

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

REJ06B0867-0100/Rev.1.00 April 2009 Page 1 of 55

SH7262/SH7264 Group
Boot from the Serial Flash Memory

Summary
This application note describes the boot from the SH7262/SH7264 microcomputers (MCUs) internal serial flash memory.

Target Device
SH7262/SH7264 (In this document, SH7264/SH7262 are described as "SH7264".)

Contents

1. Introduction.. 2

2. Overview of the Serial boot ... 3

3. Applications ... 8

4. Sample Program Listing.. 28

5. Using the Downloader... 50

6. References .. 53

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 2 of 55

1. Introduction

1.1 Specifications
SH7264 MCU boots from an internal serial flash memory (serial boot) in boot mode 1 and boot mode 3. This application
note describes the loader program and application program examples when using the serial boot. The downloader to write
the loader program and application program to serial flash memory is also described.

1.2 Modules Used
• Boot mode 1
• Renesas Serial Peripheral Interface (RSPI)

1.3 Applicable Conditions

MCU SH7262/SH7264
Operating Frequency Internal clock: 144 MHz
 Bus clock: 72 MHz
 Peripheral clock: 36 MHz
Integrated Development
Environment

Renesas Technology Corp.
High-performance Embedded Workshop Ver.4.04.01

C compiler Renesas Technology SuperH RISC engine Family
C/C++ compiler package Ver.9.02 Release 00

Compiler options Default setting in the High-performance Embedded Workshop
(-cpu=sh2afpu -fpu=single -object="$(CONFIGDIR)\$(FILELEAF).obj" -debug -
gbr=auto -chgincpath -errorpath -global_volatile=0 -opt_range=all -
infinite_loop=0 -del_vacant_loop=0 -struct_alloc=1 –nologo)

1.4 Related Application Note
Refer to the related application notes as follows:

• SH7262/SH7264 Group Example of Initialization
• SH7262/SH7264 Group Interfacing Serial Flash Memory Using the Renesas Peripheral Serial Interface

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 3 of 55

2. Overview of the Serial boot
This chapter describes the overview of the serial boot.

2.1 Glossary of Terms
The following table lists the terms used in this application note to describe the serial boot.

Table 1 Glossary

Item Description
Internal ROM program to boot A program to transfer the loader program stored in the beginning of the

serial flash memory to the high-speed internal RAM, and jump to the loader
program when the MCU is booted in boot mode 1 or 3. As this program is
already stored in the internal ROM to boot in CPU, and not required to
create.

Loader program A program to transfer the application program from serial flash memory to
RAM, and jump to the entry function of the application program. The size of
the loader program is fixed to 8 KB. Create it according to the system.

Application program A program that is created by user according the system
Downloader A program to write the loader program and application program to serial

flash memory. Create it according to the system.

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 4 of 55

2.2 Operation
The following table lists the external pins (MD_BOOT1 to MD_BOOT0) to decide the boot mode.

Table 2 Relationship between the External Pin Setting and Serial boot Mode

MD_BOOT1 MD_BOOT0 Boot mode number Description
0 1 Boot mode 1 Boots the MCU from serial flash memory

connected to the Renesas Serial Peripheral
Interface Channel 0 (RSPI0) in high-speed.

High-speed communication means that the
communication at the 1/2 of the bus clock rate (Bφ)

1 1 Boot mode 3 Boots the MCU from serial flash memory
connected to the Renesas Serial Peripheral
Interface Channel 0 (RSPI0) in low speed.

Low-speed communication means that the
communication at the 1/4 of the bus clock rate (Bφ)

In boot mode 1 or boot mode 3, the internal ROM program to boot transfers the loader program from serial flash memory
connected to the Renesas Serial Peripheral Interface Channel 0 (RSPI0) to the high-speed internal RAM after the power-on
reset is canceled. After the transfer is complete, it jumps to the start of the loader program. The following figure shows the
operation image of the internal ROM program to boot. A series of processing is automatically executed.

Application Program

Loader Program
(8 KB)

SH7262/SH7264

Internal ROM program to
boot

Internal ROM to boot

Large-capacity internal RAM

High-speed internal RAM

Renesas Peripheral
Interface Channel 0
(RSPI0)

(1) Execute the internal ROM program to boot

Serial Flash Memory(2) Request to read
(3) Read

(4) Transfer to high-speed
internal RAM

H'FFF8 0000

H'FFF8 1FFF

Loader program
(8 KB)

(5) Jump to the start of
the loader program

Figure 1 Operation Image of the Internal ROM Program to Boot

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 5 of 55

The loader program transfers the application program from serial flash memory connected to the Renesas Serial Peripheral
Interface Channel 0 (RSPI0) to the large-capacity internal RAM. After the transfer is complete, the loader program jumps to
the entry function of the application program. The following figure shows the operation image of the loader program.

Application program

Loader program
(8 KB)

SH7262/SH7264

Internal ROM program to
boot

Internal ROM to boot

Large-capacity internal RAM

High-speed internal RAM

Renesas Serial
Peripheral Interface
Channel 0
(RSPI0)

Serial Flash Memory

(7) Request to read
H'FFF8 0000

H'FFF8 1FFF

Loader program
(8 KB)

(8) Read

(9) Transfer to large-capacity
internal RAM

Application program

(10) Jump to the entry function of
the application program

(6) Execute the loader program

Figure 2 Operation Image of the Loader Program

Note: Application program can be transferred to external RAM such as SDRAM.

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 6 of 55

2.3 Downloader Operation
The downloader writes the loader program on the high-speed internal RAM and application program on RAM to serial flash
memory. The figure below shows the operation image of the downloader.

Refer to 3.3 Downloader Example for details.

Application program

Serial Flash MemoryRAM

Loader program

Downloader

Loader program

Application program

Write

Write

Figure 3 Operation Image of the Downloader

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 7 of 55

2.4 Serial Flash Memory Connection
The figure below shows the connection circuit for the SH7264 MCU and serial flash memory. Connect serial flash memory
to the Renesas Peripheral Interface Channel 0 (RSPI0) to use the serial boot.

AT26DF161A
2 MB

SCK (Serial Clock)

SI (Serial Data Input)

WP# (Write Protect)
DIP

Switches

CS# (Chip Select)

SO (Serial Data Output)

HOLD#3.3 V

RSPCK0

SSL00

MOSI0

MISO0

Serial flash memory

SH7262/SH7264

MD_BOOT1

MD_BOOT03.3 V

For boot mode 1

3.3 V

3.3 V

3.3 V

3.3 V

3.3 V

Figure 4 Connection Circuit for the SH7264 and Serial Flash Memory

Note: The SH7264 MCU uses the RSPI clock at 1/2 of the bus clock rate (Bφ) in boot mode 1, and uses the RSPI clock at
1/4 of the bus clock rate in boot mode 3. Select the boot mode to fulfill the AC characteristics of serial flash
memory and the RSPI.

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 8 of 55

3. Applications
This chapter describes the loader program, application program and downloader.

3.1 Loader Program Specifications
The loader program transfers the application program from serial flash memory to the large-capacity internal RAM, and
jumps to the entry function of the application program.

3.1.1 Memory Map
The figure below shows the memory map example of the loader program.

1. The loader program (the program area) is allocated to the address from H'FFF8 0000 to H'FFF8 1AFF.
2. Tentative exception vector table is allocated to the address from H'FFF8 1B00 to H'FFF8 1B4F (Refer to 3.1.5 for

details).
3. The loader program (the stack area) is allocated to the address from H'FFF8 1C00 to H'FFF8 1FFF (Refer to 3.1.3 for

details).

Loader program

Loader program (program area)

H'FFF8 0000

H'FFF8 1C00

H'FFF8 1FFF

Loader program (stack area)

High-speed Internal RAMSerial Flash Memory
H'0000 0000

H'0000 1FFF
H'0000 2000

Application program

Tentative exception vector table
H'FFF8 1B00

H'FFF8 1B4F

Figure 5 Loader Program Memory Map

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 9 of 55

3.1.2 Flow Chart of the Loader Program
The following figure shows the flow chart of the loader program. For details, refer to sections 3.1.3 to 3.1.11.

