Current Measurement in Different Power Modes and Clock Frequencies for RE01 1500KB Group

Summary
This sample code displays the modes and clock settings in MIP display on Evaluation Kit RE01 1500KB Board. This sample code is intended to assist current consumption measurement. When used together with current measurement tool, users can easily see current consumption of different modes and clock settings of RE01 1500KB Group product. The sample code can be found in the project delivered with this application note.

Target Device
RE01 1500KB Group

Note
When applying the sample code covered in this application note to another microcomputer, modify the code according to the specifications for the target microcomputer and conduct an extensive evaluation of the modified program.

Related Document
Startup Guide to Development Using CMSIS Package for RE01 1500 KB Group (R01AN4660).

Video Contents
RE family Course
You can easily get how to use RE family to learn these video contents
https://academy.renesas.com/?eid=1625
1. Specifications

1.1 Description of Project

A sample code project "r01an5594_current_measurement_re_1500kb.zip" is delivered with this application note.

r01an5594_current_measurement_re_1500kb.zip is a project which operation has been confirmed on the Evaluation Kit RE01 1500KB Board. This project is configured to match the settings of RE01 1500KB (R7F0E015D2CFB) mounted on the Evaluation Kit RE01 1500KB Board. When using another RE01 1500KB device, change the device settings in the project to those of the target device.

About Evaluation Kit RE01 1500KB:

1.2 Overview

This program shows the information of the active modes (power control modes/low power consumption modes/ power supply modes) and clock setting (frequency and division). The example of mode and clock information display is shown below.

![Figure 1.1 Modes and Clock Information Display](image_url)
The overview of the functions used in this program is shown below.

![Program Overview Diagram]

Figure 1.2 Program Overview

1.3 Pins Used

The pins used by the sample code are shown below.

<table>
<thead>
<tr>
<th>Pin Used</th>
<th>Purpose of Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>P410</td>
<td>SW3 (user input)</td>
</tr>
<tr>
<td>P508</td>
<td>SW2 (user input)</td>
</tr>
<tr>
<td>P605</td>
<td>RESET (SPI)</td>
</tr>
<tr>
<td>P606</td>
<td>VCOM (SPI)</td>
</tr>
<tr>
<td>P607</td>
<td>RSPCKB_B (SPI)</td>
</tr>
<tr>
<td>P609</td>
<td>MOSIB_B (SPI)</td>
</tr>
<tr>
<td>P610</td>
<td>SCS (SPI)</td>
</tr>
</tbody>
</table>

In this program, 2 IRQ buttons (SW2 and SW3) are used with the purposes as described below:

- **SW2 button**: to change active clock (ICLK and PCLKB) frequency and division.
- **SW3 button**
 - To change active mode power control modes, low power consumption modes, and power supply modes.
 - To wake up from SSTBY mode.
1.4 Board Setting

Figure 1-3 shows the board setting used to measure current consumption of the program used for this APN.

*Other settings are in default settings

Figure 1.3 Board Setting
2. Conditions for Checking Operation

The operation of the sample code delivered with this application note has been checked under the following conditions (Table 2-1).

Table 2-1 Conditions for Checking Operation

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcontroller used</td>
<td>R7F0E015D2CFB (RE01 Group 1500KB)</td>
</tr>
<tr>
<td>Operating frequency</td>
<td>Selectable with the following configurations:</td>
</tr>
<tr>
<td></td>
<td>System Clock (ICLK)</td>
</tr>
<tr>
<td></td>
<td>Peripheral module clock A (PCLKA)</td>
</tr>
<tr>
<td></td>
<td>Peripheral module clocks B (PCLKB)</td>
</tr>
<tr>
<td>PLL 64 MHz</td>
<td>PLL 64 MHz</td>
</tr>
<tr>
<td>PLL 32 MHz</td>
<td>PLL 32 MHz</td>
</tr>
<tr>
<td>MOSC 32 MHz</td>
<td>MOSC 32 MHz</td>
</tr>
<tr>
<td>MOSC 16 MHz</td>
<td>MOSC 16 MHz</td>
</tr>
<tr>
<td>MOCO 2 MHz</td>
<td>MOCO 2 MHz</td>
</tr>
<tr>
<td>MOCO 1 MHz</td>
<td>MOCO 1 MHz</td>
</tr>
<tr>
<td>SOSC 32.768kHz</td>
<td>SOSC 32.768kHz</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>• 3.3 V</td>
</tr>
<tr>
<td>Target board</td>
<td>Evaluation Kit RE01 1500KB Board</td>
</tr>
<tr>
<td>Development environment</td>
<td>GCC e2 studio 2020-07 made by Renesas Electronics</td>
</tr>
<tr>
<td></td>
<td>IAR IAR Embedded Workbench for ARM Version 8.40.2.22891</td>
</tr>
<tr>
<td>C compiler</td>
<td>GCC GCC ARM Embedded V6.3.1.20170620</td>
</tr>
<tr>
<td></td>
<td>IAR IARC/C++ Compiler for ARM Version 8.40.2 or later</td>
</tr>
<tr>
<td>Version of I/O header</td>
<td>Rev. 1.20</td>
</tr>
<tr>
<td>Version of CMSIS driver package</td>
<td>Rev. 1.20</td>
</tr>
</tbody>
</table>
3. Description of Software

