Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

3826A Group, 7560A Group

Difference between 3826A Group and 7560A Group

1. Target device

- 7560 Group Mask ROM version: M37560M8A-XXXFP/GP, M37560MFA-XXXFP/GP
- 7560 Group One Time PROM version: M37560EFFP/GP
- 3826A Group Mask ROM version: M38268MCA-XXXFP/GP, M3826AMFA-XXXFP/GP
- 3826 Group One Time PROM version: M3826AEFFP/GP

2. Difference between 3826A Group and 7560A Group

Table 1. Difference between 3826A Group and 7560A Group

		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	T	T		
		3826 Group	3826A Group 7560A Group		7560 Group		
		3826AEF	3826AMFA, 37560MFA,		37560EF		
			38268MCA	37560M8A			
		One Time PROM	Mask ROM version	Mask ROM version	One Time PROM		
		version			version		
ROI	M/RAM [byte]	60K/2.5K	60K/2.5K, <u>48K/1.5K</u>	60K/2.5K, <u>48K/1.5K</u> 60K/2.5K, <u>32K/1K</u>			
Osc	illation circuit	The oscillation circuit co	The oscillation circuit constant for XIN-XOUT and XCIN-XCOUT depends on products.				
cons	stant						
Hys	teresis characteristics	Almost constant	When the power source voltage becomes		Almost constant		
			lower, the range of hyst				
Sub	-clock oscillation	Regulator not	Regulator included	Regulator not			
circu	uit	included		included			
Han	idling of VPP power	A series resistor	A series resistor not rec	A series resistor			
pin ((P70)	(5 k Ω) is required for		(5 k Ω) is required for			
		the pin because input		the pin because input			
		impedance is low.		impedance is low.			
D/A	converter	CTCSS/DTMF function	n included CTCSS/DTMF function		not included		
S	Power source	-0.3 V to 7.0 V	-0.3 V to 6.5 V		-0.3 V to 7.0 V		
ating	voltage (Vcc),						
Absolute maximum ratings	Input voltage	VL2 to 7.0 V	VL2 to 6.5 V		VL2 to 7.0 V		
axim	(C1, C2),						
e ma	Output voltage (VL3),						
solut	Output voltage						
Abs	(C1, C2)						
Power source voltage		Refer to section 6.					
RAM retention voltage		2.0 V (MIN.)	1.8 V	2.0 V (MIN.)			
V _{L1} Power source voltage			1.3 V to 2.1 V		1.3 V to 2.3 V		
Timer X, Y		2.5 ≤ Vcc ≤ 4.0 V :	1.8 ≤ Vcc ≤ 2.0 V: (5×Vcc-8) MHz		2.5 ≤ Vcc ≤ 4.0 V :		
inpu	it frequency (MAX.)	(2×Vcc-4) MHz	2.0 ≤ Vcc ≤ 4.0 V: (Vcc)	(2×Vcc-4) MHz			
f(CNTR0), f(CNTR1)		4.0 ≤ Vcc ≤ 5.5 V :	4.0 ≤ Vcc ≤ 4.5 V: (2×V	4.0 ≤ Vcc ≤ 5.5 V :			
		4 MHz	4.5 ≤ Vcc ≤ 5.5 V: 5 MH	4 MHz			
		<u>i</u>			I.		

 $^{^{\}star}1~\text{As for the A/D converter Specification, refer to "RENESAS Technical Update (NO.~TN-380-A064A/E)"}.$

The electrical characteristics of the 3826A Group are different from that of the 7560A Group.

^{*2} The 3826A Group has the pin-compatibility with the 7560A Group.

3. Oscillation circuit constant

Contact an oscillator manufacturer. Select an oscillator and oscillation circuit constants to obtain the stabilized operation clock on the user system and its condition for mass-production since the oscillation circuits are different between the 3826A Group and 7560A Group, and oscillation circuit constants of XIN-XOUT, XCIN-XCOUT are different every product.

Be careful especially when range of voltage and temperature is wide.

We recommend to design the circuit in consideration of the wiring pattern of the feed-back resistor, the dumping resistor and the load capacity in advance.

The 3826A Group has been considered compatibility and designed for characteristics, actual values such as operation margin, A/D conversion accuracy, noise immunity, and noise radiation in electrical characteristics depending on the differences in the manufacturing processes, internal ROM and layout pattern may be different.

In the 3826A Group, noise radiation is decreased compared with the 7560A Group. Perform sufficient evaluations every individual product.

4. Note

- The 3826A Group is pin-compatible with the 7560A Group.
 - The 3826A Group has some registers related to the DTMF function and CTCSS function (refer to page 4 and page 5).
 - When these functions are not used in the 3826A Group, process the added registers (bits) as follows (1) or (2):
 - (1) Do not write anything to the related registers (bits) (hold an initial value after reset).
 - (2) Write the initial value to the related registers (bits) after reset.

While handling (1) or (2) is progress, the program of the 7560A Group specifications can be operated in the 3826A Group specifications without modifying the program.

Emulator MCU

The M38267RLFS does not have the 10-bit A/D conversion mode function.

