RX113	RX140
Exception events	<ul style="list-style-type: none"> • Undefined instruction exception • Privileged instruction exception • Reset • Non-maskable interrupt • Interrupt • Unconditional trap 	<ul style="list-style-type: none"> • Undefined instruction exception • Privileged instruction exception • Access exception • Floating-point exception • Reset • Non-maskable interrupt • Interrupt • Unconditional trap

Table 2.17 Comparative Listing of Vectors

Item	RX113	RX140
Undefined instruction exception	Fixed vector table	Exception vector table (EXTB)
Privileged instruction exception	Fixed vector table	Exception vector table (EXTB)
Access exception	—	Exception vector table (EXTB)
Floating-point exception	—	Exception vector table (EXTB)
Reset	Fixed vector table	Exception vector table (EXTB)
Non-maskable interrupt	Fixed vector table	Exception vector table (EXTB)
Interrupt	Fast interrupt	FINTV
	Other than fast interrupt	Relocatable vector table (INTB)
Unconditional trap	Relocatable vector table (INTB)	Interrupt vector table (INTB)

Table 2.18 Comparative Listing of Instructions for Returning from Exception Handling Routines

Item	RX113	RX140
Undefined instruction exception	RTE	RTE
Privileged instruction exception	RTE	RTE
Access exception	—	RTE
Floating-point exception	—	RTE
Reset	Return not possible	Return not possible
Non-maskable interrupt	Return not possible	Prohibited
Interrupt	Fast interrupt	RTFI
	Other than fast interrupt	RTE
Unconditional trap	RTE	RTE

2.11 Interrupt Controller

Table 2.19 is a comparative overview of the interrupt controllers, and Table 2.20 is a comparison of interrupt controller registers.

Table 2.19 Comparative Overview of Interrupt Controllers

Item	RX113 (ICUb)	RX140 (ICUb)
Interrupts	Peripheral function interrupts	<ul style="list-style-type: none"> • Interrupts from peripheral modules • Interrupt detection: Edge detection/level detection The detection method is fixed for each connected peripheral module source.
	External pin interrupts	<ul style="list-style-type: none"> • Interrupts from pins IRQ0 to IRQ7 • Number of sources: 8 • Interrupt detection: Ability to set as source detection of low level, falling edge, rising edge, or rising and falling edges • Digital filter function: Supported
	Software interrupts	<ul style="list-style-type: none"> • Interrupt generated by writing to a register • Number of sources: 1
	Event link interrupts	An ELSR18I or ELSR19I interrupt can be generated by an ELC event.
	Interrupt priority	Specified by registers.
	Fast interrupt function	Faster interrupt handling by the CPU can be specified for a single interrupt source only.
Non-maskable interrupts	DTC control	The DTC can be activated by an interrupt source.
	NMI pin interrupt	<ul style="list-style-type: none"> • Interrupt from the NMI pin • Interrupt detection: Falling edge or rising edge • Digital filter function: Supported
	Oscillation stop detection interrupt	Interrupt on detection of oscillation having stopped
	IWDT underflow/refresh error interrupt	Interrupt on an underflow of the down counter or occurrence of a refresh error
	Voltage monitoring 1 interrupt	Voltage monitoring interrupt of voltage monitoring circuit 1 (LVD1)
	Voltage monitoring 2 interrupt	Voltage monitoring interrupt of voltage monitoring circuit 2 (LVD2)

Item	RX113 (ICUb)	RX140 (ICUb)
Return from low power consumption state	<ul style="list-style-type: none"> Sleep mode and deep sleep mode: Return is initiated by a non-maskable interrupt or any other interrupt source. Software standby mode: Return is initiated by a non-maskable interrupt, interrupt IRQ0 to IRQ7, or an RTC alarm or periodic interrupt. 	<ul style="list-style-type: none"> Sleep mode and deep sleep mode: Return is initiated by a non-maskable interrupt or any other interrupt source. Software standby mode: Return is initiated by a non-maskable interrupt, interrupt IRQ0 to IRQ7, or an RTC alarm or periodic interrupt.

Table 2.20 Comparison of Interrupt Controller Registers

Register	Bit	RX113 (ICUb)	RX140 (ICUb)
IRn* ¹	—	Interrupt request register n (n = 016 to 249)	Interrupt request register n (n = 016 to 255)
IPRn* ¹	—	Interrupt source priority register n (n = 000 to 249)	Interrupt source priority register n (n = 000 to 255)
DTCERn* ¹	—	DTC activation enable register n (n = 027 to 248)	DTC transfer request enable register n (n = 027 to 255)

Note: 1. On the RX113 Group n = 250 to 255 correspond to a reserved area.

2.12 Buses

Table 2.21 is a comparative overview of the buses.

Table 2.21 Comparative Overview of Buses

Bus Type		RX113	RX140
CPU buses	Instruction bus	<ul style="list-style-type: none"> Connected to the CPU (for instructions) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) 	<ul style="list-style-type: none"> Connected to the CPU (for instructions) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK)
	Operand bus	<ul style="list-style-type: none"> Connected to the CPU (for operands) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) 	<ul style="list-style-type: none"> Connected to the CPU (for operands) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK)
Memory buses	Memory bus 1	Connected to RAM	Connected to RAM
	Memory bus 2	Connected to ROM	Connected to ROM
Internal main buses	Internal main bus 1	<ul style="list-style-type: none"> Connected to the CPU Operates in synchronization with the system clock (ICLK) 	<ul style="list-style-type: none"> Connected to the CPU Operates in synchronization with the system clock (ICLK)
	Internal main bus 2	<ul style="list-style-type: none"> Connected to the DTC Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) 	<ul style="list-style-type: none"> Connected to the DTC Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK)
Internal peripheral buses	Internal peripheral bus 1	<ul style="list-style-type: none"> Connected to peripheral modules (DTC, interrupt controller, and bus error monitoring section) Operates in synchronization with the system clock (ICLK) 	<ul style="list-style-type: none"> Connected to peripheral modules (DTC, interrupt controller, and bus error monitoring section) Operates in synchronization with the system clock (ICLK)
	Internal peripheral bus 2	<ul style="list-style-type: none"> Connected to peripheral modules Operates in synchronization with the peripheral-module clock (PCLKB) 	<ul style="list-style-type: none"> Connected to peripheral modules Operates in synchronization with the peripheral-module clock (PCLKB, PCLKD)
	Internal peripheral bus 3	<ul style="list-style-type: none"> Connected to peripheral modules (USB) Operates in synchronization with the peripheral-module clock (PCLKB) 	<ul style="list-style-type: none"> Connected to peripheral modules (CTSU, RSCAN) Operates in synchronization with the peripheral-module clock (PCLKB)
	Internal peripheral bus 6	<ul style="list-style-type: none"> Connected to ROM (P/E) and E2 DataFlash Operates in synchronization with the FlashIF clock (FCLK) 	<ul style="list-style-type: none"> Connected to ROM (P/E) and E2 DataFlash Operates in synchronization with the FlashIF clock (FCLK)

2.13 Data Transfer Controller

Table 2.22 is a comparative overview of the data transfer controllers, and Table 2.23 is a comparison of data transfer controller registers.

Table 2.22 Comparative Overview of Data Transfer Controllers

Item	RX113 (DTCa)	RX140 (DTCb)
Number of transfer channels	Equal to number of all interrupt sources that can start a DTC transfer.	Equal to number of all interrupt sources that can start a DTC transfer.
Transfer modes	<ul style="list-style-type: none"> Normal transfer mode <ul style="list-style-type: none"> — A single activation leads to a single data transfer. Repeat transfer mode <ul style="list-style-type: none"> — A single activation leads to a single data transfer. — The transfer address returns to the transfer start address when the number of data transfers equals the repeat size. — The maximum number of repeat transfers is 256, and the maximum data transfer size is 256×32 bits, or 1,024 bytes. Block transfer mode <ul style="list-style-type: none"> — A single activation leads to the transfer of a single block of data. — The maximum block size is 256×32 bits = 1,024 bytes. 	<ul style="list-style-type: none"> Normal transfer mode <ul style="list-style-type: none"> — A single activation leads to a single data transfer. Repeat transfer mode <ul style="list-style-type: none"> — A single activation leads to a single data transfer. — The transfer address returns to the transfer start address when the number of data transfers equals the repeat size. — The maximum number of repeat transfers is 256, and the maximum data transfer size is 256×32 bits, or 1,024 bytes. Block transfer mode <ul style="list-style-type: none"> — A single activation leads to the transfer of a single block of data. — The maximum block size is 256×32 bits = 1,024 bytes.
Chain transfer function	<ul style="list-style-type: none"> Multiple data transfers can be executed in response to a single transfer request (chain transfer). Either “performed only when the transfer counter reaches 0” or “performed every time” can be selected for chain transfers. 	<ul style="list-style-type: none"> Multiple data transfer types can be executed sequentially in response to a single transfer request. Either “performed only when the transfer counter reaches 0” or “every time” can be selected.
Sequence transfer	—	<p>A complex series of transfers can be registered as a sequence. Any sequence can be selected by the transfer data and executed.</p> <ul style="list-style-type: none"> Only one sequence transfer trigger source can be selected at a time. Up to 256 sequences can correspond to a single trigger source. The data that is initially transferred in response to a transfer request determines the sequence. The entire sequence can be executed on a single request, or the sequence can be suspended in the middle and resumed on the next transfer request (sequence division).

Item	RX113 (DTCa)	RX140 (DTCb)
Transfer space	<ul style="list-style-type: none"> 16 MB in short-address mode (within 0000 0000h to 007F FFFFh or FF80 0000h to FFFF FFFFh, excluding reserved areas) 4 GB in full-address mode (within 0000 0000h to FFFF FFFFh, excluding reserved areas) 	<ul style="list-style-type: none"> 16 MB in short-address mode (within 0000 0000h to 007F FFFFh or FF80 0000h to FFFF FFFFh, excluding reserved areas) 4 GB in full-address mode (within 0000 0000h to FFFF FFFFh, excluding reserved areas)
Data transfer units	<ul style="list-style-type: none"> Single data unit: 1 byte (8 bits), 1 word (16 bits), or 1 longword (32 bits) Single block size: 1 to 256 data units 	<ul style="list-style-type: none"> Single data unit: 1 byte (8 bits), 1 word (16 bits), or 1 longword (32 bits) Single block size: 1 to 256 data units
CPU interrupt requests	<ul style="list-style-type: none"> An interrupt request to the CPU can be generated by a DTC activation interrupt. An interrupt request to the CPU can be generated after a single data transfer. An interrupt request to the CPU can be generated after transfer of the specified number of data units. 	<ul style="list-style-type: none"> An interrupt request to the CPU can be generated by a DTC activation interrupt. An interrupt request to the CPU can be generated after a single data transfer. An interrupt request to the CPU can be generated after transfer of the specified number of data units.
Event link function	An event link request is generated after one data transfer (for block transfers, after one block).	An event link request is generated after one data transfer (for block transfers, after one block).
Read skip	Transfer information read skipping can be specified.	Reading of the transfer information can be skipped when the same transfer is repeated.
Write-back skip	Write-back can be skipped when the address of the transfer source or destination is fixed.	Write-back of transferred data that is not updated can be skipped when the address of the transfer source or destination is fixed.
Write-back disable	—	Ability to disable write-back of transfer information
Displacement addition	—	Ability to add displacement to the transfer source address (selectable by each transfer information)
Low power consumption function	Ability to specify module stop state	Ability to transition to module stop state

Table 2.23 Comparison of Data Transfer Controller Registers

Register	Bit	RX113 (DTCa)	RX140 (DTCb)
MRA	WBDIS	—	Write-back disable bit* ¹
MRB	SQEND	—	Sequence transfer end bit
	INDX	—	Index table reference bit
MRC	—	—	DTC mode register C
DTCIBR	—	—	DTC index table base register
DTCOR	—	—	DTC operation register
DTCSQE	—	—	DTC sequence transfer enable register
DTCDISP	—	—	DTC address displacement register

Note: 1. Transfer information is usually allocated to a RAM area, but it can be allocated to a ROM area by setting the MRA.WBDIS bit to 1 (no write-back).

2.14 Event Link Controller

Table 2.24 is a comparison of event link controller registers, Table 2.25 lists correspondences between ELSRn registers and peripheral modules, and Table 2.26 lists correspondences between values set in ELSRn.ELS[7:0] and event signal names and numbers.

Table 2.24 Comparison of Event Link Controller Registers

Register	Bit	RX113	RX140
ELSRn	—	Event link setting register n (n = 1 to 4, 7, 10, 12, 14, 15, 17 to 20, 22, 24, 25)	Event link setting register n (n = 1 to 4, 7, 8, 10, 12, 14 to 16, 18, 20, 22, 24, 25)

Table 2.25 Correspondences between ELSRn Registers and Peripheral Modules

Register	RX113	RX140
ELSR1	MTU1	MTU1
ELSR2	MTU2	MTU2
ELSR3	MTU3	MTU3
ELSR4	MTU4	MTU4
ELSR7	CMT1	CMT1
ELSR8	—	ICU (LPT dedicated interrupt)
ELSR10	TMR0	TMR0
ELSR12	TMR2	TMR2
ELSR14	CTSU	CTSU
ELSR15	S12AD	S12AD
ELSR16	—	DA0
ELSR17	DA0	—
ELSR18	ICU (interrupt 1)	ICU (interrupt 1)
ELSR19	ICU (LPT dedicated interrupt)	—
ELSR20	Output port group 1	Output port group 1
ELSR22	Input port group 1	Input port group 1
ELSR24	Single port 0	Single port 0
ELSR25	Single port 1	Single port 1

Table 2.26 Correspondences between Values Set in ELSRn.ELS[7:0] and Event Signal Names and Numbers

Value of ELS[7:0] Bits	Peripheral Module	RX113 (ELC)	RX140 (ELC)
01h	Multi-function timer pulse unit 3	MTU0 compare match 0A	MTU0 compare match 0A
02h		MTU0 compare match 0B	MTU0 compare match 0B
03h		MTU0 compare match 0C	MTU0 compare match 0C
04h		MTU0 compare match 0D	MTU0 compare match 0D
05h		MTU0 compare match 0E	MTU0 compare match 0E
06h		MTU0 compare match 0F	MTU0 compare match 0F
07h		MTU0 overflow	MTU0 overflow
10h		MTU3 compare match 3A	MTU3 compare match 3A
11h		MTU3 compare match 3B	MTU3 compare match 3B
12h		MTU3 compare match 3C	MTU3 compare match 3C
13h		MTU3 compare match 3D	MTU3 compare match 3D
14h		MTU3 overflow	MTU3 overflow
15h		MTU4 compare match 4A	MTU4 compare match 4A
16h		MTU4 compare match 4B	MTU4 compare match 4B
17h		MTU4 compare match 4C	MTU4 compare match 4C
18h		MTU4 compare match 4D	MTU4 compare match 4D
19h		MTU4 overflow	MTU4 overflow
1Ah		MTU4 underflow	MTU4 underflow
1Fh	Compare match timer	CMT1 compare match 1	CMT1 compare match 1
22h	8-bit timer	TMR0 compare match A0	TMR0 compare match A0
23h		TMR0 compare match B0	TMR0 compare match B0
24h		TMR0 overflow	TMR0 overflow
25h		TMR1 compare match A1	TMR1 compare match A1
26h		TMR1 compare match B1	TMR1 compare match B1
27h		TMR1 overflow	TMR1 overflow
28h		TMR2 compare match A2	TMR2 compare match A2
29h		TMR2 compare match B2	TMR2 compare match B2
2Ah		TMR2 overflow	TMR2 overflow
2Bh		TMR3 compare match A3	TMR3 compare match A3
2Ch		TMR3 compare match B3	TMR3 compare match B3
2Dh		TMR3 overflow	TMR3 overflow
32h	Low-power timer	—	LPT compare match 0
33h		—	LPT compare match 1
34h	12-bit A/D converter	—	S12AD compare condition satisfied
35h		—	S12AD compare condition not satisfied
3Ah	Serial communications interface	SCI5 error (receive error or error signal detection)	SCI5 error (receive error or error signal detection)
3Bh		SCI5 receive data full	SCI5 receive data full
3Ch		SCI5 transmit data empty	SCI5 transmit data empty
3Dh		SCI5 transmit end	SCI5 transmit end
4Eh	I ² C bus interface	RIIC0 communication error or event generation	RIIC0 communication error or event generation
4Fh		RIIC0 receive data full	RIIC0 receive data full
50h		RIIC0 transmit data empty	RIIC0 transmit data empty
51h		RIIC0 transmit end	RIIC0 transmit end

Value of ELS[7:0] Bits	Peripheral Module	RX113 (ELC)	RX140 (ELC)
58h	12-bit A/D converter	S12AD A/D conversion end	S12AD A/D conversion end
5Ah	Comparator B0 and B1	Comparator B0 and B1 common comparison result change	Comparator B0 and B1 common comparison result change
5Bh	Voltage detection circuit	LVD1 voltage detection	LVD1 voltage detection
5Dh	Low power timer	LPT compare match	—
61h	Data transfer controller	DTC transfer end	DTC transfer end
63h	I/O ports	Input edge detection signal of input port group 1	Input edge detection signal of input port group 1
65h		Input edge detection signal of single input port 0	Input edge detection signal of single input port 0
66h		Input edge detection signal of single input port 1	Input edge detection signal of single input port 1
69h	Event link controller	Software event	Software event
6Ah	Data operation circuit	DOC data operation condition met	DOC data operation condition met
Settings other than the above are prohibited.			

Table 2.27 Comparison of Event Link Controller Registers

Register	Bit	RX113	RX140
ELOPC	LPTMD[1:0]	—	LPT operation select bits

2.15 I/O Ports

Table 2.28 is comparative overview of the I/O ports, Table 2.29 is a comparison of I/O port functions, and Table 2.30 is a comparison of I/O port registers.

Table 2.28 Comparative Overview of I/O Ports (64-Pin)

Port Symbol	RX113 (64-Pin)	RX140 (64-Pin)
PORT0	—	P03, P05
PORT1	P14 to P17	P14 to P17
PORT2	P26, P27	P26, P27
PORT3	P30 to P32, P35	P30 to P32, P35 to P37
PORT4	P40 to P42	P40 to P47
PORT5	P54, P55	P54, P55
PORTA	PA0, PA1, PA3, PA4, PA6	PA0, PA1, PA3, PA4, PA6
PORTB	PB0, PB1, PB3, PB5 to PB7	PB0, PB1, PB3, PB5 to PB7
PORTC	PC2 to PC7	PC0 to PC7
PORTD	PD0 to PD2	—
PORTE	PE0 to PE7	PE0 to PE5
PORTG	—	PG7
PORTH	—	PH0 to PH3, PH6*1, PH7*1
PORTJ	PJ0, PJ2, PJ3, PJ6, PJ7	PJ6, PJ7

Note: 1. A product with a ROM capacity of 64 KB is not equipped with this pin.