START

Set the stack pointer for the loader program

Mask the interrupt

Set the Frequency control register (FRQCR)

Set the Vector base register (VBR)

 Refer to 3.1.3

Refer to 3 .1.4

Refer to 3.1.5

 Refer to 3.1.6

 Refer to 3.1.7

Set the Floating-point status /control register
(FPSCR)

Enable the cache

Transfer the application program

Write back the cache

Set the stack pointer for the application program

Jump to the entry function of the
application program

END

Set the Renesas Serial Peripheral Interface
Channel 0 (RSPI0)

 Refer to 3.1.8 and 3.1.12

Refer to 3.1.9

Refer to 3.1.10

Refer to 3.1.11

Set the Standby control registers 3 to 8 Enable the functions of
the peripheral modules

 Refer to 3.1.7

 Refer to 3.1.7

Figure 6 Loader Program Flow Chart

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 10 of 55

3.1.3 Stack Pointer Setting
Set the stack pointer (R15) to the address of H'FFF8 2000. Allocate the loader program processing at the address of
H'FFF8 0000, and use the assembly language to avoid the loader program using the undefined stack pointer. C can be used
after configuring the stack pointer. Then, the loader program jumps to the entry function of the loader program.

3.1.4 Floating-Point Status Control Register (FPSCR) Setting
Specify the FPSCR at the address of H'0004 0001 (single-precision operation, round to zero).

3.1.5 Vector Base Register (VBR) Setting
The loader program sets the tentative exception vector table in VBR to support the exception during the loader program is
operating. Do not generate exceptions or interrupts before setting the VBR, as the exception vector table is undefined. As
the loader program does not use the interrupt, only vector numbers 0 to 18 are defined in the tentative exception vector table.
To embed the exception such as the external interrupt during the loader program is operating, extend the tentative exception
vector table.

Note: Store the exception vector table on memory and allow the CPU to access the memory before executing exception.
For details, refer to 6.9.4 “Note before Exception Handling Begins Running” in the SH7262 Group, SH7264 Group
Hardware Manual.

3.1.6 Interrupt Mask
Specify B'1111 in the interrupt mask level bit of the status register (SR) as the loader program does not support interrupts
during it is operating.

3.1.7 Configuration
Configure the peripheral functions to read the application program from serial flash memory.

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 11 of 55

3.1.8 Transferring the Application Program
The loader program refers the application program transfer information (appinfo) in serial flash memory, and transfers the
application program to the large-capacity internal RAM. The table below lists the appinfo in detail. Allocate the appinfo in
the address of H'0000 2000 in serial flash memory. The loader program handles the information from H'0000 2000 to
H'0000 2007 in serial flash memory as the appinfo.

Table 3 Application Program Transfer Information (appinfo)

Item Address Size
Destination start address H'0000 2000 4
Destination end address H'0000 2004 4

The figure below shows the transfer image of the application program using the appinfo. For the procedures to generate the
appinfo, refer to 3.2.7.

Application program

Loader program

Loader program (Program area)

Loader program (Stack area)

RAMSerial Flash Memory
H'0000 0000

H'0000 1FFF
H'0000 2000

Tentative exception vector table

Application program

appinfo
Destination start address (4 bytes)
Destination end address (4 bytes)

The entry function address of the application program
Stack pointer value of the application program

H'0000 2004
H'0000 2008
H'0000 200C

appinfo
Destination start address (4 bytes)
Destination end address (4 bytes)

The entry function address of the application program
Stack pointer value of the application program

+H'0
+H'4
+H'8
+H'C

Figure 7 Application Program Transfer Image

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 12 of 55

3.1.9 Writing Back the Cache
After transferring the application program to the large-capacity internal RAM, the loader program writes back the cache to
guarantee the coherency between the cache memory.

3.1.10 Application Program Stack Pointer Setting
The loader program specifies the value stored in the first 12 to 15 bytes in the application program in the stack pointer (R15).

3.1.11 Application Program Jump To the Entry Function Address
The loader program jumps to the entry function address stored in the first 8 to 11 bytes in the application program.

3.1.12 Serial Flash Memory Commands
A set of commands are used to access serial flash memory. The loader program use the Read Array command in serial flash
memory to read the application program from serial flash memory, and transfer the program to the large-capacity internal
RAM. The following table lists the serial flash memory command used in the loader program.

Table 4 Serial Flash Memory Command

Command Name Opcode Function
Read Array H'0B Reads the data

Note: Although this application refers the commands of the ATMEL AT26DF161A, serial flash memory commands

depend on the type of the serial flash memory. Refer to the datasheet provided by the serial flash memory
manufacturer.

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 13 of 55

3.1.13 Register Status after Executing the Loader Program
The table below lists the register status after executing the loader program. Registers not included in the table are set as
default in the SH7262 Group, SH7264 Group Hardware Manual.

Table 5 Register Status

Register Name Abbreviation Value Remarks
General registers R0 to R14 Undefined
Program counter PC Depends on the setting Application program entry

function address
Stack pointer SP (R15) Depends on the setting The stack pointer value in

the application program
Status register SR Undefined Note: IMASK bit is B’1111.
Vector base register VBR H'FFF8 1B00
Floating-point status/

control register
FPSCR H'0004 0001 Single precision operation

Round to: zero
Frequency control register FRQCR H'1003
Standby control register 3 STBCR3 H'02
Standby control register 4 STBCR4 H'00
Standby control register 5 STBCR5 H'10
Standby control register 6 STBCR6 H'00
Standby control register 7 STBCR7 H'2A
Standby control register 8 STBCR8 H’7E
Cache control register 1 CCR1 H'0000 0101 Instruction cache is valid

Operand cache is valid
Control register_0 SPCR_0 H'48
Slave select polarity register_0 SSLP_0 H'00
Pin control register_0 SPPCR_0 H'30
Status register_0 SPSR_0 H'60
Data register_0 SPDR_0 Undefined
Sequence control register_0 SPSCR_0 H'00
Sequence status register_0 SPSSR_0 H'00
Bit rate register_0 SPBR_0 H'01
Data control register_0 SPDCR_0 H'20
Clock delay register_0 SPCKD_0 H'00
Slave select negation delay

register_0
SSLND_0 H'00

Command register_00 SPCMD_00 H'E700
Command register _01 SPCMD_01 H'070D
Command register _02 SPCMD_02 H'070D
Command register _03 SPCMD_03 H'070D
Buffer control register_0 SPBFCR_0 H'00
Buffer data count setting

register_0
SPBFDR_0 H'0000

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 14 of 55

3.2 Application Program Example
As the loader program transfers the application program from serial flash memory to the large-capacity internal RAM, the
memory map of the application program must be allocated as the loader program can read. Also, the application program
must include the address information that the loader program refers.

This section describes the procedure to create the application program for the serial boot.

3.2.1 Section Alignment
The section alignment in the application program is explained in this section.

1. As an application program is executed on RAM, sections of the application program are located on the large-capacity
internal RAM in this example.

2. As the loader program uses the start address and end address of the application program to transfer the application

program from serial flash memory to the large-capacity internal RAM, allocate the program area, constant area and
initialized data area of the application program to the physically contiguous area. Uninitialized data area and stack area
can be allocated at a desired address.

3. Allocate the appinfo, application program entry function address, and stack pointer value at fixed address.

Place the appinfo in DAPPINFO section, application program entry function address, and stack pointer value in
DVECTTBL section. Allocate DAPPINFO section at the start on RAM, and then allocate DVECTTBL section.

4. As the loader program uses from H'FFF8 0000 to H'FFF8 1FFF in the high-speed internal RAM, do not allocate the
program area, the constant area, and the initialized data area of the application program to that address.

5. Allocate the reset vector table RESET_Vectors in the start address of the DVECTTBL section.

The figure below shows an example of the section alignment in RAM.

