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SH7262/SH7264 Group 
Boot from the Serial Flash Memory 

Summary 
This application note describes the boot from the SH7262/SH7264 microcomputers (MCUs) internal serial flash memory. 

Target Device 
SH7262/SH7264 (In this document, SH7264/SH7262 are described as "SH7264".) 
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1. Introduction 

1.1 Specifications 
SH7264 MCU boots from an internal serial flash memory (serial boot) in boot mode 1 and boot mode 3. This application 
note describes the loader program and application program examples when using the serial boot. The downloader to write 
the loader program and application program to serial flash memory is also described. 

 

1.2 Modules Used 
• Boot mode 1 
• Renesas Serial Peripheral Interface (RSPI) 
 

1.3 Applicable Conditions 
 

MCU SH7262/SH7264 
Operating Frequency Internal clock: 144 MHz 
 Bus clock: 72 MHz 
 Peripheral clock: 36 MHz 
Integrated Development 
Environment 

Renesas Technology Corp. 
High-performance Embedded Workshop Ver.4.04.01 

C compiler Renesas Technology SuperH RISC engine Family 
C/C++ compiler package Ver.9.02 Release 00 

Compiler options Default setting in the High-performance Embedded Workshop 
(-cpu=sh2afpu -fpu=single -object="$(CONFIGDIR)\$(FILELEAF).obj" -debug -
gbr=auto -chgincpath -errorpath -global_volatile=0 -opt_range=all -
infinite_loop=0 -del_vacant_loop=0 -struct_alloc=1 –nologo) 

 

1.4 Related Application Note 
Refer to the related application notes as follows: 

• SH7262/SH7264 Group Example of Initialization 
• SH7262/SH7264 Group Interfacing Serial Flash Memory Using the Renesas Peripheral Serial Interface 
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2. Overview of the Serial boot 
This chapter describes the overview of the serial boot. 

 

2.1 Glossary of Terms 
The following table lists the terms used in this application note to describe the serial boot. 

 

Table 1 Glossary 

Item Description 
Internal ROM program to boot A program to transfer the loader program stored in the beginning of the 

serial flash memory to the high-speed internal RAM, and jump to the loader 
program when the MCU is booted in boot mode 1 or 3. As this program is 
already stored in the internal ROM to boot in CPU, and not required to 
create. 

Loader program A program to transfer the application program from serial flash memory to 
RAM, and jump to the entry function of the application program. The size of 
the loader program is fixed to 8 KB. Create it according to the system. 

Application program A program that is created by user according the system 
Downloader A program to write the loader program and application program to serial 

flash memory. Create it according to the system. 
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2.2 Operation 
The following table lists the external pins (MD_BOOT1 to MD_BOOT0) to decide the boot mode. 

 

Table 2 Relationship between the External Pin Setting and Serial boot Mode 

MD_BOOT1 MD_BOOT0 Boot mode number Description  
0 1 Boot mode 1 Boots the MCU from serial flash memory 

connected to the Renesas Serial Peripheral 
Interface Channel 0 (RSPI0) in high-speed. 

High-speed communication means that the 
communication at the 1/2 of the bus clock rate (Bφ)

1 1 Boot mode 3 Boots the MCU from serial flash memory 
connected to the Renesas Serial Peripheral 
Interface Channel 0 (RSPI0) in low speed. 

Low-speed communication means that the 
communication at the 1/4 of the bus clock rate (Bφ)

 
In boot mode 1 or boot mode 3, the internal ROM program to boot transfers the loader program from serial flash memory 
connected to the Renesas Serial Peripheral Interface Channel 0 (RSPI0) to the high-speed internal RAM after the power-on 
reset is canceled. After the transfer is complete, it jumps to the start of the loader program. The following figure shows the 
operation image of the internal ROM program to boot. A series of processing is automatically executed. 

Application Program

Loader Program
(8 KB)

SH7262/SH7264

Internal ROM program to 
boot

Internal ROM to boot

Large-capacity internal RAM

High-speed internal RAM

Renesas Peripheral 
Interface Channel 0 
(RSPI0)

(1) Execute the internal ROM program to boot

Serial Flash Memory(2) Request to read
(3) Read

(4) Transfer to high-speed 
internal RAM

H'FFF8 0000

H'FFF8 1FFF

Loader program
(8 KB)

(5) Jump to the start of 
the loader program

 

Figure 1 Operation Image of the Internal ROM Program to Boot 
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The loader program transfers the application program from serial flash memory connected to the Renesas Serial Peripheral 
Interface Channel 0 (RSPI0) to the large-capacity internal RAM. After the transfer is complete, the loader program jumps to 
the entry function of the application program. The following figure shows the operation image of the loader program. 

Application program

Loader program
(8 KB)

SH7262/SH7264

Internal ROM program to 
boot

Internal ROM to boot

Large-capacity internal RAM

High-speed internal RAM

Renesas Serial 
Peripheral Interface 
Channel 0 
(RSPI0)

Serial Flash Memory

(7) Request to read
H'FFF8 0000

H'FFF8 1FFF

Loader program
(8 KB)

(8) Read

(9) Transfer to large-capacity 
internal RAM

Application program

(10) Jump to the entry function of 
the application program

(6) Execute the loader program

 

Figure 2 Operation Image of the Loader Program 

 

Note: Application program can be transferred to external RAM such as SDRAM. 
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2.3 Downloader Operation 
The downloader writes the loader program on the high-speed internal RAM and application program on RAM to serial flash 
memory. The figure below shows the operation image of the downloader. 

Refer to 3.3 Downloader Example for details. 

 

Application program

Serial Flash MemoryRAM

Loader program

Downloader

Loader program

Application program

Write

Write

 

Figure 3 Operation Image of the Downloader 
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2.4 Serial Flash Memory Connection 
The figure below shows the connection circuit for the SH7264 MCU and serial flash memory. Connect serial flash memory 
to the Renesas Peripheral Interface Channel 0 (RSPI0) to use the serial boot. 

 

AT26DF161A
2 MB

SCK (Serial Clock)

SI (Serial Data Input)

WP# (Write Protect)
DIP

Switches

CS# (Chip Select)

SO (Serial Data Output)

HOLD#3.3 V

RSPCK0

SSL00

MOSI0

MISO0

Serial flash memory

SH7262/SH7264

MD_BOOT1

MD_BOOT03.3 V

For boot mode 1

3.3 V

3.3 V

3.3 V

3.3 V

3.3 V

 

Figure 4 Connection Circuit for the SH7264 and Serial Flash Memory 

 

Note: The SH7264 MCU uses the RSPI clock at 1/2 of the bus clock rate (Bφ) in boot mode 1, and uses the RSPI clock at 
1/4 of the bus clock rate in boot mode 3. Select the boot mode to fulfill the AC characteristics of serial flash 
memory and the RSPI. 
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3. Applications 
This chapter describes the loader program, application program and downloader. 

 

3.1 Loader Program Specifications 
The loader program transfers the application program from serial flash memory to the large-capacity internal RAM, and 
jumps to the entry function of the application program. 

3.1.1 Memory Map 
The figure below shows the memory map example of the loader program. 

 

1. The loader program (the program area) is allocated to the address from H'FFF8 0000 to H'FFF8 1AFF. 
2. Tentative exception vector table is allocated to the address from H'FFF8 1B00 to H'FFF8 1B4F (Refer to 3.1.5 for 

details). 
3. The loader program (the stack area) is allocated to the address from H'FFF8 1C00 to H'FFF8 1FFF (Refer to 3.1.3 for 

details). 
 

Loader program

Loader program (program area)

H'FFF8 0000

H'FFF8 1C00

H'FFF8 1FFF

Loader program (stack area)

High-speed Internal RAMSerial Flash Memory
H'0000 0000

H'0000 1FFF
H'0000 2000

Application program

Tentative exception vector table
H'FFF8 1B00

H'FFF8 1B4F

 

Figure 5 Loader Program Memory Map 
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3.1.2 Flow Chart of the Loader Program 
The following figure shows the flow chart of the loader program. For details, refer to sections 3.1.3 to 3.1.11. 

