

Application Note

ClockMatrix™ - Channel Control for PTP with the Time of Day Counter

R31AN0006EU0100 Rev.1.0
Jun 11, 2021

 Page 1
© 2021 Renesas Electronics

A PTP system needs to process the PTP packets and provide updates to the frequency, phase and time of day
in the clock synthesis device via register access. In LinuxPTP for example, the ptp4l application serves as the
PTP packet processor with a simple optional filter. The filter provides clock updates via the Linux PHC API to
control a channel in ClockMatrix™. The PHC API has functions to adjust the frequency and phase of the
channel. It also has functions to control the time of day (ToD) counter. The ClockMatrix clock synthesizer will
then align its outputs to the 1Hz (or one pulse per second) rollover of the PTP ToD counter for use by the time
stamper or other system blocks that need phase. Besides an explanation of how a PTP system works, this
document also shows an example ClockMatrix configuration for use with SyncE and PTP.

Contents
1. Introduction ... 2

2. General Operation of a PTP System ... 2

3. Aligning the Clock Synthesizer to the Time Stamper .. 3

4. Clock Control using the Linux PTP Hardware Clock (PHC) API ... 4

5. Example GUI Configuration for SyncE/PTP on 8A34001 ... 5

6. Revision History ... 10

ClockMatrix™ - Channel Control for PTP with the Time of Day Counter

R31AN0006EU0100 Rev.1.0
Jun 11, 2021

 Page 2

1. Introduction
This application note explains how the PTP driver controls a channel in ClockMatrix by using the Time of Day
(ToD) counter to align the device outputs to the 1Hz/1PPS (pulse per second) rollover of the counter. (The
rollover of the counter is when the nanoseconds and sub-nanoseconds parts of the counter are zero.) The PTP
driver also controls the clock used by the counter for both rough and fine adjustment of the output.

In a typical PTP system, there is a clock synthesizer channel with both frequency and phase control from the
external software. This channel clocks a ToD counter. The counter value is incremented by the period of the
channel clock on every edge. The outputs from the device use the ToD rollover clock for output alignment. In
addition, the ToD counter can use different triggers to get values into and out of the counter including external
1Hz clocks, the internal rollover clock or a software command.

This application note describes how the PTP software will processes the packets, control the DPLL channel and
control ToD counter. A separate program coordinates the ToD in the clock synthesizer and the time stamper.
Both of these programs use the PHC functions to control of clocks and ToD in the different hardware devices.

In the last section of the document, there is ClockMatrix GUI configuration for an example PTP/SyncE system.

2. General Operation of a PTP System
To implement PTP, a system has four main tasks:

■ Decode the incoming PTP packets to extract the signaling and time stamps.
■ Create the sets of local time stamps and extracted time stamps from the incoming packets.
■ A simple filter or complicated servo to transform the time stamp groups into clock updates.
■ Finally, it needs an interface to send the clock updates to hardware.

The PHC API contains the code to translate the clock and ToD update functions into the register sequences
specific for each device.

In an example Linux system running LinuxPTP in standalone mode, ptp4l will process the packets, extract the
local and remote time stamps for processing, process the time stamps using its filter and send clock updates to
the clock synchronizer via the PHC functions. When locking to a new master, the ptp4l software via the PHC API
will adjust the ToD counter rollover to phase align all the output to the PTP 1 PPS from the master.

(The operation of Renesas PTP Clock Manager for Linux, pcm4l, is similar. The ptp4l program will still process
the packets and create the time stamp groups as in standalone ptp4l. Then, the unfiltered time stamp groups go
from ptp4l to pcm4l via a socket interface. Within pcm4l is an advanced non-linear adaptive servo to provide
frequency and time transfer over more challenging networks. Like ptp4l, pcm4l will send the resulting updates to
the clock synthesizer via the PHC API.)

When the system starts, the clock synthesizer will have an arbitrary frequency and phase before locking to a
master. As ptp4l locked to the master, it will go through its internal states as defined in Table 1.

Table 1. Ptp4l State Definitions

Number Name Description

0 SERVO_UNLOCKED The servo is not yet ready to track the master clock.

1 SERVO_JUMP The servo is ready to track and requests a clock adjustment to correct the
estimated offset.

2 SERVO_LOCKED The servo is tracking the master clock.

3 SERVO_LOCKED_STABLE The Servo has stabilized.

Note: These definitions are in servo.h in the ptp4l distribution.