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 15 of 55

RAM

Start section
(DAPPINFO section)

End section
(PCACHE section)

Uninitialized area
(B section)

xxx_1 section

Stack area
(S section)

xxx_2 section

xxx_n section

Allocate sections for the program area,
constant area, and initialized data area
of the application program to the
physically contiguous area.

Uninitialized area (B section) can be
allocated at a desired address.

Stack area (S section) can be
allocated at a desired address.

Second section
(DVECTTBL section)

Figure 8 Application Program Section Alignment

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 16 of 55

3.2.2 Flow Chart
The application program in this application example transmits the strings of characters to channel 0 of the serial
communication interface with FIFO (SCIF0). The following figure shows the flow chart of the application program.

START

Jump to main function

END

resetprg .c / PowerON_Reset_PC function

Set the VBR register

Mask the interrupt

Initialize the section

Disable the interrupt

Set the register bank

main.c / main function

START

Transmit the string of characters to SCIF0

Configure the standard I /O library (_INIT_IOLIB)

Infinite loop

END

SCIF0 setting:
Baud rate: 57,600 bps
No parity bit
Stop bit length: 1

Figure 9 Application Program Flow Chart

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 17 of 55

3.2.3 Entry Function Setting
Set the entry function address of the application program to the table number 0 of the reset vector table RESET_Vectors.
The following table lists its settings.

Table 6 Entry Function Address Settings

Item Setting
File Name vecttbl.c
Name of Section to Place DVECTTBL
Table Name RESET_Vectors
Table Number 0
Default PowerON_Reset_PC

Note: PowerON_Reset_PC is an entry function of the application program.

3.2.4 Stack Pointer Setting
Set the stack pointer of the application program to the table number 1 of the reset vector table RESET_Vectors. The
following table lists its settings.

Table 7 Stack Pointer Setting

Item Setting
File Name vecttbl.c
Name of Section to Place DVECTTBL
Table Name RESET_Vectors
Table Number 1
Default __secend ("S")

3.2.5 Initializing the Section
Initialize the section by executing the section initialization routine (_INITSCT function). To execute the _INITSCT function,
use values stored in section initialization tables (DTBL and BTBL) described in the file dbsct.c. After executing the
_INITSCT function, write back the cache to guarantee the coherency between the cache memory and the large-capacity
internal RAM.

3.2.6 Vector Base Register (VBR) Setting
Set the exception vector table of the application program to VBR.

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 18 of 55

3.2.7 Generating the Application Program Transfer Information (appinfo)
The table below lists the structure to generate the application program transfer information (appinfo). Retrieve the start and
end address of the application program by the section address operators (_sectop, _secend). Allocate the following structure
in the DAPPINFO section. Register the start address of the application program (the program area, constant area, and
initialized data area) in the app_top, and the end address of the application program in the app_end.

Table 8 Application Program Transfer Information (appinfo)

Item Description
File Name appinfo.c
Structure Name appinfo

Member name Value Description
void *app_top __sectop("DAPPINFO") Start address of the

application program

Structure Member

void *app_end __secend("PCACHE") End address of the
application program +1

Name of Section to Place DAPPINFO
Note: The amount of the size of the loader program (8 KB) and application program must not exceed the

capacity of serial flash memory.

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 19 of 55

The following figure shows the Application Program Transfer Information (appinfo) generated image.

RAM

Start section
(DAPPINFO section)

End section
(PCACHE section)

Uninitialized area
(B section)

xxx_1 section

Stack area
(S section)

xxx_2 section

xxx_n section

Allocate sections the program area,
constant area, and initialized data area
of the application program to the
physically-contiguous area.

Uninitialized area (B section) can be
allocated at a desired address.

Stack area (S section) can be
allocated at a desired address.

__sectop("DAPPINFO")

__secend(" PCACHE")

End address of the application program (program
area, constant area, and initialized data area)

Start address of the application program (program
area, constant area, and initialized data area)

app_top

app_end

Application program transfer
information (appinfo)

Second section
(DVECTTBL section)

Figure 10 Application Program Transfer Information Generated Image

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 20 of 55

3.3 Downloader Example
This section describes the downloader in this application.

3.3.1 Operation
Transfer the downloader and the loader program from the development environment to the high-speed internal RAM on
system by the debugger, and the application program to the large-capacity internal RAM. The following figure shows an
operation image of the downloader.

Serial Flash Memory
H'0000 0000

H'0000 1FFF

Development Environment

Application program
*.abs file

Loader program
*.abs file

Downloader
*.abs file

High-speed Internal RAM
H'FFF8 0000

H'FFF8 1FFF

Loader program

Downloader H'FFF8 2000
H'FFF8 2FFF

Application program

H'0000 2000

Large-capacity internal RAM

Figure 11 Downloader Operation Image (1/2)

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 21 of 55

Execute the downloader to write the loader program and the application program in serial flash memory. The downloader
allocates the loader program from H'0000 0000 to H'0000 1FFF, and the application program from H'0000 2000. The
following figure shows the operation image.

Serial Flash Memory
H'0000 0000

H'0000 1FFF

Development Environment

Application program
*.abs file

Loader program
*.abs file

Downloader
*.abs file

High-speed Internal RAM
H'FFF8 0000

H'FFF8 1FFF

Loader program

Downloader H'FFF8 2000
H'FFF8 2FFF

Application program

H'0000 2000

Large-capacity Internal RAM

Application program

Loader program

Figure 12 Downloader Operation Image (2/2)

3.3.2 Area Used by the Downloader
The downloader occupies the address from H'FFF8 2000 to H'FFF8 2FFF. When the loader program, the application
program and the downloader occupy the same section, the programs do not operate properly.

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 22 of 55

3.3.3 Flow Chart of the Downloader
The figure below shows the flow chart of the downloader. Execute the downloader placed on the high-speed internal RAM
to write the loader program and the application program in serial flash memory. For details, refer to sections 3.3.4 to 3.3.8.

End in _haltEnd in _error

No

No

Yes

Yes

START

Mask the interrupt

Configure the Renesas Serial Peripheral Interface
Channel 0 (RSPI 0)

Set the stack pointer (R15) Refer to 3.3.4

Refer to 3.3.5

Disable the software protection in serial flash
memory

Refer to 3.3.6

Refer to 3.3.6

Refer to 3.3.7 and
Figure 14

Refer to 3.3.8 and
Figure 14

Write the loader program in serial flash
memory

Write the application program in
serial flash memory

Writing OK?

Writing OK?

Figure 13 Downloader Flow Chart

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 23 of 55

The following figure shows the flow chart of writing the loader program and the application program.

Set the write destination address

Yes

No

Write success

Erase the target sector

Write the data by one byte
(program command)

Set the write size

Add one byte to the write destination address

Subtract one byte from the write size

Yes

No

Calculate the target sector number
 from the write address

Verify the data
(serial flash is programmed successfully)

Yes

No

Write error

Write the loader program
Write the application program

Erases the target sector before writing .
When the sector is not erased , erase it by
the Block Erase commend (64 KB).

Issues the Byte/Page Program command to
write the data in units of single byte.

To verify that the writing is completed
successfully, reads the data in serial flash
memory and compare it with the provided
data.

Sector
erased?

Write size
is 0?

Verify OK?

Figure 14 Flow Chart of Writing

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 24 of 55

3.3.4 Stack Pointer Setting
Specify the address at H'FFF8 3000 to the stack pointer (R15). Allocate this processing at the address H'FFF8 2000, and use
the assembly language to avoid the downloader using the undefined stack pointer. C can be used after configuring the stack
pointer. Then, the downloader jumps to the entry function of downloader.

3.3.5 Interrupt Mask
Specify B'1111 in the interrupt mask level bit of the status register (SR) as the downloader does not support interrupts
during it is operating.