Use M37560RLFS for the software development of 10-bit A/D.

The M37560RLFS has the DTMF function and CTCSS function.

5. SFR Comparison between 3826A Group and 7560A Group

3826A Group 7560A Group

000016	Port P0 (P0)	Port P0(P0)			
000116	Port P0 direction register (P0D)	Port P0 direction register (P0D)			
000216	Port P1 (P1)	Port P1(P1)			
000316	Port P1 direction register (P1D)	Port P1 direction register (P1D)			
000416	Port P2 (P2)	Port P2(P2)			
000516	Port P2 direction register (P2D)	Port P2 direction register (P2D)			
000616	Port P3 (P3)	Port P3(P3)			
000716	Port P3 direction register (P3D)	Port P3 direction register (P3D)			
000816	Port P4 (P4)	Port P4(P4)			
000916	Port P4 direction register (P4D)	Port P4 direction register (P4D)			
000A16	Port P5 (P5)	Port P5(P5)			
000B16	Port P5 direction register (P5D)	Port P5 direction register (P5D)			
000C16	Port P6 (P6)	Port P6(P6)			
000D16	Port P6 direction register (P6D)	Port P6 direction register (P6D)			
000E16	Port P7 (P7)	Port P7 (P7)			
000F16	Port P7 direction register (P7D)	Port P7 direction register (P7D)			
001016					
001116					
001216					
001316					
001416	AD conversion low-order register (ADL)	A/D conversion register (low-order) (ADL)			
001516	Key input control register (KIC)	Key input control register (KIC)			
001616	PULL register A (PULLA)	PULL register A (PULLA)			
001716	PULL register B (PULLB)	PULL register B (PULLB)			
001816	Transmit/receive buffer register 1 (TBRB)	Transmit/receive buffer register (TBRB)			
001916	Serial I/O1 status register (SIO1STS)	Serial I/O1 status register (SIO1STS)			
001A16	Serial I/O1 control register (SIO1CON)	Serial I/O1 control register (SIO1CC			
001B16	UART control register (UARTCON)	UART control register (UARTCON)			
001C16	Baud rate generator (BRG)	Baud rate generator (BRG)			
001D16	Serial I/O2 control register (SIO2CON)	Serial I/O2 control register (SIO2CON			
001E16	Reserved area (Access disabled)	Reserved area (Access disabled)			
001F16	Serial I/O2 register (SIO2)	Serial I/O2 register (SIO2)			

NOTES:

Do not access memory in free space of S

3826A Group

7560A Group

002016	Timer X low-order register (TXL)	Timer X low-order register (TXL)			
002116	Timer X high-order register (TXH)	Timer X high-order register (TXH)			
002216	Timer Y low-order register (TYL)	Timer Y low-order register (TYL)			
002316	Timer Y high-order register (TYH)	Timer Y high-order register (TYH)			
002416	Timer 1 register (T1)	Timer 1 register (T1)			
002516	Timer 2 register (T2)	Timer 2 register (T2)			
002616	Timer 3 register (T3)	Timer 3 register (T3)			
002716	Timer X mode register (TXM)	Timer X mode register (TXM)			
002816	Timer Y mode register (TYM)	Timer Y mode register (TYM)			
002916	Timer 123 mode register (T123M)	Timer 123 mode register (T123M)			
002A16	To∪τ/φ output control register (CKOUT)	Tουτ/φ output control register (CKOUT)			
002B16	PWM control register (PWMCON)	PWM control register (PWMCON)			
002C16	PWM prescaler (PREPWM)	PWM prescaler (PREPWM)			
002D16	PWM register (PWM)	PWM register (PWM)			
002E16	CTSCSS timer (low) (CTCSSL)	Reserved area (Access disabled)			
002F16	CTSCSS timer (high) (CTCSSH)	Reserved area (Access disabled)			
003016	DTMF high group timer (DTMFH)	Reserved area (Access disabled)			
003116	DTMF low group timer (DTMFL)	Reserved area (Access disabled)			
003216	DA1 conversion register (DA1)	DA1 conversion register (DA1)			
003316	DA2 conversion register (DA2)	DA2 conversion register (DA2)			
003416	AD control register (ADCON)	AD control register (ADCON)			
003516	AD conversion high-order register (ADH)	AD conversion high-order register (ADH)			
003616	DA control register (DACON)	DA control register (DACON)			
003716	Watchdog timer control register (WDTCON)	Watchdog timer control register (WDTCON)			
003816	Segment output enable register (SEG)	Segment output enable register (SEG)			
003916	LCD mode register (LM)	LCD mode register (LM)			
003A16	Interrupt edge selection register (INTEDGE)	Interrupt edge selection register (INTEDGE)			
003B16	CPU mode register (CPUM)	CPU mode register (CPUM)			
003C16	Interrupt request register1 (IREQ1)	Interrupt request register1 (IREQ1)			
003D16	Interrupt request register2 (IREQ2)	Interrupt request register2 (IREQ2)			
003E16	Interrupt control register1 (ICON1)	Interrupt control register1 (ICON1)			
003F16	Interrupt control register2 (ICON2)	Interrupt control register2 (ICON2)			

NOTES:

Do not access memory in free space of SFR.