ClockMatrix™ - Channel Control for PTP with the Time of Day Counter

R31AN0006EU0100 Rev.1.0
Jun 11, 2021

 Page 3

First, ptp4l will wait for packets in the SERVO_UNLOCKED (S0) state.

Once ptp4l starts receiving packets, it will go to the SERVO_JUMP (S1) state. Ptp4l will estimate the phase
offset between the master and the local clock. If it is larger than first_step_threshold in seconds, ptp4l will send
an adjust time command to jump the ToD counter by the estimate of the offset via the PHC API. This will align
the ToD counter to the local estimate of the master 1-PPS phase. Based on the internal output from the ToD
counter, the device will align its output clocks to the new 1-PPS alignment of the ToD counter on the next ToD
rollover. Finally, ptp4l will start collecting time stamp groups and make a new estimate of the offset.

(As of LinuxPTP version 3.2, ptp4l will discard packets after the phase adjustment. The delay to allow the time
stamper to match to the new ToD alignment. The step_window parameter defines the number of packets to
discard before continuing.)

If the offset is still larger than the step_threshold parameter in units of seconds in ptp4l.cfg, ptp4l will perform
another phase adjustment. Typically, both first_step_threshold and step_threshold are set to 20
microseconds. (The step_window, first_step_threshold and step_threshold parameters are in the ptp4l
configuration file.)

Once the estimated offset is small enough, ptp4l will switch to the SERVO_LOCKED (S2) state and the filter will
switch to frequency offsets via the PHC API to pull-in the remaining phase offset between the local ToD and the
estimate of the master ToD. For LinuxPTP version 3.0 or newer, the servo will switch to the
SERVO_LOCKED_STABLE (S3) state when the offset is small. In the S3 state, the filter will switch to phase
offsets via the PHC API to get the best alignment with the master. To get to the S3 state, the last
servo_num_offset_values values of the locally estimated offset to the master are less than
servo_offset_threshold as defined in the ptp4l configuration file. For ClockMatrix, the recommended value for
servo_offset_threshold is 100 in units of nanoseconds and the value for servo_num_offset_values is 64 in
units of packets. (The servo_offset_threshold and the servo_num_offset_values parameters are also in the
ptp4l configuration file.)

3. Aligning the Clock Synthesizer to the Time Stamper
As the clock synthesizer aligns the ToD to the master, the system also needs to align the time stamper to the
clock synthesizer. The clock synthesizer typically sends two physical clocks to the time stamper: a PTP clock
(high frequency usually 250MHz) and a PTP time stamp event (1Hz). A system can use other low frequency
clocks from 0.5Hz to 4kHz as long as the time stamper can identify the clock edge corresponding to the rollover
event. The time stamper uses the frequency from the PTP clock to increment its ToD counter. It uses the low
frequency clock to latch a time stamp to coordinate between the ToD in the clock synthesizer and the time
stamper.

A PTP system needs a method to align the ToD in the time stamper with the ToD in the clock synthesizer. In
LinuxPTP, the ts2phc program coordinates between the clock synthesizer and time stampers when they are in
separate devices. Under the control of ts2phc, the time stamper latches its ToD at the instant when the edge of
the external 1PPS input arrives from the clock synthesizer. Ts2phc requests this ToD value via the PHC API to
determine the difference between the seconds on the clock synthesizer ToD and the value from the time
stamper and requests a ToD adjustment on the time stamper via the PHC API. Depending on the time stamper,
the resulting ToD alignment can be less than 100 ns by accurately sampling the 1PPS clock and assuming that
the nanoseconds and sub-nanoseconds part of the arrival of the 1Hz clock edge is zero. After the phase
adjustment, the clock synthesizer changes the time stamper ToD phase via small frequency or phase changes
via the high-speed PTP clock.

ClockMatrix™ - Channel Control for PTP with the Time of Day Counter

R31AN0006EU0100 Rev.1.0
Jun 11, 2021

 Page 4

4. Clock Control using the Linux PTP Hardware Clock (PHC) API
The PTP application uses the PTP Hardware Clock (PHC) subsystem to request frequency, phase and ToD
changes to the clock.

In LinuxPTP, each clock synthesizer used for PTP has its own PHC interface. The purpose of the PHC APIs is to
translate the control commands from the PTP software to specific register sequences for each device. The Linux
PHC drivers for ClockMatrix are part of the kernel.

A typical PHC driver supports the functions in Table 2.

