Application Note

Analog Front End for a Pressure Sensor

AN-CM-308

Abstract

The application note describes the design procedure for Wheatstone bridge sensors. A unique Auto-Trim feature of the SLG47004 is used to achieve the best precision of this analog interface. The application note contains a complete schematic of an analog front-end for a low-cost pressure sensor.

This application note comes complete with design files which can be found in the References section.
Analog Front End for a Pressure Sensor

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Contents</td>
<td>2</td>
</tr>
<tr>
<td>Figures</td>
<td>3</td>
</tr>
<tr>
<td>Tables</td>
<td>3</td>
</tr>
<tr>
<td>1 Terms and Definitions</td>
<td>4</td>
</tr>
<tr>
<td>2 References</td>
<td>4</td>
</tr>
<tr>
<td>3 Introduction</td>
<td>5</td>
</tr>
<tr>
<td>4 AFE Without Internal Voltage Reference Source</td>
<td>5</td>
</tr>
<tr>
<td>4.1 Hardware Setup of AFE Without Internal Voltage Reference</td>
<td>5</td>
</tr>
<tr>
<td>4.2 Precision Characteristics of Components</td>
<td>6</td>
</tr>
<tr>
<td>4.3 Internal GreenPAK Design and Macrocells Configurations</td>
<td>7</td>
</tr>
<tr>
<td>4.3.1 Internal Design of the Project</td>
<td>7</td>
</tr>
<tr>
<td>4.3.2 OpAmps Configurations</td>
<td>8</td>
</tr>
<tr>
<td>4.3.3 Chopper ACMP Configuration</td>
<td>8</td>
</tr>
<tr>
<td>4.3.4 Digital Rheostats Configurations</td>
<td>9</td>
</tr>
<tr>
<td>4.3.5 LUT Configuration</td>
<td>9</td>
</tr>
<tr>
<td>4.3.6 Temperature Sensor Configuration</td>
<td>9</td>
</tr>
<tr>
<td>4.3.7 Oscillator0 and I2C Macrocells Configurations</td>
<td>10</td>
</tr>
<tr>
<td>4.3.8 GPIOs Configurations</td>
<td>10</td>
</tr>
<tr>
<td>4.4 Gain Resistor Calculation</td>
<td>10</td>
</tr>
<tr>
<td>4.5 Vref Divider Resistors Calculation</td>
<td>11</td>
</tr>
<tr>
<td>4.6 Offset Error Sources and Offset Compensation</td>
<td>11</td>
</tr>
<tr>
<td>4.7 Tuning Gain of AFE</td>
<td>12</td>
</tr>
<tr>
<td>4.8 Algorithm for Tuning Gain and Compensating Offset of the System</td>
<td>13</td>
</tr>
<tr>
<td>4.9 Offset Compensation Accuracy</td>
<td>13</td>
</tr>
<tr>
<td>5 AFE with Internal Voltage Reference Source</td>
<td>14</td>
</tr>
<tr>
<td>5.1 Hardware Setup of AFE with Internal Voltage Reference</td>
<td>14</td>
</tr>
<tr>
<td>5.2 Precision Characteristics of Sensor at 2.048 V Supply Voltage</td>
<td>15</td>
</tr>
<tr>
<td>5.3 Internal Macrocells Configurations</td>
<td>15</td>
</tr>
<tr>
<td>5.3.1 HD Buffer and OpAmp0 Vref Configurations</td>
<td>15</td>
</tr>
<tr>
<td>5.3.2 Chopper ACMP Configuration for AFE with 2.048 V Voltage Reference</td>
<td>16</td>
</tr>
<tr>
<td>5.4 Gain Resistor and DAC Divider Calculations for AFE with 2.048 V Voltage Reference</td>
<td>16</td>
</tr>
<tr>
<td>6 Software Simulation and Hardware Prototype Testing</td>
<td>17</td>
</tr>
<tr>
<td>7 Conclusions</td>
<td>19</td>
</tr>
</tbody>
</table>