 

START

Set the stack pointer for the loader program

Mask the interrupt

Set the Frequency control register (FRQCR)

Set the Vector base register (VBR)

 Refer to 3.1.3

Refer to  3 .1.4

Refer to 3.1.5

 Refer to 3.1.6

 Refer to 3.1.7

Set the Floating-point status /control register 
(FPSCR)

Enable the cache

Transfer the application program

Write back the cache

Set the stack pointer for the application program

Jump to the entry function of the 
application program

END

Set the Renesas Serial Peripheral Interface 
Channel 0 (RSPI0)

 Refer to 3.1.8 and 3.1.12

Refer to 3.1.9

Refer to 3.1.10

Refer to 3.1.11

Set the Standby control registers 3 to 8 Enable the functions of 
the peripheral modules

 Refer to 3.1.7

 Refer to 3.1.7

 

Figure 6 Loader Program Flow Chart 
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3.1.3 Stack Pointer Setting 
Set the stack pointer (R15) to the address of H'FFF8 2000. Allocate the loader program processing at the address of 
H'FFF8 0000, and use the assembly language to avoid the loader program using the undefined stack pointer. C can be used 
after configuring the stack pointer. Then, the loader program jumps to the entry function of the loader program. 

 

3.1.4 Floating-Point Status Control Register (FPSCR) Setting 
Specify the FPSCR at the address of H'0004 0001 (single-precision operation, round to zero). 

 

3.1.5 Vector Base Register (VBR) Setting 
The loader program sets the tentative exception vector table in VBR to support the exception during the loader program is 
operating. Do not generate exceptions or interrupts before setting the VBR, as the exception vector table is undefined. As 
the loader program does not use the interrupt, only vector numbers 0 to 18 are defined in the tentative exception vector table. 
To embed the exception such as the external interrupt during the loader program is operating, extend the tentative exception 
vector table. 

 

Note: Store the exception vector table on memory and allow the CPU to access the memory before executing exception. 
For details, refer to 6.9.4 “Note before Exception Handling Begins Running” in the SH7262 Group, SH7264 Group 
Hardware Manual.  

 

3.1.6 Interrupt Mask 
Specify B'1111 in the interrupt mask level bit of the status register (SR) as the loader program does not support interrupts 
during it is operating. 

 

3.1.7 Configuration 
Configure the peripheral functions to read the application program from serial flash memory. 
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3.1.8 Transferring the Application Program 
The loader program refers the application program transfer information (appinfo) in serial flash memory, and transfers the 
application program to the large-capacity internal RAM. The table below lists the appinfo in detail. Allocate the appinfo in 
the address of H'0000 2000 in serial flash memory. The loader program handles the information from H'0000 2000 to 
H'0000 2007 in serial flash memory as the appinfo. 

 

Table 3 Application Program Transfer Information (appinfo) 

Item Address Size 
Destination start address H'0000 2000 4 
Destination end address H'0000 2004 4 

 
The figure below shows the transfer image of the application program using the appinfo. For the procedures to generate the 
appinfo, refer to 3.2.7. 

 

Application program

Loader program

Loader program (Program area)

Loader program (Stack area)

RAMSerial Flash Memory
H'0000 0000

H'0000 1FFF
H'0000 2000

Tentative exception vector table

Application program

appinfo
Destination start address (4 bytes)
Destination end address (4 bytes)

The entry function address of the application program
Stack pointer value of the application program

H'0000 2004
H'0000 2008
H'0000 200C

appinfo
Destination start address (4 bytes)
Destination end address (4 bytes)

The entry function address of the application program
Stack pointer value of the application program

+H'0
+H'4
+H'8
+H'C

 

Figure 7 Application Program Transfer Image 
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3.1.9 Writing Back the Cache 
After transferring the application program to the large-capacity internal RAM, the loader program writes back the cache to 
guarantee the coherency between the cache memory.  

 

3.1.10 Application Program Stack Pointer Setting 
The loader program specifies the value stored in the first 12 to 15 bytes in the application program in the stack pointer (R15). 

 

3.1.11 Application Program Jump To the Entry Function Address 
The loader program jumps to the entry function address stored in the first 8 to 11 bytes in the application program. 

 

3.1.12 Serial Flash Memory Commands 
A set of commands are used to access serial flash memory. The loader program use the Read Array command in serial flash 
memory to read the application program from serial flash memory, and transfer the program to the large-capacity internal 
RAM. The following table lists the serial flash memory command used in the loader program. 

 

Table 4 Serial Flash Memory Command 

Command Name Opcode Function 
Read Array H'0B Reads the data 
 
Note: Although this application refers the commands of the ATMEL AT26DF161A, serial flash memory commands 

depend on the type of the serial flash memory. Refer to the datasheet provided by the serial flash memory 
manufacturer. 
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3.1.13 Register Status after Executing the Loader Program 
The table below lists the register status after executing the loader program. Registers not included in the table are set as 
default in the SH7262 Group, SH7264 Group Hardware Manual. 

 

Table 5 Register Status 

Register Name Abbreviation Value  Remarks 
General registers R0 to R14 Undefined  
Program counter PC Depends on the setting Application program entry 

function address 
Stack pointer SP (R15) Depends on the setting The stack pointer value in 

the application program 
Status register SR Undefined Note: IMASK bit is B’1111. 
Vector base register VBR H'FFF8 1B00  
Floating-point status/ 

control register 
FPSCR H'0004 0001 Single precision operation 

Round to: zero 
Frequency control register FRQCR H'1003  
Standby control register 3 STBCR3 H'02  
Standby control register 4 STBCR4 H'00  
Standby control register 5 STBCR5 H'10  
Standby control register 6 STBCR6 H'00  
Standby control register 7 STBCR7 H'2A  
Standby control register 8 STBCR8 H’7E  
Cache control register 1 CCR1 H'0000 0101 Instruction cache is valid 

Operand cache is valid 
Control register_0 SPCR_0 H'48  
Slave select polarity register_0 SSLP_0 H'00  
Pin control register_0 SPPCR_0 H'30  
Status register_0 SPSR_0 H'60  
Data register_0 SPDR_0 Undefined  
Sequence control register_0 SPSCR_0 H'00  
Sequence status register_0 SPSSR_0 H'00  
Bit rate register_0 SPBR_0 H'01  
Data control register_0 SPDCR_0 H'20  
Clock delay register_0 SPCKD_0 H'00  
Slave select negation delay 

register_0 
SSLND_0 H'00  

Command register_00 SPCMD_00 H'E700  
Command register _01 SPCMD_01 H'070D  
Command register _02 SPCMD_02 H'070D  
Command register _03 SPCMD_03 H'070D  
Buffer control register_0 SPBFCR_0 H'00  
Buffer data count setting 

register_0 
SPBFDR_0 H'0000  
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3.2 Application Program Example 
As the loader program transfers the application program from serial flash memory to the large-capacity internal RAM, the 
memory map of the application program must be allocated as the loader program can read. Also, the application program 
must include the address information that the loader program refers. 

This section describes the procedure to create the application program for the serial boot. 

 

3.2.1 Section Alignment 
The section alignment in the application program is explained in this section. 

 

1. As an application program is executed on RAM, sections of the application program are located on the large-capacity 
internal RAM in this example. 

 
2. As the loader program uses the start address and end address of the application program to transfer the application 

program from serial flash memory to the large-capacity internal RAM, allocate the program area, constant area and 
initialized data area of the application program to the physically contiguous area. Uninitialized data area and stack area 
can be allocated at a desired address. 

 
3. Allocate the appinfo, application program entry function address, and stack pointer value at fixed address. 

Place the appinfo in DAPPINFO section, application program entry function address, and stack pointer value in 
DVECTTBL section. Allocate DAPPINFO section at the start on RAM, and then allocate DVECTTBL section. 
 

4. As the loader program uses from H'FFF8 0000 to H'FFF8 1FFF in the high-speed internal RAM, do not allocate the 
program area, the constant area, and the initialized data area of the application program to that address. 

 
5. Allocate the reset vector table RESET_Vectors in the start address of the DVECTTBL section.  
 
The figure below shows an example of the section alignment in RAM. 
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RAM

Start section
(DAPPINFO section)

End section
(PCACHE section)

Uninitialized area
(B section)

xxx_1 section

Stack area
(S section)

xxx_2 section

xxx_n section

Allocate sections for the program area, 
constant area, and initialized data area 
of the application program to the 
physically contiguous area.

Uninitialized area (B section) can be 
allocated at a desired address.

Stack area (S section) can be 
allocated at a desired address.