Table 2.29 Comparison of I/O Port Functions

Item	Port Symbol	RX113	RX140
Input pull-up function	PORT0	P02, P04, P07	P03 to P07
	PORT1	P10 to P15, P16, P17	P12 to P17
	PORT2	P20 to P27	P20, P21, P26, P27
	PORT3	P30 to P32	P30 to P32, P34, P36, P37
	PORT4	P40 to P44, P46	P40 to P47
	PORT5	P50 to P56	P54, P55
	PORTA	PA0 to PA7	PA0 to PA6
	PORTB	PB0 to PB7	PB0 to PB7
	PORTC	PC0 to PC7	PC2 to PC7
	PORTD	PD0 to PD4	PD0 to PD2
	PORTE	PE0 to PE7	PE0 to PE5
	PORTF	PF6, PF7	—
	PORTG	—	PG7
	PORTH	—	PH0 to PH3
	PORTJ	PJ0, PJ2, PJ3,	PJ1, PJ6, PJ7
Open drain output function	PORT0	P02, P04, P07	—
	PORT1	P10 to P15, P16, P17	P12 to P17
	PORT2	P20 to P27	P20, P21, P26, P27
	PORT3	P30 to P32	P30 to P32, P34, P36, P37
	PORT5	P50 to P53, P56	—
	PORTA	PA0 to PA7	PA0 to PA6
	PORTB	PB0 to PB7	PB0 to PB7
	PORTC	PC0 to PC7	PC2 to PC7
	PORTD	—	PD0 to PD2
	PORTE	PE0 to PE7	PE0 to PE3
	PORTG	—	PG7

Item	Port Symbol	RX113	RX140
Open drain output function	PORTH	—	—
	PORTJ	PJ3	—
5 V tolerant	PORT1	P16, P17	P12, P13, P16, P17
	PORTA	PA6	—
	PORTB	PB0	—

Table 2.30 Comparison of I/O Port Registers

Register	Bit	RX113	RX140
PDR	B0 to B7	Pm0 to Pm7 direction control bits (m = 0 to 5, 9, A to F, J)	Pm0 to Pm7 direction control bits (m = 0 to 5, A to E, G, H, J)
PODR	B0 to B7	Pm0 to Pm7 output data store bits (m = 0 to 5, 9, A to F, J)	Pm0 to Pm7 output data store bits (m = 0 to 5, A to E, G, H, J)
PIDR	B0 to B7	Pm0 to Pm7 bits (m = 0 to 5, 9, A to F, J)	Pm0 to Pm7 bits (m = 0 to 5, A to E, G, H, J)
PMR	B0 to B7	Pm0 pin mode control bits (m = 0 to 5, 9, A to F, J) 0: Use pin as general I/O port. 1: Use pin as I/O port for peripheral function.	Pm0 to Pm7 pin mode control bits (m = 0 to 5, A to E, G, H, J) 0: Use pin as general I/O port. 1: Use pin as I/O port for peripheral function. PG7 only 0: Use pin as general I/O port. 1: Use pin as I/O port for MD function (initial value).
ODR0	B0, B1 (RX113) B0 (RX140)	Pm0, Pm2, and Pm3 output type select bits (m = 0 to 3, 5, A to C, E, J) <ul style="list-style-type: none"> • P20, P30, P50, PA0, PB0, PC0, and PE0 b0 0: CMOS output 1: N-channel open-drain b1 This bit is read as 0. The write value should be 0. <ul style="list-style-type: none"> • P10 b0 b1 0 0: CMOS output 0 1: N-channel open-drain 1 0: P-channel open-drain 1 1: Setting prohibited	Pm0, Pm2, and Pm3 output type select bits (m = 1 to 3, A to E, J) 0: CMOS output 1: N-channel open-drain

Register	Bit	RX113	RX140
ODR0	B2, B3	<p>Pm1 output type select bits (m = 0 to 3, 5, A to C, E, J)</p> <ul style="list-style-type: none"> P11, P21, P31, P51, PA1, PB1, and PC1 <p>b2 0: CMOS output 1: N-channel open-drain b3 This bit is read as 0. The write value should be 0.</p> <ul style="list-style-type: none"> PE1 <p>b3 b2 0 0: CMOS output 0 1: N-channel open-drain 1 0: P-channel open-drain 1 1: Setting prohibited</p>	<p>Pm1 output type select bits (m = 1 to 3, A to E, J)</p> <ul style="list-style-type: none"> P21, P31, PA1, PB1, and PD1 <p>b2 0: CMOS output 1: N-channel open-drain b3 This bit is read as 0. The write value should be 0.</p> <ul style="list-style-type: none"> PE1 <p>b3 b2 0 0: CMOS output 0 1: N-channel open-drain 1 0: P-channel open-drain 1 1: Hi-Z</p>
ODR1	B0, B1 (RX113) B0 (RX140)	<p>Pm4 output type select bits (m = 0 to 2, 5, A to C, E)</p> <ul style="list-style-type: none"> P04, P24, PA4, PB4, PC4, and PE4 <p>b0 0: CMOS output 1: N-channel open-drain b1 This bit is read as 0. The write value should be 0.</p> <ul style="list-style-type: none"> P14 <p>b1 b0 0 0: CMOS output 0 1: N-channel open-drain 1 0: P-channel open-drain 1 1: Setting prohibited</p>	<p>Pm4 output type select bits (m = 1 to 3, A to C, G)</p> <p>b0 0: CMOS output 1: N-channel open-drain</p>
	B2, B4, B6	Pm5, Pm6, and Pm7 output type select bits (m = 0 to 2, 5, A to C, E)	Pm5, Pm6, and Pm7 output type select bits (m = 1 to 3, A to C, G)
PCR	B0 to B7	Pm0 to Pm7 input pull-up resistor control bits (m = 0 to 3, 5, A to C, E)	Pm0 to Pm7 input pull-up resistor control bits (m = 0 to 5, A to E, G, H, J)
PSRB	—	—	Port switching register B
PRWCNTR	—	—	Port read wait control register

2.16 Multi-Function Pin Controller

Table 2.31 is a comparison of the assignments of multiplexed pins, and Table 2.32 to Table 2.46 are comparisons of multi-function pin controller registers.

In the following comparison of the assignments of multiplexed pins, **blue text** designates pins that exist on the RX140 Group only and **orange text** pins that exist on the RX113 Group only. A circle (○) indicates that a function is assigned, a cross (X) that the pin does not exist or that no function is assigned, and grayed out items mean that the function is not implemented.

Table 2.31 Comparison of Multiplexed Pin Assignments

Module/ Function	Pin Function	Port Allocation	RX113	RX140
			64-Pin	64-Pin
Interrupt	NMI (input)	P35	○	○
	IRQ0 (input)	P30	○	○
		PE0	○	X
		PD0	○	X
		PH1	X	○
	IRQ1 (input)	P31	○	○
		PE1	○	X
		PD1	○	X
		PH2	X	○
	IRQ2 (input)	P32	○	○
		PB0	○	X
		PC4	○	X
		PD2	○	X
		P36	X	○
	IRQ3 (input)	P27	○	X
		PE3	○	X
		PA6	○	X
	IRQ4 (input)	P14	○	○
		PB1	○	○
		PE4	○	X
		P37	X	○
	IRQ5 (input)	P15	○	○
		PA4	○	○
		PE5	○	○
	IRQ6 (input)	P16	○	○
		PA3	○	○
		PE6	○	X
	IRQ7 (input)	P17	○	○
		PE2	○	○
		PE7	○	X
Multi-function timer unit 2	MTIOC0A (input/output)	P14	○	X
		PB3	○	○
		PE3	○	X
		PC4	X	○
	MTIOC0B (input/output)	P15	○	○
		PA1	○	○
	MTIOC0C (input/output)	P17	○	X
		P32	○	○
		PB0	○	X
		PB1	○	○

Module/ Function	Pin Function	Port Allocation	RX113	RX140
			64-Pin	64-Pin
Multi-function timer unit 2	MTIOC0C (input/output)	PC5	×	○
	MTIOC0D (input/output)	PA3	○	○
	MTIOC1A (input/output)	PE4	○	○
	MTIOC1B (input/output)	PA3	○	×
		PB5	○	○
		PE3	○	○
	MTIOC2A (input/output)	P26	○	○
		PA6	○	×
		PB5	○	○
		PE0	○	×
	MTIOC2B (input/output)	P27	○	○
		PA4	○	×
		PE5	○	○
	MTIOC3A (input/output)	P14	○	○
		P17	○	○
		PC7	○	○
		PE4	○	×
	MTIOC3B (input/output)	P17	○	○
		PB3	○	×
		PB7	○	○
		PC5	○	○
		PA1	×	○
		PH0	×	○
	MTIOC3C (input/output)	P16	○	○
		PC6	○	○
	MTIOC3D (input/output)	P16	○	○
		PB6	○	○
		PC4	○	○
		PA6	×	○
		PB0	×	○
		PH1	×	○
	MTIOC4A (input/output)	PA0	○	○
		PB3	○	○
		PE2	○	○
		P55	×	○
		PE4	×	○
	MTIOC4B (input/output)	P30	○	○
		P54	○	○
		PC2	○	○
		PE3	○	○
		PD1	○	×
	MTIOC4C (input/output)	PB1	○	○
		PE1	○	○
		PE5	○	○
		PA4	×	○
		PH2	×	○

Module/ Function	Pin Function	Port Allocation	RX113	RX140
			64-Pin	64-Pin
Multi-function timer unit 2	MTIOC4D (input/output)	P31	○	○
		P55	○	○
		PC3	○	○
		PE4	○	○
		PD2	○	×
		PA3	×	○
		PH3	×	○
	MTIC5U (input)	PA4	○	○
	MTIC5V (input)	PA6	○	○
		PA3	×	○
	MTIC5W (input)	PB0	○	○
	MTCLKA (input)	P14	○	○
		PA4	○	○
		PC6	○	○
	MTCLKB (input)	P15	○	○
		PA6	○	○
		PC7	○	○
	MTCLKC (input)	PA1	○	○
		PC4	○	○
	MTCLKD (input)	PA3	○	○
		PC5	○	○
Port output enable 2	POE0# (input)	PC4	○	○
		PA3	○	×
	POE1# (input)	PB5	○	○
	POE2# (input)	PA6	○	○
	POE3# (input)	PB3	○	○
		PE0	○	×
	POE8# (input)	P17	○	○
		P30	○	○
		PE3	○	○
8-bit timer	TMO0 (output)	PB3	○	○
		PH1	×	○
	TMCI0 (input)	PB1	○	○
		PH3	×	○
	TMRI0 (input)	PA4	○	○
		PH2	×	○
	TMO1 (output)	P17	○	○
		P26	○	○
	TMCI1 (input)	P54	○	○
		PC4	○	○
	TMRI1 (input)	PB5	○	○
	TMO2 (output)	P16	○	○
		PC7	○	○
	TMCI2 (input)	P15	○	○
		P31	○	○
		PC6	○	○
	TMRI2 (input)	P14	○	○
		PC5	○	○
	TMO3 (output)	P32	○	○
		P55	○	○

Module/ Function	Pin Function	Port Allocation	RX113	RX140
			64-Pin	64-Pin
8-bit timer	TMC13 (input)	P27	○	○
		PA6	○	○
	TMRI3 (input)	P30	○	○
Serial communications interface	RXD1 (input) / SMISO1 (input/output) / SSCL1 (input/output)	P15	○	○
		P30	○	○
		PC6	○	×
	TXD1 (output) / SMOSI1 (input/output) / SSDA1 (input/output)	P16	○	○
		P26	○	○
	TXD1 (output) / SMOSI1 (input/output) / SSDA1 (input/output)	PC7	○	×
		P17	○	○
	SCK1 (input/output)	P27	○	○
		PC5	○	×
	CTS1# (input) / RTS1# (output) / SS1# (input)	P14	○	○
		P31	○	○
	RXD5 (input) / SMISO5 (input/output) / SSCL5 (input/output) / IRRxD5 (input)	PA3	○	○
		PC2	○	○
	TXD5 (output) / SMOSI5 (input/output) / SSDA5 (input/output) / IRTx5 (output)	PA4	○	○
		PC3	○	○
	SCK5 (input/output)	PA1	○	○
		PC4	○	○
	CTS5# (input) / RTS5# (output) / SS5# (input)	PA6	○	○
		P27	○	×
	RXD6 (input) / SMISO6 (input/output) / SSCL6 (input/output)	PB0	○	○
		P27	○	×
	TXD6 (output) / SMOSI6 (input/output) / SSDA6 (input/output)	P26	○	×
		PB1	○	○
		P32	○	○
	SCK6 (input/output)	PB3	○	○
	CTS6# (input) / RTS6# (output) / SS6# (input)	P32	○	×
	RXD8 (input) / SMISO8 (input/output) / SSCL8 (input/output)	PC6	○	○
	TXD8 (output) / SMOSI8 (input/output) / SSDA8 (input/output)	PC7	○	○
	SCK8 (input/output)	PC5	○	○

Module/ Function	Pin Function	Port Allocation	RX113	RX140
			64-Pin	64-Pin
Serial communications interface	CTS8# (input) / RTS8# (output) / SS8# (input)	PC4	○	○ *1
	RXD9 (input) / SMISO9 (input/output) / SSCL9 (input/output)	PB6	○	○ *1
		PE4	○	×
	TXD9 (output) / SMOSI9 (input/output) / SSDA9 (input/output)	PB7	○	○ *1
		PE5	○	×
	SCK9 (input/output)	PB5	○	○ *1
		PE3	○	×
	CTS9# (input) / RTS9# (output) / SS9# (input)	PB4	○	○ *1
		PE0	○	×
	RXD12 (input) / SMISO12 (input/output) / SSCL12 (input/output) / RXDX12 (input)	PE2	○	○
		P17	○	×
	TXD12 (output) / SMOSI12 (input/output) / SSDA12 (input/output) / TXDX12 (output) / SIOX12 (input/output)	PE1	○	○
		P14	○	×
	SCK12 (input/output)	PE0	○	○
		P27	○	×
	CTS12# (input) / RTS12# (output) / SS12# (input)	PE3	○	○
I ² C bus interface	SCL0 (input/output)	P16	○	○
		PB0	○	×
	SDA0 (input/output)	P17	○	○
		PA6	○	×
Serial peripheral interface	RSPCKA (input/output)	P15	○	×
		PB0	○	○
		PC5	○	○
		PE3	○	×
	MOSIA (input/output)	P16	○	○
		PA6	○	○
		PE4	○	×
		PC6	○	○
	MISOA (input/output)	P17	○	○
		PC7	○	○
		PA3	○	×
		PE5	○	×
	SSLA0 (input/output)	P14	○	×
		PA4	○	○
		PC4	○	○
	SSLA1 (output)	PA0	○	○
	SSLA2 (output)	PA1	○	○
	SSLA3 (output)	PC2	○	○

Module/ Function	Pin Function	Port Allocation	RX113	RX140
			64-Pin	64-Pin
USB 2.0 host/function module	USB0_EXICEN (output)	PC6	○	
	USB0_VBUSEN (output)	P16	○	
		PC4	○	
		P26	○	
	USB0_OVRCURA (input)	P14	○	
		PB3	○	
	USB0_OVRCURB (input)	P16	○	
		PC7	○	
	USB0_ID (input)	PC5	○	
	USB0_VBUS (input)	P16	○	
		PC4	○	
Realtime clock	RTCOUT (output)	P16	○	○
		P32	○	○
	RTCOUT (output)	PB0	○	✗
		PA1	○	✗
12-bit A/D converter	AN000 (input)	P40	○	○
	AN001 (input)	P41	○	○
	AN002 (input)	P42	○	○
	AN003 (input)	P43	✗	○
	AN004 (input)	P44	✗	○
	AN005 (input)	P45	✗	○
	AN006 (input)	P46	✗	○
	AN007 (input)	P47	✗	○
	AN008 (input)	PE0	○	
	AN009 (input)	PE1	○	
	AN010 (input)	PE2	○	
	AN011 (input)	PE3	○	
	AN012 (input)	PE4	○	
	AN013 (input)	PE5	○	
	AN014 (input)	PE6	○	
	AN015 (input)	PE7	○	
	VREFH0 (input)	PJ6	○	
	VREFL0 (input)	PJ7	○	
	ADTRG0# (input)	P16	○	○
		P27	○	✗
		PB0	○	✗
	AN016 (input)	PE0		○
	AN017 (input)	PE1		○
	AN018 (input)	PE2		○
	AN019 (input)	PE3		○
	AN020 (input)	PE4		○
	AN021 (input)	PE5		○
12-bit D/A converter D/A comparator	DA0 (output)	PJ0	○	✗
		P03	✗	○
	DA1 (output)	PJ2	○	✗
		P05	✗	○
12-bit D/A converter	VREFH	P41	○	
	VREFL	P42	○	

Module/ Function	Pin Function	Port Allocation	RX113	RX140
			64-Pin	64-Pin
Clock	CLKOUT (output)	P15	○	✗
		PC4	○	✗
		PE3	✗	○
		PE4	✗	○
Clock frequency accuracy measurement circuit	CACREF (input)	P27	○	✗
		PA0	○	○
		PC7	○	○
		P15	○	✗
		PH0	✗	○
Voltage detection circuit	CMPA2 (input)	P27	○	✗
		PE4	✗	○
Comparator B	CMPB0 (input)	PE1	○	○
	CVREFB0 (input)	PE2	○	○
	CMPOB0 (output)	PE7	○	✗
		PE5	✗	○
	CMPB1 (input)	PA3	○	○
	CVREFB1 (input)	PA4	○	○
	CMPOB1 (output)	PE5	○	✗
		PB1	✗	○
Serial sound interface	SSISCK0 (input/output)	PB5	○	
		PE0	○	
	SSIWS0 (input/output)	PB1	○	
		PE4	○	
	SSIRXD0 (input)	PB6	○	
		PE2	○	
	SSITXD0 (input)	PB7	○	
		PE1	○	
	AUDIO_MCLK (input)	PB3	○	
		PE3	○	
LCD controller/ driver	COM0 (output)	PC5	○	
	COM1 (output)	PC4	○	
	COM2 (output)	PC3	○	
	COM3 (output)	PC2	○	
	SEG11 /COM4 (output)	PB7	○	
	SEG12 /COM5 (output)	PB6	○	
	SEG13 /COM6 (output)	PB5	○	
	SEG15 /COM7 (output)	PB3	○	
	SEG17 (output)	PB1	○	
	SEG20 (output)	PA4	○	
	SEG21 (output)	PA3	○	
	SEG23 (output)	PA1	○	
	SEG24 (output)	PA0	○	
	SEG27 (output)	PE5	○	
	SEG28 (output)	PE4	○	
	SEG29 (output)	PE3	○	
	SEG30 (output)	PE2	○	
	SEG31 (output)	PE1	○	
	SEG32 (output)	PE0	○	
	SEG33 (output)	PE7	○	
	SEG34 (output)	PE6	○	

Module/ Function	Pin Function	Port Allocation	RX113	RX140
			64-Pin	64-Pin
LCD controller/ driver	SEG37 (output)	PD2	○	
	SEG38 (output)	PD1	○	
	SEG39 (output)	PD0	○	
	CAPH (output)	P30	○	
	CAPL (output)	P31	○	
	VL1 (input/output)	P55	○	
	VL2 (input/output)	P54	○	
	VL3 (input/output)	PC7	○	
	VL4 (input/output)	PC6	○	
Capacitive touch sensing unit	TS0 (output)	P32	✗ *5	○
	TS1 (output)	P31	✗ *5	○
	TS2 (output)	P30	✗ *5	○
	TS3 (output)	P27	✗ *5	○
	TS4 (output)	P26	✗ *5	○
	TS5 (output)	P15	✗ *5	○ *1
	TS6 (output)	P14	✗ *5	○ *1
	TS7 (output)	PH3	✗ *5	○ *1
	TS8 (output)	PH2	✗ *5	○ *1
	TS9 (output)	PH1	✗ *5	○ *1
	TS10 (output)	PH0	✗ *5	○ *1
	TS11 (output)	P55	✗ *5	○ *1
	TSCAP (input/output)	PC4	✗ *5	○
	TS12 (output)	P54		○ *1
	TS13 (output)	PC7		○
	TS14 (output)	PC6		○
	TS15 (output)	PC5		○
	TS16 (output)	PC3		○ *1
	TS17 (output)	PC2		○ *1
	TS18 (output)	PB7		○ *1
	TS19 (output)	PB6		○ *1
	TS20 (output)	PB5		○ *1
	TS22 (output)	PB3		○ *1
	TS24 (output)	PB1		○ *1
	TS25 (output)	PB0		○
	TS26 (output)	PA6		○ *1
	TS28 (output)	PA4		○
	TS29 (output)	PA3		○
	TS31 (output)	PA1		○
	TS32 (output)	PA0		○ *1
	TS33 (output)	PE4		○
	TS34 (output)	PE3		○
	TS35 (output)	PE2		○
Low-power timer	LPT0 (output)	P26		○
		PB3		○
		PC7		○

Module/ Function	Pin Function	Port Allocation	RX113	RX140
			64-Pin	64-Pin
CAN module	CTXD0 (output)	P14		<input type="radio"/> *1
		P54		<input type="radio"/> *1
	CRXD0 (input)	P15		<input type="radio"/> *1
		P55		<input type="radio"/> *1

Notes: 1. This function is not implemented on RX140 Group products with ROM capacity of 64 KB.