Revision History: 20

© 2022 Renesas Electronics Corporation
Figures

Figure 1: Analog Front-End for a Wheatstone Bridge Sensor ... 5
Figure 2: Internal Design of the Project ... 7
Figure 3: OpAmps Configurations ... 8
Figure 4: Chopper ACMP Configuration ... 8
Figure 5: Digital Rheostats Configurations ... 9
Figure 6: LUT Configuration .. 9
Figure 7: Temperature Sensor Configuration .. 9
Figure 8: GPIOs Configurations ... 10
Figure 9: Gain of AFE as a Function of Digital Rheostat’s Code, \(R_{\text{gain}} = f(n) \) .. 11
Figure 10: AFE with Offset Sources Placed to Show the Worst Case 12
Figure 11: Error Sources of Offset Compensation Process 14
Figure 12: Analog Front-End with Internal Voltage Reference 15
Figure 13: OpAmp Vref and HD Buffer Configurations .. 16
Figure 14: Chopper ACMP Configuration for AFE with 2.048 V Voltage Reference .. 16
Figure 15: Software Simulation Results of Offset Correction Process 17
Figure 16: Software Simulation Results of Offset Correction Process, Enlarged 17
Figure 17: Auto-Trim Procedure with Short Pulse at Set Input of RH 18
Figure 18: Auto-Trim Procedure with Long Pulse at Set Input of RH 18

Tables

Table 1: Precise Characteristics of Components ... 6
Table 2: Expected Gain of AFE during Auto-Trim Procedure 13
Table 3: Accuracy of SettingZero Point ... 14
Table 4: Characteristics of Sensor at 2.048 V Supply Voltage 15
1 Terms and Definitions

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFE</td>
<td>Analog front end</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated circuit</td>
</tr>
<tr>
<td>OpAmp</td>
<td>Operational amplifier</td>
</tr>
<tr>
<td>RH</td>
<td>Digital rheostat</td>
</tr>
</tbody>
</table>

2 References

For related documents and software, please visit:
https://www.dialog-semiconductor.com/products/greenpak/analog-greenpaks

Download our free GreenPAK Designer software [1] to open the .gp files [2] and view the proposed circuit design. Use the GreenPAK development tools [3] to freeze the design into your own customized IC in a matter of minutes. Find out more in complete library of application notes [4] featuring design examples as well as explanations of features and blocks within the GreenPAK IC.

[5] SLG47004, Datasheet

Author: Vladyslav Kozlov
3 Introduction

In the following application note the SLG47004 is used as the analog front-end (AFE) for a Wheatstone bridge pressure sensor. Two configurable OpAmps and one internal OpAmp, all within the SLG47004 are used to create an instrumentation amplifier. Digital rheostats RH0 and RH1 of the SLG47004 are used to tune the gain of the AFE and to compensate offset voltages of sensor and OpAmps. Also, the trim procedure helps to minimize an error caused by mismatch between external resistors. The Auto-Trim function of the SLG47004 simplifies the process of gain tuning and offset compensation and allows saving hardware resources, as well as minimize the cost of the AFE.

The SLG47004 allows two different ways of interfacing ADCs with and without internal reference sources:

- In the case when an external ADC has a separate analog reference pin, the common way is to supply all analog blocks (sensor, ADC, DAC for compensating offset) from one voltage source. The measurements are ratiometric. Variations in supply voltage don’t affect accuracy.
- In the case when an ADC has an internal reference source only, the supply voltage for the sensor and DAC must be stable and constant. That’s why, for this case, an internal buffered Vref of the SLG47004 must be used.

4 AFE Without Internal Voltage Reference Source

4.1 Hardware Setup of AFE Without Internal Voltage Reference

Figure 1 shows a schematic of the analog front end for MCU with ADC, which has an external analog reference option. Sensor, ADC reference, DAC (Rdiv1, RH0, Rdiv2 divider for offset compensation), and Chopper ACMP reference are powered from one voltage source: Van. Characteristics of the components can be found in Table 1. A pressure sensor from Honeywell (NSCSDRN060MD) is used in this example.

![Diagram of Analog Front-End for a Wheatstone Bridge Sensor](image-url)
In Figure 1, V_{an} is the supply voltage for analog components. V_{an} is filtered V_{DD} voltage. The output of the sensor with no pressure is equal to $(V_{an}/2 \pm V_{os_bridge})$, where V_{os_bridge} is the bridge offset voltage. Since the force to the sensor can be applied in both directions, the output of the sensor can be higher or lower than zero point $(V_{an}/2 \pm V_{os_bridge})$. So the AFE must amplify the output signal differentially between the sensor zero point and its actual output.

