To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

 “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
Introduction

This application note provides an example of transferring data between memory areas with the direct memory access controller (DMAC) of the SH7263/SH7203.

Target Device

SH7263/SH7203

Contents

1. Introduction ... 2
2. Description of Sample Application ... 3
3. Sample Program .. 9
4. Documents for Reference ... 14
1. Introduction

1.1 Specification

- DMAC channel 0 is used to transfer data from the on-chip RAM to external memory. Data are transferred in cycle-stealing mode.
- Auto-request mode (software transfer request) is used for requesting DMA transfer.

1.2 Module Used

- Direct memory access controller (DMAC channel 0)

1.3 Applicable Conditions

- Microcontroller: SH7263/SH7203
- Operating Frequency: Internal clock 200 MHz, Bus clock 66.67 MHz, Peripheral clock 33.33 MHz
- C Compiler: SuperH RISC engine family C/C++ compiler package Ver.9.01, from Renesas Technology
- Compile Option: -cpu = sh2afpu -fpu = single -include = "$\text{WORKSPDIR}/\text{inc}$" -object = "$\text{CONFIGDIR}/\text{FILELEAF}.\text{obj}$" -debug -gbr = auto -chgincpath -errorpath -global_volatile = 0 -opt_range = all -infinite_loop = 0 -del_vacant_loop = 0 -struct_alloc = 1 -nologo

1.4 Related Application Note

The operation of the reference program for this document was confirmed with the setting conditions described in the application note: SH7263/SH7203 Initialization Example. Please refer to the application note in combination with this one.
2. **Description of Sample Application**

In this sample application, the direct memory access controller (DMAC) is used to transfer data from the on-chip RAM to external memory.

2.1 **Operational Overview of Module Used**

When a DMA transfer request is made, the DMAC starts to transfer data in order of priority of channels. Then, it continues the transfer operation until transfer end condition is met. It has three transfer request modes: auto request, external request, and on-chip peripheral module request. The bus mode is selectable from burst mode and cycle-stealing mode.

An overview of the DMAC is provided in table 1. Also, a block diagram of the DMAC is shown in figure 1.

<table>
<thead>
<tr>
<th>Table 1 Overview of DMAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
</tr>
<tr>
<td>Number of channels</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Address space</td>
</tr>
<tr>
<td>Length of transfer data</td>
</tr>
<tr>
<td>Maximum transfer count</td>
</tr>
<tr>
<td>Address mode</td>
</tr>
<tr>
<td>Transfer request</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Bus mode</td>
</tr>
<tr>
<td>Priority level</td>
</tr>
<tr>
<td>Interrupt request</td>
</tr>
<tr>
<td>External request</td>
</tr>
<tr>
<td>detection</td>
</tr>
<tr>
<td>Transfer request</td>
</tr>
<tr>
<td>acknowledge signal</td>
</tr>
<tr>
<td>transfer end signal</td>
</tr>
</tbody>
</table>

Note: For details on the DMAC, refer to the section on the direct memory access controller in the *SH7263/SH7203 Group Hardware Manual.*
[Legend]
RDMATCR: DMA reload transfer count register
DMATCR: DMA transfer count register
RSAR: DMA reload source address register
SAR: DMA source address register
RDAR: DMA reload destination address register
DAR: DMA destination address register

DMAC module

Iteration control
Register control
Start-up control
Request priority control

Bus interface

[Legend]
DACK0 to DACK3, TEND0, TEND1

Figure 1 Block Diagram of DMAC
2.2 Procedure for Setting Module Used

This section describes the procedure for specifying initial settings for transferring data between memory areas with the DMAC. Auto request mode is used for transfer requests. A flowchart of initializing the DMAC is shown in figure 2. For details on registers, refer to the SH7263/SH7203 Group Hardware Manual.