2. The IRRXD5 function is not implemented on RX113 Group products.
3. The IRTXD5 function is not implemented on RX140 Group products.
4. The SIOX12 function is not implemented on RX140 Group products.
5. This function is available only on 100-pin products.

Table 2.32 Comparison of P0n Pin Function Control Register (P0nPFS)

Register	Bit	RX113 (n = 2, 4, 7)	RX140 (n = 3, 5, 7)
P02PFS	—	P02 pin function control register	—
P03PFS	—	—	P03 pin function control register
P04PFS	—	P04 pin function control register	—
P07PFS	PSEL[4:0]	Pin function select bits 01001b: ADTRG0# 01010b: TXD6/SMOSI6/SSDA6 11001b: TS0	Pin function select bits 01001b: ADTRG0#
P0nPFS	ASEL	—	Analog function select bit

Table 2.33 Comparison of P1n Pin Function Control Register (P1nPFS)

Register	Bit	RX113 (n = 0 to 7)	RX140 (n = 2 to 7)
P10PFS	—	P10 pin function control register	—
P11PFS	—	P11 pin function control register	—
P12PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00101b: TMCI1 01011b: SCK0 01100b: SCK12 11000b: SEG01	Pin function select bits 00000b: Hi-Z 00101b: TMCI1 01111b: SCL
P13PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC0B 00101b: TMO3 01011b: CTS0#/RTS0#/SS0# 01100b: CTS12#/RTS12#/SS12# 11000b: SEG00	Pin function select bits 00000b: Hi-Z 00001b: MTIOC0B 00101b: TMO3 01111b: SDA
P14PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC3A 00010b: MTCLKA 00011b: MTIOC0A 00101b: TMRI2 01011b: CTS1#/RTS1#/SS1# 01100b: TXD12/SMOSI12/SSDA12/ TXDX12/SIOX12 01101b: SSLA0 10011b: USB0_OVRCURA	Pin function select bits 00000b: Hi-Z 00001b: MTIOC3A 00010b: MTCLKA 00101b: TMRI2 01011b: CTS1#/RTS1#/SS1# 01100b: TXD12/SMOSI12/SSDA12/ TXDX12/SIOX12 11001b: TS6 11100b: CTXD0

Register	Bit	RX113 (n = 0 to 7)	RX140 (n = 2 to 7)
P15PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC0B 00010b: MTCLKB 00101b: TMCI2 00111b: CACREF 01001b: CLKOUT 01010b: RXD1/SMISO1/SSCL1 01101b: RSPCKA 11001b: TS5 11100b: CRXD0	Pin function select bits 00000b: Hi-Z 00001b: MTIOC0B 00010b: MTCLKB 00101b: TMCI2 01010b: RXD1/SMISO1/SSCL1 11001b: TS5 11100b: CRXD0
P16PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC3C 00010b: MTIOC3D 00101b: TMO2 00111b: RTCOUT 01001b: ADTRG0# 01010b: TXD1/SMOSI1/SSDA1 01101b: MOSIA 01111b: SCL0 10001b: USB0_VBUSEN 10010b: USB0_VBUS 10011b: USB0_OVRCURB	Pin function select bits 00000b: Hi-Z 00001b: MTIOC3C 00010b: MTIOC3D 00101b: TMO2 00111b: RTCOUT 01001b: ADTRG0# 01010b: TXD1/SMOSI1/SSDA1 01101b: MOSIA 01111b: SCL
P17PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC3A 00010b: MTIOC3B 00011b: MTIOC0C 00101b: TMO1 00111b: POE8# 01010b: SCK1 01100b: RXD12/SMISO12/SSCL12/ RXDX12 01101b: MISOA 01111b: SDA0	Pin function select bits 00000b: Hi-Z 00001b: MTIOC3A 00010b: MTIOC3B 00101b: TMO1 00111b: POE8# 01010b: SCK1 01101b: MISOA 01111b: SDA0
P1nPFS	ISEL	Interrupt input function select bit 0: Not used as IRQn input pin 1: Used as IRQn input pin P10: IRQ6 (100-pin) P11: IRQ7 (100-pin) P12: IRQ2 (100-pin) P13: IRQ3 (100-pin) P14: IRQ4 (100-pin, 64-pin) P15: IRQ5 (100-pin, 64-pin) P16: IRQ6 (100-pin, 64-pin) P17: IRQ7 (100-pin, 64-pin)	Interrupt input function select bit 0: Not used as IRQn input pin 1: Used as IRQn input pin P12: IRQ2 (80-pin) P13: IRQ3 (80-pin) P14: IRQ4 (80/64/48-pin) P15: IRQ5 (80/64/48-pin) P16: IRQ6 (80/64/48/32-pin) P17: IRQ7 (80/64/48/32-pin)

Table 2.34 Comparison of P2n Pin Function Control Register (P2nPFS)

Register	Bit	RX113 (n = 0 to 7)	RX140 (n = 0, 1, 6, 7)
P20PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC1A 00101b: TMRI0 01010b: TXD0/SMOSI0/SSDA0 11001b: TS9	Pin function select bits 00000b: Hi-Z 00001b: MTIOC1A 00101b: TMRI0
P21PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC1B 00101b: TMCI0 01010b: RXD0/SMISO01/SSCL0 11001b: TS8	Pin function select bits 00000b: Hi-Z 00001b: MTIOC1B 00101b: TMCI0
P22PFS	—	P22 pin function control register	—
P23PFS	—	P23 pin function control register	—
P24PFS	—	P24 pin function control register	—
P25PFS	—	P25 pin function control register	—
P26PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC2A 00101b: TMO1 01010b: TXD1/SMOSI1/SSDA1 01100b: TXD6/SMOSI6/SSDA6 10011b: USB0_VBUSEN 11001b: TSCAP	Pin function select bits 00000b: Hi-Z 00001b: MTIOC2A 00101b: TMO1 01010b: TXD1/SMOSI1/SSDA1 11001b: TS4 11011b: LPTO
P27PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC2B 00101b: TMCI3 00111b: CACREF 01001b: ADTRG0# 01010b: SCK1 01011b: RXD6/SMISO6/SSCL6 01100b: SCK12 11001b: TS10	Pin function select bits 00000b: Hi-Z 00001b: MTIOC2B 00101b: TMCI3 01010b: SCK1 11001b: TS3
P2nPFS	ISEL	Interrupt input function select bit	—
	ASEL	Analog function select bit	—

Table 2.35 Comparison of P3n Pin Function Control Register (P3nPFS)

Register	Bit	RX113 (n = 0 to 2)	RX140 (n = 0 to 2, 4, 6, 7)
P30PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4B 00101b: TMRI3 00111b: POE8# 01010b: RXD1/SMISO1/SSCL1 11000b: CAPH	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4B 00101b: TMRI3 00111b: POE8# 01010b: RXD1/SMISO1/SSCL1 11001b: TS2
P31PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4D 00101b: TMCI2 01011b: CTS1#/RTS1#/SS1# 11000b: CAPL	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4D 00101b: TMCI2 01011b: CTS1#/RTS1#/SS1# 11001b: TS1
P32PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC0C 00101b: TMO3 00111b: RTCOUT 01011b: TXD6/SMOSI6/SSDA6 01100b: CTS6#/RTS6#/SS6# 11001b: TS11	Pin function select bits 00000b: Hi-Z 00001b: MTIOC0C 00101b: TMO3 00111b: RTCOUT 01011b: TXD6/SMOSI6/SSDA6 11001b: TS0
P34PFS	—	—	P34 pin function control register
P36PFS	—	—	P36 pin function control register
P37PFS	—	—	P37 pin function control register
P3nPFS	ISEL	Interrupt input function select bit 0: Not used as IRQn input pin 1: Used as IRQn input pin P30: IRQ0 (100-pin, 64-pin) P31: IRQ1 (100-pin, 64-pin) P32: IRQ2 (100-pin, 64-pin)	Interrupt input function select bit 0: Not used as IRQn input pin 1: Used as IRQn input pin P30: IRQ0 (80/64/48/32-pin) P31: IRQ1 (80/64/48/32-pin) P32: IRQ2 (80/64-pin) P34: IRQ4 (80-pin) P36: IRQ2 (80/64/48/32-pin) P37: IRQ4 (80/64/48-pin)

Table 2.36 Comparison of P4n Pin Function Control Register (P4nPFS)

Register	Bit	RX113 (n = 0 to 4, 6)	RX140 (n = 0 to 7)
P4nPFS	ASEL	Analog function select bit 0: Used as other than as analog pin 1: Used as analog pin P40: AN000 (100-pin, 64-pin) P41: AN001/VREFH (100-pin, 64-pin) P42: AN002/VREFL (100-pin, 64-pin) P43: AN003 (100-pin) P44: AN004 (100-pin) P46: AN006 (100-pin)	Analog function select bit 0: Used as other than as analog pin 1: Used as analog pin P40: AN000 (80/64/48/32-pin) P41: AN001 (80/64/48/32-pin) P42: AN002 (80/64/48/32-pin) P43: AN003 (80/64-pin) P44: AN004 (80/64-pin) P45: AN005 (80/64/48-pin) P46: AN006 (80/64/48-pin) P47: AN007 (80/64/48-pin)

Table 2.37 Comparison of P5n Pin Function Control Register (P5nPFS)

Register	Bit	RX113 (n = 0 to 6)	RX140 (n = 4, 5)
P50PFS	—	P50 pin function control register	—
P51PFS	—	P51 pin function control register	—
P52PFS	—	P52 pin function control register	—
P53PFS	—	P53 pin function control register	—
P54PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4B 00101b: TMCI1 11000b: VL2	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4B 00101b: TMCI1 11001b: TS12 11100b: CTXD0
P55PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4D 00101b: TMO3 11000b: VL1	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4D 00010b: MTIOC4A 00101b: TMO3 11001b: TS11 11100b: CRTXT0
P56PFS	—	P56 pin function control register	—
P5nPFS	ISEL	Interrupt input function select bit	—

Table 2.38 Comparison of P9n Pin Function Control Register (PAnPFS)

Register	Bit	RX113 (n = 0 to 2)	RX140
PA9nPFS	—	P9n pin function control register	—

Table 2.39 Comparison of PAn Pin Function Control Register (PAnPFS)

Register	Bit	RX113 (n = 0 to 7)	RX140 (n = 0 to 6)
PA0PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4A 00111b: CACREF 01101b: SSLA1 11000b: SEG24	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4A 00111b: CACREF 01101b: SSLA1 11001b: TS32
PA1PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC0B 00010b: MTCLKC 00111b: RTCOUT 01010b: SCK5 01101b: SSLA2 11000b: SEG23	Pin function select bits 00000b: Hi-Z 00001b: MTIOC0B 00010b: MTCLKC 00111b: MTIOC3B 01010b: SCK5 01101b: SSLA2 11001b: TS31
PA2PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 01010b: RXD5/SMISO5/SSCL5/ IRRxD5 01101b: SSLA3 11000b: SEG22	Pin function select bits 00000b: Hi-Z 01010b: RXD5/SMISO5/SSCL5/ IRRxD5 01101b: SSLA3 11001b: TS30
PA3PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC0D 00010b: MTCLKD 00011b: MTIOC1B 00111b: POE0# 01010b: RXD5/SMISO5/SSCL5/ IRRxD5 01101b: MISOA 11000b: SEG21	Pin function select bits 00000b: Hi-Z 00001b: MTIOC0D 00010b: MTCLKD 00011b: MTIOC4D 00100b: MTIC5V 01010b: RXD5/SMISO5/SSCL5 11001b: TS29

Register	Bit	RX113 (n = 0 to 7)	RX140 (n = 0 to 6)
PA4PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIC5U 00010b: MTCLKA 00011b: MTIO2CB 00101b: TMRI0 01010b: TXD5/SMOSI5/SSDA5/ IRTXD5 01011b: CTS8#/RTS8#/SS8# 01101b: SSLA0 11000b: SEG20	Pin function select bits 00000b: Hi-Z 00001b: MTIC5U 00010b: MTCLKA 00011b: MTIOC4C 00101b: TMRI0 01010b: TXD5/SMOSI5/SSDA5 01101b: SSLA0 11001b: TS28
PA5PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 01010b: SCK8 11000b: SEG19	Pin function select bits 00000b: Hi-Z 01101b: SSLA0 11001b: TS27
PA6PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIC5V 00010b: MTCLKB 00011b: MTIOC2A 00101b: TMCI3 00111b: POE2# 01010b: RXD8/SMISO8/SSCL8 01011b: CTS5#/RTS5#/SS5# 01101b: MOSIA 01111b: SDA0	Pin function select bits 00000b: Hi-Z 00001b: MTIC5V 00010b: MTCLKB 00011b: MTIOC3D 00101b: TMCI3 00111b: POE2# 01011b: CTS5#/RTS5#/SS5# 01101b: MOSIA 11001b: TS26
PA7PFS	—	PA7 pin function control register	—
PAnPFS	ISEL	Interrupt input function select bit 0: Not used as IRQn input pin 1: Used as IRQn input pin PA3: IRQ6 (100-pin, 64-pin) PA4: IRQ5 (100-pin, 64-pin) PA6: IRQ3 (100-pin, 64-pin)	Interrupt input function select bit 0: Not used as IRQn input pin 1: Used as IRQn input pin PA3: IRQ6 (80/64/48/32-pin) PA4: IRQ5 (80/64/48/32-pin)
	ASEL	—	Analog function select bit

Table 2.40 Comparison of PBn Pin Function Control Register (PBnPFS)

Register	Bit	RX113 (n = 0 to 7)	RX140 (n = 0 to 7)
PB0PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIC5W 00010b: MTIOC0C 00111b: RTCOUT 01001b: ADTRG0# 01011b: RXD6/SMISO6/SSCL6 01101b: RSPCKA 01111b: SCL0	Pin function select bits 00000b: Hi-Z 00001b: MTIC5W 00010b: MTIOC3D 01011b: RXD6/SMISO6/SSCL6 01101b: RSPCKA 11001b: TS25
PB1PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC0C 00010b: MTIOC4C 00101b: TMCI0 01011b: TXD6/SMOSI6/SSDA6 10111b: SSIWS0 11000b: SEG17	Pin function select bits 00000b: Hi-Z 00001b: MTIOC0C 00010b: MTIOC4C 00101b: TMCI0 01011b: TXD6/SMOSI6/SSDA6 10000b: CMPOB1 11001b: TS24
PB2PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 01011b: CTS6#/RTS6#/SS6# 11000b: SEG16	Pin function select bits 00000b: Hi-Z 01011b: CTS6#/RTS6#/SS6# 10000b: CMPOB1 11001b: TS23
PB3PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC0A 00010b: MTIOC4A 00011b: MTIOC3B 00101b: TMO0 00111b: POE3# 01011b: SCK6 10011b: USB0_OVRCURA 10111b: AUDIO_MCLK 11000b: COM7/SEG15	Pin function select bits 00000b: Hi-Z 00001b: MTIOC0A 00010b: MTIOC4A 00101b: TMO0 00111b: POE3# 01011b: SCK6 11001b: TS22 11011b: LPT0
PB4PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 01011b: CTS9#/RTS9#/SS9# 11000b: SEG14	Pin function select bits 00000b: Hi-Z 01011b: CTS9#/RTS9#/SS9# 11001b: TS21

Register	Bit	RX113 (n = 0 to 7)	RX140 (n = 0 to 7)
PB5PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC2A 00010b: MTIOC1B 00101b: TMRI1 00111b: POE1# 01010b: SCK9 10111b: SSISCK0 11000b: COM6/SEG13	Pin function select bits 00000b: Hi-Z 00001b: MTIOC2A 00010b: MTIOC1B 00101b: TMRI1 00111b: POE1# 01010b: SCK9 11001b: TS20
PB6PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC3D 01010b: RXD9/SMISO9/SSCL9 10111b: SSIRXD0 11000b: COM5/SEG12	Pin function select bits 00000b: Hi-Z 00001b: MTIOC3D 01010b: RXD9/SMISO9/SSCL9 11001b: TS19
PB7PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC3B 01010b: TXD9/SMOSI9/SSDA9 10111b: SSITXD0 11000b: COM4/SEG11	Pin function select bits 00000b: Hi-Z 00001b: MTIOC3B 01010b: TXD9/SMOSI9/SSDA9 11001b: TS18
PBnPFS	ISEL	Interrupt input function select bit 0: Not used as IRQn input pin 1: Used as IRQn input pin PB0: IRQ2 (100-pin, 64-pin) PB1: IRQ4 (100-pin, 64-pin)	Interrupt input function select bit 0: Not used as IRQn input pin 1: Used as IRQn input pin PB1: IRQ4 (80/64/48-pin)

Table 2.41 Comparison of PCn Pin Function Control Register (PCnPFS)

Register	Bit	RX113 (n = 0 to 7)	RX140 (n = 2 to 7)
PC0PFS	—	PC0 pin function control register	—
PC1PFS	—	PC1 pin function control register	—
PC2PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4B 01010b: RXD5/SMISO5/SSCL5 01101b: SSLA3 11000b: COM3	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4B 01010b: RXD5/SMISO5/SSCL5 01101b: SSLA3 11001b: TS17

Register	Bit	RX113 (n = 0 to 7)	RX140 (n = 2 to 7)
PC3PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4D 01010b: TXD5/SMOSI5/SSDA5 11000b: COM2	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4D 01010b: TXD5/SMOSI5/SSDA5 11001b: TS16
PC4PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC3D 00010b: MTCLKC 00101b: TMCI1 00111b: POE0# 01001b: CLKOUT 01010b: SCK5 01011b: CTS8#/RTS8#/SS8# 01101b: SSLA0 10001b: USB0_VBUSEN 10010b: USB0_VBUS 11000b: COM1	Pin function select bits 00000b: Hi-Z 00001b: MTIOC3D 00010b: MTCLKC 00011b: MTIOC0A 00101b: TMCI1 00111b: POE0# 01010b: SCK5 01011b: CTS8#/RTS8#/SS8# 01101b: SSLA0 11001b: TSCAP
PC5PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC3B 00010b: MTCLKD 00101b: TMRI2 01010b: SCK8 01011b: SCK1 01101b: RSPCKA 10011b: USB0_ID 11000b: COM0	Pin function select bits 00000b: Hi-Z 00001b: MTIOC3B 00010b: MTCLKD 00011b: MTIOC0C 00101b: TMRI2 01010b: SCK8 01101b: RSPCKA 11001b: TS15
PC6PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC3C 00010b: MTCLKA 00101b: TMCI12 01010b: RXD8/SMISO8/SSCL8 01011b: RXD1/SMISO1/SSCL1 01101b: MOSIA 10011b: USB0_EXICEN 11000b: VL4	Pin function select bits 00000b: Hi-Z 00001b: MTIOC3C 00010b: MTCLKA 00101b: TMCI2 01010b: RXD8/SMISO8/SSCL8 01101b: MOSIA 11001b: TS14