The optional C_f capacitance is needed to cancel the switching noise of digital rheostats. The value of C_f can be changed.

The output voltage of AFE is:

$$V_{out} = (V_{In_Amp+} - V_{In_Amp-}) \cdot Gain + Vref, \quad (1)$$

where

$$Gain = 1 + \frac{2R_f}{R_g || RH_1}$$

R_f – are user-defined resistors, $R_f = 200 \, \text{K\Omega}$ and 0.5% tolerance in the current project;

R_g – is user-defined gain resistor;

V_{ref} – is the reference voltage for the instrumentation amplifier.

4.2 Precision Characteristics of Components

Precision characteristics of the components are shown in Table 1.

Table 1: Precise Characteristics of Components

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔP</td>
<td>Pressure Range</td>
<td>±6.0</td>
<td>kPa</td>
</tr>
<tr>
<td>$K_{V_{out}}$</td>
<td>Full Scale Span Coefficient</td>
<td>±2.46 (min), ±2.60 (typ), ±2.8 (max)</td>
<td>mV/V</td>
</tr>
<tr>
<td>K_{os_out}</td>
<td>Null Offset Coefficient</td>
<td>±0.075</td>
<td>mV/V</td>
</tr>
<tr>
<td>Sensor Characteristics at 3.3 V DC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔV_{out}</td>
<td>Output Voltage Span</td>
<td>±8.1 (min), ±8.58 (typ), ±9.2 (max)</td>
<td>mV</td>
</tr>
<tr>
<td>V_{os_bridge}</td>
<td>Null Offset</td>
<td>±0.248 (max)</td>
<td>mV</td>
</tr>
<tr>
<td>dV_{os_bridge}/dT</td>
<td>Offset Temperature Drift (T = 0 to 50 °C)</td>
<td>±0.6 (max)</td>
<td>%FSS</td>
</tr>
<tr>
<td>OpAmps Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{os_OpAmp}</td>
<td>Input Offset Voltage</td>
<td>1.0 (max)</td>
<td>mV</td>
</tr>
<tr>
<td>dV_{os_OpAmp}/dT</td>
<td>Offset Drift with Temperature</td>
<td>5 (max)</td>
<td>µV/°C</td>
</tr>
<tr>
<td>ΔR_{int}</td>
<td>Mismatch Between Internal R1, R2, R3, R4 Resistors</td>
<td>0.05</td>
<td>%</td>
</tr>
<tr>
<td>Digital Rheostats Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RH_1, RH_2</td>
<td>Digital Rheostats Resistance</td>
<td>80 (min), 100 (typ), 120 (max)</td>
<td>kOhm</td>
</tr>
<tr>
<td>N_{taps}</td>
<td>Number of Taps</td>
<td>1024</td>
<td></td>
</tr>
<tr>
<td>f_{CHACMP}</td>
<td>Chopper Comparator Switching Frequency</td>
<td>10</td>
<td>kHz</td>
</tr>
</tbody>
</table>

© 2022 Renesas Electronics Corporation
### Parameter Description	Value	Unit
$V_{CH_{\text{offset}}}$ | Chopper Comparator Offset when Set is Active | 300 (max) | μV
DNL | Differential Non-Linearity (max) | 1 | LSB
$\alpha R(T)$ | Nominal Resistance Temp Coefficient | 100 | ppm/°C

HD Buffer Characteristics

Parameter	Description	Value	Unit
$V_{os_{\text{HD_Buf}}}$ | HD Buffer Offset | ±3 (max), $T = 25^\circ$C | mV
$\Delta V_{\text{OUT}(I)}$ | HD Buffer Load Regulation at $I_{\text{Load}} = 2$mA | 2 | mV

External Resistors Characteristics

Parameter	Description	Value	Unit
ΔR_{ext} | Resistors Tolerance | 0.5 and 1 | %
$\alpha R_{\text{ext}}(T)$ | Resistance Temp Coefficient | 50 | ppm/°C

4.3 Internal GreenPAK Design and Macrocells Configurations

4.3.1 Internal Design of the Project

Figure 2 shows the internal design of the project in GreenPAK Designer Software.
4.3.2 OpAmps Configurations

OpAmps configurations are shown in Figure 3.