- **[1]** Enabling clock supply to the DMAC (STBCR2)
 - Clear the MSTP8 (module stop 8) bit to 0
 - [Function] Clock supply to the DMAC

- **[2]** Disabling DMA transfer (CHCRn)
 - Clear the DE (DMA enable) bit to 0
 - [Function] Disable DMA transfer

- **[3]** Setting DMA transfer source address (SARn)
 - [Function] Specify DMA transfer source address

- **[4]** Setting DMA transfer source reload address (RSARn)
 - [Function] Specify DMA transfer source address to be reloaded

- **[5]** Setting DMA transfer destination address (DARn)
 - [Function] Specify DMA transfer destination address

- **[6]** Setting DMA transfer destination reload address (RDARn)
 - [Function] Specify DMA transfer destination address to be reloaded

- **[7]** Setting the DMA transfer count (DMATCRn)
 - [Function] Set the DMA transfer count

- **[8]** Setting the DMA transfer reload count (RDMATCRn)
 - [Function] Set the DMA transfer count to be reloaded

- **[9]** Setting the DMA transfer mode (CHCRn)
 - Set the TC (transfer count mode) bit to 1
 - [Function] Transfer data for the count specified in DMATCRn for each transfer request
 - Set the RLDSAR (SAR reload function enable/disable) bit
 - [Function] Enables/disables reload function to SAR and DMATCR
 - Set the RLDDAR (DAR reload function enable/disable) bit
 - [Function] Enables/disables reload function to DAR and DMATCR
 - Set the DM (destination address mode) bits
 - [Function] Select whether the DMA transfer destination address is incremented or decremented
 - Fix/increment/decrement the DMA transfer destination address

- **[10]** Setting the DMA operation register (DMAORn)
 - Set the RS (resource select) bits to B'0100.
 - [Function] Select auto request (as the DMA transfer request source)
 - Set the TB (transfer bus mode) bit
 - [Function] Select a DMA transfer bus mode.
 - Set the TS (transfer size) bits
 - [Function] Specify the DMA transfer size
 - Set the IE (interrupt enable) bit
 - [Function] Enable/disable interrupt requests

- **[11]** Enabling DMA transfer (CHCRn)
 - Set the DE (DMA enable) bit to 1
 - [Function] Start DMA transfer

Figure 2 Flowchart of Initializing DMAC
2.3 Operation of Sample Program

In this sample program, DMAC channel 0 is activated by auto request, and data are transferred from the on-chip RAM to external memory in cycle-stealing mode. In cycle-stealing transfer operation, the DMAC gives the bus mastership to the CPU after each round of transferring a single unit of data. An operation timing of the sample application is shown in figure 3.

![Figure 3 Operation Timing of Sample Application]

2.4 Usage Notes on Sample Program

- In the reference program, the addresses where the source and destination areas of the transfer start are assigned as absolute addresses for clarity. Ensure that sections used by the user program do not overlap with the source and destination regions that start from the absolute addresses.
- In DMA transfer with operand cache enabled, coherency must be kept by disabling or writing back the cache. In the sample program, coherency is kept because a cache-disabled space is accessed from the CPU.
2.5 Processing Procedure of Sample Program

In this sample program 100-byte data stored in the on-chip RAM are transferred to external memory by DMA transfer. The transfer end flag (TE bit) is used to check whether DMA transfer is completed.

The register settings for the sample program are listed in table 2. The macro definitions used in this sample program are also listed in table 3. A flowchart of the sample program is illustrated in figure 4.

Table 2 Register Settings for Sample Program

<table>
<thead>
<tr>
<th>Register Name</th>
<th>Address</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby control register 2 (STBCR2)</td>
<td>H'FFFE 0018</td>
<td>H'00</td>
<td>MSTP8 = 0: DMAC operates</td>
</tr>
<tr>
<td>DMA channel control register 0 (CHCR0)</td>
<td>H'FFFE 100C</td>
<td>H'0000 0000</td>
<td>DE = 0: Disables DMA transfer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H'8000 5410</td>
<td>TC = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Transfers data for the count specified in DMATCR0 for each DMA transfer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>request</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RLDSAR = 0: Disables SAR reload function</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RLDDAR = 0: Disables DAR reload function</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DM = B'01: Increments destination address</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SM = B'01: Increments source address</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RS = B'0100: Auto request</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TB = 0: Cycle-stealing mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TS = B'10: Longword transfer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IE = 0: Disables interrupt request</td>
</tr>
<tr>
<td>DMA source address register 0 (SAR0)</td>
<td>H'FFFE 1000</td>
<td>H'FFFF8 8000</td>
<td>Set start address of transfer source in an on-chip RAM area</td>
</tr>
<tr>
<td>DMA destination address register 0</td>
<td>H'FFFE 1004</td>
<td>H'2C00 0000</td>
<td>Set start address of transfer destination in an external memory area*</td>
</tr>
<tr>
<td>(DAR0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMA transfer count register 0 (DMATCR0)</td>
<td>H'FFFE 1008</td>
<td>H'64</td>
<td>Transfer count: 100 transfers (H'64)</td>
</tr>
<tr>
<td>DMA operation register (DMAOR)</td>
<td>H'FFFE 1200</td>
<td>H'0001</td>
<td>DME = 1: Enables DMA transfer on all the channels</td>
</tr>
<tr>
<td>DMA extension resource selector 0</td>
<td>H'FFFE 1300</td>
<td>H'0000 0000</td>
<td>Not used for auto request</td>
</tr>
<tr>
<td>(DMARS0)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: * The address of external memory varies depending on the target board to be used.
Table 3 Macro Definitions Used in Sample Program