Register	Bit	RX113 (n = 0 to 7)	RX140 (n = 2 to 7)
PC7PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC3A 00010b: MTCLKB 00101b: TMO2 00111b: CACREF 01010b: TXD8/SMOSI8/SSDA8 01011b: TXD1/SMOSI1/SSDA1 01101b: MISOA 10011b: USB0_OVRCURB 11000b: VL3	Pin function select bits 00000b: Hi-Z 00001b: MTIOC3A 00010b: MTCLKB 00101b: TMO2 00111b: CACREF 01010b: TXD8/SMOSI8/SSDA8 01101b: MISOA 11001b: TS13 11011b: LPTO
PCnPFS	ISEL	Interrupt input function select bit	—

Table 2.42 Comparison of PDn Pin Function Control Register (PDnPFS)

Register	Bit	RX113 (n = 0 to 4)	RX140 (n = 0 to 2)
PD0PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 11000b: SEG39	Pin function select bits 00000b: Hi-Z 01011b: TXD6/SMOSI6/SSDA6
PD1PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00111b: MTIOC4B 11000b: SEG38	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4B 01011b: TXD6/SMOSI6/SSDA6
PD2PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00111b: MTIOC4BD 11000b: SEG37	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4D 01011b: TXD6/SMOSI6/SSDA6
PDnPFS	ISEL	Interrupt input function select bit 0: Not used as IRQn input pin 1: Used as IRQn input pin PD0: IRQ0 (100-pin, 64-pin) PD1: IRQ1 (100-pin, 64-pin) PD2: IRQ2 (100-pin, 64-pin) PD3: IRQ3 (100-pin) PD4: IRQ4 (100-pin)	Interrupt input function select bit 0: Not used as IRQn input pin 1: Used as IRQn input pin PD0: IRQ0 (80-pin) PD1: IRQ1 (80-pin) PD2: IRQ2 (80-pin)
PDnPFS	ASEL	—	Analog function select bit

Table 2.43 Comparison of PEn Pin Function Control Register (PEnPFS)

Register	Bit	RX113 (n = 0 to 7)	RX140 (n = 0 to 5)
PE0PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00010b: MTIOC2A 00111b: POE3# 01010b: CTS9#/RTS9#/SS9# 01100b: SCK12 10111b: SSISCK0 11000b: SEG32	Pin function select bits 00000b: Hi-Z 01100b: SCK12
PE1PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4C 01100b: TXD12/SMOSI12/SSDA12/ TXDX12/SIOX12 10111b: SSITXD0 11000b: SEG31	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4C 01100b: TXD12/SMOSI12/SSDA12/ TXDX12/SIOX12
PE2PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4C 01100b: RXD12/SMISO12/SSCL12/ RXDX12 10111b: SSIRXD0 11000b: SEG30	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4A 01100b: RXD12/SMISO12/SSCL12/ RXDX12 11001b: TS35
PE3PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4B 00010b: MTIOC1B 00011b: MTIOC0A 00111b: POE8# 01010b: SCK9 01101b: RSPCKA 10111b: AUDIO_MCLK 11000b: SEG29	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4B 00010b: MTIOC1B 00111b: POE8# 01001b: CLKOUT 01100b: CTS12#/RTS12#/SS12# 11001b: TS34

Register	Bit	RX113 (n = 0 to 7)	RX140 (n = 0 to 5)
PE4PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4D 00010b: MTIOC1A 00011b: MTIOC3A 01010b: RXD9/SMISO9/SSCL9 01101b: MOSIA 10111b: SSIWS0 11000b: SEG28	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4D 00010b: MTIOC1A 00011b: MTIOC4A 01001b: CLKOUT 11001b: TS33
PE5PFS	PSEL[4:0]	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4C 00010b: MTIOC2B 00111b: CMPOB1 01010b: TXD9/SMOSIO9/SSDA9 01101b: MISOA 11000b: SEG27	Pin function select bits 00000b: Hi-Z 00001b: MTIOC4C 00010b: MTIOC2B 10000b: CMPOB0
PE6PFS	—	PE6 pin function control register	—
PE7PFS	—	PE7 pin function control register	—
PEnPFS	ISEL	Interrupt input function select bit 0: Not used as IRQn input pin 1: Used as IRQn input pin PE0: IRQ0 (100-pin, 64-pin) PE1: IRQ1 (100-pin, 64-pin) PE2: IRQ7 (100-pin, 64-pin) PE3: IRQ3 (100-pin, 64-pin) PE4: IRQ4 (100-pin, 64-pin) PE5: IRQ5 (100-pin, 64-pin) PE6: IRQ6 (100-pin, 64-pin) PE7: IRQ7 (100-pin, 64-pin)	Interrupt input function select bit 0: Not used as IRQn input pin 1: Used as IRQn input pin PE2: IRQ7 (80/64/48/32-pin) PE5: IRQ5 (80/64-pin)
	ASEL	Analog function select bit 0: Used as other than as analog pin 1: Used as analog pin PE0: AN008 (100-pin, 64-pin) PE1: AN009 (100-pin, 64-pin) PE2: AN010 (100-pin, 64-pin) PE3: AN011 (100-pin, 64-pin) PE4: AN012 (100-pin, 64-pin) PE5: AN013 (100-pin, 64-pin) PE6: AN014 (100-pin, 64-pin) PE7: AN015 (100-pin, 64-pin)	Analog function select bit 0: Used as other than as analog pin 1: Used as analog pin PE0: AN016 (80/64-pin) PE1: AN017, CMPB0 (80/64/48/32-pin) PE2: AN018, CVREFB0 (80/64/48/32-pin) PE3: AN019 (80/64/48/32-pin) PE4: AN020, CMPA2 (80/64/48/32-pin) PE5: AN021 (80/64-pin)

Table 2.44 Comparison of PFn Pin Function Control Register (PFnPFS)

Register	Bit	RX113 (n = 6, 7)	RX140
PFnPFS	—	PFn pin function control register	—

Table 2.45 Comparison of PHn Pin Function Control Register (PHnPFS)

Register	Bit	RX113	RX140 (n = 0 to 3)
PHnPFS	—	—	PHn pin function control register

Table 2.46 Comparison of PJn Pin Function Control Register (PJnPFS)

Register	Bit	RX113 (n = 0, 2, 3, 6, 7)	RX140 (n = 1, 6, 7)
PJ1PFS	—	—	PJ1 pin function control register
PJ3PFS	—	PJ3 pin function control register	—
PJ0PFS PJ2PFS	ASEL	Analog function select bit 0: Used as other than as analog pin 1: Used as analog pin PJ0: DA0 (100-pin, 64-pin) PJ2: DA1 (100-pin, 64-pin)	—
PJ6PFS	ASEL	PJ6 pin function control register 0: The AVCC0 pin is selected as the reference power supply pin for the high-potential side. 1: The VREFH0 pin is selected as the reference power supply pin for the high-potential side. PJ6: AVCC0/VREFH0 (100-pin, 64-pin)	PJ6 pin function control register 0: Used as other than as analog pin 1: Used as analog pin PJ6: VREFH0 (80/64/48-pin)
PJ7PFS	ASEL	PJ7 pin function control register 0: The AVSS0 pin is selected as the reference power supply ground pin for the low-potential side. 1: The VREFL0 pin is selected as the reference power supply ground pin for the low-potential side. PJ7: AVSS0/VREFL0 (100/64-pin)	PJ7 pin function control register 0: Used as other than as analog pin 1: Used as analog pin PJ7: VREFL0 (80/64/48-pin)

2.17 Compare Match Timer

Table 2.47 is a comparison of compare match timer registers.

Table 2.47 Comparison of Compare Match Timer Registers

Register	Bit	RX113	RX140
CMSTR1	—	Compare match timer start register 1	—

2.18 Realtime Clock

Table 2.48 is a comparison of realtime clock registers.

Table 2.48 Comparison of Realtime Clock Registers

Register	Bit	RX113 (RTCA)	RX140 (RTC _c)
RCR3	—	RTC control register 3	—

2.19 Low-Power Timer

Table 2.49 is a comparative overview of the low-power timers, and Table 2.50 is a comparison of low-power timer registers.

Table 2.49 Comparative Overview of Low-Power Timers

Item	RX113 (LPT)	RX140 (LPTa)
Clock source	Sub-clock or IWDT-dedicated clock	Sub-clock, LOCO clock (divided by 4) , or IWDT-dedicated clock
Clock division ratio	Divided by 2, 4, 8, 16, or 32	No division, or divided by 2, 4, 8, 16, or 32
Count operation	<ul style="list-style-type: none"> Count up using the 16-bit up-counter Count operation can be continued even in software standby mode 	<ul style="list-style-type: none"> Count up using the 16-bit up-counter. Count operation can be continued even in software standby mode.
Compare match	<ul style="list-style-type: none"> Compare match 0 (A compare match signal is generated only in software standby mode) 	<ul style="list-style-type: none"> Compare match 0 (A compare match signal is generated only in software standby mode.) Compare match 1
PWM waveform generation	—	A PWM waveform can be output on the LPT0 pin.
Interrupt	—	Compare match 1
Event link function (output)	<ul style="list-style-type: none"> Compare match 0 An event signal is output (a compare match signal is generated only in software standby mode). 	<ul style="list-style-type: none"> Compare match 0 (A compare match signal is generated only in software standby mode.) Compare match 1

Table 2.50 Comparison of Low-Power Timer Registers

Register	Bit	RX113 (LPT)	RX140 (LPTa)
LPTCR1	LPCNTPSSEL [2:0]	Clock division ratio select bits b2 b0 0 0 1: Divided by 2 0 1 0: Divided by 4 0 1 1: Divided by 8 1 0 0: Divided by 16 1 0 1: Divided by 32 Settings other than the above are prohibited.	Clock division ratio select bits b2 b0 0 0 0: No division 0 0 1: Divided by 2 0 1 0: Divided by 4 0 1 1: Divided by 8 1 0 0: Divided by 16 1 0 1: Divided by 32 Settings other than the above are prohibited.
	LPCNTCKSEL (RX113) LPCNTCKSEL2, LPCNTCKSEL (RX140)	Clock source select bit 0: Sub-clock 1: IWDT-dedicated clock (IWDTCLK) ^{*2}	Clock source select bit, clock source select bit 2 b4 b3 0 0: Sub-clock 0 1: LOCO clock divided by 4^{*1} 1 0: IWDT-dedicated clock (IWDTCLK) 1 1: LOCO clock divided by 4^{*1}
	LPCMRE1	—	Compare match 1 enable bit
LPTCR2	OPOL	—	Output polarity select bit
	OLVL	—	Output level select bit
	PWME	—	PWM mode enable bit
LPCMR1	—	—	Low-power timer compare register 1

Note: 1. The clock generated by the low-speed on-chip oscillator (LOCO), divided by 4, is supplied to the low-power timer. To ensure that operation of the LOCO clock continues in software standby mode when it is being used as the clock source of the low-power timer, set the LFOCR.LOFXIN bit to 1.

2.20 Serial Communications Interface

Table 2.51 is a comparative overview of the serial communications interfaces, and Table 2.52 is a comparison of serial communications interface channel specifications, and Table 2.53 is a comparison of serial communications interface registers.

Table 2.51 Comparative Overview of Serial Communications Interfaces

Item	RX113 (SCLe, SCIf)	RX140 (SCIg, SCIk, SCIf)
Number of channels	<ul style="list-style-type: none"> SCLe: 7 channels SCIf: 1 channel 	<ul style="list-style-type: none"> SCIg: 3 channels SCIk: 2 channels SCIf: 1 channel
Serial communications modes	<ul style="list-style-type: none"> Asynchronous Clock synchronous Smart card interface Simple I²C bus Simple SPI bus 	<ul style="list-style-type: none"> Asynchronous Clock synchronous Smart card interface Simple I²C bus Simple SPI bus
Transfer speed	Bit rate specifiable by on-chip baud rate generator.	Bit rate specifiable by on-chip baud rate generator.
Full-duplex communication	<ul style="list-style-type: none"> Transmitter: Continuous transmission possible using double-buffer structure. Receiver: Continuous reception possible using double-buffer structure. 	<ul style="list-style-type: none"> Transmitter: Continuous transmission possible using double-buffer structure. Receiver: Continuous reception possible using double-buffer structure.
Data transfer	Selectable as LSB first or MSB first transfer.	Selectable as LSB first or MSB first transfer.
I/O signal level inversion	—	The levels of input and output signals can be inverted independently (SCI1 and SCI5).
Interrupt sources	Transmit end, transmit data empty, receive data full, and receive error, completion of generation of a start condition, restart condition, or stop condition (for simple I ² C mode)	Transmit end, transmit data empty, receive data full, receive error, and data match (SCI1 and SCI5), completion of generation of a start condition, restart condition, or stop condition (for simple I ² C mode)
Low power consumption function	Individual channels can be transitioned to the module stop state.	Individual channels can be transitioned to the module stop state.
Asynchronous mode	Data length	7 or 8 bits
	Transmission stop bits	1 or 2 bits
	Parity	Even parity, odd parity, or no parity
	Receive error detection function	Parity, overrun, and framing errors
	Hardware flow control	CTS _n # and RTS _n # pins can be used in controlling transmission/reception.

Item	RX113 (SCl _e , SCl _f)		RX140 (SCl _g , SCl _k , SCl _h)
Asynchronous mode	Data match detection	—	Compares receive data and comparison data, and generates interrupt when they are matched (SCI1 and SCI5)
	Start-bit detection	Low level or falling edge is selectable.	Low level or falling edge is selectable.
	Receive data sampling timing adjustment	—	The receive data sampling point can be shifted from the center of the data forward or backward to a base point (SCI1 and SCI5).
	Transmit signal change timing adjustment	—	Either the falling or rising edge of the transmit data can be delayed (SCI1 and SCI5).
	Break detection	When a framing error occurs, a break can be detected by reading the RXDn pin level directly.	When a framing error occurs, a break can be detected by reading the RXDn pin level directly or by reading the SPTR.RXDMON flag (SCI1 or SCI5).
	Clock source	<ul style="list-style-type: none"> An internal or external clock can be selected. Transfer rate clock input from the MTU can be used. 	<ul style="list-style-type: none"> An internal or external clock can be selected. Transfer rate clock input from the TMR can be used (SCI5 and SCI6).
	Double-speed mode	—	Baud rate generator double-speed mode is selectable.
	Multi-processor communications function	Serial communication among multiple processors	Serial communication among multiple processors
	Noise cancellation	The signal paths from input on the RXDn pins incorporate digital noise filters.	The signal paths from input on the RXDn pins incorporate digital noise filters.
Clock synchronous mode	Data length	8 bits	8 bits
	Receive error detection	Overrun error	Overrun error
	Hardware flow control	CTS _n # and RTS _n # pins can be used in controlling transmission/reception.	CTS _n # and RTS _n # pins can be used in controlling transmission/reception.
Smart card interface mode	Error processing	<ul style="list-style-type: none"> An error signal can be automatically transmitted when detecting a parity error during reception Data can be automatically retransmitted when receiving an error signal during transmission 	<ul style="list-style-type: none"> An error signal can be automatically transmitted when detecting a parity error during reception Data can be automatically retransmitted when receiving an error signal during transmission
	Data type	Both direct convention and inverse convention are supported.	Both direct convention and inverse convention are supported.

Item		RX113 (SClE, SClf)	RX140 (SClG, SClk, SClh)
Simple I ² C mode	Communication format	I ² C bus format	I ² C bus format
	Operating mode	Master (single-master operation only)	Master (single-master operation only)
	Transfer rate	Fast mode is supported.	Fast mode is supported.
	Noise cancellation	The signal paths from input on the SSCLn and SSDAn pins incorporate digital noise filters, and the interval for noise cancellation is adjustable.	The signal paths from input on the SSCLn and SSDAn pins incorporate digital noise filters, and the interval for noise cancellation is adjustable.
Simple SPI mode	Data length	8 bits	8 bits
	Detection of errors	Overrun error	Overrun error
	SS input pin function	Applying the high level to the SSn# pin can cause the output pins to enter the high-impedance state.	Applying the high level to the SSn# pin can cause the output pins to enter the high-impedance state.
	Clock settings	Four kinds of settings for clock phase and clock polarity are selectable.	Four kinds of settings for clock phase and clock polarity are selectable.
Extended serial mode (supported by SCI12 only)	Start frame transmission	<ul style="list-style-type: none"> Break field low width output and generation of interrupt on completion Detection of bus collision and generation of interrupt on detection 	<ul style="list-style-type: none"> Break field low width output and generation of interrupt on completion Detection of bus collision and generation of interrupt on detection
	Start frame reception	<ul style="list-style-type: none"> Detection of break field low width and generation of interrupt on detection Data comparison of control fields 0 and 1 and generation of interrupt when they match Ability to specify two kinds of data for comparison (primary and secondary) in control field 1 Ability to specify priority interrupt bit in control field 1 Support for start frames that do not include a break field Support for start frames that do not include a control field 0 Function for measuring bit rates 	<ul style="list-style-type: none"> Detection of break field low width and generation of interrupt on detection Data comparison of control fields 0 and 1 and generation of interrupt when they match Ability to specify two kinds of data for comparison (primary and secondary) in control field 1 Ability to specify priority interrupt bit in control field 1 Support for start frames that do not include a break field Support for start frames that do not include a control field 0 Function for measuring bit rates

Item		RX113 (SCLe, SCIf)	RX140 (SCIg, SCIk, SCIh)
Extended serial mode (supported by SCI12 only)	I/O control function	<ul style="list-style-type: none"> Ability to select polarity or TXDX12 and RXDX12 signals Ability to specify digital filtering of RXDX12 signal Half-duplex operation employing RXDX12 and TXDX12 signals multiplexed on the same pin Ability to select receive data sampling timing of RXDX12 pin 	<ul style="list-style-type: none"> Ability to select polarity or TXDX12 and RXDX12 signals Ability to specify digital filtering of RXDX12 signal Half-duplex operation employing RXDX12 and TXDX12 signals multiplexed on the same pin Ability to select receive data sampling timing of RXDX12 pin
	Timer function	Usable as reloading timer	Usable as reloading timer
Bit rate modulation function		—	Correction of outputs from the on-chip baud rate generator can reduce errors.
Event link function (supported by SCI5 only)		<ul style="list-style-type: none"> Error (receive error or error signal detection) event output Receive data full event output Transmit data empty event output Transmit end event output 	<ul style="list-style-type: none"> Error (receive error or error signal detection) event output Receive data full event output Transmit data empty event output Transmit end event output

Table 2.52 Comparison of Serial Communications Interface Channel Specifications

Item	RX113 (SCLe, SCIf)	RX140 (SCIg, SCIk, SCIh)
Synchronous mode	SCI0, SCI1, SCI2, SCI5, SCI6, SCI8, SCI9, SCI12	SCI1, SCI5, SCI6, SCI8, SCI9, SCI12
Clock synchronous mode	SCI0, SCI1, SCI2, SCI5, SCI6, SCI8, SCI9, SCI12	SCI1, SCI5, SCI6, SCI8, SCI9, SCI12
Smart card interface mode	SCI0, SCI1, SCI2, SCI5, SCI6, SCI8, SCI9, SCI12	SCI1, SCI5, SCI6, SCI8, SCI9, SCI12
Simple I ² C mode	SCI0, SCI1, SCI2, SCI5, SCI6, SCI8, SCI9, SCI12	SCI1, SCI5, SCI6, SCI8, SCI9, SCI12
Simple SPI mode	SCI0, SCI1, SCI2, SCI5, SCI6, SCI8, SCI9, SCI12	SCI1, SCI5, SCI6, SCI8, SCI9, SCI12
Data match detection	—	SCI1, SCI5
Extended serial mode	SCI12	SCI12
MTU clock input (RX113) TMR clock input (RX140)	SCI1, SCI5, SCI12	SCI5, SCI6, SCI12
Event link function	SCI5	SCI5
Peripheral module clock	PCLKB: SCI0, SCI1, SCI2, SCI5, SCI6, SCI8, SCI9, SCI12	PCLKB: SCI1, SCI5, SCI6, SCI8, SCI9, SCI12