This sample code shows the information of power modes and clock frequencies in MIP LCD display. The code performs the following operations. Details of the program flow is shown in Figure 3-1.

- MIP LCD displays the first mode (BOOST ALLPWON MOSC PLL 32 MHz)
- Press SW2 to change clock frequency and/or division, or SW3 button to change the active mode.
- After going to SSTBY mode, press SW3 button to wake up from SSTBY mode.
- The program goes back to the first mode (BOOST ALLPWON 32 MHz).

![Figure 3.1 Program Flow](image)

There are 14 available combinations of modes and clock settings. Details of the selectable modes and clock settings are shown in Table 3-1. The numbering system for the modes in Table 3-1 corresponds with the numbering system in Figure 3-1.
Table 3-1 Selectable Modes and Clock Setting (Temperature Condition: 25°C VCC=3.3V)

<table>
<thead>
<tr>
<th>No</th>
<th>Mode</th>
<th>Clock</th>
<th>ICLK</th>
<th>PCLKB</th>
<th>Expected Current Measurement Value (µA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BOOST ALLPWON</td>
<td>MOSC</td>
<td>32MHz</td>
<td>0.5MHz(1/64)</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>BOOST ALLPWON</td>
<td>MOSC</td>
<td>64MHz</td>
<td>1MHz(1/64)</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>ALLPWON (High Speed Mode)</td>
<td>MOSC</td>
<td>32MHz</td>
<td>0.5MHz(1/64)</td>
<td>1100</td>
</tr>
<tr>
<td>4</td>
<td>ALLPWON (High Speed Mode)</td>
<td>MOSC</td>
<td>16MHz</td>
<td>0.25MHz(1/64)</td>
<td>650</td>
</tr>
<tr>
<td>5</td>
<td>ALLPWON (Low Speed Mode)</td>
<td>MOCO</td>
<td>2MHz</td>
<td>31.25kHz(1/64)</td>
<td>180</td>
</tr>
<tr>
<td>6</td>
<td>ALLPWON (Low Speed Mode)</td>
<td>MOCO</td>
<td>1MHz</td>
<td>15.625kHz(1/64)</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>ALLPWON (Subosc Speed Mode)</td>
<td>SOSC</td>
<td>32.768kHz</td>
<td>32.768kHz(1/1)</td>
<td>N/A</td>
</tr>
<tr>
<td>8</td>
<td>MINPWON (High Speed Mode)</td>
<td>MOSC</td>
<td>32MHz</td>
<td>0.5MHz(1/64)</td>
<td>1100</td>
</tr>
<tr>
<td>9</td>
<td>MINPWON (High Speed Mode)</td>
<td>MOSC</td>
<td>16MHz</td>
<td>0.25MHz(1/64)</td>
<td>N/A</td>
</tr>
<tr>
<td>10</td>
<td>MINPWON (Low Speed Mode)</td>
<td>MOCO</td>
<td>2MHz</td>
<td>31.25kHz(1/64)</td>
<td>105</td>
</tr>
<tr>
<td>11</td>
<td>MINPWON (Low Speed Mode)</td>
<td>MOCO</td>
<td>1MHz</td>
<td>15.625kHz(1/64)</td>
<td>N/A</td>
</tr>
<tr>
<td>12</td>
<td>MINPWON (Subosc Speed Mode)</td>
<td>SOSC</td>
<td>32.768kHz</td>
<td>32.768kHz(1/1)</td>
<td>N/A</td>
</tr>
<tr>
<td>13</td>
<td>VBB MINPWON</td>
<td>SOSC</td>
<td>32.768kHz</td>
<td>32.768kHz (1/1)</td>
<td>2.6</td>
</tr>
<tr>
<td>14</td>
<td>SSTBY VBB MINPWON</td>
<td>SOSC</td>
<td>32.768kHz</td>
<td>32.768kHz (1/1)</td>
<td>0.8</td>
</tr>
</tbody>
</table>
4. Specifications of Driver APIs

The specifications of drivers in the CMSIS driver package can be found in the directory shown below. Refer to the specifications and notes for each driver inside the folder.