<table>
<thead>
<tr>
<th>Macro Definition</th>
<th>Setting Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDRAM_DST_ADR</td>
<td>H'2C00 0000</td>
<td>• Start address of SDRAM</td>
</tr>
<tr>
<td>SRAM_SRC_ADR</td>
<td>H'FFFF 8000</td>
<td>• Start address of on-chip RAM</td>
</tr>
<tr>
<td>SIZE</td>
<td>H'64</td>
<td>• Transfer count</td>
</tr>
<tr>
<td>DMA_SIZE_BYTE</td>
<td>H'0000</td>
<td>• Byte transfer</td>
</tr>
<tr>
<td>DMA_SIZE_WORD</td>
<td>H'0001</td>
<td>• Word transfer</td>
</tr>
<tr>
<td>DMA_SIZE_LONG</td>
<td>H'0002</td>
<td>• Longword transfer</td>
</tr>
<tr>
<td>DMA_SIZE_LONGx4</td>
<td>H'0003</td>
<td>• 16-byte transfer</td>
</tr>
<tr>
<td>DMA_INT_DISABLE</td>
<td>H'0000</td>
<td>• DMA transfer end interrupt disabled</td>
</tr>
<tr>
<td>DMA_INT_ENABLE</td>
<td>H'0010</td>
<td>• DMA transfer end interrupt enabled</td>
</tr>
</tbody>
</table>

Figure 4 Flowchart of Sample Program
3. Sample Program

1. Sample Program Listing "main.c" (1)

```c
#include <stdio.h>
#include "iodefine.h"    /* iodefine.h is automatically created by HEW */

#define SDRAM_DST_ADR ((void *)0x2c000000) /* External SDRAM start address */
#define SRAM_SRC_ADR ((void *)0xfff88000)  /* Internal SRAM start address */
#define SIZE   100       /* 100 bytes of data are transferred */

#define DMA_SIZE_BYTE  0x0000u
#define DMA_SIZE_WORD  0x0001u
#define DMA_SIZE_LONG  0x0002u
#define DMA_SIZE_LONGx4  0x0003u
#define DMA_INT_DISABLE  0x0000u
#define DMA_INT_ENABLE  0x0010u
#define DMA_INT    (DMA_INT_ENABLE >> 4u)

void main(void);
void io_init_dma0(void *src, void *dst, size_t size, unsigned int mode);
void io_dma0_enable(void);
void io_dma0_stop(void);
```

System Name: SH7203 Sample Program
File Name: main.c
Contents: Data transfer between memory areas with DMAC
Version: 1.00.00
Model: M3A-HS30
CPU: SH7203
Compiler: SHC9.1.1.0

note: A sample program for transferring data with the DMAC0.
Using software triggers transfers 100-byte data from the on-chip RAM to external memory.

<Caution>
This sample program is for reference and its operation is not guaranteed.
Customers should use this sample program for technical reference in software development.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation and Renesas Solutions assume no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Copyright(C) 2007 Renesas Technology Corp. All Rights Reserved AND Renesas Solutions Corp. All Rights Reserved

history: 2007.12.27 ver.1.00.00

FILE COMMENT END"*/
2. Sample Program Listing "main.c" (2)