Second section
(DVECTTBL section)

 

Figure 8 Application Program Section Alignment 
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3.2.2 Flow Chart 
The application program in this application example transmits the strings of characters to channel 0 of the serial 
communication interface with FIFO (SCIF0). The following figure shows the flow chart of the application program. 

 

START

Jump to main function

END

resetprg .c / PowerON_Reset_PC function

Set the VBR register

Mask the interrupt

Initialize the section

Disable the interrupt

Set the register bank

main.c / main function

START

Transmit the string of characters to SCIF0

Configure the standard I /O library ( _INIT_IOLIB )

Infinite loop

END

SCIF0 setting:
Baud rate: 57,600 bps
No parity bit
Stop bit length: 1

 

Figure 9 Application Program Flow Chart 
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3.2.3 Entry Function Setting 
Set the entry function address of the application program to the table number 0 of the reset vector table RESET_Vectors. 
The following table lists its settings. 

 

Table 6 Entry Function Address Settings 

Item Setting 
File Name vecttbl.c 
Name of Section to Place DVECTTBL 
Table Name RESET_Vectors 
Table Number 0 
Default PowerON_Reset_PC 

Note: PowerON_Reset_PC is an entry function of the application program. 
 
3.2.4 Stack Pointer Setting 
Set the stack pointer of the application program to the table number 1 of the reset vector table RESET_Vectors. The 
following table lists its settings. 

 

Table 7 Stack Pointer Setting 

Item Setting  
File Name vecttbl.c 
Name of Section to Place DVECTTBL 
Table Name RESET_Vectors 
Table Number  1 
Default __secend ("S") 

 
 

3.2.5 Initializing the Section 
Initialize the section by executing the section initialization routine (_INITSCT function). To execute the _INITSCT function, 
use values stored in section initialization tables (DTBL and BTBL) described in the file dbsct.c. After executing the 
_INITSCT function, write back the cache to guarantee the coherency between the cache memory and the large-capacity 
internal RAM. 

 

3.2.6 Vector Base Register (VBR) Setting 
Set the exception vector table of the application program to VBR. 
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3.2.7 Generating the Application Program Transfer Information (appinfo) 
The table below lists the structure to generate the application program transfer information (appinfo). Retrieve the start and 
end address of the application program by the section address operators (_sectop, _secend). Allocate the following structure 
in the DAPPINFO section. Register the start address of the application program (the program area, constant area, and 
initialized data area) in the app_top, and the end address of the application program in the app_end. 

 

Table 8 Application Program Transfer Information (appinfo) 

Item Description 
File Name appinfo.c 
Structure Name appinfo 

Member name Value Description 
void *app_top __sectop("DAPPINFO") Start address of the 

application program 

Structure Member 

void *app_end __secend("PCACHE") End address of the 
application program +1 

Name of Section to Place DAPPINFO 
Note: The amount of the size of the loader program (8 KB) and application program must not exceed the 

capacity of serial flash memory. 
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The following figure shows the Application Program Transfer Information (appinfo) generated image. 

 

RAM

Start section
(DAPPINFO section)

End section
(PCACHE section)

Uninitialized area
(B section)

xxx_1 section

Stack area
(S section)

xxx_2 section

xxx_n section

Allocate sections the program area, 
constant area, and initialized data area 
of the application program to the 
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Figure 10 Application Program Transfer Information Generated Image 
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3.3 Downloader Example 
This section describes the downloader in this application. 

 

3.3.1 Operation 
Transfer the downloader and the loader program from the development environment to the high-speed internal RAM on 
system by the debugger, and the application program to the large-capacity internal RAM. The following figure shows an 
operation image of the downloader. 

 

Serial Flash Memory
H'0000 0000

H'0000 1FFF

Development Environment

Application program
*.abs file

Loader program
*.abs file

Downloader 
*.abs file

High-speed Internal RAM
H'FFF8 0000

H'FFF8 1FFF

Loader program

Downloader H'FFF8 2000
H'FFF8 2FFF

Application program

H'0000 2000

Large-capacity internal RAM

 

Figure 11 Downloader Operation Image (1/2) 
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Execute the downloader to write the loader program and the application program in serial flash memory. The downloader 
allocates the loader program from H'0000 0000 to H'0000 1FFF, and the application program from H'0000 2000. The 
following figure shows the operation image. 

 

Serial Flash Memory
H'0000 0000

H'0000 1FFF

Development Environment

Application program
*.abs file

Loader program
*.abs file

Downloader
*.abs file

High-speed Internal RAM
H'FFF8 0000

H'FFF8 1FFF

Loader program

Downloader H'FFF8 2000
H'FFF8 2FFF

Application program

H'0000 2000

Large-capacity Internal RAM

Application program

Loader program

 

Figure 12 Downloader Operation Image (2/2) 

 

3.3.2 Area Used by the Downloader 
The downloader occupies the address from H'FFF8 2000 to H'FFF8 2FFF. When the loader program, the application 
program and the downloader occupy the same section, the programs do not operate properly. 
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3.3.3 Flow Chart of the Downloader 
The figure below shows the flow chart of the downloader. Execute the downloader placed on the high-speed internal RAM 
to write the loader program and the application program in serial flash memory. For details, refer to sections 3.3.4 to 3.3.8. 

 

End in _haltEnd in _error

No

No

Yes

Yes

START

Mask the interrupt

Configure the Renesas Serial Peripheral Interface 
Channel 0  (RSPI 0)

Set the stack pointer (R15) Refer to  3.3.4

Refer to  3.3.5

Disable the software protection in serial flash 
memory

Refer to  3.3.6

Refer to  3.3.6

Refer to 3.3.7 and 
Figure 14

Refer to 3.3.8 and 
Figure 14

Write the loader program in serial flash 
memory

Write the application program in 
serial flash memory

Writing OK?

Writing OK?

 

Figure 13 Downloader Flow Chart 
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The following figure shows the flow chart of writing the loader program and the application program. 
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Calculate the target sector number
 from the write address

Verify the data 
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No

Write error

Write the loader program
Write the application program

Erases the target sector before writing .
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the Block Erase commend (64 KB).
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To verify that the writing is completed 
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is 0?

Verify OK?

 

Figure 14 Flow Chart of Writing 
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3.3.4 Stack Pointer Setting 
Specify the address at H'FFF8 3000 to the stack pointer (R15). Allocate this processing at the address H'FFF8 2000, and use 
the assembly language to avoid the downloader using the undefined stack pointer. C can be used after configuring the stack 
pointer. Then, the downloader jumps to the entry function of downloader. 

 

3.3.5 Interrupt Mask 
Specify B'1111 in the interrupt mask level bit of the status register (SR) as the downloader does not support interrupts 
during it is operating. 

 

3.3.6 Initialization 
Initialize serial flash memory before accessing. 

1. Initialize the RSPI0 
2. Issue the Write Status Register command to serial flash memory to disable the software protection. (Global unprotect) 
 

3.3.7 Writing the Loader Program 
The downloader reads the loader program that has been transferred at the address from H'FFF8 0000 to H'FFF8 1FFF in the 
high-speed internal RAM, and writes the loader program at the address from H'0000 0000 to H'0000 1FFF in serial flash 
memory. The following table lists the items for writing the loader program. 

 

Table 9 Writing the Loader Program 

Item Description 
Source Address of the Loader Program 
(High-speed internal RAM) 

H'FFF8 0000 (fixed) 

Destination Address of the Loader 
Program 

(Serial flash memory) 

H'0000 0000 (fixed) 

Transfer Size H'2000 (fixed) 
Writing Procedures 1. Checks if the destination address is already erased. 

2. Erases the data when the address is not erased.  
3. Issues the program command to write the loader 

program in units of single byte. 
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3.3.8 Writing the Application Program 
The downloader reads the application program in the large-capacity internal RAM, and writes it at the address from 
H'0000 2000. The following table lists the items for writing the application program. 

 

Table 10 Writing the Application Program 

Item Description 
Source Address of the Application 

Program (Large-capacity internal RAM) 
Retrieves from the appinfo in the application program 
(Application program dependent) 

Destination Address of the Application 
Program (Serial flash memory) 

H'0000 2000 (fixed) 
 

Transfer Size Extracts from the appinfo in the application program 
(Application program dependent) 

Writing Procedures 1. Checks if the destination address is already erased. 
2. Erases the data when the address is not erased. 
3. Issues the program command to write the application 

program in units of single byte. 
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3.3.9 Serial Flash Memory Commands 
The table below lists the serial flash memory commands used in the downloader. Issue these commands via the Renesas 
Serial Peripheral Interface Channel 0 (RSPI0) to read, write, and erase serial flash memory. 