![Location of Driver Specification](image)

Figure 4.1 Location of Driver Specification

5. Usage Notes

Only the main notes related to the DMAC and MIP LCD pin setting are introduced in this chapter. Note that not all notes are given here.

For other notes, see the external specification document described in "4. Specifications of Driver APIs".

5.1 VCOM and SCS pin for MIP LCD

When using serial MIP LCD, VCOM pin output level must be set to high before setting SCS pin to high. Also note that waiting time is required when changing VCOM output level.

For more information about VCOM waiting time, see TN0181ANVNANN-*N*03 published by Kyocera.

5.2 DMAC Interrupts

When data transfer of the specified count is complete (DMCRA register), an interrupt is signaled to the CPU. There are 2 types of DMA activation sources: software trigger and interrupt requests from peripheral modules/trigger from external interrupt input pins.

To use interrupt requests from peripheral modules as DMA activation source, register it to NVIC in r_system_cfg.c and set the interrupt request for DMA activation source in DELSRn register.

Figure 5.1 shows an example of registering interrupts to the NVIC. Figure 5.2 shows an example of enabling DMACn_INT interrupt.

```
...  
#define SYSTEM_CFG_EVENT_NUMBER_PORT_IRQ0 (SYSTEM_IRQ_EVENT_NUMBER_NOT_USED) /*!< Numbers 0/4/8/12/16/20/24/28 only */  
#define SYSTEM_CFG_EVENT_NUMBER_DMAC0_INT (SYSTEM_IRQ_EVENT_NUMBER0) /*!< Numbers 0/4/8/12/16/20/24/28 only */  
#define SYSTEM_CFG_EVENT_NUMBER_DTC_COMPLETE (SYSTEM_IRQ_EVENT_NUMBER_NOT_USED) /*!< Numbers 0/4/8/12/16/20/24/28 only */  
...  
```

Figure 5.1 Example of Registering Interrupts to NVIC
5.3 Setting DMAC Transfer Source and Transfer Destination Addresses

Specify transfer source and transfer destination addresses in DMSAR and DMDAR register. The address alignment in these registers must match the transfer data size value selected in SZ bits in DMTMD register.
6. **Troubleshooting**

6.1 **Occurrence of Build Error**

A-1) Have the include directories been specified correctly?

When using EWARM, we recommend that the include directories be specified as shown in the example below.

The include directories can be specified from IDE Options [C/C++ Compiler] → [Preprocessor].

6.2 **Occurrence of HardFault Error when API of CMSIS Driver Is Called**

A) The API has possibly not been copied to RAM.

Before calling an API function that was assigned to RAM, make sure that it has been copied to RAM by the R_SYS_CodeCopy function. For details, refer to the related document No. R01AN4660.

6.3 **Peripheral Function Fails to Operate when API Is Called**

A) Has the API been set up correctly?

Check the API's return value to see if an error has occurred.

In particular, errors are often caused by problems related to interrupts not being set in r_system_cfg.h. For details, refer to the related document No. R01AN4660.

6.4 **Normal API Return Value But No Pin Output from Peripheral Function**

A) Are the pin settings correct?

Check to make sure the pins have been set up correctly by the functions in pin.c.

For details, refer to the related document No. R01AN4660.

6.5 **Peripheral Function’s Input or Output Does Not Operate as Expected**

A) Check to make sure the VOCR register has been set up correctly before making the initial settings for peripheral functions.

For details, refer to the related document No. R01AN4660.

7. **Sample Code**

Sample code can be downloaded from the Renesas Electronics website.
8. Reference Documents

User’s Manual: Hardware
 RE01 Group User’s Manual: Hardware
 (The latest version can be downloaded from the Renesas Electronics website.)

Technical Update/Technical News
 (The latest version can be downloaded from the Renesas Electronics website.)

User’s Manual: Development Tools
 (The latest version can be downloaded from the Renesas Electronics website.)

Website and Support

Renesas Electronics Website
 http://www.renesas.com/

Inquiries
 http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.
Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
<th>Page</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Aug. 31, 2020</td>
<td>—</td>
<td>—</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>
General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)
 A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on
 The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state
 Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins
 Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals
 After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin
 Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses
 Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products
 Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Product sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.