3.3.6 Initialization
Initialize serial flash memory before accessing.

1. Initialize the RSPI0
2. Issue the Write Status Register command to serial flash memory to disable the software protection. (Global unprotect)

3.3.7 Writing the Loader Program
The downloader reads the loader program that has been transferred at the address from H'FFF8 0000 to H'FFF8 1FFF in the
high-speed internal RAM, and writes the loader program at the address from H'0000 0000 to H'0000 1FFF in serial flash
memory. The following table lists the items for writing the loader program.

Table 9 Writing the Loader Program

Item Description
Source Address of the Loader Program
(High-speed internal RAM)

H'FFF8 0000 (fixed)

Destination Address of the Loader
Program

(Serial flash memory)

H'0000 0000 (fixed)

Transfer Size H'2000 (fixed)
Writing Procedures 1. Checks if the destination address is already erased.

2. Erases the data when the address is not erased.
3. Issues the program command to write the loader

program in units of single byte.

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 25 of 55

3.3.8 Writing the Application Program
The downloader reads the application program in the large-capacity internal RAM, and writes it at the address from
H'0000 2000. The following table lists the items for writing the application program.

Table 10 Writing the Application Program

Item Description
Source Address of the Application

Program (Large-capacity internal RAM)
Retrieves from the appinfo in the application program
(Application program dependent)

Destination Address of the Application
Program (Serial flash memory)

H'0000 2000 (fixed)

Transfer Size Extracts from the appinfo in the application program
(Application program dependent)

Writing Procedures 1. Checks if the destination address is already erased.
2. Erases the data when the address is not erased.
3. Issues the program command to write the application

program in units of single byte.

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 26 of 55

3.3.9 Serial Flash Memory Commands
The table below lists the serial flash memory commands used in the downloader. Issue these commands via the Renesas
Serial Peripheral Interface Channel 0 (RSPI0) to read, write, and erase serial flash memory.

Table 11 Serial Flash Memory Commands

Notes: 1. Although this application refers the commands of the ATMEL AT26DF161A, serial flash memory commands
depend on the type of the serial flash memory. Refer to the datasheet provided by the serial flash memory
manufacturer.

 2. Erase the data in the destination address in serial flash memory before writing.

Command Name Opcode Function
Read Array H'0B Reads the data
Write Enable H'06 Enables to execute the program, erase, write status register

commands
Write Disable H'04 Disables to execute the program, erase, write status register

command
Read Status Register H'05 Reads the status register
Write Status Register H'01 Writes the data in the status register (disable the software

protection)
Block Erase (64Kbytes) H'D8 Erases the data in blocks (64 KB)
Byte/Page Program H'02 Programs the data (1 to 256 bytes)

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 27 of 55

3.3.10 Batch File
Before executing the downloader, the loader program and the downloader must be transferred to the high-speed internal
RAM, and the application program must be transferred to the large-capacity internal RAM to write the loader program and
the application program in serial flash memory.

This application note uses the command batch file in the High-performance Embedded Workshop to execute a series of
processing automatically.

The figure below shows the flow chart of the command batch file. The command batch file is used to transfer programs to
the high-speed internal RAM and the large-capacity internal RAM, and write programs in serial flash memory.

Execute the downloader

START

Reset CPU

Set the Frequency Control Register (FRQCR)

Transfer programs to RAM

Insert a software breakpoint at the _halt Insert a software breakpoint to stop the program when the
downloader terminates.
- The _halt is a function in the downloader which is called when the
downloader ends successfully.
- The _error is a function in the downloader which is called when the
downloader ends successfully.

Execute the downloader

Wait for the download processing is complete

Remove a software breakpoint at the _halt

END

When the downloader terminates, remove the software breakpoint
to get it back to the original

Transfer the loader program and downloader to the high-
speed internal RAM, and the application program to the large-
capacity internal RAM

Remove a software breakpoint at the _error

Insert a software breakpoint at the _error

Figure 15 Command Batch File Flow Chart

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 28 of 55

4. Sample Program Listing

4.1 Loader Program
4.1.1 Loader Program Listing "loader.src" (1/2)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

;/*""FILE COMMENT""*********** Technical reference data *************************

;*

;* System Name : SH7264 Sample Program

;* File Name : loader.src

;* Abstract : Loader program preprocessing/jump processing to the application

;* : program

;* Version : 1.00.00

;* Device : SH7264/SH7262

;* Tool-Chain : High-performance Embedded Workshop (Ver.4.04.01).

;* : C/C++ compiler package for the SuperH RISC engine family

;* : (Ver.9.02 Release00).

;* OS : None

;* H/W Platform: M3A-HS64G50 (CPU board)

;* Disclaimer :

;*

;* The information described here may contain technical inaccuracies or

;* typographical errors. Renesas Technology Corporation and Renesas Solutions

;* assume no responsibility for any damage, liability, or other loss rising

;* from these inaccuracies or errors.

;*

;* Copyright (C) 2008 Renesas Technology Corp. All Rights Reserved

;* AND Renesas Solutions Corp. All Rights Reserved

;*

;* History : Dec.19,2008 Ver.1.00.00

;*""FILE COMMENT END""**/

 .SECTION LOADER_ENTRY,CODE,ALIGN = 4

 .IMPORT _main

 .EXPORT _jmp_app_prog

_loader_prog:

 MOV.L L2,R15 ; Sets the stack pointer

 MOV.L L1,R0 ; Retrieves the entry function of the loader program

 JMP @R0 ; Jumps to the entry function of the loader program

 NOP

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 29 of 55

4.1.2 Loader Program Listing "loader.src" (2/2)

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

;/*""FUNC COMMENT""**

; * ID :

; * Outline : Jump to the application program

; *--

; * Include :

; *--

; * Declaration : _jmp_app_prog

; *--

; * Description : 1. Retrieves the stack pointer value stored in the first 12 to

; * : 15 bytes in the application program.

; * : 2. Specifies the stack pointer (R15).

; * : 3. Retrieves the entry function address stored in the first 8 to

; * : 11 bytes in the application program.

; * : 4. Jumps to the entry function.

; *--

; * Argument : R4 ; I : Start address of the application program

; *--

; * Return Value: none

; *""FUNC COMMENT END""**/

_jmp_app_prog:

 MOV.L R4,R0 ; Substitutes the start address of the application program for R0

 ADD #12,R0 ; Calculates the address storing the stack pointer value and

 ; substitutes the address for R0

 MOV.L @R0,R15 ; Sets the stack pointer

 MOV.L R4,R0 ; Substitutes the start address of the application program for R0

 ADD #8,R0 ; Calculates the address storing the entry function of the application

 ; program and substitutes the address for R0

 MOV.L @R0,R0 ; Substitutes the entry function address of the application

 ; program for R0

 JMP @R0 ; Jumps to the entry function of the application program

 NOP

 .ALIGN 4

L1:

 .DATA.L _main ; Entry function address of the loader program

L2:

 .DATA.L H'FFF82000 ; Stack pointer (R15) value of the loader program

 .pool

 .end

;/* End of File */

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 30 of 55

4.1.3 Loader Program Listing "main.c" (1/6)
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

/*""FILE COMMENT""*********** Technical reference data *************************

*

* System Name : SH7264 Sample Program

* File Name : main.c

* Abstract : Loader program

* Version : 1.00.00

* Device : SH7264/SH7262

* Tool-Chain : High-performance Embedded Workshop (Ver.4.04.01).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.02 Release00).

* OS : None

* H/W Platform: M3A-HS64G50 (CPU board)

* Disclaimer :

*

* The information described here may contain technical inaccuracies or

* typographical errors. Renesas Technology Corporation and Renesas Solutions

* assume no responsibility for any damage, liability, or other loss rising

* from these inaccuracies or errors.