 

Table 11 Serial Flash Memory Commands 

 

Notes: 1. Although this application refers the commands of the ATMEL AT26DF161A, serial flash memory commands 
depend on the type of the serial flash memory. Refer to the datasheet provided by the serial flash memory 
manufacturer. 

 2. Erase the data in the destination address in serial flash memory before writing. 

Command Name Opcode Function 
Read Array H'0B Reads the data 
Write Enable H'06 Enables to execute the program, erase, write status register 

commands 
Write Disable H'04 Disables to execute the program, erase, write status register 

command 
Read Status Register H'05 Reads the status register 
Write Status Register H'01 Writes the data in the status register (disable the software 

protection) 
Block Erase (64Kbytes) H'D8 Erases the data in blocks (64 KB) 
Byte/Page Program H'02 Programs the data (1 to 256 bytes) 
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3.3.10 Batch File 
Before executing the downloader, the loader program and the downloader must be transferred to the high-speed internal 
RAM, and the application program must be transferred to the large-capacity internal RAM to write the loader program and 
the application program in serial flash memory.  

This application note uses the command batch file in the High-performance Embedded Workshop to execute a series of 
processing automatically. 

The figure below shows the flow chart of the command batch file. The command batch file is used to transfer programs to 
the high-speed internal RAM and the large-capacity internal RAM, and write programs in serial flash memory. 

 

Execute the downloader

START

Reset CPU

Set the Frequency Control Register (FRQCR)

Transfer programs to RAM

Insert a software breakpoint at the _halt Insert a software breakpoint to stop the program when the 
downloader terminates.
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downloader ends successfully.
- The _error is a function in the downloader which is called when the 
downloader ends successfully.

Execute the downloader

Wait for the download processing is complete

Remove a software breakpoint at the _halt

END

When the downloader terminates, remove the software breakpoint 
to get it back to the original

Transfer the loader program and downloader to the high-
speed internal RAM, and the application program to the large-
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Remove a software breakpoint at the _error

Insert a software breakpoint at the _error

 

Figure 15 Command Batch File Flow Chart 
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4. Sample Program Listing 

4.1 Loader Program 
4.1.1 Loader Program Listing "loader.src" (1/2) 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

 

 

;/*""FILE COMMENT""*********** Technical reference data ************************* 

;* 

;*       System Name : SH7264 Sample Program 

;*       File Name   : loader.src 

;*       Abstract    : Loader program preprocessing/jump processing to the application 

;*                   : program 

;*       Version     : 1.00.00 

;*       Device      : SH7264/SH7262 

;*       Tool-Chain  : High-performance Embedded Workshop (Ver.4.04.01). 

;*                   : C/C++ compiler package for the SuperH RISC engine family 

;*                   :                             (Ver.9.02 Release00). 

;*       OS          : None 

;*       H/W Platform: M3A-HS64G50 (CPU board) 

;*       Disclaimer  : 

;* 

;*       The information described here may contain technical inaccuracies or 

;*       typographical errors. Renesas Technology Corporation and Renesas Solutions 

;*       assume no responsibility for any damage, liability, or other loss rising  

;*       from these inaccuracies or errors. 

;* 

;*       Copyright (C) 2008 Renesas Technology Corp. All Rights Reserved 

;*       AND Renesas Solutions Corp. All Rights Reserved 

;* 

;*       History     : Dec.19,2008 Ver.1.00.00   

;*""FILE COMMENT END""**********************************************************/ 

 .SECTION LOADER_ENTRY,CODE,ALIGN = 4 

 .IMPORT _main 

 .EXPORT _jmp_app_prog 

 

_loader_prog: 

 MOV.L L2,R15 ; Sets the stack pointer 

 MOV.L L1,R0  ; Retrieves the entry function of the loader program 

 JMP @R0   ; Jumps to the entry function of the loader program 

 NOP 
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4.1.2 Loader Program Listing "loader.src" (2/2) 
 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

 

 

 

;/*""FUNC COMMENT""************************************************************** 

; * ID          :  

; * Outline     : Jump to the application program 

; *------------------------------------------------------------------------------ 

; * Include     :  

; *------------------------------------------------------------------------------ 

; * Declaration : _jmp_app_prog 

; *------------------------------------------------------------------------------ 

; * Description : 1. Retrieves the stack pointer value stored in the first 12 to 

; *             :    15 bytes in the application program. 

; *             : 2. Specifies the stack pointer (R15). 

; *             : 3. Retrieves the entry function address stored in the first 8 to 

; *             :    11 bytes in the application program. 

; *             : 4. Jumps to the entry function. 

; *------------------------------------------------------------------------------ 

; * Argument    :  R4  ; I : Start address of the application program 

; *------------------------------------------------------------------------------ 

; * Return Value: none 

; *""FUNC COMMENT END""**********************************************************/ 

_jmp_app_prog:  

 

 MOV.L R4,R0  ; Substitutes the start address of the application program for R0 

 ADD #12,R0  ; Calculates the address storing the stack pointer value and  

                 ; substitutes the address for R0 

 MOV.L @R0,R15 ; Sets the stack pointer 

 

 MOV.L R4,R0  ; Substitutes the start address of the application program for R0 

 ADD #8,R0  ; Calculates the address storing the entry function of the application 

                 ; program and substitutes the address for R0 

 MOV.L @R0,R0 ; Substitutes the entry function address of the application  

                 ; program for R0 

 JMP @R0   ; Jumps to the entry function of the application program 

 NOP  

 

 

 .ALIGN 4 

L1: 

 .DATA.L _main    ; Entry function address of the loader program 

 

L2: 

 .DATA.L H'FFF82000   ; Stack pointer (R15) value of the loader program 

 

 .pool  

 .end 

 

;/* End of File */ 
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4.1.3 Loader Program Listing "main.c" (1/6) 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

 

/*""FILE COMMENT""*********** Technical reference data ************************* 

* 

*       System Name : SH7264 Sample Program 

*       File Name   : main.c 

*       Abstract    : Loader program 

*       Version     : 1.00.00 

*       Device      : SH7264/SH7262 

*       Tool-Chain  : High-performance Embedded Workshop (Ver.4.04.01). 

*                   : C/C++ compiler package for the SuperH RISC engine family 

*                   :                             (Ver.9.02 Release00). 

*       OS          : None 

*       H/W Platform: M3A-HS64G50 (CPU board) 

*       Disclaimer  : 

* 

*       The information described here may contain technical inaccuracies or 

*       typographical errors. Renesas Technology Corporation and Renesas Solutions 

*       assume no responsibility for any damage, liability, or other loss rising  

*       from these inaccuracies or errors. 

* 

*       Copyright (C) 2008 Renesas Technology Corp. All Rights Reserved 

*       AND Renesas Solutions Corp. All Rights Reserved 

* 

*       History     : Dec.19,2008 Ver.1.00.00   

*""FILE COMMENT END""**********************************************************/ 

#include <stdio.h> 

#include <string.h> 

#include <machine.h> 

#include "iodefine.h" 

#include "serial_flash.h" 

 

/* ==== macro defined ==== */ 

#define FPSCR_INIT  0x00040001   /* Value to set in the FPSCR register */ 

#define INT_MASK  0x000000F0   /* Value to set in the SR register  

            (for masking the interrupt) */ 

 

#define APROG_TOP_SFLASH 0x00002000  /* Start address of the application program */ 

           /* (serial flash memory) */ 

 

#define APPINFO_TOP APROG_TOP_SFLASH  /* Address the appinfo.app_top is located */

#define APPINFO_END (APROG_TOP_SFLASH + 4) /* Address the appinfo.app_end is located */
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4.1.4 Loader Program Listing "main.c" (2/6) 
42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

 

 

/* ==== prototype declaration ==== */ 

void main(void); 

void get_appinfo( unsigned long *app_top_addr,unsigned long *app_end_addr); 

void app_prog_transfer(unsigned long app_top_addr,unsigned long app_end_addr); 

void system_down(void); 

 

extern void jmp_app_prog(unsigned long app_top_addr); 

extern void io_set_cpg(void); 

extern void sf_byte_read_long(unsigned long addr, unsigned long *buf, int size); 

 

/* ==== external data ==== */ 

extern unsigned long DUMMY_Vectors; 

 

 

/*""FUNC COMMENT""************************************************************** 

 * ID          :  

 * Outline     : Loader program main 

 *------------------------------------------------------------------------------ 

 * Include     : #include "serial_flash.h" 

 *------------------------------------------------------------------------------ 

 * Declaration : void main(void); 

 *------------------------------------------------------------------------------ 

 * Description : Refers the data in the appinfo to transfer the application program 

 *             : to the large-capacity internal RAM, and jumps to the entry function  

 *             : of the application program. 