/*"FUNC COMMENT"***
* Outline : Sample Program Main
*---
* Include :
*---
* Declaration : void main(void);
*---
* Function : Sample program for transferring 100-byte data from on-chip RAM to external
* : SDRAM.
* : Completion of DMA transfer is detected through the DMA transfer-end flag.
* : When DMA transfer ends, the processing enters infinite loop.
*---
* Argument : void
*---
* Return Value : void
*---
* Notice :
* : In the sample program, absolute addresses are used to clarify
* : the start addresses of the data transfer source and destination.
* : When allocating memory areas by absolute addresses, be careful so that
* : they do not overlap with the sections used by user programs.
* : In DMA transfer with the operand cache enabled,
* : coherency must be kept by disabling or writing back the cache.
* : In the sample program, coherency is kept because cache-disabled space is
* : accessed from the CPU.
"FUNC COMMENT END"*/

void main(void)
{
 int i;
 volatile unsigned char *ptr;

 /* ==== Transfer source memory initialization ==== */
 ptr = SRAM_SRC_ADR;
 for(i=0; i < SIZE; i++){
 ptr++ = 0x55; / Fill the transfer source memory with 0x55 */
 }

 /* ==== Transfer destination memory initialization ==== */
 ptr = SDRAM_DST_ADR;
 for(i=0; i < SIZE; i++){
 ptr++ = 0; / Clear transfer destination memory to all 0 */
 }

 /* ==== DMAC initialization ==== */
 io_init_dma0(SRAM_SRC_ADR, SDRAM_DST_ADR, SIZE , DMA_SIZE_LONG | DMA_INT_DISABLE);

 /* ==== Start DMA transfer ==== */
 io_dma0_enable();

 /* ==== Stop DMA transfer ==== */
 io_dma0_stop();

 while(1){
 /* Program end */
 }
}
3. Sample Program Listing "main.c" (3)

```c
/* **FUNC COMMENT** ****************************************************************************
 * Outline : Initialization for DATA transfer between memory areas with DMAC
 *---------------------------------------------------------------
 * Include  : #include "iodefine.h"
 *---------------------------------------------------------------
 * Declaration: io_init_dma0(void *src, void *dst, size_t size, unsigned int mode);
 *---------------------------------------------------------------
 * Function  : The DMAC transfers the amount of data specified by "size".
 *             : from the source address "src" to the destination address "dst".
 *             : Auto request mode is used to transfer data.
 *             : "mode" is specified for transfer size and interrupt used/not used
 *---------------------------------------------------------------
 * Argument  : void *src       : Source address
 *             : void *dst      : Destination address
 *             : size_t size    : Transfer size (byte)
 *             : unsigned int mode : Transfer mode, specifies the following with logical OR.
 *             :   DMA_SIZE_BYTE(0x0000) Byte transfer
 *             :   DMA_SIZE_WORD(0x0001) Word transfer
 *             :   DMA_SIZE_LONG(0x0002) Longword transfer
 *             :   DMA_SIZE_LONGx4(0x0003) 16-byte transfer
 *             :   DMA_INT_DISABLE(0x0000) DMA transfer end interrupt disabled
 *             :   DMA_INT_ENABLE(0x0010) DMA transfer end interrupt enabled
 *---------------------------------------------------------------
 * Return Value : void
 *---------------------------------------------------------------
 * Notice     : Operation is not guaranteed when the alignment of the source/destination
 *             : address is inconsistent.
 *             : When interrupts are used, interrupt routines must be registered.
 */

void io_init_dma0(void *src, void *dst, size_t size, unsigned int mode)
{
    unsigned int ts;
    unsigned long ie;

    ts = mode & 0x3u;
    ie = (mode & 0x00f0u) >> 4u;

    /* ==== Set standby control register 2 (STBCR2) ==== */
    CPG.STBCR2.BIT.MSTP8 = 0x0; /* Cancel module stop mode of the DMAC */

    /* ---- Set DMA channel control register ---- */
    DMAC.CHCR0.BIT.DE = 0ul; /* Disable DMA transfer */

    /* ---- Set DMA source address register ---- */
    DMAC.SAR0.LONG = (unsigned long)src;

    /* ---- Set DMA reload source address register ---- */
    DMAC.RSAR0.LONG = (unsigned long)src;

    /* ---- Set DMA destination address register ---- */
    DMAC.DAR0.LONG = (unsigned long)dst;

    /* ---- Set DMA reload destination address register ---- */
    DMAC.RDAR0.LONG = (unsigned long)dst;

    /* ---- Set DMA transfer count register ---- */
```
4. Sample Program Listing "main.c" (4)