*

* Copyright (C) 2008 Renesas Technology Corp. All Rights Reserved

* AND Renesas Solutions Corp. All Rights Reserved

*

* History : Dec.19,2008 Ver.1.00.00

*""FILE COMMENT END""**/

#include <stdio.h>

#include <string.h>

#include <machine.h>

#include "iodefine.h"

#include "serial_flash.h"

/* ==== macro defined ==== */

#define FPSCR_INIT 0x00040001 /* Value to set in the FPSCR register */

#define INT_MASK 0x000000F0 /* Value to set in the SR register

 (for masking the interrupt) */

#define APROG_TOP_SFLASH 0x00002000 /* Start address of the application program */

 /* (serial flash memory) */

#define APPINFO_TOP APROG_TOP_SFLASH /* Address the appinfo.app_top is located */

#define APPINFO_END (APROG_TOP_SFLASH + 4) /* Address the appinfo.app_end is located */

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 31 of 55

4.1.4 Loader Program Listing "main.c" (2/6)
42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

/* ==== prototype declaration ==== */

void main(void);

void get_appinfo(unsigned long *app_top_addr,unsigned long *app_end_addr);

void app_prog_transfer(unsigned long app_top_addr,unsigned long app_end_addr);

void system_down(void);

extern void jmp_app_prog(unsigned long app_top_addr);

extern void io_set_cpg(void);

extern void sf_byte_read_long(unsigned long addr, unsigned long *buf, int size);

/* ==== external data ==== */

extern unsigned long DUMMY_Vectors;

/*""FUNC COMMENT""**

 * ID :

 * Outline : Loader program main

 *--

 * Include : #include "serial_flash.h"

 *--

 * Declaration : void main(void);

 *--

 * Description : Refers the data in the appinfo to transfer the application program

 * : to the large-capacity internal RAM, and jumps to the entry function

 * : of the application program.

 *--

 * Argument : void

 *--

 * Return Value: void

 *""FUNC COMMENT END""**/

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 32 of 55

4.1.5 Loader Program Listing "main.c" (3/6)
73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

void main(void)

{

 unsigned long app_top,app_end;

 /* Sets the FPSCR */

 set_fpscr(FPSCR_INIT);

 /* Sets the tentative VBR */

 set_vbr((void *)(&DUMMY_Vectors));

 /* Masks the interrupt */

 set_cr(INT_MASK);

 /* Sets the CPG */

 io_set_cpg();

 /* Enables the cache */

 io_init_cache();

 /* Sets the RSPI0 */

 sf_init_serial_flash();

 /* Retrieves the appinfo */

 get_appinfo(&app_top,&app_end);

 /* Transfers the application program to the large-capacity internal RAM */

 app_prog_transfer(app_top, app_end);

 /* Writes back the cache */

 io_cache_writeback();

 /* Jumps to the application program */

 jmp_app_prog(app_top);

 while(1){

 /* LOOP */

 }

}

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 33 of 55

4.1.6 Loader Program Listing "main.c" (4/6)
114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

/*""FUNC COMMENT""**

 * ID :

 * Outline : Retrieve the appinfo

 *--

 * Include : #include "serial_flash.h"

 *--

 * Declaration : void get_appinfo (unsigned long *app_top_addr,

 * : unsigned long *app_end_addr);

 *--

 * Description : Retrieves the appinfo.

 * : Retrieves the appinfo.top from H'2000 to H'2003 in serial flash

 * : memory, and stores it in the address specified by the first

 * : argument. This function also retrieves the appinfo.end from

 * : H'2004 to H'2007 in serial flash memory, and stores it in the

 * : address specified by the second argument.

 *--

 * Argument : unsigned long app_top_addr ; O : Start address of the application

 * : program at destination

 * : unsigned long app_end_addr ; O : End address of the application

 * : program at destination

 *--

 * Return Value: void

 *""FUNC COMMENT END""**/

void get_appinfo(unsigned long *app_top_addr,unsigned long *app_end_addr)

{

 /* Retrieves the appinfo.top */

 sf_byte_read(APPINFO_TOP, (unsigned char *)app_top_addr, 4);

 /* Retrieves the appinfo.end */

 sf_byte_read(APPINFO_END, (unsigned char *)app_end_addr, 4);

}

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 34 of 55

4.1.7 Loader Program Listing "main.c" (5/6)
148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

/*""FUNC COMMENT""**

 * ID :

 * Outline : Transfer the application program

 *--

 * Include : #include "serial_flash.h"

 *--

 * Declaration : void app_prog_transfer(unsigned long app_top_addr,

 * : unsigned long app_end_addr);

 *--

 * Description : Calculates the size of the application program, and transfers

 * : the application program from serial flash memory to the

 * : large-capacity internal RAM. (Rounds up the allocation size of the

 * : application program to multiples of 4 to transfer in longword.)

 *--

 * Argument : unsigned long app_top_addr ; I : Start address of the application

 * : program at destination

 * : unsigned long app_end_addr ; I : End address of the application

 * : at destination

 *--

 * Return Value: void

 *""FUNC COMMENT END""**/

void app_prog_transfer(unsigned long app_top_addr,unsigned long app_end_addr)

{

 unsigned long app_prog_size;

 /* Calculates the size of the application program */

 app_prog_size = app_end_addr - app_top_addr;

 if((app_prog_size & 0x00000003) != 0){

 app_prog_size &= 0xFFFFFFFC;

 app_prog_size += 4; /* Rounds up the allocation size of the application

 program to multiples of 4. */

 }

 /* Loads the application program in the large-capacity internal RAM */

 sf_byte_read_long(APROG_TOP_SFLASH, (unsigned long *)app_top_addr, app_prog_size);

}

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 35 of 55

4.1.8 Loader Program Listing "main.c" (6/6)
185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

/*""FUNC COMMENT""**

 * ID :

 * Outline : Terminate the system

 *--

 * Include :

 *--

 * Declaration : void system_down(void);

 *--

 * Description : This function contains the infinite loop.

 * : As this is registered in the DUMMY_Vectors table, this is

 * : called when an exception occurs while the loader program

 * : is operating.

 *--

 * Argument : void

 *--

 * Return Value: void

 *""FUNC COMMENT END""**/

void system_down(void)

{

 while(1){

 /* System error */

 }

}

/* End of File */

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 36 of 55

4.2 Application Program
4.2.1 Application Program Listing "main.c" (1/2)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

/*""FILE COMMENT""*********** Technical reference data *************************

*

* System Name : SH7264 Sample Program

* File Name : main.c

* Abstract : Application program example

* Version : 1.00.00

* Device : SH7264/SH7262

* Tool-Chain : High-performance Embedded Workshop (Ver.4.04.01).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.02 Release00).

* OS : None

* H/W Platform: M3A-HS64G50 (CPU board)

* Disclaimer :

*

* The information described here may contain technical inaccuracies or

* typographical errors. Renesas Technology Corporation and Renesas Solutions

* assume no responsibility for any damage, liability, or other loss rising

* from these inaccuracies or errors.

*

* Copyright (C) 2008 Renesas Technology Corp. All Rights Reserved

* AND Renesas Solutions Corp. All Rights Reserved

*

* History : Dec.19,2008 Ver.1.00.00

*""FILE COMMENT END""**/

#include <stdio.h>

/* ==== prototype declaration ==== */

void main(void);

/*""FUNC COMMENT""**

 * ID :

 * Outline : Application program main function

 *--

 * Include :

 *--

 * Declaration : void main(void);

 *--

 * Description : Transmits the strings of characters to the SCIF0.

 * : (Baud rate: 57600 bps, no parity, stop bit length: 1).

 *--

 * Argument : void

 *--

 * Return Value: void

 *""FUNC COMMENT END""**/

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 37 of 55

4.2.2 Application Program Listing "main.c" (2/2)

46

47

48

49

50

51

52

53

54

55

56

void main(void)

{

 puts("==== Serial Flash Boot Done. ====");

 fflush(stdout);

 while(1){

 /* loop */

 }

}

/* End of File */

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 38 of 55

4.2.3 Application Program Listing "appinfo.c"

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

/*""FILE COMMENT""*********** Technical reference data *************************

*

* System Name : SH7264 Sample Program

* File Name : appinfo.c

* Abstract : Generate the application program transfer information (appinfo).

* Version : 1.00.00

* Device : SH7264/SH7262

* Tool-Chain : High-performance Embedded Workshop (Ver.4.04.01).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.02 Release00).