 *------------------------------------------------------------------------------ 

 * Argument    : void 

 *------------------------------------------------------------------------------ 

 * Return Value: void 

 *""FUNC COMMENT END""**********************************************************/ 
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4.1.5 Loader Program Listing "main.c" (3/6) 
73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

 

void main(void) 

{ 

 unsigned long app_top,app_end; 

 

 

 /* Sets the FPSCR */ 

 set_fpscr(FPSCR_INIT); 

 

 /* Sets the tentative VBR */ 

 set_vbr((void *)(&DUMMY_Vectors)); 

 

 /* Masks the interrupt */ 

 set_cr(INT_MASK); 

 

 /* Sets the CPG */ 

 io_set_cpg(); 

 

 /* Enables the cache */ 

 io_init_cache(); 

 

 /* Sets the RSPI0 */ 

 sf_init_serial_flash(); 

 

 /* Retrieves the appinfo */ 

 get_appinfo(&app_top,&app_end); 

 

 /* Transfers the application program to the large-capacity internal RAM */ 

 app_prog_transfer(app_top, app_end); 

 

 /* Writes back the cache */ 

 io_cache_writeback(); 

 

 /* Jumps to the application program */ 

 jmp_app_prog(app_top); 

 

  

 while(1){ 

  /* LOOP */ 

 } 

} 
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4.1.6 Loader Program Listing "main.c" (4/6) 
114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

 

/*""FUNC COMMENT""************************************************************** 

 * ID          :  

 * Outline     : Retrieve the appinfo 

 *------------------------------------------------------------------------------ 

 * Include     : #include "serial_flash.h" 

 *------------------------------------------------------------------------------ 

 * Declaration : void get_appinfo (unsigned long *app_top_addr, 

 *             :                   unsigned long *app_end_addr); 

 *------------------------------------------------------------------------------ 

 * Description : Retrieves the appinfo. 

 *             : Retrieves the appinfo.top from H'2000 to H'2003 in serial flash 

 *             : memory, and stores it in the address specified by the first 

 *             : argument. This function also retrieves the appinfo.end from 

 *             : H'2004 to H'2007 in serial flash memory, and stores it in the 

 *             : address specified by the second argument. 

 *------------------------------------------------------------------------------ 

 * Argument    : unsigned long app_top_addr  ; O : Start address of the application 

 *             :                                   program at destination 

 *             : unsigned long app_end_addr  ; O : End address of the application 

 *             :                                   program at destination 

 *------------------------------------------------------------------------------ 

 * Return Value: void 

 *""FUNC COMMENT END""**********************************************************/ 

void get_appinfo( unsigned long *app_top_addr,unsigned long *app_end_addr) 

{ 

 

 /* Retrieves the appinfo.top */ 

 sf_byte_read(APPINFO_TOP, (unsigned char *)app_top_addr, 4); 

 

 /* Retrieves the appinfo.end */ 

 sf_byte_read(APPINFO_END, (unsigned char *)app_end_addr, 4); 

 

} 
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4.1.7 Loader Program Listing "main.c" (5/6) 
148 

149 

150 

151 

152 

153 

154 

155 

156 

157 

158 

159 

160 

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 

181 

182 

183 

184 

 

/*""FUNC COMMENT""************************************************************** 

 * ID          :  

 * Outline     : Transfer the application program 

 *------------------------------------------------------------------------------ 

 * Include     : #include "serial_flash.h" 

 *------------------------------------------------------------------------------ 

 * Declaration : void app_prog_transfer(unsigned long app_top_addr, 

 *             :                        unsigned long app_end_addr); 

 *------------------------------------------------------------------------------ 

 * Description : Calculates the size of the application program, and transfers 

 *             : the application program from serial flash memory to the 

 *             : large-capacity internal RAM. (Rounds up the allocation size of the 

 *             : application program to multiples of 4 to transfer in longword.)  

 *------------------------------------------------------------------------------ 

 * Argument    : unsigned long app_top_addr  ; I : Start address of the application 

 *             :                                   program at destination 

 *             : unsigned long app_end_addr  ; I : End address of the application 

 *             :                                   at destination 

 *------------------------------------------------------------------------------ 

 * Return Value: void 

 *""FUNC COMMENT END""**********************************************************/ 

void app_prog_transfer(unsigned long app_top_addr,unsigned long app_end_addr) 

{ 

 unsigned long app_prog_size; 

 

 /* Calculates the size of the application program */  

 app_prog_size = app_end_addr - app_top_addr; 

 if( ( app_prog_size & 0x00000003 ) != 0 ){ 

  app_prog_size &= 0xFFFFFFFC; 

  app_prog_size += 4;  /* Rounds up the allocation size of the application 

         program to multiples of 4. */ 

 } 

 

 /* Loads the application program in the large-capacity internal RAM */ 

 sf_byte_read_long(APROG_TOP_SFLASH, (unsigned long *)app_top_addr, app_prog_size); 

 

} 
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4.1.8 Loader Program Listing "main.c" (6/6) 
185 

186 

187 

188 

189 

190 

191 

192 

193 

194 

195 

196 

197 

198 

199 

200 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

 

 

 

/*""FUNC COMMENT""************************************************************** 

 * ID          :  

 * Outline     : Terminate the system 

 *------------------------------------------------------------------------------ 

 * Include     :  

 *------------------------------------------------------------------------------ 

 * Declaration : void system_down(void); 

 *------------------------------------------------------------------------------ 

 * Description : This function contains the infinite loop. 

 *             : As this is registered in the DUMMY_Vectors table, this is 

 *             : called when an exception occurs while the loader program 

 *             : is operating. 

 *------------------------------------------------------------------------------ 

 * Argument    : void 

 *------------------------------------------------------------------------------ 

 * Return Value: void 

 *""FUNC COMMENT END""**********************************************************/ 

void system_down(void) 

{ 

 while(1){ 

  /* System error */ 

 } 

} 

 

/* End of File */ 
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4.2 Application Program 
4.2.1 Application Program Listing "main.c" (1/2) 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

 

 

/*""FILE COMMENT""*********** Technical reference data ************************* 

* 

*       System Name : SH7264 Sample Program 

*       File Name   : main.c 

*       Abstract    : Application program example 

*       Version     : 1.00.00 

*       Device      : SH7264/SH7262 

*       Tool-Chain  : High-performance Embedded Workshop (Ver.4.04.01). 

*                   : C/C++ compiler package for the SuperH RISC engine family 

*                   :                             (Ver.9.02 Release00). 

*       OS          : None 

*       H/W Platform: M3A-HS64G50 (CPU board) 

*       Disclaimer  : 

* 

*       The information described here may contain technical inaccuracies or 

*       typographical errors. Renesas Technology Corporation and Renesas Solutions 

*       assume no responsibility for any damage, liability, or other loss rising  

*       from these inaccuracies or errors. 

* 

*       Copyright (C) 2008 Renesas Technology Corp. All Rights Reserved 

*       AND Renesas Solutions Corp. All Rights Reserved 

* 

*       History     : Dec.19,2008 Ver.1.00.00   

*""FILE COMMENT END""**********************************************************/ 

#include <stdio.h> 

 

/* ==== prototype declaration ==== */ 

void main(void); 

 

 

/*""FUNC COMMENT""************************************************************** 

 * ID          :  

 * Outline     : Application program main function 

 *------------------------------------------------------------------------------ 

 * Include     :  

 *------------------------------------------------------------------------------ 

 * Declaration : void main(void); 

 *------------------------------------------------------------------------------ 

 * Description : Transmits the strings of characters to the SCIF0. 

 *             : (Baud rate: 57600 bps, no parity, stop bit length: 1). 