![Figure 3: OpAmps Configurations](image)

4.3.3 Chopper ACMP Configuration

Channel0 of Chopper ACMP is used for offset correction. Channel1 of Chopper ACMP is used for tuning gain of AFE. Chopper ACMP configuration is shown in Figure 4.

![Figure 4: Chopper ACMP Configuration](image)
4.3.4 Digital Rheostats Configurations

Digital Rheostats configurations are shown in Figure 5.

![Digital Rheostats Configurations](image)

Figure 5: Digital Rheostats Configurations

4.3.5 LUT Configuration

LUT configuration is shown in Figure 6.

![LUT Configuration](image)

Figure 6: LUT Configuration

4.3.6 Temperature Sensor Configuration

The temperature sensor configuration is shown in Figure 7.

![Temperature Sensor Configuration](image)

Figure 7: Temperature Sensor Configuration
4.3.7 Oscillator0 and i2C Macrocells Configurations

Oscillator0 and i2C Macrocells use default configurations.

4.3.8 GPIOs Configurations

GPIOs configurations are shown in Figure 8.

4.4 Gain Resistor Calculation

To calculate the value of the gain resistor \(R_g \) the minimum and maximum gain of the instrumentation amplifier must be assessed. Considering the possible output span of the sensor \(V_{an} \cdot K_{V_{out}} \) (from 8.12 mV to 9.24 mV for \(V_{an} = 3.3 \) V), the gain of AFE can be found from the equation:

\[
(V_{an} \cdot K_{V_{out}}) \cdot Gain = \frac{V_{an}}{2} - Gain_{ref}_{ChopACMP}, \quad (2)
\]

where \(Gain_{ref}_{ChopACMP} \) – is the reference voltage of ChopperACMP for gain tuning (see Channel1 In- reference source of Chopper ACMP, Section 4.3.3). \(Gain_{ref}_{ChopACMP} = V_{DDA}\times(3/64) \) or 0.155 V for \(V_{an} = 3.3 \) V.

For the schematic shown in Figure 1 \(V_{DDA} = V_{an} \). So, the equation (2) can be rewritten as

\[
(V_{an} \cdot K_{V_{out}}) \cdot Gain = \frac{V_{an}}{2} - \left(V_{an} \cdot \frac{3}{64} \right)
\]

or

\[
Gain = \left(\frac{1}{2} - \frac{3}{64} \right) \cdot \frac{1}{K_{V_{out}}} \quad (3)
\]

From equation (3) it’s seen that variations in \(V_{an} \) voltage don’t affect the gain of system:

\[
Gain_{max} = \left(\frac{1}{2} - \frac{3}{64} \right) \cdot \frac{1}{2.46} \cdot 1000 = 184.2, \\
Gain_{min} = \left(\frac{1}{2} - \frac{3}{64} \right) \cdot \frac{1}{2.80} \cdot 1000 = 161.8.
\]

Now it’s possible to build the graph for the function \(Gain = f(n) \), where \(n \) – is the code of the rheostat from 1 to 1024:

\[
Gain(n) = 1 + \frac{2R_f}{R_g \cdot \left(\frac{80 \cdot 10^3 \cdot n}{1024} \right) + \frac{1}{R_g \cdot \left(\frac{80 \cdot 10^3 \cdot n}{1024} \right)}} \quad (4)
\]

Note that the chip to chip variation of RH maximum resistance is from 80 k\(\Omega \) to 120 k\(\Omega \). The 80 k\(\Omega \) value should be used for gain resistor calculation.
By varying the value of R_g it’s possible to match the span of AFE gain from Gain_min to Gain_max, see Figure 9. If there is no R_g value to match the desired range, then R_f value should be increased. For the current schematic $R_f = 200$ kΩ and $R_g = 2.61$ kΩ.