Table 2.53 Comparison of Serial Communications Interface Registers

Register	Bit	RX113 (SCLe, SCIf)	RX140 (SCIg, SCIk, SCIh)
RDRH	—	—	Receive data registers H, L, and HL
RDRL	—	—	
RDRHL	—	—	
TDRH	—	—	Transmit data registers H, L, and HL
TDRL	—	—	
TDRHL	—	—	

Register	Bit	RX113 (SCl _e , SCl _f)	RX140 (SCl _g , SCl _k , SCl _h)
SMR	CHR	<p>Character length bit</p> <p>(Valid only in asynchronous mode)</p> <p>0: Selects 8 bits as the data length for transmission and reception 1: Selects 7 bits as the data length for transmission and reception</p>	<p>Character length bit</p> <p>(Valid only in asynchronous mode)</p> <p>Selections are made in combination with the SCMR.CHR1 bit.</p> <p>CHR1 CHR</p> <p>0 0: Selects 9 bits as the data length for transmission and reception</p> <p>0 1: Selects 9 bits as the data length for transmission and reception</p> <p>1 0: Selects 8 bits as the data length for transmission and reception (initial value)</p> <p>1 1: Selects 7 bits as the data length for transmission and reception</p>
SCR (when SCMR.SMIF = 0)	CKE[1:0]	<p>Clock enable bits</p> <p>(Asynchronous mode)</p> <p>b1 b0</p> <p>0 0: On-chip baud rate generator The SCK_n pin is in the high-impedance state.</p> <p>0 1: On-chip baud rate generator A clock with the same frequency as the bit rate is output on the SCK_n pin.</p> <p>1 x: External clock or MTU clock <ul style="list-style-type: none"> When using an external clock, input a clock with a frequency 16 times the bit rate on the SCK_n pin. When the SEMR.ABCS bit is set to 1, input a clock with a frequency eight times the bit rate. When using the MTU clock, the SCK_n pin is in the high-impedance state. </p> <p>(Clock synchronous mode)</p> <p>b1 b0</p> <p>0 x: Internal clock: The SCK_n pin functions as the clock output pin.</p> <p>1 x: External clock: The SCK_n pin functions as the clock input pin.</p>	<p>Clock enable bits</p> <p>(Asynchronous mode)</p> <p>b1 b0</p> <p>0 0: On-chip baud rate generator The SCK_n pin is in the high-impedance state.</p> <p>0 1: On-chip baud rate generator A clock with the same frequency as the bit rate is output on the SCK_n pin.</p> <p>1 x: External clock or TMR clock^{*1} <ul style="list-style-type: none"> When using an external clock, input a clock with a frequency 16 times the bit rate on the SCK_n pin. When the SEMR.ABCS bit is set to 1, input a clock with a frequency eight times the bit rate. When using the TMR clock, the SCK_n pin is in the high-impedance state. </p> <p>(Clock synchronous mode)</p> <p>b1 b0</p> <p>0 x: Internal clock: The SCK_n pin functions as the clock output pin.</p> <p>1 x: External clock: The SCK_n pin functions as the clock input pin.</p>
SCMR	CHR1	—	Character length bit
MDDR	—	—	Modulation duty register

Register	Bit	RX113 (SCl _e , SCIf)	RX140 (SCl _g , SCl _k , SCl _h)
SEMR	ACS0	<p>Asynchronous mode clock source select bit</p> <p>(Valid only in asynchronous mode)</p> <p>0: External clock</p> <p>1: Logical AND of two compare matches output from MTU (valid for SCI5, SCI6, and SCI12 only)</p>	<p>Asynchronous mode clock source select bit</p> <p>(Valid only in asynchronous mode)</p> <p>0: External clock</p> <p>1: Logical AND of two compare matches output from TMR (valid for SCI5, SCI6, and SCI12 only)</p> <p>The compare match outputs that can be used differ according to the SCI channel.</p>
	ITE	—	Immediate transmission enable bit
	BRME	—	Bit rate modulation enable bit
	ABCSE	—	Asynchronous basic clock select extended bit
	BGDM	—	Baud rate generator double-speed mode select bit
CDR	—	—	Comparison data register
DCCR	—	—	Data comparison control register
SPTR	—	—	Serial port register
TMGR	—	—	Transmit/receive timing select register
CR2	BCCS[1:0]	<p>Bus collision detection clock select bits</p> <p>b5 b4</p> <p>0 0: SCI base clock</p> <p>0 1: SCI base clock frequency divided by 2</p> <p>1 0: SCI base clock frequency divided by 4</p> <p>1 1: Setting prohibited</p>	<p>Bus collision detection clock select bits</p> <p>(When the SEMR.BGDM bit is cleared to 0 or the SEMR.BGDM bit is set to 1 and the SMR.CKS[1:0] bits are set to a value other than 00b)</p> <p>b5 b4</p> <p>0 0: Base clock</p> <p>0 1: Base clock frequency divided by 2</p> <p>1 0: Base clock frequency divided by 4</p> <p>1 1: Setting prohibited</p> <p>(When the SEMR.BGDM bit is set to 1 and the SMR.CKS[1:0] bits are set to 00b)</p> <p>b5 b4</p> <p>0 0: Base clock frequency divided by 2</p> <p>0 1: Base clock frequency divided by 4</p> <p>1 0: Setting prohibited</p> <p>1 1: Setting prohibited</p>

Note: 1. Selectable on SCI5, SCI6, and SCI12 only.

2.21 I²C bus Interface

Table 2.54 is a comparison of I²C bus interface registers.

Table 2.54 Comparison of I²C Bus Interface Registers

Register	Bit	RX113 (RIIC)	RX140 (RIICa)
ICMR2	TMWE	Timeout internal counter write enable bit	—
TMOCNTL TMOCNTU	—	Timeout internal counter	—

2.22 Serial Peripheral Interface

Table 2.55 is a comparative overview of serial peripheral interfaces, and Table 2.56 is a comparison of serial peripheral interface registers.

Table 2.55 Comparative Overview of Serial Peripheral Interfaces

Item	RX113 (RSPI)	RX140 (RSPIc)
Number of channels	1 channel	1 channel
RSPI transfer functions	<ul style="list-style-type: none"> Use of MOSI (master out/slave in), MISO (master in/slave out), SSL (slave select), and RSPCK (RSPI clock) signals allows serial communications through SPI operation (4-wire method) or clock synchronous operation (3-wire method). Transmit-only operation is available. Communication mode: Full-duplex or transmit-only can be selected. Switching of the polarity of RSPCK Switching of the phase of RSPCK 	<ul style="list-style-type: none"> Use of MOSI (master out/slave in), MISO (master in/slave out), SSL (slave select), and RSPCK (RSPI clock) signals allows serial communications through SPI operation (4-wire method) or clock synchronous operation (3-wire method). Communication mode: Full-duplex or transmit-only can be selected. Switching of the polarity of RSPCK Switching of the phase of RSPCK
Data format	<ul style="list-style-type: none"> MSB first/LSB first selectable Transfer bit length is selectable as 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 128-bit transmit/receive buffers Up to four frames can be transferred in one round of transmission/reception (each frame consisting of up to 32 bits). 	<ul style="list-style-type: none"> MSB first/LSB first selectable Transfer bit length is selectable as 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 128-bit transmit/receive buffers Up to four frames can be transferred in one round of transmission/reception (each frame consisting of up to 32 bits). Byte swapping of transmit and receive data is selectable
Bit rate	<ul style="list-style-type: none"> In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the division ratio ranges from divided by 2 to divided by 4096). In slave mode, the minimum PCLK clock divided by 8 can be input as RSPCK (the maximum frequency of RSPCK is that of PCLK divided by 8). <ul style="list-style-type: none"> Width at high level: 4 cycles of PCLK Width at low level: 4 cycles of PCLK 	<ul style="list-style-type: none"> In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the division ratio ranges from divided by 2 to divided by 4096). In slave mode, the minimum PCLK clock divided by 4 can be input as RSPCK (the maximum frequency of RSPCK is that of PCLK divided by 4). <ul style="list-style-type: none"> Width at high level: 2 cycles of PCLK Width at low level: 2 cycles of PCLK
Buffer configuration	<ul style="list-style-type: none"> Double buffer configuration for the transmit/receive buffers 128 bits for the transmit/receive buffers 	<ul style="list-style-type: none"> Double buffer configuration for the transmit/receive buffers 128 bits for the transmit/receive buffers
Error detection	<ul style="list-style-type: none"> Mode fault error detection Overrun error detection Parity error detection 	<ul style="list-style-type: none"> Mode fault error detection Overrun error detection Parity error detection Underrun error detection

Item	RX113 (RSPI)	RX140 (RSPIc)
SSL control function	<ul style="list-style-type: none"> Four SSL pins (SSLA0 to SSLA3) for each channel In single-master mode, SSLA0 to SSLA3 pins are output. In multi-master mode: SSLA0 pin for input, and SSLA1 to SSLA3 pins for either output or unused. In slave mode: SSLA0 pin for input, and SSLA1 to SSLA3 pins for unused. Controllable delay from SSL output assertion to RSPCK operation (RSPCK delay) <ul style="list-style-type: none"> Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) Controllable delay from RSPCK stop to SSL output negation (SSL negation delay) <ul style="list-style-type: none"> Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) Controllable wait for next-access SSL output assertion (next-access delay) <ul style="list-style-type: none"> Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) Function for changing SSL polarity 	<ul style="list-style-type: none"> Four SSL pins (SSLA0 to SSLA3) for each channel In single-master mode, SSLA0 to SSLA3 pins are output. In multi-master mode: SSLA0 pin for input, and SSLA1 to SSLA3 pins for either output or unused. In slave mode: SSLA0 pin for input, and SSLA1 to SSLA3 pins for unused. Controllable delay from SSL output assertion to RSPCK operation (RSPCK delay) <ul style="list-style-type: none"> Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) Controllable delay from RSPCK stop to SSL output negation (SSL negation delay) <ul style="list-style-type: none"> Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) Controllable wait for next-access SSL output assertion (next-access delay) <ul style="list-style-type: none"> Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) Function for changing SSL polarity
Control in master transfer	<ul style="list-style-type: none"> A transfer of up to eight commands can be executed sequentially in looped execution. For each command, the following can be set: SSL signal value, bit rate, RSPCK polarity/phase, transfer data length, MSB/LSB first, burst, RSPCK delay, SSL negation delay, and next-access delay A transfer can be initiated by writing to the transmit buffer. MOSI signal value specifiable in SSL negation 	<ul style="list-style-type: none"> A transfer of up to eight commands can be executed sequentially in looped execution. For each command, the following can be set: SSL signal value, bit rate, RSPCK polarity/phase, transfer data length, MSB/LSB first, burst, RSPCK delay, SSL negation delay, and next-access delay A transfer can be initiated by writing to the transmit buffer. MOSI signal value specifiable in SSL negation RSPCK auto-stop function
Interrupt sources	<ul style="list-style-type: none"> Receive buffer full interrupt Transmit buffer empty interrupt RSPI error interrupt (mode fault, overrun, or parity error) RSPI idle interrupt (RSPI idle) 	<ul style="list-style-type: none"> Receive buffer full interrupt Transmit buffer empty interrupt Error interrupt (mode fault, overrun, underrun, or parity error) Idle interrupt
Other functions	<ul style="list-style-type: none"> Function for switching between CMOS output and open-drain output Function for initializing the RSPI Loopback mode 	<ul style="list-style-type: none"> Function for initializing the RSPI Loopback mode
Low power consumption function	Ability to specify module stop state.	Ability to specify module stop state.

Table 2.56 Comparison of Serial Peripheral Interface Registers

Register	Bit	RX113 (RSPIa)	RX140 (RSPIc)
SPSR	MODF	Mode fault error flag 0: No mode fault error occurs 1: A mode fault error occurs	Mode fault error flag 0: Neither a mode fault error nor an underrun error occurs 1: A mode fault error or an underrun error occurs
	UDRF	—	Underrun error flag
SPDR	—	RSPI data register Accessible size • Longwords access (SPDCR.SPLW = 1) • Words access (SPDCR.SPLW = 0)	RSPI data register Accessible size • Longwords access (SPDCR.SPLW = 1, SPBYTE = 0) • Words access (SPDCR.SPLW = 0, SPBYTE = 0) • Bytes access (SPDCR.SPBYT = 1)
SPDCR	SPBYT	—	RSPI byte access specification bit* ¹
SPCR2	SPPE	Parity enable bit 0: A parity bit is not added to transmit data, and no parity checking of receive data is performed. 1: A parity bit is added to transmit data, and parity checking of receive data is performed (when SPCR.TXMD = 0). A parity bit is added to transmit data, but no parity checking of receive data is performed (when SPCR.TXMD = 1).	Parity enable bit 0: A parity bit is not added to transmit data, and no parity checking of receive data is performed. 1: A parity bit is added to transmit data, and parity checking of receive data is performed.
	SCKASE	—	RSPCK auto-stop function enable bit
SPDCR2	—	—	RSPI data control register 2

Note: 1. To access the SPDR register in word or longword units, clear the SPBYT bit to 0.

2.23 Capacitive Touch Sensing Unit

Table 2.57 is a comparative overview of the capacitive touch sensing units, and Table 2.58 is a comparison of capacitive touch sensing unit registers.

Table 2.57 Comparative Overview of Capacitive Touch Sensing Units

Item	RX113 (CTSU)		RX140 (CTSU2SL, CTSU2L)
Operating clock		PCLK, PCLK/2, or PCLK/4	Selectable among PCLKB (1 MHz and above), PCLKB/2, or PCLKB/4, and PCLKB/8
I/O pins	Electrostatic capacitance measurement pins	Electrostatic capacitance measurement pins (12 channels)	Electrostatic capacitance measurement pins (36*¹ /12 channels)
	Measurement power supply capacitor connection pin	TSCAP	TSCAP (0.01 μ F)
Measurement modes	Self-capacitance method	A single touch key is assigned to a single touch pin, and the electrostatic capacitance when in proximity to the human body is measured.	The electrostatic capacitance of pins is determined by measuring the current flow to a switched capacitor.
	Mutual capacitance method	The electrostatic capacitance between two electrodes facing each other (transmission electrode and reception electrode) is measured. <ul style="list-style-type: none"> The transmission power supply can be switched between the internal logic power supply and VCC (dedicated). 	The mutual capacitance between two pins is determined by measuring the current flow to a switched capacitor. <ul style="list-style-type: none"> The transmission power supply can be switched among the internal logic power supply, I/O power supply, and VCC (dedicated).
	Current measurement mode	—	Direct reading of current flowing to pin
Scan modes	Single-scan mode	Electrostatic capacitance is measured on a user-defined channel.	Electrostatic capacitance is measured on one channel.
	Multi-scan mode	Electrostatic capacitance is measured on multiple user-defined channels successively.	Electrostatic capacitance is measured on multiple channels successively.
Noise prevention		Synchronous noise prevention, high-range noise prevention	<ul style="list-style-type: none"> Sensor drive pulse spectrum diffusion function Sensor drive pulse random phase shift function Noise hopping function using multiple-frequency sensor drive pulses
Individual pin adjustments		<ul style="list-style-type: none"> Offset current adjustment function Specification of sensor drive pulse frequency Specification of measurement duration 	<ul style="list-style-type: none"> Offset current adjustment function Specification of sensor drive pulse frequency Specification of measurement duration

Item	RX113 (CTSU)	RX140 (CTSU2SL, CTSU2L)
Measurement start conditions	<ul style="list-style-type: none"> Software trigger External trigger (event input from event link controller (ELC)) 	<ul style="list-style-type: none"> Software trigger External trigger (event input from event link controller (ELC))
Automatic processing functions	—	<ul style="list-style-type: none"> Automatic correction function*¹ Automatic determination function*¹
Low-power functions	—	<p>Ability to perform measurement in snooze mode</p> <ul style="list-style-type: none"> Measurement start by external trigger input via ELC Ability to end snooze mode by contactless determination using automatic determination function*¹ Ability to cancel snooze mode by measurement end interrupt
Interrupt sources	<ul style="list-style-type: none"> Channel-specific setting register write request interrupt (CTSUWR) Measurement data transfer request interrupt (CTSURD) Measurement end interrupt (CTSUFN) 	<ul style="list-style-type: none"> Register setting request interrupt (CTSUWR) Measurement result read request interrupt (CTSURD) Measurement end interrupt (CTSUFN)
Event link function	—	Measurement start trigger input

Note: 1. These functions are implemented on products with ROM capacity of 128 KB or greater.

Table 2.58 Comparison of Capacitive Touch Sensing Unit Registers

Register	Bit	RX113 (CTSUsa)	RX140 (CTSU2SL, CTSU2L)
CTSUCRA (RX140)	—	CTSU control register 0, CTSU control register 1 CTSUCR0 and CTSUCR1 are 8-bit registers.	CTSU control register A CTSUCRA is a 32-bit register.
	CTSUCR0.CTSUSTRT (RX113) STRT (RX140)	CTSU measurement operation start bit	Measurement operation start bit
	CTSUCR0.CTSUCAP (RX113) CAP (RX140)	CTSU measurement operation start trigger select bit	Measurement start trigger select bit
	CTSUCR0.CTSUSNZ (RX113) SNZ (RX140)	CTSU wait state power- saving enable bit	Snooze function enable bit
	CTSUCR0.CTSUIOC	CTSU transmit pin control bit	— (The CTSUCALIB.IOC bit performs the same function.)
	CTSUCR0.CTSUINIT (RX113) INIT (RX140)	CTSU control block initialization bit	Control block initialization bit
	TXVSEL	—	Transmission power supply select bit
	CTSUCR1.CTSUPON (RX113) PON (RX140)	CTSU power supply enable bit (b0)	Measurement power supply enable bit (b8)
	CTSUCR1.CTSUCSW (RX113) CSW (RX140)	CTSU LPF capacitance charging control bit (b1)	LPF capacitance charging control bit (b9)
	CTSUCR1.CTSUATUNE0 (RX113) ATUNE0 (RX140)	CTSU power supply operating mode setting bit (b2)	Power supply operating mode setting bit (b10) Set this bit to 1 when the VCC voltage is less than 2.4 V.
	CTSUCR1.CTSUATUNE1 (RX113) ATUNE1, ATUNE12 (RX140)	CTSU power supply capacity adjustment bit (b3) 0: Normal output 1: High-current output	Current range setting bit 1 (b11) Current range setting bit 2 (b17) ATUNE2 ATUNE1 0 0: 80 μ A 0 1: 40 μ A 0 0: 20 μ A 1 1: 160 μ A

Register	Bit	RX113 (CTSUsa)	RX140 (CTSU2SL, CTSU2L)
CTSUCR0, CTSUCR1 (RX113) CTSUCRA (RX140)	CTSUCR1.CTSUCLK[1:0] (RX113) CLK[1:0] (RX140)	CTSU operating clock select bits (b5 and b4) b5 b4 0 0: PCLK 0 1: PCLK/2 (PCLK divided by 2) 1 0: PCLK/4 (PCLK divided by 4) 1 1: Setting prohibited.	Operating clock select bits (b13 and b12) b13 b12 0 0: PCLKB 0 1: PCLKB/2 (PCLKB divided by 2) 1 0: PCLKB/4 (PCLKB divided by 4) 1 1: PCLKB/8 (PCLKB divided by 4)
	CTSUCR1.CTSUMD[1:0] (RX113) MD0, MD1 (RX140)	CTSU measurement mode select bits (b7 and b6) b7 b6 0 0: Self-capacitance single-scan mode 0 1: Self-capacitance multi-scan mode 1 0: Setting prohibited. 1 1: Mutual capacitance full-scan mode	Measurement mode select bits 0 and 1 (b15 and b14) b15 b14 0 0: Self-capacitance single-scan mode 0 1: Self-capacitance multi-scan mode 1 0: Mutual capacitance single-scan mode 1 1: Mutual capacitance multi-scan mode
	PUMPON	—	Step-up circuit activation bit Set this bit to 1 when the VCC voltage is less than 4.5 V.
	LOAD[1:0]	—	Measurement load control bits
	POSEL[1:0]	—	Non-measurement channel output select bits
	SDPSEL	—	Sensor drive panel select bit
	PCSEL	—	Step-up circuit clock select bit
	STCLK[5:0]	—	State clock select bits
	DCMODE	—	Current measurement mode select bit
	DCBACK	—	Current measurement feedback select bit
CTSUSDPRS, CTSUSST (RX113) CTSUCRB (RX140)	—	CTSU synchronous noise reduction setting register, CTSU sensor stabilization wait control register CTSUSDPRS and CTSUSST are 8-bit registers.	CTSU control register B CTSUCRB is a 32-bit register.