Table 2. PHC API Functions

Name Description

getTime Gets to the ToD counter value (immediate).

setTime Set the ToD counter to a specific value (immediate).

adjTime Make a relative change to the ToD counter.

adjFine Change the frequency offset to the specified value (resolution is ppb). This function replaced the adjFreq in earlier
version of the PHC interface.

adjPhase Using the write phase mode in ClockMatrix, adjust the phase by the specified value.

EXTTS Latch the ToD counter on the edge of an external signal (usually 1 PPS) where EXTTS is an EXTernal Time Stamp
event.

PEROUT Control the periodic outputs on the device (used to control the 1 PPS output from the clock generator to the time
stamper for frequency/phase distribution in a system).

The hardware (clock synthesizer or time stamper) processes the getTime and setTime functions when the
command arrives. There may be variable delays in accessing the hardware depending on the system and the
serial bus loading. As a result, the system does not use these commands for fine control of the ToD. The
adjTime command is very precise since it is relative to the last ToD value and any application delays do not
impair its accuracy. While PTP software can use either adjFreq or adjFine to adjust the frequency of the device,
the adjFine is preferred due to higher accuracy updates.

For ClockMatrix specifically, PHC API functions have an “idtcm” prefix. The idtcm_settime PHC command will
set the ToD in the clock synthesizer to an arbitrary value using an immediate write while the idtcm_adjtime PHC
command will set the ToD to a relative value using a relative write. Both are expected step the ToD and clock
synthesizer will align the output signals to the new ToD rollover phase after the ToD is changed.

The ClockMatrix PHC driver switches the channel mode between “write frequency” for idtcm_adjfine and “write
phase” for idtcm_adjphase modes as needed. For the idtcm_adjfine and idtcm_adjphase PHC commands, the
phase change relative to the previous frequency or phase of the output, so the outputs maintain their alignment
to the ToD counter rollover.

For all PHC functions, the PHC driver and the ClockMatrix hardware handles the alignment of the outputs
without additional effort from the higher-level application.

ClockMatrix™ - Channel Control for PTP with the Time of Day Counter

R31AN0006EU0100 Rev.1.0
Jun 11, 2021

 Page 5

5. Example GUI Configuration for SyncE/PTP on 8A34001
For this example, the SyncE is on channel 1 and the PTP is on channel 2. The SyncE recovered input is on clk4
and the SyncE transmit clock output is on Q3. The PTP Clock is on Q4. The PTP 1PPS is on Q5. For this
configuration, the ToD counter and ToD counter output alignment are enabled for the PTP channel. (Other
channels with PTP outputs would need frequency from the PTP channel and optionally alignment from the PTP
channel’s ToD counter.)

The PHC driver uses a .bin file for configuration. The .bin file must be in the target file system usually in the
/lib/firmware directory. The .bin file has two pieces: the driver configuration and an optional set of device
configuration registers. The driver configuration contains the channel, ToD and output list. If the registers are in
the bin file, the driver resets the device after loading the registers and the loading process may interrupt the
output clocks.

For this example, the GUI would generate a .bin file with a driver configuration and a full set of register values.

Figure 1. Overall Configuration

ClockMatrix™ - Channel Control for PTP with the Time of Day Counter

R31AN0006EU0100 Rev.1.0
Jun 11, 2021

 Page 6

Figure 2. SyncE (DPLL) Channel Configuration

ClockMatrix™ - Channel Control for PTP with the Time of Day Counter

R31AN0006EU0100 Rev.1.0
Jun 11, 2021

 Page 7

Figure 3. PTP (DCO) Channel Configuration

ClockMatrix™ - Channel Control for PTP with the Time of Day Counter

R31AN0006EU0100 Rev.1.0
Jun 11, 2021

 Page 8

Figure 4. PTP Master Divider Configuration

Figure 5. PTP ToD0 Configuration

ClockMatrix™ - Channel Control for PTP with the Time of Day Counter

R31AN0006EU0100 Rev.1.0
Jun 11, 2021

 Page 9

Figure 6. Generate Configuration for PHC Driver (.bin file)

ClockMatrix™ - Channel Control for PTP with the Time of Day Counter

R31AN0006EU0100 Rev.1.0
Jun 11, 2021

 Page 10

6. Revision History

Revision Date Description

1.0 Jun 11, 2021 Initial release

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2026 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	1. Introduction
	2. General Operation of a PTP System
	3. Aligning the Clock Synthesizer to the Time Stamper
	4. Clock Control using the Linux PTP Hardware Clock (PHC) API
	5. Example GUI Configuration for SyncE/PTP on 8A34001
	6. Revision History