4.5 Vref Divider Resistors Calculation

To calculate the values of DAC resistors (R_{div1}, R_H0, R_{div2} divider) the maximum range of Vref (V_{comp} value) should be calculated. Considering the biggest possible gain of the AFE (Gain_max = 184.2) and the biggest possible input offset (see Figure 10):

$$V_{os_input} = V_{os_Opa} + V_{os_Opa1} + V_{os_bridge},$$

$$V_{os_input} = 1\ mV + 1\ mV + 0.248\ mV = 2.25\ mV$$

the Vref can be changed by the value of V_{comp}:

$$V_{comp} = \pm(Gain_{Max} \cdot V_{os_input}),$$

$$V_{comp} = \pm(184.2 \cdot 0.0225) = 0.414\ V$$

To find the value of R_{div1}, R_{div2}, the next equation system should be solved:

$$\begin{align*}
\frac{V_{an}}{R_{div1} + R_{H0_max} + R_{div2}}(R_{div2}) &= \frac{V_{an}}{2} - V_{comp} \\
\frac{V_{an}}{R_{div1} + R_{div2}} &= \frac{V_{an}}{2} + V_{comp}
\end{align*}$$

where R_{H0_max} – maximum resistance of the rheostat, in the worst case $R_{H0_max} = 80$ kΩ; V_{an} – is the voltage applied to the divider.

For the current schematic the nearest standard values of resistors are $R_{div2} = 75$ kΩ, $R_{div1} = 46.4$ kΩ.
4.6 Offset Error Sources and Offset Compensation

To set zero point for the AFE (zero pressure) the voltage from divider (Rdiv1, RH0, Rdiv2) is used. The output from the divider must be connected to the instrumentation amplifier through the buffer to eliminate the impact of DAC output resistance.

By changing the value of RH0 not only sensor offset, but OpAmps input offset voltages can be compensated. See the equation below.

Let’s add offset voltages to the equation (1):

\[V_{out} = (V_{IN+} + V_{osOpAmp0} - V_{IN-} + V_{osOpAmp1} + V_{osBridge}) \times \text{Gain} + \]
\[+ V_{osInputBuffer} + V_{cm_error} + (V_{ref} - V_{comp}) \]

where \(V_{osOpAmp0}, V_{osOpAmp1}, V_{os_InputBuffer} \) are input offset voltages of the SLG47004 amplifiers;
\(V_{os_InputBuffer} \) is buffer input offset voltage;
\(V_{osBridge} \) is offset voltage of the sensor;
\(V_{cm_error} \) is common-mode voltage error caused by inequality of internal R1, R2, R3, R4 resistors, and external R1 resistors. This voltage will be compensated after the trim procedure.
\(V_{comp} \) is the shift voltage from the divider for offset voltages compensation.

Note that signs of offset voltages were selected to show the worst-case error, see Figure 10.

Figure 10: AFE with Offset Sources Placed to Show the Worst Case
4.7 Tuning Gain of AFE

Since the sensors span can be in the range from ±8.1 mV to ±9.2 mV for \(V_{an} = 3.3 \) V, the gain of the instrumentation amplifier must be tuned to cover the full output range of the AFE.

The linear output swing of the SLG47004 OpAmps is from \(G_{ND} + 100 \) mV to \(V_{DD} - 100 \) mV. It’s proposed to use the output range from \(V_{DDA} * (32/64) \) to \((V_{DDA} - V_{DDA} * (3/64))\) for positive sensor output and from \(V_{DDA} * (32/64) \) to \(V_{DDA} * (3/64) \) for negative sensor output. \(V_{DDA} * (3/64) \) is the threshold for internal Chopper ACMP, which is used for gain tuning. \(V_{DDA} * (3/64) = 0.155 \) V for \(V_{DDA} = 3.3 \) V.

4.8 Algorithm for Tuning Gain and Compensating Offset of the System

The initial value of RH0 and RH1 are 100 KΩ (80 KΩ in the worst case), code = 1024.

- **1st step: offset compensation.** Load the sensor with zero load (no load). Send to the SLG47004 I²C command to set the \(V_{in} \) Input0 (pulse to Set0 input of PT0 block) to logic High level. This will start the Auto-Trim procedure for RH0. Then I²C master should clear the \(V_{in} \) Input0 of the SLG47004, which is connected to Set0 input. During the Auto-Trim procedure the SLG47004 changes the value of RH0 until the output voltage of AFE reaches \(V_{DDA}/2 \). After the end of the Auto-Trim procedure (logic level of Idle/Active output of PT block becomes High) the system is ready for the next step.