Register	Bit	RX113 (CTSua)	RX140 (CTS2SL, CTSU2L)
CTSUSDPRS, CTSUSST (RX113) CTSUCRB (RX140)	CTSUSDPRS. CTSUPRRATIO[3:0] (RX113) PRRATIO (RX140)	CTSU measurement time and pulse count adjustment bits Recommended setting value: 3 (0011b)	Pseudorandom number update period setting bit* ¹ Sets the shift period of the linear feedback shift register (LFSR) used to generate pseudorandom numbers.
	CTSUSDPRS. CTSUPRMODE[1:0] (RX113) PRMODE (RX140)	CTSU base period and pulse count setting bits b5 b4 0 0: 510 pulses 0 1: 126 pulses 1 0: 62 pulses (recommended setting value) 1 1: Setting prohibited.	Pseudorandom number generation cycle setting bit* ¹ b5 b4 0 0: 255 cycles 0 1: 63 cycles 1 0: 31 cycles 1 1: 3 cycles
	CTSUSDPRS.CTSUSOFF (RX113) SOFF (RX140)	CTSU high-pass noise reduction function off setting bit	Frequency diffusion function off bit
	PROFF	—	Pseudorandom number off bit
	CTSUSST.CTSUSST[7:0] (RX113) SST[7:0] (RX140)	CTSU sensor stabilization wait control bits (b7 to b0) The value of these bits should be fixed at 0001 0000b.	Sensor stabilization wait time setting bits (b15 to b8) <ul style="list-style-type: none"> Random pulse mode If n is defined as the setting value when (CTSUCRA.SDPSEL = 0), the stabilization wait time is 2 (n + 1) cycles of the PCLKB- synchronous sensor drive pulse. High-resolution pulse mode If n is defined as the setting value when (CTSUCRA.SDPSEL = 1), the stabilization wait time is n + 1 cycles of STCLK.
	SSMOD[2:0]	—	SUCLK diffusion mode select bits
	SSCNT[1:0]	—	SUCLK diffusion control bits

Register	Bit	RX113 (CTSua)	RX140 (CTS2SL, CTSU2L)																																																						
CTSUMCH0, CTSUMCH1 (RX113) CTSUMCH (RX140)	—	<p>CTSU measurement channel register 0, CTSU measurement channel register 1</p> <p>CTSUMCH0 and CTSUMCH1 are 8-bit registers.</p>	<p>CTSU measurement channel register</p> <p>CTSUMCHCTSUCRB is a 32-bit register.</p>																																																						
	CTSUMCH0.CTSUMCH0 [3:0] (RX113) MCH0[5:0] (RX140)	<p>CTSU measurement channel 0 bits (b3 to b0)</p> <ul style="list-style-type: none"> Self-capacitance single-scan mode <table> <tr><td>b3</td><td>b0</td></tr> <tr><td>0 0 0 0:</td><td>TS0</td></tr> <tr><td>0 0 0 1:</td><td>TS1</td></tr> <tr><td>0 0 1 0:</td><td>TS2</td></tr> <tr><td>0 0 1 1:</td><td>TS3</td></tr> <tr><td>0 1 0 0:</td><td>TS4</td></tr> <tr><td>0 1 0 1:</td><td>TS5</td></tr> <tr><td>0 1 1 0:</td><td>TS6</td></tr> <tr><td>0 1 1 1:</td><td>TS7</td></tr> <tr><td>1 0 0 0:</td><td>TS8</td></tr> <tr><td>1 0 0 1:</td><td>TS9</td></tr> <tr><td>1 0 1 0:</td><td>TS10</td></tr> <tr><td>1 0 1 1:</td><td>TS11</td></tr> </table> <p>Other than above: Starting measurement operation (CTSUCR0.CTSUSTRT bit = 1) is prohibited after these bits are set.</p> <ul style="list-style-type: none"> Measurement modes other than self-capacitance single-scan mode <table> <tr><td>b3</td><td>b0</td></tr> <tr><td>0 0 0 0:</td><td>TS0</td></tr> <tr><td>0 0 0 1:</td><td>TS1</td></tr> <tr><td>0 0 1 0:</td><td>TS2</td></tr> <tr><td>0 0 1 1:</td><td>TS3</td></tr> <tr><td>0 1 0 0:</td><td>TS4</td></tr> <tr><td>0 1 0 1:</td><td>TS5</td></tr> <tr><td>0 1 1 0:</td><td>TS6</td></tr> <tr><td>0 1 1 1:</td><td>TS7</td></tr> <tr><td>1 0 0 0:</td><td>TS8</td></tr> <tr><td>1 0 0 1:</td><td>TS9</td></tr> <tr><td>1 0 1 0:</td><td>TS10</td></tr> <tr><td>1 0 1 1:</td><td>TS11</td></tr> <tr><td>1 1 1 1:</td><td>Measurement is stopped.</td></tr> </table>	b3	b0	0 0 0 0:	TS0	0 0 0 1:	TS1	0 0 1 0:	TS2	0 0 1 1:	TS3	0 1 0 0:	TS4	0 1 0 1:	TS5	0 1 1 0:	TS6	0 1 1 1:	TS7	1 0 0 0:	TS8	1 0 0 1:	TS9	1 0 1 0:	TS10	1 0 1 1:	TS11	b3	b0	0 0 0 0:	TS0	0 0 0 1:	TS1	0 0 1 0:	TS2	0 0 1 1:	TS3	0 1 0 0:	TS4	0 1 0 1:	TS5	0 1 1 0:	TS6	0 1 1 1:	TS7	1 0 0 0:	TS8	1 0 0 1:	TS9	1 0 1 0:	TS10	1 0 1 1:	TS11	1 1 1 1:	Measurement is stopped.	<p>Measurement channel 0 bits (b5 to b0)</p> <ul style="list-style-type: none"> Single-scan mode Specifies the number of the receive channel to be measured. Multi-scan mode Specifies the number of the receive channel currently being measured.
b3	b0																																																								
0 0 0 0:	TS0																																																								
0 0 0 1:	TS1																																																								
0 0 1 0:	TS2																																																								
0 0 1 1:	TS3																																																								
0 1 0 0:	TS4																																																								
0 1 0 1:	TS5																																																								
0 1 1 0:	TS6																																																								
0 1 1 1:	TS7																																																								
1 0 0 0:	TS8																																																								
1 0 0 1:	TS9																																																								
1 0 1 0:	TS10																																																								
1 0 1 1:	TS11																																																								
b3	b0																																																								
0 0 0 0:	TS0																																																								
0 0 0 1:	TS1																																																								
0 0 1 0:	TS2																																																								
0 0 1 1:	TS3																																																								
0 1 0 0:	TS4																																																								
0 1 0 1:	TS5																																																								
0 1 1 0:	TS6																																																								
0 1 1 1:	TS7																																																								
1 0 0 0:	TS8																																																								
1 0 0 1:	TS9																																																								
1 0 1 0:	TS10																																																								
1 0 1 1:	TS11																																																								
1 1 1 1:	Measurement is stopped.																																																								

Register	Bit	RX113 (CTSua)	RX140 (CTSU2SL, CTSU2L)
CTSUMCH0, CTSUMCH1 (RX113) CTSUMCH (RX140)	CTSUMCH1.CTSUMCH1 [3:0] (RX113) MCH1[5:0] (RX140)	CTSU measurement channel 1 bits (b3 to b0) b3 b0 0 0 0 0: TS0 0 0 0 1: TS1 0 0 1 0: TS2 0 0 1 1: TS3 0 1 0 0: TS4 0 1 0 1: TS5 0 1 1 0: TS6 0 1 1 1: TS7 1 0 0 0: TS8 1 0 0 1: TS9 1 0 1 0: TS10 1 0 1 1: TS11 1 1 1 1: Measurement is stopped.	Measurement channel 1 bits (b13 to b8) • Single-scan mode Specifies the number of the transmit channel to be measured. • Multi-scan mode Specifies the number of the transmit channel currently being measured.
	MCAn	—	Multi-clock n enable bit (n = 0 to 3)
CTSUCHAC0, CTSUCHAC1 (RX113) CTSUCHACx (RX140)	—	CTSU channel enable control register 0, CTSU channel enable control register 1 CTSUCHACn is an 8-bit register.	CTSU channel enable control register x (x = A or B) CTSUCHACx is a 32-bit register.
	CTSUCHACnj (RX113) CHACm (RX140)	CTSU channel enable control nj bit (n = 0, 1) (j = 0 to 7)	Channel m enable control bit (m = 0 to 35)
CTSUCHTRC0, CTSUCHTRC1 (RX113) CTSUCHTRCx (RX140)	—	CTSU channel transmit/ receive control register 0, CTSU channel transmit/ receive control register 1 CTSUCHTRCn is an 8-bit register.	CTSU channel transmit/ receive control register x (x = A or B) CTSUCHTRCA is a 32-bit register.
	CTSUCHTRCnj (RX113) CHTRCm (RX140)	CTSU channel transmit/ receive control nj bit (n = 0, 1) (j = 0 to 7)	Channel m transmit/ receive control bit (m = 0 to 35)
CTSUDCLKC	CTSUSSMOD[1:0]	CTSU diffusion clock mode select bits	— (The CTSUCRB.SSMOD[2:0] bits perform the same function.)
	CTSUSSCNT[1:0]	CTSU diffusion clock control bits	— (The CTSUCRB.CTSUSSCNT [1:0] bits perform the same function.)

Register	Bit	RX113 (CTSua)	RX140 (CTSU2SL, CTSU2L)
CTSUST (RX113) CTSUSR (RX140)	—	CTSU status register CTSUST is an 8-bit register.	CTSU status register CTSUSR is a 32-bit register.
	CTSUSTC[2:0] (RX113) STC[2:0] (RX140)	CTSU measurement status counter (b2 to b0)	Measurement status counter (b10 to b8)
	CTSUDTSR (RX113) DTSR (RX140)	CTSU data transfer status flag (b4)	Data transfer status flag (b12)
	CTSUSOVF (RX113) SOVF (RX140)	CTSU sensor counter overflow flag (b5)	Sensor counter overflow flag (b13)
	CTSUROVF (RX113) UCOVF (RX140)	CTSU reference counter overflow flag (b6)	Sensor unit clock counter overflow flag (b14)
	CTSUPS (RX113) PS (RX140)	CTSU mutual capacitance status flag (b7)	Mutual capacitance status flag (b15)
	MFC[1:0]	—	Multi-clock counter
	ICOMPRST	—	ICOMP0 and ICOMP1 flag reset bit
	ICOMP1	—	Overcurrent detection flag
	ICOMP0	—	Overvoltage detection flag
CTSUSSC	—	CTSU high-pass noise reduction spectrum diffusion control register	—
CTSUSO0, CTSUSO1 (RX113) CTSUSO (RX140)	—	CTSU sensor offset registers 0 and 1 CTSUSO0 and CTSUSO1 are 16-bit registers.	CTSU sensor offset register CTSUSO is a 32-bit register.
	CTSUSO0.CTSUSO[9:0] (RX113) SO[9:0] (RX140)	CTSU sensor offset adjustment bits	Sensor offset adjustment bits

Register	Bit	RX113 (CTSUsa)	RX140 (CTSU2SL, CTSU2L)
CTSUSO0, CTSUSO1 (RX113) CTSUSO (RX140)	CTSUSO0.CTSUSNUM [5:0] (RX113) SNUM[7:0] (RX140)	CTSU measurement count setting bits (b15 to b10) These bits specify the number of measurements by the CTSU.	Measurement period setting bits (b17 to b10) <ul style="list-style-type: none"> • Random pulse mode (CTSUCRA.SDPSEL = 0) The CTSU measurement period is specified as the number of times the basic measurement unit is repeated. The allowable setting range is 00h to 3Fh. If the setting value is n, the basic measurement unit is repeated n + 1 times. • High-resolution pulse mode (CTSUCRA.SDPSEL = 1) The CTSU measurement period is based on STCLK cycles. If the setting value is n, measurement takes place for a period equal to 8 (n + 1) cycles of STCLK.
	CTSUSO1.CTSURICOA [7:0]	CTSU reference ICO current adjustment bits	—
	CTSUSO1.CTSUSDPA [4:0] (RX113) SDPA[7:0] (RX140)	CTSU base clock setting bits (b12 to b8) b12 b8 0 0 0 0 0: Operating clock divided by 2 0 0 0 0 1: Operating clock divided by 4 : 1 1 1 1 0: Operating clock divided by 62 1 1 1 1 1: Operating clock divided by 64	Base clock setting bits (b31 to b24) <ul style="list-style-type: none"> • Random pulse mode (CTSUCRA.SDPSEL = 0) If the setting value is n, the base clock frequency is the operating clock divided by 2 (n + 1). • High-resolution pulse mode (CTSUCRA.SDPSEL = 1) If the setting value is n, the base clock frequency is n + 1 SUCLK cycles.
	CTSUSO1.CTSUICOG [1:0]	CTSUICO gain adjustment bits	—
	SSDIV[3:0]	—	Spectrum diffusion sampling cycle control bits

Register	Bit	RX113 (CTSua)	RX140 (CTSU2SL, CTSU2L)
CTSUSC	CTSUSC[15:0]	CTSU sensor counter bits	—
CTSURC	—	CTSU reference counter	—
CTSUERRS (RX113) CTSUCALIB (RX140)	—	CTSU error status register CTSUERRS is a 16-bit register.	CTSU calibration register CTSUCALIB is a 32-bit register.
CTSUERRS	CTSUSPMD[1:0]	Calibration mode bits	—
(RX113) CTSUCALIB (RX140)	CTSUTSOD (RX113) TSOD (RX140)	TS pin fixed output bit	TS all-pin output control bit
	CTSUDRV (RX113) DRV (RX140)	Calibration setting bit 1	Calibration setting bit 1
	CTSUTSOC (RX113) TSOC (RX140)	Calibration setting bit 2	Calibration setting bit 2
	CTSUICOMP	TSCAP voltage error monitor bit	—
	CLKSEL[1:0]	—	Monitor clock select bits
	SUCLKEN	—	SUCLK enable bit
	IOC	—	Transmit pin control bit
	DCOFF	—	Down-convert off bit
	IOCSEL* ²	—	TS pin IOC fixed select bit
	DACCARRY	—	DAC upper current source carry input
	SUCARRY	—	CCO carry input
	DACCLK	—	DAC modulation circuit clock select bit
	CCOCLK	—	CCO modulation circuit clock select bit
	CCOCALIB	—	CCO calibration mode select bit
	TXREV	—	Transit pin inverted output bit
CTSUTRMR	—	CTSU reference current calibration register	—
CTSUSUCLKA	—	—	CTSU sensor unit clock control register A
CTSUSUCLKB	—	—	CTSU sensor unit clock control register B
CTSUTRIMA	—	—	CTSU trimming register A
CTSUTRIMB	—	—	CTSU trimming register B
CTSUOPT* ²	—	—	CTSU option setting register
CTSUSCNTACT* ²	—	—	CTSU sensor counter automatic correction table access register
CTSUAJCR* ²	—	—	CTSU automatic judgment control register
CTSUAJTHR* ²	—	—	CTSU threshold register
CTSUAJMMAR* ²	—	—	CTSU moving average result register
CTSUAJBLACT* ²	—	—	CTSU baseline average intermediate result register
CTSUAJBLAR* ²	—	—	CTSU baseline average result register

Register	Bit	RX113 (CTSua)	RX140 (CTSU2SL, CTSU2L)
CTSUAJRR*2	—	—	CTSU automatic judgment result register
CTSUADDC	—	—	CTSU A/D converter connection control register

Note: 1. Valid only when the value of the CTSUCRA.SDPSEL bit is 0 (random pulse mode).

Note: 2. These registers are implemented on products with ROM capacity of 128 KB or greater.

2.24 12-Bit A/D Converter

Table 2.59 is a comparative overview of the 12-bit A/D converters, and Table 2.60 is a comparison of 12-bit A/D converter registers.

Table 2.59 Comparative Overview of 12-Bit A/D Converters

Item	RX113 (S12ADb)	RX140 (S12ADE)
Number of units	1 unit	1 unit
Input channels	17 channels	18 channels
Extended analog function	Temperature sensor output, internal reference voltage	Temperature sensor output, internal reference voltage
A/D conversion method	Successive approximation method	Successive approximation method
Resolution	12 bits	12 bits
Conversion time	1.0 μ s per channel (when A/D conversion clock ADCLK = 32 MHz)	Per channel Conversion cycle bit = 0: 0.88 μs, conversion cycle bit = 1: 0.67 μs (when A/D conversion clock (ADCLK) = 48 MHz)
A/D conversion clock	Peripheral module clock PCLK and A/D conversion clock ADCLK can be set so that the frequency ratio should be one of the following. PCLK to ADCLK frequency ratio = 1:1, 1:2, 1:4, 1:8 , 2:1, 4:1 ADCLK is set using the clock generation circuit.	Peripheral module clock PCLKB and A/D conversion clock ADCLK can be set so that the frequency ratio should be one of the following. PCLKB to ADCLK frequency ratio = 1:1, 1:2, 2:1, 4:1, 8:1 ADCLK is set using the clock generation circuit.
Data registers	<ul style="list-style-type: none"> 17 registers for analog input and one for A/D-converted data duplication in double trigger mode One register for temperature sensor output One register for internal reference The results of A/D conversion are stored in 12-bit A/D data registers. In addition mode, A/D conversion results are added and stored in A/D data registers as 14-bit data. 	<ul style="list-style-type: none"> 18 registers for analog input, one for A/D-converted data duplication in double trigger mode One register for temperature sensor output One register for internal reference One register for self-diagnosis The results of A/D conversion are stored in 12-bit A/D data registers. 12-bit accuracy output for the results of A/D conversion The value obtained by adding up A/D-converted results is stored as a value in the number of bit for conversion accuracy + 2 bits/4 bits in the A/D data registers in A/D-converted value addition mode.

Item	RX113 (S12ADb)	RX140 (S12ADE)
Data registers	<ul style="list-style-type: none"> Duplication of A/D conversion data <ul style="list-style-type: none"> — A/D conversion data of one selected analog input channel is stored in A/D data register y when conversion is started by the first trigger and in the duplication register when started by the second trigger. — Duplication is available when double trigger mode is selected in single scan mode or group scan mode only. 	<ul style="list-style-type: none"> Double trigger mode (selectable in single scan and group scan modes): The first piece of A/D-converted analog-input data on one selected channel is stored in the data register for the channel, and the second piece is stored in the duplication register.
Operating modes	<ul style="list-style-type: none"> Single scan mode: <ul style="list-style-type: none"> — A/D conversion is performed only once on the analog inputs of up to 17 channels arbitrarily selected. — A/D conversion is performed only once on the temperature sensor output. — A/D conversion is performed only once on the internal reference voltage. Continuous scan mode: <ul style="list-style-type: none"> — A/D conversion is performed repeatedly on the analog inputs of up to 17 channels arbitrarily selected. Group scan mode: <ul style="list-style-type: none"> — Analog inputs of up to 17 channels are divided into group A and group B, and A/D conversion of the analog inputs selected on a group basis is performed only once. — Conversion start conditions (synchronous trigger) can be selected independently for group A and group B, allowing A/D conversion of the groups to start at different times. 	<ul style="list-style-type: none"> Single scan mode: <ul style="list-style-type: none"> — A/D conversion is performed only once on the analog inputs of up to 18 channels arbitrarily selected. — A/D conversion is performed only once on the temperature sensor output. — A/D conversion is performed only once on the internal reference voltage. Continuous scan mode: <ul style="list-style-type: none"> — A/D conversion is performed repeatedly on the analog inputs of up to 18 channels arbitrarily selected. Group scan mode: <ul style="list-style-type: none"> — Analog inputs of up to 18 arbitrarily selected channels are divided into group A and group B, and A/D conversion of the analog inputs selected on a group basis is performed only once. — Conversion start conditions (synchronous trigger) can be selected independently for group A and group B, allowing A/D conversion of the groups to start at different times. — Group scan mode (when group A is given priority): <ul style="list-style-type: none"> — If a group A trigger is input during A/D conversion on group B, A/D conversion on group B is stopped and A/D conversion is performed on group A. — Restart (rescan) of A/D conversion on group B after completion of A/D conversion on group A can be enabled.