 *------------------------------------------------------------------------------ 

 * Argument    : void 

 *------------------------------------------------------------------------------ 

 * Return Value: void 

 *""FUNC COMMENT END""**********************************************************/ 
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4.2.2 Application Program Listing "main.c" (2/2) 
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void main(void) 

{ 

 puts("==== Serial Flash Boot Done. ===="); 

 fflush(stdout); 

 

    while(1){ 

        /* loop */ 

    } 

} 

 

/* End of File */ 

 



SH7262/SH7264 Group  
Boot From the Serial Flash Memory 

REJ06B0867-0100/Rev.1.00 April 2009 Page 38 of 55 

 

4.2.3 Application Program Listing "appinfo.c" 
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/*""FILE COMMENT""*********** Technical reference data ************************* 

* 

*       System Name : SH7264 Sample Program 

*       File Name   : appinfo.c 

*       Abstract    : Generate the application program transfer information (appinfo). 

*       Version     : 1.00.00 

*       Device      : SH7264/SH7262 

*       Tool-Chain  : High-performance Embedded Workshop (Ver.4.04.01). 

*                   : C/C++ compiler package for the SuperH RISC engine family 

*                   :                             (Ver.9.02 Release00). 

*       OS          : None 

*       H/W Platform: M3A-HS64G50 (CPU board) 

*       Disclaimer  : 

* 

*       The information described here may contain technical inaccuracies or 

*       typographical errors. Renesas Technology Corporation and Renesas Solutions 

*       assume no responsibility for any damage, liability, or other loss rising  

*       from these inaccuracies or errors. 

* 

*       Copyright (C) 2008 Renesas Technology Corp. All Rights Reserved 

*       AND Renesas Solutions Corp. All Rights Reserved 

* 

*       History     : Dec.19,2008 Ver.1.00.00   

*""FILE COMMENT END""**********************************************************/ 

#include "appinfo.h" 

 

#pragma section APPINFO 

 

static APPINFO appinfo = { 

 __sectop("DAPPINFO"), /* Start address in the start section of the application */ 

       /* program (program area, constant area, and initialized /* 

       /* data area). */ 

 

 __secend("PCACHE")  /* End address in the end section of the application */ 

       /* program (program area, constant area, and initialized /* 

       /* data area) */ 

 

}; 

 

/* End of File */ 
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4.2.4 Application Program Listing "appinfo.h" 
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/*""FILE COMMENT""*********** Technical reference data ************************* 

* 

*       System Name : SH7264 Sample Program 

*       File Name   : appinfo.h 

*       Abstract    : Header file of the application program transfer information 

(appinfo). 

*       Version     : 1.00.00 

*       Device      : SH7264/SH7262 

*       Tool-Chain  : High-performance Embedded Workshop (Ver.4.04.01). 

*                   : C/C++ compiler package for the SuperH RISC engine family 

*                   :                             (Ver.9.02 Release00). 

*       OS          : None 

*       H/W Platform: M3A-HS64G50 (CPU board) 

*       Disclaimer  : 

* 

*       The information described here may contain technical inaccuracies or 

*       typographical errors. Renesas Technology Corporation and Renesas Solutions 

*       assume no responsibility for any damage, liability, or other loss rising  

*       from these inaccuracies or errors. 

* 

*       Copyright (C) 2008 Renesas Technology Corp. All Rights Reserved 

*       AND Renesas Solutions Corp. All Rights Reserved 

* 

*       History     : Dec.19,2008 Ver.1.00.00   

*""FILE COMMENT END""**********************************************************/ 

#ifndef __APPINFO_H__ 

#define __APPINFO_H__ 

 

typedef struct appinfo_t { 

 void *app_top;   /* Start address of the application program */ 

 void *app_end;   /* End address of the application program */ 

} APPINFO; 

 

 

#endif /* __APPINFO_H__ */ 

 

/* End of File */ 
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4.3 Downloader 
4.3.1 Downloader Program Listing "downloader.hdc" (1/2) 
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#/*""FILE COMMENT""*********** Technical reference data ************************* 

#* 

#*       System Name : SH7264 Sample Program 

#*       File Name   : downloader.hdc 

#*       Abstract    : Batch File for the Downloader 

#*       Version     : 1.00.00 

#*       Device      : SH7264/SH7262 

#*       Tool-Chain  : High-performance Embedded Workshop (Ver.4.04.01). 

#*                   : C/C++ compiler package for the SuperH RISC engine family 

#*                   :                             (Ver.9.02 Release00). 

#*       OS          : None 

#*       H/W Platform: M3A-HS64G50 (CPU board) 

#*       Disclaimer  : 

#* 

#*       The information described here may contain technical inaccuracies or 

#*       typographical errors. Renesas Technology Corporation and Renesas Solutions 

#*       assume no responsibility for any damage, liability, or other loss rising  

#*       from these inaccuracies or errors. 

#* 

#*       Copyright (C) 2008 Renesas Technology Corp. All Rights Reserved 

#*       AND Renesas Solutions Corp. All Rights Reserved 

#* 

#*       History     : Dec.19,2008 Ver.1.00.00   

#*""FILE COMMENT END""**********************************************************/ 

 

 

tcl enable 

 

 

#Macro downloader -Start 

proc init_hardware {} { 

 

 # Set the CPG 

 # FRQCR I=144MHz/B=72MHz/P=36MHz/CLK MODE2 

 MF H'FFFE0010 H'FFFE0011 H'1003 WORD 

 

} 

 

 

proc downloader {} { 

 # Reset CPU 

 reset 

 

 # Calls the init_hardware routine 

 init_hardware 
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4.3.2 Downloader Program Listing "downloader.hdc" (2/2) 
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 # Downloads all modules registered in the High-performance Embedded Workshop 

 file_load_all 

 

 # Enables the user stack (to use the software breakpoint) 

 sh2a_sbstk enable 

 

 # Inserts a software breakpoint at the _halt (refer to main.c) 

 set_disassembly_soft_break _halt set 

 

 # Inserts a software breakpoint at the _error (refer to main.c) 

 set_disassembly_soft_break _error set 

 

 # Executes the _downloader (refer to downloader.src) to wait until it terminates 

 go wait _downloader 

 

 # Removes a software breakpoint at the _halt 

 set_disassembly_soft_break _halt clear 

 

 # Removes a software breakpoint at the _error 

 set_disassembly_soft_break _error clear 

 

} 

 

downloader 

#Macro downloader -End 

 

 

 

# Note: "tcl", "reset", "file_load", "sh2a_sbstk", "set_disassembly_soft_break", 

# and "go" are commands used in the High-performance Embedded Workshop and the 

# E10A-USB emulator. For details, refer to manuals. 

 

# /* End of File */ 
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4.3.3 Downloader Program Listing "downloader.src" 
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;/*""FILE COMMENT""*********** Technical reference data ************************* 

;* 

;*       System Name : SH7264 Sample Program 

;*       File Name   : downloader.src 

;*       Abstract    : Downloader 

;*       Version     : 1.00.00 

;*       Device      : SH7264/SH7262 

;*       Tool-Chain  : High-performance Embedded Workshop (Ver.4.04.01). 

;*                   : C/C++ compiler package for the SuperH RISC engine family 

;*                   :                             (Ver.9.02 Release00). 

;*       OS          : None 

;*       H/W Platform: M3A-HS64G50 (CPU board) 

;*       Disclaimer  : 

;* 

;*       The information described here may contain technical inaccuracies or 

;*       typographical errors. Renesas Technology Corporation and Renesas Solutions 

;*       assume no responsibility for any damage, liability, or other loss rising  

;*       from these inaccuracies or errors. 

;* 

;*       Copyright (C) 2008 Renesas Technology Corp. All Rights Reserved 

;*       AND Renesas Solutions Corp. All Rights Reserved 

;* 

;*       History     : Dec.19,2008 Ver.1.00.00   

;*""FILE COMMENT END""**********************************************************/ 

 .SECTION DOWNLOADER_ENTRY,CODE,ALIGN = 4 

 .IMPORT _main 

 

_downloader: 

 MOV.L L2,R15 ; Sets the stack pointer 

 MOV.L L1,R0  ; Retrieves the entry function of the downloader 

 JMP @R0   ; Jumps to the entry function of the downloader 

 NOP 

 

 .ALIGN 4 

L1: 

 .DATA.L _main  ; Entry function address of the downloader 

 

L2: 

 .DATA.L H'FFF83000 ; Stack pointer (R15) value of the downloader 

 

 .pool  

 .end 
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4.3.4 Downloader Program Listing "main.c" (1/7) 
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/*""FILE COMMENT""*********** Technical reference data ************************* 

* 

*       System Name : SH7264 Sample Program 

*       File Name   : main.c 

*       Abstract    : Downloader 

*       Version     : 1.00.00 

*       Device      : SH7264/SH7262 

*       Tool-Chain  : High-performance Embedded Workshop (Ver.4.04.01). 