- **2nd step: gain tuning.** Load the sensor with a defined load. Send to the SLG47004 I²C command to set \(V_{in} \) Input1 (pulse to Set1 input of PT block) to logic High level. This will start the Auto-Trim procedure for RH1. Then I²C should clear the \(V_{in} \) Input1 of the SLG47004, which is connected to Set1 input. During this Auto-Trim procedure the SLG47004 changes the value of RH1 until the output voltage of AFE reaches \(V_{DDA} * (3/64) \). After the end of the Auto-Trim procedure (logic level of Idle/Active output of PT block becomes High) the system is ready for the next step.

- **3rd step: offset compensation.** This step is the same as the 1st step.

Optionally, if higher accuracy is required, the User can add more offset/gain calibration steps considering the following limitations:

- The Auto-Trim procedures of total offset compensation and system gain error must be done iteratively starting and finishing with the total offset compensation.
- Total system offset (sensor offset + OpAmp1 offset + OpAmp2 offset) must not be greater than \(V_{sensor_output_range}/2 \).

Expected Gain errors after each tuning iteration are shown in Table 2.

<table>
<thead>
<tr>
<th>Table 2: Expected Gain of AFE during Auto-Trim Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
</tr>
<tr>
<td>Etalon gain</td>
</tr>
<tr>
<td>1st iteration (offset trim, then gain tuning)</td>
</tr>
<tr>
<td>2nd iteration (offset trim, then gain tuning)</td>
</tr>
<tr>
<td>3rd iteration (offset trim, then gain tuning)</td>
</tr>
</tbody>
</table>

After the 3rd iteration the gain error is associated with the step error of digital rheostat.

4.9 Offset Compensation Accuracy

Assume that the Auto-Trim is done at temperature \(= 25 \) °C. The gain of the instrumentation amplifier is 273.3, RH resistance is 100 kΩ for code = 1024. Table 3 shows the accuracy of setting zero point (offset compensation).
Table 3: Accuracy of Setting Zero Point

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value, V</th>
<th>Error in % of output sensor range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step near set point ((V_{\text{out}[N_{\text{RH0}}]} - V_{\text{out}[N_{\text{RH0}}-1]})) (Note 1)</td>
<td>0.0006</td>
<td>0.04 %</td>
</tr>
<tr>
<td>Step near set point considering rheostat DNL (Note 2)</td>
<td>0.0012</td>
<td>0.08 %</td>
</tr>
<tr>
<td>Step error considering DNL and ACMP offset (Note 3)</td>
<td>0.0015</td>
<td>0.1 %</td>
</tr>
</tbody>
</table>

Note 1 The minimum achievable error of the Auto-Trim system is one trim step (± 1 of digital rheostat code, see Figure 11).

Note 2 Multiply ‘Step near set point’ value \((V_{\text{out}[N_{\text{DR}}]} - V_{\text{out}[N_{\text{DR}}-1]}) \) by 2 (DNL error).

Note 3 Add the typical Chopper ACMP offset of 300 µV to the previous value.

Figure 11: Error Sources of Offset Compensation Process

In the case of 10-bit ADC, the maximum error of the trimmed system is:

\[
\frac{\text{error}}{V_{\text{an}}} \cdot \frac{1024}{V_{\text{an}}} = 0.47 \text{ LSB of ADC}
\]

Please note that this error value is independent of \(V_{\text{an}} \) voltage.

5 AFE with Internal Voltage Reference Source

5.1 Hardware Setup of AFE with Internal Voltage Reference

The SLG47004 allows powering all analog components of the AFE (sensor, DAC, and reference for Chopper ACMP) from an internal voltage source, see Figure 12. For this purpose, the SLG47004 has a special high drive buffer (HD Buffer macrocell).
5.2 Precision Characteristics of Sensor at 2.048 V Supply Voltage

Characteristics of the pressure sensor at 2.048 V supply voltage are shown in Table 4. All other precision characteristics from Table 1 remain unchanged.