Item	RX113 (S12ADb)	RX140 (S12ADE)
Conditions for A/D conversion start	<ul style="list-style-type: none"> Software trigger Synchronous trigger Trigger by the MTU or ELC Asynchronous trigger A/D conversion can be started by the ADTRG0# pin. 	<ul style="list-style-type: none"> Software trigger Synchronous trigger Trigger by the multi-function timer pulse unit (MTU) or event link controller (ELC) Asynchronous trigger A/D conversion can be triggered by the external trigger ADTRG0# pin.
Functions	<ul style="list-style-type: none"> Variable sampling state count A/D-converted value addition mode Double trigger mode (duplication of A/D conversion data) 	<ul style="list-style-type: none"> Variable sampling state count Self-diagnosis of 12-bit A/D converter Selectable A/D-converted value addition mode or average mode Analog input disconnection detection function (discharge function/precharge function) Double trigger mode (duplication of A/D conversion data) Automatic clear function of A/D data registers Compare function (window A and window B) 16 ring buffers when the compare function is used
Interrupt sources	<ul style="list-style-type: none"> In the modes except double trigger mode and group scan mode, A/D scan end interrupt request (S12ADIO) can be generated on completion of single scan. In double trigger mode, A/D scan end interrupt request (S12ADIO) can be generated on completion of double scan. In group scan mode, an A/D scan end interrupt request (S12ADIO) can be generated on completion of group A scan, whereas an A/D scan end interrupt request (GBADI) for group B can be generated on completion of group B scan. When double trigger mode is selected in group scan mode, A/D scan end interrupt request (S12ADIO) can be generated on completion of double scan of group A, whereas A/D scan end interrupt request (GBADI) specially for group B can be generated on completion of group B scan. The S12ADIO and GBADI interrupts can activate the data transfer controller (DTC). 	<ul style="list-style-type: none"> In the modes except double trigger mode and group scan mode, A/D scan end interrupt request (S12ADIO) can be generated on completion of single scan. In double trigger mode, A/D scan end interrupt request (S12ADIO) can be generated on completion of double scan. In group scan mode, an A/D scan end interrupt request (S12ADIO) can be generated on completion of group A scan, whereas an A/D scan end interrupt request (GBADI) for group B can be generated on completion of group B scan. When double trigger mode is selected in group scan mode, A/D scan end interrupt request (S12ADIO) can be generated on completion of double scan of group A, whereas A/D scan end interrupt request (GBADI) specially for group B can be generated on completion of group B scan. The S12ADIO and GBADI interrupts can activate the data transfer controller (DTC).

Item	RX113 (S12ADb)	RX140 (S12ADE)
Event link function	<ul style="list-style-type: none"> An ELC event is generated on completion of scans other than group B scan in group scan mode. Scan can be started by a trigger output by the ELC. 	<ul style="list-style-type: none"> An ELC event is generated on completion of scans other than group B scan in group scan mode. An ELC event is generated on completion of group B scan in group scan mode. An ELC event is generated on completion of all scans. Scan can be started by a trigger output by the ELC. An ELC event is generated according to the event conditions of the window compare function in single scan mode.
Reference voltages	<ul style="list-style-type: none"> VREFH0, AVCC0, or the internal reference voltage can be selected as the high-side reference voltage. VREFL0 or AVSS0 can be selected as the low-side reference voltage. 	<ul style="list-style-type: none"> VREFH0 or AVCC0 can be selected as the high-side reference voltage. VREFL0 or AVSS0 can be selected as the low-side reference voltage.
Low power consumption function	Ability to specify module stop state	Ability to specify module stop state

Table 2.60 Comparison of 12-Bit A/D Converter Registers

Register	Bit	RX113 (S12ADb)	RX140 (S12ADE)
ADDRy	—	A/D data register y (y = 0 to 4, 6, 8 to 15)	A/D data register y (y = 0 to 8, 16 to 21, 24 to 26)
ADRD	—	—	A/D self-diagnosis data register
ADANSA	—	AD channel select register A	—
ADANSA0	—	—	AD channel select register A0
ADANSA1	—	—	AD channel select register A1
ADANSB	—	AD channel select register B	—
ADANSB0	—	—	AD channel select register B0
ADANSB1	—	—	AD channel select register B1
ADADS	—	A/D-converted value addition mode select register	—
ADADS0	—	—	A/D-converted value addition/average channel select register 0
ADADS1	—	—	A/D-converted value addition/average channel select register 1

Register	Bit	RX113 (S12ADb)	RX140 (S12ADE)
ADADC	ADC[1:0] (RX113) ADC[2:0] (RX140)	Addition count select bits (b1, b0) b1 b0 0 0: 1-time conversion (no addition, same as normal conversion) 0 1: 2-time conversion (1 addition) 1 0: 3-time conversion (2 additions) 1 1: 4-time conversion (3 additions)	Addition count select bits (b2 to b0) b2 b0 0 0 0 : 1-time conversion (no addition, same as normal conversion) 0 0 1 : 2-time conversion (1 addition) 0 1 0 : 3-time conversion (2 additions) 0 1 1 : 4-time conversion (3 additions) 1 0 1 : 16-time conversion (15 additions) Settings other than the above are prohibited.
	AVEE	—	Average mode enable bit
ADCER	DIAGVAL[1:0]	—	Self-diagnosis conversion voltage select bits
	DIAGLD	—	Self-diagnosis mode select bit
	DIAGM	—	Self-diagnosis enable bit
ADEXICR	TSS (RX113) TSSA (RX140)	Temperature sensor output A/D conversion select bits	Temperature sensor output A/D conversion select bits
	OCS (RX113) OCSA (RX140)	Internal reference voltage A/D conversion select bits	Internal reference voltage A/D conversion select bits
ADSTRGR	TRSB[3:0] (RX113) TRSB[5:0] (RX140)	A/D conversion start trigger select bits for group B (b0 to b3)	A/D conversion start trigger select bits for group B (b0 to b5)
	TRSA[3:0] (RX113) TRSA[5:0] (RX140)	A/D conversion start trigger select bits (b8 to b11)	A/D conversion start trigger select bits (b8 to b13)
ADSSTRn	—	A/D sampling state register n (n = 0 to 4, 6, L, T, O)	A/D sampling state register n (n = 0 to 8 , L, T, O)
ADDISCR	—	—	A/D disconnection detection control register
ADELCCR	—	—	A/D event link control register
ADGSPCR	—	—	A/D group scan priority control register
ADCMPCR	—	—	A/D compare function control register
ADCMPANSR0	—	—	A/D compare function window A channel select register 0
ADCMPANSR1	—	—	A/D compare function window A channel select register 1
ADCMPANSER	—	—	A/D compare function window A extended input select register
ADCMPLR0	—	—	A/D compare function window A comparison condition setting register 0

Register	Bit	RX113 (S12ADb)	RX140 (S12ADE)
ADCMPLR1	—	—	A/D compare function window A comparison condition setting register 1
ADCMPLER	—	—	A/D compare function window A extended input comparison condition setting register
ADCMPDR0	—	—	A/D compare function window A lower-side level setting register
ADCMPDR1	—	—	A/D compare function window A upper-side level setting register
ADCMPSR0	—	—	A/D compare function window A channel status register 0
ADCMPSR1	—	—	A/D compare function window A channel status register 1
ADCMPSER	—	—	A/D compare function window A extended input channel status register
ADHVREFCNT	—	—	A/D high-potential/low-potential reference voltage control register
ADWINMON	—	—	A/D compare function window A/B status monitor register
ADCMPBNSR	—	—	A/D compare function window B channel select register
ADWINLLB	—	—	A/D compare function window B lower-side level setting register
ADWINULB	—	—	A/D compare function window B upper-side level setting register
ADCMPBSR	—	—	A/D compare function window B channel status register
ADBUFn	—	—	A/D data storage buffer register n (n = 0 to 15)
ADBUFEN	—	—	A/D data storage buffer enable register
ADBUF PTR	—	—	A/D data storage buffer pointer register
ADCCR	—	—	A/D conversion cycle control register

Table 2.61 Comparison of A/D Conversion Start Triggers Set in the ADSTRGR Registers

Bit	RX113	RX140
TRSB[3:0] (RX113) TRSB[5:0] (RX140)	A/D conversion start trigger select for group B bits b3 b0 0 0 0 1: TRG0AN 0 0 1 0: TRG0BN 0 0 1 1: TRGAN 0 1 0 0: TRG0EN 0 1 0 1: TRG0FN	A/D conversion start trigger select for group B bits b5 b0 1 1 1 1 1: No trigger source selected state 0 0 0 0 1: TRG0AN 0 0 0 0 1 0: TRG0BN 0 0 0 0 1 1: TRGAN 0 0 0 1 0 0: TRG0EN 0 0 0 1 0 1: TRG0FN 0 0 0 1 1 0: TRG4AN 0 0 1 1 1 1: TRG4BN 0 0 1 0 0 0: TRG4ABN 0 0 1 0 0 1: ELCTRG0
TRSA[3:0] (RX113) TRSA[5:0] (RX140)	A/D conversion start trigger select bits b11 b8 0 0 0 0: ADTRG0# 0 0 0 1: TRG0AN 0 0 1 0: TRG0BN 0 0 1 1: TRGAN 0 1 0 0: TRG0EN 0 1 0 1: TRG0FN	A/D conversion start trigger select bits b13 b8 1 1 1 1 1 1: No trigger source selected state 0 0 0 0 0 0: ADTRG0# 0 0 0 0 0 1: TRG0AN 0 0 0 0 1 0: TRG0BN 0 0 0 0 1 1: TRGAN 0 0 0 1 0 0: TRG0EN 0 0 0 1 0 1: TRG0FN 0 0 0 1 1 0: TRG4AN 0 0 0 1 1 1: TRG4BN 0 0 1 0 0 0: TRG4ABN 0 0 1 0 0 1: ELCTRG0

2.25 D/A Converter

Table 2.62 is a comparative overview of the D/A converters, and Table 2.63 is a comparison of D/A converter registers.

Table 2.62 Comparative Overview of D/A Converters

Item	RX113 (R12DAA)	RX140 (DAa)
Resolution	12 bits	8 bits
Output channels	2 channels	2 channels
Measure against interference between analog modules	Measure against interference between D/A and A/D converters: D/A converted data update timing is controlled by the 12-bit A/D converter synchronous D/A conversion enable signal output by the 12-bit A/D converter. This reduces degradation of A/D conversion accuracy due to interference by controlling the timing of the 12-bit D/A converter inrush current with the enable signal.	Measure against interference between D/A and A/D converters: D/A converted data update timing is controlled by the 12-bit A/D converter synchronous D/A conversion enable signal output by the 12-bit A/D converter. This reduces degradation of A/D conversion accuracy due to interference by controlling the timing of the 8-bit D/A converter inrush current with the enable signal.
Low power consumption function	Ability to transition to module stop state	Ability to transition to module stop state
Event link function (input)	Ability to start D/A conversion on channel 0 when an event signal is input	Ability to start D/A conversion on channel 0 when an event signal is input

Table 2.63 Comparison of D/A Converter Registers

Register	Bit	RX113 (R12DAA)	RX140 (DAa)
DAVREFCR	—	D/A VREF control register	—

2.26 Temperature Sensor

Table 2.64 is a comparison of temperature sensor registers.

Table 2.64 Comparison of Temperature Sensor Registers

Register	Bit	RX113 (TEMPSA)	RX140 (TEMPSA)
TSCDRH, TSCDRL (RX113)	—	Temperature sensor calibration data register	Temperature sensor calibration data register
TSCDR (RX140)			

2.27 RAM

Table 2.65 is a comparative overview of RAM.

Table 2.65 Comparative Overview of RAM

Item	RX113	RX140
RAM capacity	Max. 64 KB	Max. 64 KB
RAM address	<ul style="list-style-type: none"> RAM capacity 64 KB RAM0: 0000 0000h to 0000 FFFFh RAM capacity 32 KB RAM0: 0000 0000h to 0000 7FFFh 	<ul style="list-style-type: none"> RAM capacity 64 KB RAM0: 0000 0000h to 0000 FFFFh RAM capacity 32 KB RAM0: 0000 0000h to 0000 7FFFh RAM capacity 16 KB RAM0: 0000 0000h to 0000 3FFFh
Access	<ul style="list-style-type: none"> Single-cycle access is possible for both reading and writing. On-chip RAM can be enabled or disabled. 	<ul style="list-style-type: none"> Single-cycle access is possible for both reading and writing. On-chip RAM can be enabled or disabled.
Low power consumption function	Ability to specify module stop state.	Ability to specify module stop state.

2.28 Flash Memory

Table 2.66 is a comparative overview of flash memory, and Table 2.67 is a comparison of flash memory registers.

Table 2.66 Comparative Overview of Flash Memory

Item	RX113 (FLASH)	RX140 (FLASH)
Memory capacity	<ul style="list-style-type: none"> User area: Up to 512 KB Data area: Up to 8 KB Extra area: Stores the start-up area information, access window information, and unique ID 	<ul style="list-style-type: none"> User area: Up to 256 KB Data area: Up to 8 KB Extra area: Stores the start-up area information, access window information, and unique ID
Addresses	<ul style="list-style-type: none"> Products with capacity of 512 KB FFF8 0000h to FFFF FFFFh Products with capacity of 384 KB FFFA 0000h to FFFF FFFFh Products with capacity of 256 KB FFFC 0000h to FFFF FFFFh Products with capacity of 128 KB FFFE 0000h to FFFF FFFFh 	<ul style="list-style-type: none"> Products with capacity of 256 KB FFFC 0000h to FFFF FFFFh Products with capacity of 128 KB FFFE 0000h to FFFF FFFFh Products with capacity of 64 KB FFFF 0000h to FFFF FFFFh
Software commands	<ul style="list-style-type: none"> The following software commands are implemented: Program, blank check, block erase, and unique ID read The following commands are implemented for programming the extra area: Start-up area information program and access window information program 	<ul style="list-style-type: none"> The following software commands are implemented: Program, blank check, block erase, and all-block erase The following commands are implemented for programming the extra area: Start-up area information program, access window protect, and access window information program
Value after erasure	<ul style="list-style-type: none"> ROM: FFh E2 DataFlash: FFh 	<ul style="list-style-type: none"> ROM: FFh E2 DataFlash: FFh
Interrupt	An interrupt (FRDYI) is generated upon completion of software command processing or forced stop processing.	An interrupt (FRDYI) is generated upon completion of software command processing or forced stop processing.

Item	RX113 (FLASH)	RX140 (FLASH)
On-board programming	<ul style="list-style-type: none"> • Boot mode (SCI interface) <ul style="list-style-type: none"> — Channel 1 of the serial communications interface (SCI1) is used for asynchronous communication. — The user area and data area can be programmed. • Boot mode (FINE interface) <ul style="list-style-type: none"> — The FINE interface is used. — The user area and data area can be programmed. • Boot mode (USB interface) <ul style="list-style-type: none"> — Channel 0 (USB0) of the USB 2.0 function module is used. — The user area and data area can be programmed. — The flash memory can be programmed in self-powered or bus-powered mode. — A personal computer can be connected using only a USB cable. • Self-programming (single-chip mode) <ul style="list-style-type: none"> — The user area can be programmed using a flash programming routine in a user program. 	<ul style="list-style-type: none"> • Boot mode (SCI interface) <ul style="list-style-type: none"> — Channel 1 of the serial communications interface (SCI1) is used for asynchronous communication. — The user area and data area can be programmed. • Boot mode (FINE interface) <ul style="list-style-type: none"> — The FINE interface is used. — The user area and data area can be programmed. • Self-programming (single-chip mode) <ul style="list-style-type: none"> — The user area and data area can be programmed using a flash programming routine in a user program.
Off-board programming	The user area and data area can be programmed using a flash programmer compatible with the MCU.	The user area and data area can be programmed using a flash programmer compatible with the MCU.
ID codes protection	<ul style="list-style-type: none"> • Connection with a serial programmer can be controlled using ID codes in boot mode. • Connection with an on-chip debugging emulator can be controlled using ID codes. 	<ul style="list-style-type: none"> • Connection with a serial programmer can be controlled using ID codes in boot mode. • Connection with an on-chip debugging emulator can be controlled using ID codes.
Start-up program protection function	This function is used to safely program blocks 0 to 15.	This function is used to safely program blocks 0 to 7.
Area protection	During self-programming, this function enables programming only of specified blocks in the user area and disables programming of the other blocks.	During self-programming, this function enables programming only of specified blocks in the user area and disables programming of the other blocks.
Background operation (BGO) function	Programs in the ROM can run while the E2 DataFlash is being programmed.	Programs in the ROM can run while the E2 DataFlash is being programmed.

Table 2.67 Comparison of Flash Memory Registers

Register	Bit	RX113 (FLASH)	RX140 (FLASH)
MEMWAITR	—	—	Memory wait cycle setting register
DFLWAITR	—	—	Data flash wait cycle setting register
FPMCR	FMS0, FMS1, FSM2 (RX113) FMS0, FMS1 (RX140)	Flash operating mode select bits 0, 1, and 2 FMS2 FMS1 FMS0 0 0 0: ROM/E2 DataFlash read mode 0 1 0: E2 DataFlash P/E mode 0 1 1: Discharge mode 1 1 0 1: ROM P/E mode 1 1 1: Discharge mode 2 Settings other than the above are prohibited.	Flash operating mode select bits 0 and 1 FMS1 FMS0 0 0: ROM/E2 DataFlash read mode 0 1: ROMP/E mode 1 0: E2 DataFlash P/E mode 1 1: Setting prohibited.
	LVPE	Low-voltage P/E mode enable bit	—
FCR	CMD[3:0]	Software command setting bits b3 b0 0 0 0 1: Program 0 0 1 1: Blank check 0 1 0 0: Block erase 0 1 0 1: Unique ID read Settings other than the above are prohibited.	Software command setting bits b3 b0 0 0 0 1: Program 0 0 1 1: Blank check 0 1 0 0: Block erase 0 1 1 0: All-block erase Settings other than the above are prohibited.
	DRC	Data read completion bit	—
FEXCR	CMD[2:0]	Software command setting bits b2 b0 0 0 1: Start-up area information program 0 1 0: Access window information program Settings other than the above are prohibited.	Software command setting bits b2 b0 0 0 1: Start-up area information program/ access window protect 0 1 0: Access window information program Settings other than the above are prohibited.
FSARH	—	Flash processing start address register H FSARH is an 8-bit register.	Flash processing start address register H FSARH is a 16 -bit register.
FEARH	—	Flash processing end address register H FEARH is an 8-bit register.	Flash processing end address register H FEARH is a 16 -bit register.
FRBH	—	Flash read buffer register H	—
FRBL	—	Flash read buffer register L	—

Register	Bit	RX113 (FLASH)	RX140 (FLASH)
FWBH, FWBL (RX113) FWBn (RX140)	—	Flash write buffer register H, Flash write buffer register L	Flash write buffer register n (n = 0 to 3)
FSTATTR1	DRRDY	Data read ready flag	—
FEAMH	—	Flash error address monitor register H FEAMH is an 8-bit register.	Flash error address monitor register H FEAMH is a 16 -bit register.
FSCMR	AWPR	—	Access window protect flag
FAWSMR	—	Flash access window start address monitor register Initial value after a reset differs.	Flash access window start address monitor register
FAWEMR	—	Flash access window end address monitor register Initial value after a reset differs.	Flash access window end address monitor register
UIDRn	—	Unique ID register n (n = 0 to 31) UIDRn is an 8-bit register.	Unique ID register n (n = 0 to 3) UIDRn is a 32 -bit register.