* OS : None

* H/W Platform: M3A-HS64G50 (CPU board)

* Disclaimer :

*

* The information described here may contain technical inaccuracies or

* typographical errors. Renesas Technology Corporation and Renesas Solutions

* assume no responsibility for any damage, liability, or other loss rising

* from these inaccuracies or errors.

*

* Copyright (C) 2008 Renesas Technology Corp. All Rights Reserved

* AND Renesas Solutions Corp. All Rights Reserved

*

* History : Dec.19,2008 Ver.1.00.00

*""FILE COMMENT END""**/

#include "appinfo.h"

#pragma section APPINFO

static APPINFO appinfo = {

 __sectop("DAPPINFO"), /* Start address in the start section of the application */

 /* program (program area, constant area, and initialized /*

 /* data area). */

 __secend("PCACHE") /* End address in the end section of the application */

 /* program (program area, constant area, and initialized /*

 /* data area) */

};

/* End of File */

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 39 of 55

4.2.4 Application Program Listing "appinfo.h"

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

/*""FILE COMMENT""*********** Technical reference data *************************

*

* System Name : SH7264 Sample Program

* File Name : appinfo.h

* Abstract : Header file of the application program transfer information

(appinfo).

* Version : 1.00.00

* Device : SH7264/SH7262

* Tool-Chain : High-performance Embedded Workshop (Ver.4.04.01).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.02 Release00).

* OS : None

* H/W Platform: M3A-HS64G50 (CPU board)

* Disclaimer :

*

* The information described here may contain technical inaccuracies or

* typographical errors. Renesas Technology Corporation and Renesas Solutions

* assume no responsibility for any damage, liability, or other loss rising

* from these inaccuracies or errors.

*

* Copyright (C) 2008 Renesas Technology Corp. All Rights Reserved

* AND Renesas Solutions Corp. All Rights Reserved

*

* History : Dec.19,2008 Ver.1.00.00

*""FILE COMMENT END""**/

#ifndef __APPINFO_H__

#define __APPINFO_H__

typedef struct appinfo_t {

 void *app_top; /* Start address of the application program */

 void *app_end; /* End address of the application program */

} APPINFO;

#endif /* __APPINFO_H__ */

/* End of File */

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 40 of 55

4.3 Downloader
4.3.1 Downloader Program Listing "downloader.hdc" (1/2)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

#/*""FILE COMMENT""*********** Technical reference data *************************

#*

#* System Name : SH7264 Sample Program

#* File Name : downloader.hdc

#* Abstract : Batch File for the Downloader

#* Version : 1.00.00

#* Device : SH7264/SH7262

#* Tool-Chain : High-performance Embedded Workshop (Ver.4.04.01).

#* : C/C++ compiler package for the SuperH RISC engine family

#* : (Ver.9.02 Release00).

#* OS : None

#* H/W Platform: M3A-HS64G50 (CPU board)

#* Disclaimer :

#*

#* The information described here may contain technical inaccuracies or

#* typographical errors. Renesas Technology Corporation and Renesas Solutions

#* assume no responsibility for any damage, liability, or other loss rising

#* from these inaccuracies or errors.

#*

#* Copyright (C) 2008 Renesas Technology Corp. All Rights Reserved

#* AND Renesas Solutions Corp. All Rights Reserved

#*

#* History : Dec.19,2008 Ver.1.00.00

#*""FILE COMMENT END""**/

tcl enable

#Macro downloader -Start

proc init_hardware {} {

 # Set the CPG

 # FRQCR I=144MHz/B=72MHz/P=36MHz/CLK MODE2

 MF H'FFFE0010 H'FFFE0011 H'1003 WORD

}

proc downloader {} {

 # Reset CPU

 reset

 # Calls the init_hardware routine

 init_hardware

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 41 of 55

4.3.2 Downloader Program Listing "downloader.hdc" (2/2)

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

 # Downloads all modules registered in the High-performance Embedded Workshop

 file_load_all

 # Enables the user stack (to use the software breakpoint)

 sh2a_sbstk enable

 # Inserts a software breakpoint at the _halt (refer to main.c)

 set_disassembly_soft_break _halt set

 # Inserts a software breakpoint at the _error (refer to main.c)

 set_disassembly_soft_break _error set

 # Executes the _downloader (refer to downloader.src) to wait until it terminates

 go wait _downloader

 # Removes a software breakpoint at the _halt

 set_disassembly_soft_break _halt clear

 # Removes a software breakpoint at the _error

 set_disassembly_soft_break _error clear

}

downloader

#Macro downloader -End

Note: "tcl", "reset", "file_load", "sh2a_sbstk", "set_disassembly_soft_break",

and "go" are commands used in the High-performance Embedded Workshop and the

E10A-USB emulator. For details, refer to manuals.

/* End of File */

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 42 of 55

4.3.3 Downloader Program Listing "downloader.src"

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

;/*""FILE COMMENT""*********** Technical reference data *************************

;*

;* System Name : SH7264 Sample Program

;* File Name : downloader.src

;* Abstract : Downloader

;* Version : 1.00.00

;* Device : SH7264/SH7262

;* Tool-Chain : High-performance Embedded Workshop (Ver.4.04.01).

;* : C/C++ compiler package for the SuperH RISC engine family

;* : (Ver.9.02 Release00).

;* OS : None

;* H/W Platform: M3A-HS64G50 (CPU board)

;* Disclaimer :

;*

;* The information described here may contain technical inaccuracies or

;* typographical errors. Renesas Technology Corporation and Renesas Solutions

;* assume no responsibility for any damage, liability, or other loss rising

;* from these inaccuracies or errors.

;*

;* Copyright (C) 2008 Renesas Technology Corp. All Rights Reserved

;* AND Renesas Solutions Corp. All Rights Reserved

;*

;* History : Dec.19,2008 Ver.1.00.00

;*""FILE COMMENT END""**/

 .SECTION DOWNLOADER_ENTRY,CODE,ALIGN = 4

 .IMPORT _main

_downloader:

 MOV.L L2,R15 ; Sets the stack pointer

 MOV.L L1,R0 ; Retrieves the entry function of the downloader

 JMP @R0 ; Jumps to the entry function of the downloader

 NOP

 .ALIGN 4

L1:

 .DATA.L _main ; Entry function address of the downloader

L2:

 .DATA.L H'FFF83000 ; Stack pointer (R15) value of the downloader

 .pool

 .end

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 43 of 55

4.3.4 Downloader Program Listing "main.c" (1/7)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

/*""FILE COMMENT""*********** Technical reference data *************************

*

* System Name : SH7264 Sample Program

* File Name : main.c

* Abstract : Downloader

* Version : 1.00.00

* Device : SH7264/SH7262

* Tool-Chain : High-performance Embedded Workshop (Ver.4.04.01).

* : C/C++ compiler package for the SuperH RISC engine family

* : (Ver.9.02 Release00).

* OS : None

* H/W Platform: M3A-HS64G50 (CPU board)

* Disclaimer :

*

* The information described here may contain technical inaccuracies or

* typographical errors. Renesas Technology Corporation and Renesas Solutions

* assume no responsibility for any damage, liability, or other loss rising

* from these inaccuracies or errors.