Table 4: Characteristics of Sensor at 2.048 V Supply Voltage

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔP</td>
<td>Pressure Range</td>
<td>±6.0</td>
<td>kPa</td>
</tr>
<tr>
<td>KV<sub>out</sub></td>
<td>Output Voltage Span</td>
<td>±5.04 (min), ±5.32 (typ), ±5.73 (max)</td>
<td>mV</td>
</tr>
<tr>
<td>K<sub>os_out</sub></td>
<td>Null Offset</td>
<td>±0.154 (max)</td>
<td>mV</td>
</tr>
<tr>
<td>dV<sub>os_bridge</sub>/dT</td>
<td>Offset Temperature Drift (T = 0 to 50 °C)</td>
<td>±0.6 (max)</td>
<td>%FSS</td>
</tr>
</tbody>
</table>

5.3 Internal Macrocells Configurations

5.3.1 HD Buffer and OpAmpl0 Vref Configurations

The HD Buffer shares the voltage reference with OpAmpl0 Macrocell. Note that Vref can be connected (or disconnected) to OpAmpl0 or HD Buffer macrocells independently. The configurations of HD Buffer and OpAmpl0 Vref are shown in Figure 13.
5.3.2 Chopper ACMP Configuration for AFE with 2.048 V Voltage Reference

Chopper ACMP configuration is shown in Figure 14.

Figure 14: Chopper ACMP Configuration for AFE with 2.048 V Voltage Reference

5.4 Gain Resistor and DAC Divider Calculations for AFE with 2.048 V Voltage Reference

Considering the output span of the sensor (from 5.04 mV to 5.73 mV at $V_{an} = 2.048$ V), the output voltage range of AFE must be

$$\frac{V_{ref}}{2} - Gain_{ref,ChopACMP}.$$

Using equation (3),

$$Gain_{max} = \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{2.46} \cdot 1000 = 177.8,$$

$$Gain_{min} = \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{2.80} \cdot 1000 = 156.3.$$

Gain resistor $R_g = 1.33$ kΩ, $R_i = 100$ kΩ. The range of offset compensation is $V_{comp} = \pm (177.8 \times 0.00215) = 0.382$ V. The divider resistors $R_{div1} = 21.3$ kΩ, $R_{div2} = 46.4$ kΩ. The offset of the HD Buffer is 3 mV.
6 Software Simulation and Hardware Prototype Testing

Figure 15, Figure 16, Figure 17, and Figure 18 show the Auto-Trim process. Figure 15, Figure 16, and Figure 17 show the case when the duration of the pulse at Set input of RH is shorter than the duration of the Auto-Trim process. For this case, the stop condition for the Auto-Trim process is after the 2nd time there is a change at Up/Down input at the rising edge of the Clock input. Please refer to the datasheet [5] to get more information about the Auto-Trim process.

If the User holds the Set input at high level, the Auto-Trim system will continue to operate and the output will follow the reference point, see Figure 18.

The maximum time of the first Auto-Trim iteration is \(\frac{\text{RH_code}}{2048} \approx 0.25 \text{ ms} \).

![Figure 15: Software Simulation Results of Offset Correction Process](image1)

![Figure 16: Software Simulation Results of Offset Correction Process, Enlarged](image2)
Figure 17: Auto-Trim Procedure with Short Pulse at Set Input of RH

Figure 18: Auto-Trim Procedure with Long Pulse at Set Input of RH
7 Conclusions

The application note describes the design procedure of the analog front-end for a Wheatstone bridge pressure sensor. A unique Auto-Trim feature of the SLG47004 is used to compensate for the offset of operational amplifiers and sensor, and to tune the gain of the AFE.

It was shown how to calculate gain and DAC resistors to cover the full output range and full trim range of the instrumentation amplifier.

To achieve the best precision, it’s recommended to use iterative procedures of offset compensation and then gain tuning. The first and last procedure should be offset compensation. Practical results show that the best precision is achieved after the 3rd iteration. For the sensor and AFE described in this application note, the gain and offset errors after the Auto-Trim procedures are ≈0.1% of the sensor range.
AN-CM-308

Analog Front End for a Pressure Sensor

Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>03-Nov-2020</td>
<td>Initial Draft</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2021 Renesas Electronics Corporation. All rights reserved.