167 /* ---- Set DMA reload transfer count register ---- */
168
169 switch(ts){
170 case DMA_SIZE_BYTE:
171 DMAC.DMATCR0.LONG = size; /* Specify transfer count (1/1) */
172 DMAC.RDMATCR0.LONG = size;
173 break;
174 case DMA_SIZE_WORD:
175 DMAC.DMATCR0.LONG = size >> 1u; /* Specify transfer count (1/2) */
176 DMAC.RDMATCR0.LONG = size >> 1u;
177 break;
178 case DMA_SIZE_LONG:
179 DMAC.DMATCR0.LONG = size >> 2u; /* Specify transfer count (1/4) */
180 DMAC.RDMATCR0.LONG = size >> 2u;
181 break;
182 case DMA_SIZE_LONGx4:
183 DMAC.DMATCR0.LONG = size >> 4u; /* Specify transfer count (1/16) */
184 DMAC.RDMATCR0.LONG = size >> 4u;
185 break;
186 default:
187 break;
188 }
189
190 /* ---- Set DMA channel control register ---- */
191 DMAC.CHCR0.LONG = 0x80005400ul | (ts << 3u) | (ie << 2u);
192 /*
193 bit31 : TC DMATCR transfer:1-------- DMA transfer count specified in DMATC
194 bit30 : reserve 0
195 bit29 : RLDSAR OFF : 0------------- Disable SAR reload function
196 bit28 : RLDDAR OFF : 0------------- Disable DAR reload function
197 bit27-24 : reserve 0
198 bit23 : DO over run0 : 0---------- Unused
199 bit22 : TL TEND low active : 0---- Unused
200 bit21 : reserve 0
201 bit20 : TEMASK : TE set mask : 0-- Disable DMA transfer when TE bit is set
202 bit19 : HE :0--------------------- Unused
203 bit18 : HIE :0--------------------- Unused
204 bit17 : AM :0--------------------- Unused
205 bit16 : AL :0--------------------- Unused
206 bit15-14 : DM1:0 DM0:1--------------- Increment destination address
207 bit13-12 : SM1:0 SM0:1-------------- Increment source address
208 bit11-8 : RS : auto request : B'0100- Auto request
209 bit7 : DL : DREQ level : 0 ------- Unused
210 bit6 : DS : DREQ select :0 Low level Unused
211 bit5 : TB : cycle :0-------------- Cycle-stealing mode
212 bit4-3 : TS : transfer size:B'10--- Longword transfer
213 bit2 : IE : interrupt enable:0--- Disable interrupts
214 bit1 : TE : transfer end---------- Clear TE flag
215 bit0 : DE : DMA enable bit:0------ Disable DMA transfer
216 */
217
218 /* ---- Set DMA operation register ---- */
219 DMAC.DMAOR.WORD &= 0xffff9u; /* AE,NMIF */
5. Sample Program Listing "main.c" (5)

```c
if(DMAC.DMAOR.BIT.DME == 0){     /* Enable DMA transfer on all channels */
    DMAC.DMAOR.BIT.DME = 1;
}

void io_dma0_enable(void)
{
    /* ---- Execute DMA transfer ---- */
    DMAC.CHCR0.BIT.DE = 1ul;    /* DMA */
}

void io_dma0_stop(void)
{
    /* Detect the end of transfer */;
    while(DMAC.CHCR0.BIT.TE == 0ul){
        /* Wait until the TE bit is set */
    }
    /* ---- Stop DMA transfer ---- */
    DMAC.CHCR0.BIT.DE = 0ul;    /* Disable transfer by DMA0 */
}
```

/* End of File */
4. Documents for Reference

- Software Manual
 The most up-to-date version of this document is available on the Renesas Technology Website.

- Hardware Manual
 SH7203 Group Hardware Manual
 SH7263 Group Hardware Manual
 The most up-to-date version of this document is available on the Renesas Technology Website.
Website and Support

Renesas Technology Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
csc@renesas.com

Revision Record

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Apr. 17.08</td>
<td>—</td>
<td>First edition issued</td>
</tr>
<tr>
<td>1.01</td>
<td>Dec. 17.08</td>
<td>—</td>
<td>Source file is updated</td>
</tr>
</tbody>
</table>

All trademarks and registered trademarks are the property of their respective owners.
1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life

 Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

© 2008. Renesas Technology Corp., all rights reserved.