: Difference

6. DA Converter

The 3826A Group and 7560A Group have two 8-bit D/A converter.

The 3826 Group has the following functions;

- DTMF (Dual Tone Multi Frequency) function to output the result which generated automatically the waveform of sine wave of two kinds of different frequency, and added two kinds of this sine wave as an analog value.
- CTCSS (Continuous Tone-Controlled Squelch system) function to generate the sine wave of single frequency automatically.

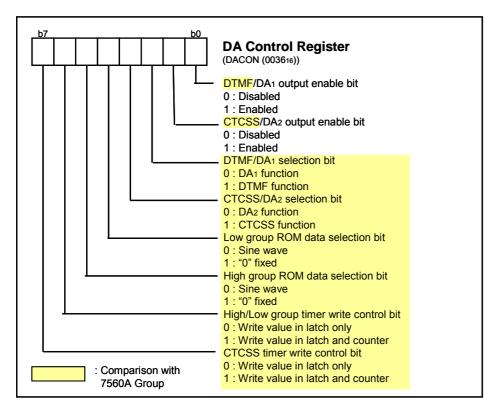


Figure 1. Structure of 3826A Group DA Control Register

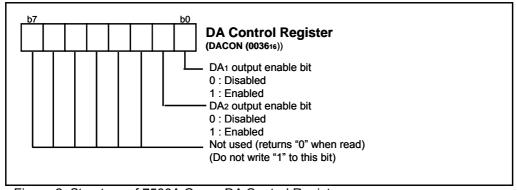


Figure 2. Structure of 7560A Group DA Control Register

· Note on applied voltage to VREF pin

When P56/DA1 pin and P57/DA2 pin are used as D/A conversion output pins, be sure to apply Vcc level to VREF pin. Likewise, when these pins are used as D/A conversion output pins, the Vcc level is recommended for the applied voltage to VREF pin.

When the voltage below Vcc level is applied, the D/A conversion accuracy may be worse.

7. Electrical Characteristics

Symbol	ol Parameter Test conditions			3826AEF		38268MCA 3826AMFA		37560M8A 37560MFA		37560EF	
			Тур.	Max.	Тур.	Max.	Тур.	Max.	Тур.	Max.	
	Power source current	High-speed mode, Vcc = 5 V f(XIN) = 10 MHz f(XCIN) = 32.768 kHz Output transistors "off" A/D converter in operating	-	_	5.5	11.0	4.5	9.0	_	-	mA
		High-speed mode, Vcc = 5 V f(XIN) = 8 MHz f(XCIN) = 32.768 kHz Output transistors "off" A/D converter in operating	6.4	13	4.5	9.0	4.0	8.0	6.4	13	mA
		High-speed mode, Vcc = 5 V f(XIN) = 8 MHz (in WIT state) f(XCIN) = 32.768 kHz Output transistors "off" A/D converter stop	1.6	3.2	1.2	2.4	0.9	1.8	1.6	3.2	mA
		Low-speed mode, Vcc = 5 V, Ta ≤ 55°C f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors "off"	35	70	15	30	15	30	35	70	μΑ
loc		Low-speed mode, Vcc = 5 V, Ta = 25°C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state) Output transistors "off"	20	40	7	14	7	14	20	40	μΑ
Icc		Low-speed mode, Vcc = 3 V, Ta ≤ 55°C f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors "off"	15	22	9	18	9	18	15	22	μА
		Low-speed mode, Vcc = 3 V, Ta = 25°C f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state) Output transistors "off"	4.5	9.0	4.5	9.0	4.5	9.0	4.5	9.0	μΑ
		In STP state Ta = 25°C f(XIN) = stopped f(XCIN) = stopped Output transistors "off"	0.1	1.0	0.1	1.0	0.1	1.0	0.1	1.0	μΑ
		In STP state Ta = 55°C f(XIN) = stopped f(XCIN) = stopped Output transistors "off"	_	-	_	-	-	-	_	-	μΑ
		In STP state Ta = 85°C f(XIN) = stopped f(XCIN) = stopped Output transistors "off"	_	10	_	10	-	10	_	10	μА

8. Reference

Data Sheet

3826 Group (A version) Datasheet

3826 Group (One time PROM version) Datasheet

7560 Group (A version) Datasheet

7560 Group Datasheet

Technical News/Technical Update

Before using this material, please visit our website to verify that this is the most updated document available.

Web site and Support

Renesas Technology Web site http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

csc@renesas.com

REVISION HISTORY	Difference	between	3826A	Group	and
REVISIONTIISTORT	7560A Grou	лр			

Rev.	Date	Description				
Nev.	Date	Page	Summary			
1.00	2006.03.15	-	First Edition issued			
1.01	2006.05.18	4	Color of A/D conversion register (low-order) (ADL) (address 001416)			
			eliminated			
		5	Color of A/D conversion register (high-order) (ADH) (address 003516)			
			eliminated			

Keep safety first in your circuit designs!

 Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
 Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
- 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.