*                   : C/C++ compiler package for the SuperH RISC engine family 

*                   :                             (Ver.9.02 Release00). 

*       OS          : None 

*       H/W Platform: M3A-HS64G50 (CPU board) 

*       Disclaimer  : 

* 

*       The information described here may contain technical inaccuracies or 

*       typographical errors. Renesas Technology Corporation and Renesas Solutions 

*       assume no responsibility for any damage, liability, or other loss rising  

*       from these inaccuracies or errors. 

* 

*       Copyright (C) 2008 Renesas Technology Corp. All Rights Reserved 

*       AND Renesas Solutions Corp. All Rights Reserved 

* 

*       History     : Dec.19,2008 Ver.1.00.00   

*""FILE COMMENT END""**********************************************************/ 

#include <stdio.h> 

#include <string.h> 

#include <machine.h> 

#include "iodefine.h" 

#include "serial_flash.h" 

 

/* ==== macro defined ==== */ 

#define INT_MASK 0x000000F0  /* Value to set in the SR register (for masking 

         the interrupt) */ 

 

#define SECTOR_SIZE  0x10000      /* Sector size: 64 KB      */ 

#define SECTOR_NUM  32       /* Total number of sectors 

              in the device   */ 

#define DEVICE_SIZE  (SECTOR_SIZE * SECTOR_NUM) /* Device size  */ 

 

#define L_PROG_SIZE 8192    /* Loader program size         */ 

#define L_PROG_SRC 0xFFF80000   /* Source address of the loader program */ 

#define L_PROG_DST 0x00000000   /* Destination address of the loader program */ 

 

#define APROG_TOP_SFLASH 0x00002000 /* Start address of the application program */ 

 

 

#define APROG_TOP_RAM  0x1C000000 /* Start address of the application program */ 

          /* When changing the start section of the */ 

          /* application program, change this definition */ 
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4.3.5 Downloader Program Listing "main.c" (2/7) 
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#define APPINFO_TOP APROG_TOP_RAM   /* Address the appinfo.app_top is located */ 

#define APPINFO_END ( APROG_TOP_RAM + 4 ) /* Address the appinfo.app_end is located */ 

 

 

 

/* ==== prototype declaration ==== */ 

/*** User API ****/ 

void main(void); 

 

static void halt(void); 

static void error(void); 

static void init_erase_flag(void); 

static int Is_erased_sector(unsigned long sector_no); 

static void set_erase_flag(unsigned long sector_no); 

static int write_prog_data(unsigned char *program_data, unsigned long sflash_addr,  

         unsigned long size); 

 

 

/*** data ***/ 

static unsigned char sflash_erase_flag[SECTOR_NUM]={0}; /* 0: sector not erased, 

               1: sector erased */ 

 

 

 

/*""FUNC COMMENT""************************************************************** 

 * ID          :  

 * Outline     : Downloader main 

 *------------------------------------------------------------------------------ 

 * Include     :  

 *------------------------------------------------------------------------------ 

 * Declaration : void main(void); 

 *------------------------------------------------------------------------------ 

 * Description : Writes the loader program and application program in serial 

 *             : flash memory as the following procedures. 

 *             : 1. Mask the interrupt while the downloader is operating. 

 *             : 2. Initialize the RSPI0. 

 *             : 3. Disable the software protection in serial flash memory. 

 *             : 4. Write the loader program in serial flash memory. 

 *             : 5. Write the application program in serial flash memory. 

 *------------------------------------------------------------------------------ 

 * Argument    : void 

 *------------------------------------------------------------------------------ 

 * Return Value: void 

 *""FUNC COMMENT END""**********************************************************/ 

void main(void) 

{ 

 unsigned long app_top_addr,app_end_addr,app_prog_size; 
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4.3.6 Downloader Program Listing "main.c" (3/7) 
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 /* Masks the interrupt */ 

 set_cr(INT_MASK); 

 

 /* Initializes the erase flag */ 

 init_erase_flag(); 

  

 /* Initializes the RSPI0 */ 

 sf_init_serial_flash(); 

 

 /* Disables the software protection in serial flash memory */ 

 sf_protect_ctrl(SF_REQ_UNPROTECT); 

 

 

 /* Writes the loader program */ 

 if( write_prog_data( (unsigned char *)L_PROG_SRC, L_PROG_DST, L_PROG_SIZE) < 0 ){ 

  error(); 

 } 

 

 /* Retrieves the start address and end address from the application program 

  transfer information (appinfo) */ 

 app_top_addr = *(volatile unsigned long *)APPINFO_TOP; 

 app_end_addr = *(volatile unsigned long *)APPINFO_END; 

  

 /* Calculates the size of the application program */  

 app_prog_size = app_end_addr - app_top_addr; 

 

 

 /* Writes the application program */ 

 if( write_prog_data( (unsigned char *)app_top_addr, APROG_TOP_SFLASH, app_prog_size) < 0 ){

  error(); 

 } 

 

 /* Enables the software protection in serial flash memory */ 

 sf_protect_ctrl(SF_REQ_PROTECT); 

 

 /* Exits the downloader */ 

 halt(); 

} 

 



SH7262/SH7264 Group  
Boot From the Serial Flash Memory 

REJ06B0867-0100/Rev.1.00 April 2009 Page 46 of 55 

 

4.3.7 Downloader Program Listing "main.c" (4/7) 
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/*""FUNC COMMENT""************************************************************** 

 * ID          :  

 * Outline     : Write the program data 

 *------------------------------------------------------------------------------ 

 * Include     :  

 *------------------------------------------------------------------------------ 

 * Declaration : int write_prog_data(unsigned char *program_data, 

 *             :                     unsigned long sflash_addr, unsigned long size); 

 *------------------------------------------------------------------------------ 

 * Description : Writes the program data as the following procedures. 

 *             : 1. Erase the target sector when it is not erased. 

 *             : 2. Write the program data in serial flash memory. 

 *             : 3. Reads the data in serial flash memory and compare it with the 

 *             :    provided data. 

 *------------------------------------------------------------------------------ 

 * Argument    : unsigned char *program_data ; I : Start address of the program data 

 *             : unsigned long sflash_addr   ; I : Start address at the destination in  

 *                                                 serial flash memory  

 *             : unsigned long size          ; I : Write size 

 *------------------------------------------------------------------------------ 

 * Return Value: Equal or bigger than 0: Success 

 *             : Less than 0: Error 

 *""FUNC COMMENT END""**********************************************************/ 

int write_prog_data(unsigned char *program_data, unsigned long sflash_addr, unsigned long size)

{ 

 unsigned long sector_no; 

 unsigned long saddr; 

 unsigned long sz; 

 unsigned char read_data; 

 unsigned char *w_p; 

   

 /* ==== Copies the value from the argument to the local variable ==== */ 

 saddr = sflash_addr; 

 sz = size; 

 w_p = program_data; 

 

 /* ==== Writes data in serial flash memory ==== */ 

 while( sz > 0){ 

  sector_no = saddr / SECTOR_SIZE; 

  if( Is_erased_sector(sector_no) == 0 ){ /* When it is not erased */ 

   sf_sector_erase(sector_no);   /* Erase */ 

   set_erase_flag(sector_no);   /* When it is erased, set the erase flag */ 

  } 

 

  sf_byte_program(saddr, w_p, 1 );  /* Writes data in units of * 

            /* single byte */ 

  w_p++; 

  saddr++; 

  sz--; 
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4.3.8 Downloader Program Listing "main.c" (5/7) 
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 } 

 

 /* ==== Verifies data (serial flash memory is programmed successfully) ==== */ 

 saddr = sflash_addr; 

 sz = size; 

 w_p = program_data; 

  

 while( sz > 0){ 

  sf_byte_read(saddr,&read_data, 1); /* Reads the data written in */  

           /* serial flash memory */ 

 

  if( *w_p != read_data ){ 

   return -1;      /* Returns an error when the data */ 

           /* unmatched */ 

  } 

 

  w_p++; 

  saddr++; 

  sz--; 

 } 

 

 return 0; 

} 

 

/*""FUNC COMMENT""************************************************************** 

 * ID          :  

 * Outline     : Initialize the Erase Flag 

 *------------------------------------------------------------------------------ 

 * Include     :  

 *------------------------------------------------------------------------------ 

 * Declaration : static void init_erase_flag(void); 

 *------------------------------------------------------------------------------ 

 * Description : Initializes the table sflash_erase_flag[]. 