*

* Copyright (C) 2008 Renesas Technology Corp. All Rights Reserved

* AND Renesas Solutions Corp. All Rights Reserved

*

* History : Dec.19,2008 Ver.1.00.00

*""FILE COMMENT END""**/

#include <stdio.h>

#include <string.h>

#include <machine.h>

#include "iodefine.h"

#include "serial_flash.h"

/* ==== macro defined ==== */

#define INT_MASK 0x000000F0 /* Value to set in the SR register (for masking

 the interrupt) */

#define SECTOR_SIZE 0x10000 /* Sector size: 64 KB */

#define SECTOR_NUM 32 /* Total number of sectors

 in the device */

#define DEVICE_SIZE (SECTOR_SIZE * SECTOR_NUM) /* Device size */

#define L_PROG_SIZE 8192 /* Loader program size */

#define L_PROG_SRC 0xFFF80000 /* Source address of the loader program */

#define L_PROG_DST 0x00000000 /* Destination address of the loader program */

#define APROG_TOP_SFLASH 0x00002000 /* Start address of the application program */

#define APROG_TOP_RAM 0x1C000000 /* Start address of the application program */

 /* When changing the start section of the */

 /* application program, change this definition */

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 44 of 55

4.3.5 Downloader Program Listing "main.c" (2/7)

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

#define APPINFO_TOP APROG_TOP_RAM /* Address the appinfo.app_top is located */

#define APPINFO_END (APROG_TOP_RAM + 4) /* Address the appinfo.app_end is located */

/* ==== prototype declaration ==== */

/*** User API ****/

void main(void);

static void halt(void);

static void error(void);

static void init_erase_flag(void);

static int Is_erased_sector(unsigned long sector_no);

static void set_erase_flag(unsigned long sector_no);

static int write_prog_data(unsigned char *program_data, unsigned long sflash_addr,

 unsigned long size);

/*** data ***/

static unsigned char sflash_erase_flag[SECTOR_NUM]={0}; /* 0: sector not erased,

 1: sector erased */

/*""FUNC COMMENT""**

 * ID :

 * Outline : Downloader main

 *--

 * Include :

 *--

 * Declaration : void main(void);

 *--

 * Description : Writes the loader program and application program in serial

 * : flash memory as the following procedures.

 * : 1. Mask the interrupt while the downloader is operating.

 * : 2. Initialize the RSPI0.

 * : 3. Disable the software protection in serial flash memory.

 * : 4. Write the loader program in serial flash memory.

 * : 5. Write the application program in serial flash memory.

 *--

 * Argument : void

 *--

 * Return Value: void

 *""FUNC COMMENT END""**/

void main(void)

{

 unsigned long app_top_addr,app_end_addr,app_prog_size;

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 45 of 55

4.3.6 Downloader Program Listing "main.c" (3/7)

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

 /* Masks the interrupt */

 set_cr(INT_MASK);

 /* Initializes the erase flag */

 init_erase_flag();

 /* Initializes the RSPI0 */

 sf_init_serial_flash();

 /* Disables the software protection in serial flash memory */

 sf_protect_ctrl(SF_REQ_UNPROTECT);

 /* Writes the loader program */

 if(write_prog_data((unsigned char *)L_PROG_SRC, L_PROG_DST, L_PROG_SIZE) < 0){

 error();

 }

 /* Retrieves the start address and end address from the application program

 transfer information (appinfo) */

 app_top_addr = *(volatile unsigned long *)APPINFO_TOP;

 app_end_addr = *(volatile unsigned long *)APPINFO_END;

 /* Calculates the size of the application program */

 app_prog_size = app_end_addr - app_top_addr;

 /* Writes the application program */

 if(write_prog_data((unsigned char *)app_top_addr, APROG_TOP_SFLASH, app_prog_size) < 0){

 error();

 }

 /* Enables the software protection in serial flash memory */

 sf_protect_ctrl(SF_REQ_PROTECT);

 /* Exits the downloader */

 halt();

}

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 46 of 55

4.3.7 Downloader Program Listing "main.c" (4/7)

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

/*""FUNC COMMENT""**

 * ID :

 * Outline : Write the program data

 *--

 * Include :

 *--

 * Declaration : int write_prog_data(unsigned char *program_data,

 * : unsigned long sflash_addr, unsigned long size);

 *--

 * Description : Writes the program data as the following procedures.

 * : 1. Erase the target sector when it is not erased.

 * : 2. Write the program data in serial flash memory.

 * : 3. Reads the data in serial flash memory and compare it with the

 * : provided data.

 *--

 * Argument : unsigned char *program_data ; I : Start address of the program data

 * : unsigned long sflash_addr ; I : Start address at the destination in

 * serial flash memory

 * : unsigned long size ; I : Write size

 *--

 * Return Value: Equal or bigger than 0: Success

 * : Less than 0: Error

 *""FUNC COMMENT END""**/

int write_prog_data(unsigned char *program_data, unsigned long sflash_addr, unsigned long size)

{

 unsigned long sector_no;

 unsigned long saddr;

 unsigned long sz;

 unsigned char read_data;

 unsigned char *w_p;

 /* ==== Copies the value from the argument to the local variable ==== */

 saddr = sflash_addr;

 sz = size;

 w_p = program_data;

 /* ==== Writes data in serial flash memory ==== */

 while(sz > 0){

 sector_no = saddr / SECTOR_SIZE;

 if(Is_erased_sector(sector_no) == 0){ /* When it is not erased */

 sf_sector_erase(sector_no); /* Erase */

 set_erase_flag(sector_no); /* When it is erased, set the erase flag */

 }

 sf_byte_program(saddr, w_p, 1); /* Writes data in units of *

 /* single byte */

 w_p++;

 saddr++;

 sz--;

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 47 of 55

4.3.8 Downloader Program Listing "main.c" (5/7)

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

 }

 /* ==== Verifies data (serial flash memory is programmed successfully) ==== */

 saddr = sflash_addr;

 sz = size;

 w_p = program_data;

 while(sz > 0){

 sf_byte_read(saddr,&read_data, 1); /* Reads the data written in */

 /* serial flash memory */

 if(*w_p != read_data){

 return -1; /* Returns an error when the data */

 /* unmatched */

 }

 w_p++;

 saddr++;

 sz--;

 }

 return 0;

}

/*""FUNC COMMENT""**

 * ID :

 * Outline : Initialize the Erase Flag

 *--

 * Include :

 *--

 * Declaration : static void init_erase_flag(void);

 *--

 * Description : Initializes the table sflash_erase_flag[].

 *--

 * Argument : void

 *--

 * Return Value: void

 *""FUNC COMMENT END""**/

static void init_erase_flag(void)

{

 int i;

 for(i=0; i < SECTOR_NUM ;i++){

 sflash_erase_flag[i] = 0;

 }

}

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 48 of 55

4.3.9 Downloader Program Listing "main.c" (6/7)

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

/*""FUNC COMMENT""**

 * ID :

 * Outline : Retrieve the Sector Erase Status

 *--

 * Include :

 *--

 * Declaration : static int Is_erased_sector(unsigned long sector_no);

 *--

 * Description : Returns the information (not erased or eraser) of the

 * : sector specified by the sector number.

 *--

 * Argument : unsigned long sector_no ; I : Sector number

 *--

 * Return Value: 1 : Sector in the specified address is already erased

 * : 0 : Sector in the specified address is not erased

 *""FUNC COMMENT END""**/

static int Is_erased_sector(unsigned long sector_no)

{

 return sflash_erase_flag[sector_no];

}

/*""FUNC COMMENT""**

 * ID :

 * Outline : Set the Erase Flag

 *--

 * Include :

 *--

 * Declaration : static void set_erase_flag(unsigned long sector_no);

 *--

 * Description : Sets the erase flag to modify the information of the specified

 * : sector as erased.

 *--

 * Argument : unsigned long sector_no ; I : Sector number

 *--

 * Return Value: void

 *""FUNC COMMENT END""**/

static void set_erase_flag(unsigned long sector_no)

{

 sflash_erase_flag[sector_no] = 1;

}

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 49 of 55

4.3.10 Downloader Program Listing "main.c" (7/7)

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

/*""FUNC COMMENT""**

 * ID :

 * Outline : Program stops (successful).

 *--

 * Include :

 *--

 * Declaration : static void halt(void);

 *--

 * Description : When the downloader ends successfully, this function is called

 * : to stop the program.

 *--

 * Argument : void

 *--

 * Return Value: void

 *""FUNC COMMENT END""**/

static void halt(void)

{

 while(1){

 /* When the downloader ends successfully, this function stops the program. */

 }

}

/*""FUNC COMMENT""**

 * ID :

 * Outline : Program stops (error).

 *--

 * Include :

 *--

 * Declaration : static void error(void);

 *--

 * Description : When the downloader ends in error, this function is called

 * : to stop the program.