2.29 Packages

As indicated in Table 2.68, there are discrepancies in the package drawing codes and availability of some package types, and this should be borne in mind at the board design stage. For details, refer to Design Guide for Migration between RX Family: Differences in Package External form (R01AN4591EJ).

Table 2.68 Packages

Package Type	Renesas Code	
	RX113	RX140
100-pin LFQFP	○	✗
100-pin TFLGA	○	✗
80-pin LFQFP	✗	○
64-pin LFQFP	PLQP0064KB-A	PLQP0064KB-C
48-pin LFQFP	✗	○
32-pin LQFP	✗	○
32-pin HWQFN	✗	○

○: Package available (Renesas code omitted); ✗: Package not available

3. Comparison of Pin Functions

This section presents a comparative description of pin functions as well as a comparison of the pins for the power supply, clocks, and system control. Items that exist only on one group are indicated by **blue text**. Items that exist on both groups with different specifications are indicated by **red text**. **Black text** indicates there is no difference in the item's specifications between groups.

3.1 64-Pin Package

Table 3.1 is a comparative listing of the pin functions of 64-pin package products.

Table 3.1 Comparative Listing of 64-Pin Package Pin Functions

64-Pin LFQFP/ LQFP	RX113	RX140
1	PJ0/DA0	P03* ¹ /DA0
2	P27/MTIOC2B/TMCI3/SCK1/SCK12/RXD6/ SMISO6/SSCL6/IRQ3/CMPA2/CACREF/ ADTRG0#	VCL
3	P26/MTIOC2A/TM01/TXD1/SMOSI1/ SSDA1/USB0_VBUSEN/TXD6/SMOSI6/ SSDA6	MD/PG7/FINED
4	P30/MTIOC4B/POE8#/TMRI3/RXD1/ SMISO1/SSCL1/CAPH/IRQ0	XCIN/PH7* ³
5	P31/MTIOC4D/TMCI2/CTS1#/RTS1#/SS1#/ CAPL/IRQ1	XCOUT/PH6* ³
6	MD/FINED	RES#
7	RES#	XTAL/P37/IRQ4
8	XCOUT	VSS
9	XCIN	EXTAL/P36/IRQ2
10	UPSEL/P35/NMI	VCC
11	XTAL	P35/NMI
12	EXTAL	P32/MTIOC0C/TM03/TXD6* ³ /SMOSI6* ³ / SSDA6* ³ /TS0* ³ /IRQ2/RTCOUT
13	VCL	P31/MTIOC4D/TMCI2/CTS1#/RTS1#/SS1#/ TS1* ³ /IRQ1
14	VSS	P30/MTIOC4B/TMRI3/POE8#/RXD1/ SMISO1/SSCL1/TS2* ³ /IRQ0
15	VCC	P27/MTIOC2B/TMCI3/SCK1/TS3
16	P32/MTIOC0C/RTCOUT/TM03/TXD6/ SMOSI6/SSDA6/CTS6#/RTS6#/SS6#/IRQ2	P26/MTIOC2A/TM01/LPT0/TXD1/SMOSI1/ SSDA1/TS4
17	P17/MTIOC0C/MTIOC3A/SCK1/MISOA/ SDA0/RXD12/RDX12/SMISO12/SSCL12/ IRQ7/MTIOC3B/POE8#/TMO1	P17/MTIOC3A/MTIOC3B/TM01/POE8#/ SCK1/MISOA/SDA0/IRQ7
18	P16/MTIOC3C/MTIOC3D/RTCOUT/TMO2/ TXD1/SMOSI1/SSDA1/MOSIA/SCL0/IRQ6/ ADTRG0# USB0_VBUS/USB0_VBUSEN/ USB0_OVRCURB	P16/MTIOC3C/MTIOC3D/TMO2/TXD1/ SMOSI1/SSDA1/MOSIA/SCL0/IRQ6/ RTCOUT/ADTRG0#
19	P15/MTIOC0B/MTCLKB/TMCI2/RXD1/ SMISO1/SSCL1/RSPCKA/IRQ5/CLKOUT/ CACREF	P15/MTIOC0B/MTCLKB/TMCI2/RXD1/ SMISO1/SSCL1/CRXD0/TS5* ³ /IRQ5

64-Pin LFQFP/ LQFP	RX113	RX140
20	UB#/P14/ MTIOC0A /MTIOC3A/MTCLKA/ TMRI2/CTS1#/RTS1#/SS1#/SSLA0/ TXD12 / IRQ4/ TXDX12 /SIOX12/SMOSI12/SSDA12/ USB0_OVRCURA	P14/MTIOC3A/MTCLKA/TMRI2/CTS1#/RTS1#/SS1#/ CTXD0 / TS6 ^{*3} /IRQ4
21	VCC_USB	PH3/MTIOC4D/TMCI0/TS7 ^{*3}
22	USB0_DM	PH2/MTIOC4C/TMCI0/TS8 ^{*3} /IRQ1
23	USB0_DP	PH1/MTIOC3D/TMCI0/TS9 ^{*3} /IRQ0
24	VSS_USB	PH0/MTIOC3B/TS10 ^{*3} /CACREF
25	P55/MTIOC4D/TMCI0/ VL1	P55/ MTIOC4A /MTIOC4D/TMCI0/ CRXD0 / TS11 ^{*3}
26	P54/MTIOC4B/TMCI1/ VL2	P54/MTIOC4B/TMCI1/ CTXD0 / TS12 ^{*3}
27	PC7/MTIOC3A/MTCLKB/TMCI0/ TXD1 / SMOSI1/SSDA1/MISOA/TXD8/SMOSI8/ SSDA8/USB0_OVRCURB/ VL3 /CACREF	PC7/MTIOC3A/MTCLKB/TMCI0/ LPT0 / TXD8 ^{*3} /SMOSI8 ^{*3} /SSDA8 ^{*3} /MISOA/ TS13 / CACREF
28	PC6/MTIOC3C/MTCLKA/TMCI2/ RXD1 / SMISO1 /SSCL1/MOSIA/RXD8/SMISO8/ SSCL8/USB0_EXICEN/ VL4	PC6/MTIOC3C/MTCLKA/TMCI2/RXD8 ^{*3} / SMISO8 ^{*3} /SSCL8 ^{*3} /MOSIA/ TS14
29	PC5/MTIOC3B/MTCLKD/TMRI2/ SCK1 / RSPCKA/SCK8/ USB0_ID /COM0	PC5/ MTIOC0C /MTIOC3B/MTCLKD/TMRI2/ SCK8 ^{*3} /RSPCKA/ TS15
30	PC4/MTIOC3D/MTCLKC/POE0#/TMCI1/ SSLA0/CTS8#/RTS8#/SS8#/SCK5/ COM1 / IRQ2/CLKOUT/USB0_VBUSEN/ USB0_VBUS ^{*4}	PC4/ MTIOC0A /MTIOC3D/MTCLKC/TMCI1/ POE0#/SCK5/CTS8# ^{*3} /RTS8# ^{*3} /SS8# ^{*3} / SSLA0/ TSCAP
31	PC3/MTIOC4D/TXD5/SMOSI5/SSDA5/ IRTXD5 /COM2	PC3/MTIOC4D/TXD5/SMOSI5/SSDA5/ TS16 ^{*3}
32	PC2/MTIOC4B/RXD5/SMISO5/SSCL5/ SSLA3/ IRRXD5 /COM3	PC2/MTIOC4B/RXD5/SMISO5/SSCL5/ SSLA3/ TS17 ^{*3}
33	PB7/PC1/MTIOC3B/TXD9/SMOSI9/ SSDA9/ SSITXD0 /SEG11/COM4	PB7/PC1 ^{*2} /MTIOC3B/TXD9 ^{*3} /SMOSI9 ^{*3} / SSDA9 ^{*3} / TS18 ^{*3}
34	PB6/PC0/MTIOC3D/RXD9/SMISO9/ SSCL9/ SSIRXD0 /SEG12/COM5	PB6/PC0 ^{*2} /MTIOC3D/RXD9 ^{*3} /SMISO9 ^{*3} / SSCL9 ^{*3} / TS19 ^{*3}
35	PB5/MTIOC2A/MTIOC1B/POE1#/TMRI1/ SCK9/ SSISCK0 /SEG13/COM6	PB5/MTIOC2A/MTIOC1B/TMRI1/POE1#/SCK9 ^{*3} / TS20 ^{*3}
36	PB3/MTIOC0A/ MTIOC3B /SCK6/ AUDIO_MCLK/USB0_OVRCURA/SEG15/ COM7/ MTIOC4A /POE3#/TMO0	PB3/MTIOC0A/ MTIOC4A /TMO0/POE3#/LPT0/SCK6 ^{*3} / TS22 ^{*3}
37	PB1/MTIOC0C/MTIOC4C/TMCI0/TXD6/ SMOSI6/SSDA6/ SSIWS0 /SEG17/IRQ4	PB1/MTIOC0C/MTIOC4C/TMCI0/TXD6 ^{*3} / SMOSI6 ^{*3} /SSDA6 ^{*3} / TS24 ^{*3} /IRQ4/CMPB1
38	VCC	VCC
39	PB0/MTIC5W/ MTIOC0C /RTCOUT/SCL0/ RSPCKA/RXD6/SMISO6/SSCL6/IRQ2/ ADTRG0#	PB0/ MTIOC3D /MTIC5W/RXD6 ^{*3} /SMISO6 ^{*3} / SSCL6 ^{*3} /RSPCKA/ TS25
40	VSS	VSS
41	PA6/MTIC5V/MTCLKB/CTS5#/RTS5#/SS5#/ SDA0/MOSIA/IRQ3/ MTIOC2A /POE2#/TMCI3	PA6/ MTIOC3D /MTIC5V/MTCLKB/TMCI3/ POE2#/CTS5#/RTS5#/SS5#/MOSIA/ TS26 ^{*3}
42	PA4/MTIC5U/MTCLKA/ MTIOC2B /TMRI0/ TXD5/SMOSI5/SSDA5/ IRTXD5 /SSLA0/ SEG20/IRQ5/CVREFB1	PA4/ MTIOC4C /MTIC5U/MTCLKA/TMRI0/ TXD5/SMOSI5/SSDA5/SSLA0/ TS28 /IRQ5/ CVREFB1
43	PA3/MTIOC0D/MTCLKD/ MTIOC1B /POE0#/RXD5/SMISO5/SSCL5/ IRRXD5 /MISOA/ SEG21/IRQ6/CMPB1	PA3/MTIOC0D/ MTIOC4D / MTIC5V /MTCLKD/RXD5/SMISO5/SSCL5/ TS29 /IRQ6/CMPB1

64-Pin LFQFP/ LQFP	RX113	RX140
44	PA1/MTIOC0B/MTCLKC/ RTCOUT /SCK5/ SSLA2/ SEG23	PA1/MTIOC0B/ MTIOC3B /MTCLKC/SCK5/ SSLA2/ TS31
45	PA0/MTIOC4A/SSLA1/ SEG24 /CACREF	PA0/MTIOC4A/SSLA1/ TS32 ^{*3} /CACREF
46	PE5/MTIOC4C/MTIOC2B/ MISOA/TXD9 / SMOSI9/SSDA9/SEG27 /IRQ5/ AN013 / CMPOB1	PE5/MTIOC4C/MTIOC2B/IRQ5/ AN021 / CMPOB0
47	PE4/MTIOC4D/MTIOC1A/ MTIOC3A/MOSIA / RXD9/SMISO9/SSCL9/SSIWS0/SEG28 / IRQ4/AN012	PE4/MTIOC4D/MTIOC1A/ MTIOC4A/TS33 / AN020/CMPA2/CLKOUT
48	PE3/ MTIOC0A/MTIOC1B /MTIOC4B/POE8#// CTS12#/RTS12#/SS12#/RSPCKA/SCK9/ AUDIO_MCLK/SEG29/IRQ3/AN011	PE3/ MTIOC1B /MTIOC4B/POE8#// CTS12#/RTS12#/SS12#/TS34/AN019/ CLKOUT
49	PE2/MTIOC4A/RXD12/RDXD12/SMISO12/ SSCL12/ SSIRXD0/SEG30 /IRQ7/ AN010 / CVREFB0	PE2/MTIOC4A/RXD12/RDXD12/SMISO12/ SSCL12/TS35/IRQ7/ AN018 /CVREFB0
50	PE1/MTIOC4C/TXD12/TDXD12/SIOX12/ SMOSI12/SSDA12/ SSITXD0/SEG31/IRQ1 / AN009 /CMPB0	PE1/MTIOC4C/TXD12/TDXD12/SIOX12/ SMOSI12/SSDA12/ AN017 /CMPB0
51	PE0/MTIOC2A/POE3#/SCK12/CTS9#// RTS9#/SS9#/SSISCK0/SEG32/IRQ0/ AN008	PE0/SCK12/ AN016
52	PE7/SEG33/IRQ7/AN015/CMPOB0	P47 ^{*1} / AN007
53	PE6/SEG34/IRQ6/AN014	P46 ^{*1} / AN006
54	PD2/MTIOC4D/SEG37/IRQ2	P45 ^{*1} / AN005
55	PD1/MTIOC4B/SEG38/IRQ1	P44 ^{*1} / AN004
56	PD0/SEG39/IRQ0	P43 ^{*1} / AN003
57	VREFL/P42 ^{*1} / AN002	P42 ^{*1} / AN002
58	VREFH/P41 ^{*1} / AN001	P41 ^{*1} / AN001
59	VREFL0/PJ7 ^{*1}	VREFL0/PJ7 ^{*1}
60	P40 ^{*1} / AN000	P40 ^{*1} / AN000
61	VREFH0/PJ6 ^{*1}	VREFH0/PJ6 ^{*1}
62	AVSS0	AVCC0
63	AVCC0	P05 ^{*1} / DA1
64	PJ2/DA1	AVSS0

Notes: 1. The power supply of the I/O buffer for these pins is AVCC0.

2. PC0 and PC1 are valid only when the port switching function is selected.

3. Not implemented on products with a ROM capacity of 64 KB.

4. Not 5 V tolerant.

4. Important Information when Migrating Between MCUs

This section presents important information on differences between the RX140 Group and the RX113 Group. 4.1, Notes on Functional Design, presents information regarding the software.

4.1 Notes on Functional Design

Some software that runs on the RX113 Group is compatible with the RX140 Group. Nevertheless, appropriate caution must be exercised due to differences in aspects such as operation timing and electrical characteristics.

Software-related considerations regarding function settings that differ between the RX140 Group and RX113 Group are as follows:

For differences between modules and functions, refer to 2, Comparative Overview of Specifications. For further information, refer to the User's Manual: Hardware of each MCU group, listed in 5, Reference Documents.

4.1.1 Mode Setting Pins

The mode setting pins after reset cancellation are the MD pin only on the RX140 Group and the MD pin and UB pin (multiplexed with P00) on the RX113 Group.

4.1.2 PLL Circuit

The frequency multiplication factor of the PLL circuit can be set to $\times 4$ to $\times 12$ (in $\times 0.5$ increments) on the RX140 Group and to $\times 6$ or $\times 8$ on the RX113 Group. To use the PLL circuit, change the setting of the PLLCR.STC bits to an appropriate value.

4.1.3 12-Bit AD Converter

The RX140 Group incorporates significant changes to the 12-bit A/D converter registers, compared to the RX113 Group. This results in a reduction in software compatibility.

4.1.4 Exception Vector Table

On the RX113 Group the vector table is assigned to a fixed address space, but on the RX140 Group the vector table address can be changed by specifying a value for the start address in the exception table register (EXTB).

4.1.5 Restrictions on Comparison Function

On the RX140 Group the comparison function of the 12-bit A/D converter has the following restrictions:

1. Use of the self-diagnostic function and double-trigger mode are prohibited.
(The ADRD and ADDBLDR registers are not covered by the comparison function.)
2. Single scan mode must be used for matching or unmatched event output.
3. When temperature sensor or internal reference voltage is selected for window A, operation of window B is prohibited.
4. When temperature sensor or internal reference voltage is selected for window B, operation of window A is prohibited.
5. The same channel cannot be set for both window A and window B.
6. Single scan mode must be selected in order to use the buffer function.
(The buffer function cannot be used in conjunction with double trigger mode.)
7. It is necessary to make settings such that high-side reference value \geq low-side reference value.

4.1.6 Port Direction Register (PDR) Initialization

PDR register initialization differs even between products with the same pin count.

4.1.7 Scan Conversion Time of 12-Bit A/D Converter

The scan conversion time of the 12-bit A/D converter differs on the RX113 Group and RX140 Group. The scan conversion time (t_{SCAN}) for single scan operation where the number of selected channels is n is shown below for each group. For details, refer to the description of analog input sampling and scan conversion time on the 12-bit A/D converter in the User's Manual: Hardware of the RX113 Group and RX140 Group, respectively, listed in 5, Reference Documents.

RX113: $t_{SCAN} = t_D + (t_{SPL} + t_{CONV}) n + t_ED$

RX140: $t_{SCAN} = t_D + (t_{DIS} \times n) + t_{DIAG} + (t_{CONV} \times n) + t_ED$

t_D : Start-of-scanning-delay time

t_{SPL} : Sampling time

t_{DIS} : Disconnection detection assistance processing time

t_{DIAG} : Self-diagnosis A/D conversion processing time

t_{CONV} : A/D conversion processing time

t_ED : End-of-scanning-delay time

5. Reference Documents

User's Manual: Hardware

RX113 Group User's Manual: Hardware Rev.1.20 (R01UH0488EJ0120)
(The latest version can be downloaded from the Renesas Electronics website.)

RX140 Group User's Manual: Hardware Rev.1.10 (R01UH0905EJ0110)
(The latest version can be downloaded from the Renesas Electronics website.)

Application Note

RX Family Design Guide for Migration between RX Family Differences in Package External Form
(R01AN4591EJ)
(The latest version can be downloaded from the Renesas Electronics website.)

Technical Update/Technical News

(The latest information can be downloaded from the Renesas Electronics website.)

Related Technical Updates

This module reflects the content of the following technical updates:

TN-RX*-A0241B/E

TN-RX*-A0238A/E

TN-RX*-A0234A/E

TN-RX*-A0230A/E

TN-RX*-A0224B/E

TN-RX*-A0147B/E

TN-RX*-A193A/E

TN-RX*-A168B/E

TN-RX*-A168A/E

TN-RX*-A180A/E

TN-RX*-A0258A/E

Revision History

Rev.	Date	Description	
		Page	Summary
1.00	Jun. 24, 2021	—	First edition issued
1.10	Feb. 21, 2022	17	<i>Revised:</i> Table 2.10 Comparison of Clock Generation Circuit Registers
		34	<i>Revised:</i> Table 2.28 Comparative Overview of I/O Ports (64-Pin)
		83 and 84	<i>Revised:</i> Table 2.58 Comparison of Capacitive Touch Sensing Unit Registers
		100	<i>Revised:</i> Table 3.1 Comparative Listing of 64-Pin Package Pin Functions

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. **RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.**
8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.