 *------------------------------------------------------------------------------ 

 * Argument    : void 

 *------------------------------------------------------------------------------ 

 * Return Value: void 

 *""FUNC COMMENT END""**********************************************************/ 

static void init_erase_flag(void) 

{ 

 int i; 

  

 for( i=0; i < SECTOR_NUM ;i++){ 

  sflash_erase_flag[i] = 0; 

 } 

} 
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4.3.9 Downloader Program Listing "main.c" (6/7) 
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/*""FUNC COMMENT""************************************************************** 

 * ID          :  

 * Outline     : Retrieve the Sector Erase Status 

 *------------------------------------------------------------------------------ 

 * Include     :  

 *------------------------------------------------------------------------------ 

 * Declaration : static int Is_erased_sector(unsigned long sector_no); 

 *------------------------------------------------------------------------------ 

 * Description : Returns the information (not erased or eraser) of the  

 *             : sector specified by the sector number. 

 *------------------------------------------------------------------------------ 

 * Argument    : unsigned long sector_no   ; I : Sector number 

 *------------------------------------------------------------------------------ 

 * Return Value: 1 : Sector in the specified address is already erased 

 *             : 0 : Sector in the specified address is not erased 

 *""FUNC COMMENT END""**********************************************************/ 

static int Is_erased_sector(unsigned long sector_no) 

{ 

 return sflash_erase_flag[sector_no]; 

} 

 

/*""FUNC COMMENT""************************************************************** 

 * ID          :  

 * Outline     : Set the Erase Flag 

 *------------------------------------------------------------------------------ 

 * Include     :  

 *------------------------------------------------------------------------------ 

 * Declaration : static void set_erase_flag(unsigned long sector_no); 

 *------------------------------------------------------------------------------ 

 * Description : Sets the erase flag to modify the information of the specified 

 *             : sector as erased. 

 *------------------------------------------------------------------------------ 

 * Argument    : unsigned long sector_no   ; I : Sector number 

 *------------------------------------------------------------------------------ 

 * Return Value: void 

 *""FUNC COMMENT END""**********************************************************/ 

static void set_erase_flag(unsigned long sector_no) 

{ 

 sflash_erase_flag[sector_no] = 1; 

} 
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4.3.10 Downloader Program Listing "main.c" (7/7) 
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/*""FUNC COMMENT""************************************************************** 

 * ID          :  

 * Outline     : Program stops (successful). 

 *------------------------------------------------------------------------------ 

 * Include     :  

 *------------------------------------------------------------------------------ 

 * Declaration : static void halt(void); 

 *------------------------------------------------------------------------------ 

 * Description : When the downloader ends successfully, this function is called  

 *             : to stop the program. 

 *------------------------------------------------------------------------------ 

 * Argument    : void 

 *------------------------------------------------------------------------------ 

 * Return Value: void 

 *""FUNC COMMENT END""**********************************************************/ 

static void halt(void) 

{  

    while(1){ 

        /* When the downloader ends successfully, this function stops the program. */ 

    } 

} 

 

/*""FUNC COMMENT""************************************************************** 

 * ID          :  

 * Outline     : Program stops (error). 

 *------------------------------------------------------------------------------ 

 * Include     :  

 *------------------------------------------------------------------------------ 

 * Declaration : static void error(void); 

 *------------------------------------------------------------------------------ 

 * Description : When the downloader ends in error, this function is called 

 *             : to stop the program.  

 *------------------------------------------------------------------------------ 

 * Argument    : void 

 *------------------------------------------------------------------------------ 

 * Return Value: void 

 *""FUNC COMMENT END""**********************************************************/ 

static void error(void) 

{ 

    while(1){ 

  /* When the downloader ends in error, this function stops the program */ 

    } 

} 

 

/* End of File */ 
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5. Using the Downloader 
The downloader in this application is designed to operate with the combination of the High-performance Embedded 
Workshop and the E10A-USB emulator. When using the downloader with other development tools, alter the program 
according to the tool.  

The programs cannot be written in serial flash memory by selecting the download module in the Debug Settings dialog box 
on the Debug menu. This section explains the procedures to write programs in serial flash memory using the downloader. 

 

5.1 Sample Program Configuration 
The sample program consists of three workspaces as listed in the following table. 

 

Table 12 Sample Program Configuration 

 

5.2 Writing Programs in Serial Flash Memory 
This section describes the procedures to write the loader program and application program in serial flash memory using the 
[sh7264_sflash_app] workspace. 

 

5.2.1 Register the Download Module and Batch File 
The figure below lists the directory configuration of the [sh7264_sflash_app] workspace. Download modules (A, B, and D) 
and a batch file (C) in the figure are registered in the project.  

 

Figure 16 [sh7264_sflash_app] Workspace Directory Configuration 

Workspace Name Description 
sh7264_sflash_downloader Build the downloader in the project of this workspace 
sh7264_sflash_loader_prog Build the loader program in the project of this workspace 
sh7264_sflash_app Build the application program in the project of this workspace.  

The downloader which is created in the [sh7264_sflash_downloader] 
workspace, a batch file to boot the downloader, and the loader program which 
is created in the [sh7264_sflash_loader_prog] workspace are registered in the 
project of this workspace. Use these items to write the loader program and 
application program in serial flash memory. 
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1. Changing the download module 
Change the download module registered in the project in the Debug setting dialog box. On the Debug menu in the High-
performance Embedded Workshop, click Debug settings, and the dialog box appears. 

For registering the download modules, refer to the High-performance Embedded Workshop User’s Manual. 

2. Changing the batch file 
Change the batch file registered in the project in the Set Batch File dialog box. On the View menu in the High-performance 
Embedded Workshop, click the Command Line command to show the Command Line window. Open the Set Batch File 
dialog box from the Batch File pop-up menu on the Command Line window. 

For registering the batch file, refer to the High-performance Embedded Workshop User’s Manual. 

 

5.2.2 Procedures to Writing Programs 
This section describes the procedures to write the loader program and application program in serial flash memory using the 
[sh7264_sflash_app] workspace. 

1. Copy the [sh7264_sflash_app] workspace directory in C:¥WorkSpace. 
2. Double-click the [sh7264_sflash_app].hws in the workspace directory to activate the High-performance Embedded 

Workshop. 
3. On the Build menu, select the Build All command to build the project. The application program is generated. 
4. On the Debug menu, select the Go command to connect with the target device. 
5. After the connection is established, select the Command Line command to show the Command Line window. 
6. Click the Run Batch button on the Command Line window to execute the registered batch file [downloader.hdc]. 
 

Command Line window

Run Batch button

 

Figure 17 Command Line Window and Run Batch Button 
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7. When the batch file [downloader.hdc] is executed, all of the download modules registered in the workspace (loader 
program, application program, and downloader) are transferred to RAM to execute the downloader. As shown in the 
figure below, the program counter stops at the _halt, when the downloader ends normally. The program counter stops at 
the _error, when the downloader ends in error. A source file may appear when the [sh7264_sflash_downloader] 
workspace directory is copied in C:¥WorkSpace. 

 

When the downloader ends normally, the program 
counter stops at the _halt.

When the downloader ends in error, the 
program counter stops at the _error.

 

Figure 18 High-performance Embedded Workshop Window When the Downloader Ends 
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6. References 
• Software Manual 

SH-2A/SH-2A-FPU Software Manual Rev. 3.00 
(Download the latest version from the Renesas website.) 

 
• Hardware Manual 

SH7262 Group, SH7264 Group Hardware Manual Rev. 1.00 
(Download the latest version from the Renesas website.) 
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Website and Support 
Renesas Technology Website 

http://www.renesas.com/ 
 
Inquiries 

http://www.renesas.com/inquiry 
csc@renesas.com 
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