 *--

 * Argument : void

 *--

 * Return Value: void

 *""FUNC COMMENT END""**/

static void error(void)

{

 while(1){

 /* When the downloader ends in error, this function stops the program */

 }

}

/* End of File */

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 50 of 55

5. Using the Downloader
The downloader in this application is designed to operate with the combination of the High-performance Embedded
Workshop and the E10A-USB emulator. When using the downloader with other development tools, alter the program
according to the tool.

The programs cannot be written in serial flash memory by selecting the download module in the Debug Settings dialog box
on the Debug menu. This section explains the procedures to write programs in serial flash memory using the downloader.

5.1 Sample Program Configuration
The sample program consists of three workspaces as listed in the following table.

Table 12 Sample Program Configuration

5.2 Writing Programs in Serial Flash Memory
This section describes the procedures to write the loader program and application program in serial flash memory using the
[sh7264_sflash_app] workspace.

5.2.1 Register the Download Module and Batch File
The figure below lists the directory configuration of the [sh7264_sflash_app] workspace. Download modules (A, B, and D)
and a batch file (C) in the figure are registered in the project.

Figure 16 [sh7264_sflash_app] Workspace Directory Configuration

Workspace Name Description
sh7264_sflash_downloader Build the downloader in the project of this workspace
sh7264_sflash_loader_prog Build the loader program in the project of this workspace
sh7264_sflash_app Build the application program in the project of this workspace.

The downloader which is created in the [sh7264_sflash_downloader]
workspace, a batch file to boot the downloader, and the loader program which
is created in the [sh7264_sflash_loader_prog] workspace are registered in the
project of this workspace. Use these items to write the loader program and
application program in serial flash memory.

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 51 of 55

1. Changing the download module
Change the download module registered in the project in the Debug setting dialog box. On the Debug menu in the High-
performance Embedded Workshop, click Debug settings, and the dialog box appears.

For registering the download modules, refer to the High-performance Embedded Workshop User’s Manual.

2. Changing the batch file
Change the batch file registered in the project in the Set Batch File dialog box. On the View menu in the High-performance
Embedded Workshop, click the Command Line command to show the Command Line window. Open the Set Batch File
dialog box from the Batch File pop-up menu on the Command Line window.

For registering the batch file, refer to the High-performance Embedded Workshop User’s Manual.

5.2.2 Procedures to Writing Programs
This section describes the procedures to write the loader program and application program in serial flash memory using the
[sh7264_sflash_app] workspace.

1. Copy the [sh7264_sflash_app] workspace directory in C:¥WorkSpace.
2. Double-click the [sh7264_sflash_app].hws in the workspace directory to activate the High-performance Embedded

Workshop.
3. On the Build menu, select the Build All command to build the project. The application program is generated.
4. On the Debug menu, select the Go command to connect with the target device.
5. After the connection is established, select the Command Line command to show the Command Line window.
6. Click the Run Batch button on the Command Line window to execute the registered batch file [downloader.hdc].

Command Line window

Run Batch button

Figure 17 Command Line Window and Run Batch Button

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 52 of 55

7. When the batch file [downloader.hdc] is executed, all of the download modules registered in the workspace (loader
program, application program, and downloader) are transferred to RAM to execute the downloader. As shown in the
figure below, the program counter stops at the _halt, when the downloader ends normally. The program counter stops at
the _error, when the downloader ends in error. A source file may appear when the [sh7264_sflash_downloader]
workspace directory is copied in C:¥WorkSpace.

When the downloader ends normally, the program
counter stops at the _halt.

When the downloader ends in error, the
program counter stops at the _error.

Figure 18 High-performance Embedded Workshop Window When the Downloader Ends

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 53 of 55

6. References
• Software Manual

SH-2A/SH-2A-FPU Software Manual Rev. 3.00
(Download the latest version from the Renesas website.)

• Hardware Manual

SH7262 Group, SH7264 Group Hardware Manual Rev. 1.00
(Download the latest version from the Renesas website.)

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 54 of 55

Website and Support
Renesas Technology Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry
csc@renesas.com

Revision History
Description

Rev.

Date Page Summary

1.00 Apr 14, 2009 — First edition issued

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry
mailto:csc@renesas.com

SH7262/SH7264 Group
Boot From the Serial Flash Memory

REJ06B0867-0100/Rev.1.00 April 2009 Page 55 of 55

© 2009. Renesas Technology Corp., All rights reserved.

	1. Introduction
	1.1 Specifications
	1.2 Modules Used
	1.3 Applicable Conditions
	1.4 Related Application Note

	2. Overview of the Serial boot
	2.1 Glossary of Terms
	2.2 Operation
	2.3 Downloader Operation
	2.4 Serial Flash Memory Connection

	3. Applications
	3.1 Loader Program Specifications
	3.1.1 Memory Map
	3.1.2 Flow Chart of the Loader Program
	3.1.3 Stack Pointer Setting
	3.1.4 Floating-Point Status Control Register (FPSCR) Setting
	3.1.5 Vector Base Register (VBR) Setting
	3.1.6 Interrupt Mask
	3.1.7 Configuration
	3.1.8 Transferring the Application Program
	3.1.9 Writing Back the Cache
	3.1.10 Application Program Stack Pointer Setting
	3.1.11 Application Program Jump To the Entry Function Address
	3.1.12 Serial Flash Memory Commands
	3.1.13 Register Status after Executing the Loader Program

	3.2 Application Program Example
	3.2.1 Section Alignment
	3.2.2 Flow Chart
	3.2.3 Entry Function Setting
	3.2.4 Stack Pointer Setting
	3.2.5 Initializing the Section
	3.2.6 Vector Base Register (VBR) Setting
	3.2.7 Generating the Application Program Transfer Information (appinfo)

	3.3 Downloader Example
	3.3.1 Operation
	3.3.2 Area Used by the Downloader
	3.3.3 Flow Chart of the Downloader
	3.3.4 Stack Pointer Setting
	3.3.5 Interrupt Mask
	3.3.6 Initialization
	3.3.7 Writing the Loader Program
	3.3.8 Writing the Application Program
	3.3.9 Serial Flash Memory Commands
	3.3.10 Batch File

	4. Sample Program Listing
	4.1 Loader Program
	4.1.1 Loader Program Listing "loader.src" (1/2)
	4.1.2 Loader Program Listing "loader.src" (2/2)
	4.1.3 Loader Program Listing "main.c" (1/6)
	4.1.4 Loader Program Listing "main.c" (2/6)
	4.1.5 Loader Program Listing "main.c" (3/6)
	4.1.6 Loader Program Listing "main.c" (4/6)
	4.1.7 Loader Program Listing "main.c" (5/6)
	4.1.8 Loader Program Listing "main.c" (6/6)

	4.2 Application Program
	4.2.1 Application Program Listing "main.c" (1/2)
	4.2.2 Application Program Listing "main.c" (2/2)
	4.2.3 Application Program Listing "appinfo.c"
	4.2.4 Application Program Listing "appinfo.h"

	4.3 Downloader
	4.3.1 Downloader Program Listing "downloader.hdc" (1/2)
	4.3.2 Downloader Program Listing "downloader.hdc" (2/2)
	4.3.3 Downloader Program Listing "downloader.src"
	4.3.4 Downloader Program Listing "main.c" (1/7)
	4.3.5 Downloader Program Listing "main.c" (2/7)
	4.3.6 Downloader Program Listing "main.c" (3/7)
	4.3.7 Downloader Program Listing "main.c" (4/7)
	4.3.8 Downloader Program Listing "main.c" (5/7)
	4.3.9 Downloader Program Listing "main.c" (6/7)
	4.3.10 Downloader Program Listing "main.c" (7/7)

	5. Using the Downloader
	5.1 Sample Program Configuration
	5.2 Writing Programs in Serial Flash Memory
	5.2.1 Register the Download Module and Batch File
	5.2.2 Procedures to Writing Programs

	6. References

