

Bluetooth[®] Low Energy Protocol Stack

R01AN2469EJ0113 Rev.1.13 Mar 30, 2018

GUI Tool

Introduction

This manual describes the installation, configuration and usage of GUI Tool. The tool controls the Renesas Bluetooth low energy microcontroller RL78/G1D device programmed with Bluetooth Low Energy (BLE) protocol stack (hereafter called BLE software), which used for development of Bluetooth applications.

Target Device

RL78/G1D

Related documents

The related documents referred in this document might include preliminary versions. However, the preliminary versions are not marked as such.

	Document Name	Document No.			
Blue	Bluetooth Low Energy Protocol Stack				
l	User's Manual	R01UW0095E			
	API Reference Manual : Basics	R01UW0088E			
	API Reference Manual : FMP	R01UW0089E			
	API Reference Manual : PXP	R01UW0090E			
/	API Reference Manual : HRP	R01UW0097E			
/	API Reference Manual : TIP	R01UW0106E			
	API Reference Manual : ANP	R01UW0108E			
/	Application Note: rBLE Command Specification	R01AN1376E			

Contents

1. Overview
2. Applicability3
3. Restriction3
4. Operational Environment3
5. Installation
5.1 Contents
5.2 Installation Procedure
6. Utilization4
6.1 Connection of serial interface4
6.2 Launch GUI Tool
6.3 Display of dialog6
7. Dialog settings and operations
7.1 Log Dialog
7.2 Main Dialog
7.2.1 GAP Tab
7.2.2 Peer Device Tab
7.2.3 Vendor Specific Tab
7.2.4 GATT Tab
7.2.5 Profiles Tab
8. Appendix
8.1 File and Folder Organization
8.2 Error Messages
8.3 API Quick Reference List
8.4 How to use the Direct Test Mode58
8.4.1 Direct Test Mode (Receiver)58
8.4.2 Direct Test Mode (Transmitter)59
8.5 References
8.6 Terminology60
8.7 GUI Tool Changes Log62

1. Overview

The GUI Tool is an application tool to evaluate APIs: GAP, SM, VS, GATT and Profiles (FMP, PXP, ANP, HRP and TIP), which is provided by BLE software. It transmits and receives the rBLE command or event via serial communication to RL78/G1D device programmed with BLE software in Modem configuration.

This manual describes about GUI Tool installation, configuration and its operation.

For details about the BLE protocol stack APIs, refer to Bluetooth Low Energy Protocol Stack API Reference Manual and detail about rBLE Commands and Events are in the rBLE Command Specification document listed in page 1, this document.

2. Applicability

This manual explains about GUI Tool Version 1.12 or later.

3. Restriction

This GUI Tool is intended to evaluate the RL78/G1D device with Renesas BLE software. Accordingly, the GUI Tool is not applicable to other purpose.

4. Operational Environment

The GUI Tool runs on the following operating environment.

- Microsoft Windows 7 SP1
- Visual C++ Redistributable for Visual Studio 2012 Update 4 (If not installed in PC, use <u>Microsoft[®] download link</u>)
- [Note] GUI tool is a 32-bit application. Please note that even if you are using the 64-bit version of Windows, you shall install the x86 version of redistributable runtime library (VSU_4\vcredist_x86.exe).

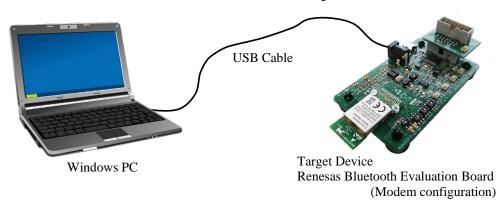
5. Installation

5.1 Contents

The compressed GUI Tool includes the following:

- Documents
 - Bluetooth Low Energy Protocol Stack GUI Tool Manual (this document)
- Executable file

5.2 Installation Procedure


Create an empty folder in the computer and copy the decompressed GUI Tool to that folder. Check that folder has all copied files and the same organization as shown in section 8.1.

6. Utilization

6.1 Connection of serial interface

GUI Tool transmits and receives the rBLE Command or Event through serial communication using UART 2-wire connection method^(*1) or UART 2-wire with branch connection method^(*2) to Renesas Bluetooth Evaluation Board (hereafter called BLE Eval Board). This board is programmed with the Modem configuration and use as target device. Connect PC to the BLE Eval Board via USB cable^(*3) as shown in Figure 6-1.

Figure 6-1 The GUI Tool interface setup

- [Note] 1. For details about the method of UART 2-wire connection, refer to the *Bluetooth Low Energy Protocol Stack* User's Manual 5.4.1 UART 2-wire Connection.
 - 2. For details about the method of UART 2-wire with Branch Connection, refer to the *Bluetooth Low Energy Protocol Stack User's Manual 5.4.3 UART 2-wire with Branch Connection.*
 - 3. If Windows PC requires a device driver for USB UART IC (FT232RL), use FTDI driver link.

6.2 Launch GUI Tool

Double click the GUI Tool icon [rBLE_Tool.exe] in the installed directory to launch this program. The files listed in Table 6-1 are essential to run this GUI application. Thus, make sure all these files locate in the same folder.

File Name	Description
rBLE_Tool.exe GUI Tool executable program fo	
	Windows PC
rBLE_Tool.ini	INI file for GUI Tool
rBLE_Tool_Err_Msg.tbl	Definition file for error message

Table	6-1	GIII	Tool	filos
Iable	0-1	901	1001	liles

[Note] If INI file does not exist, automatically create the file after running the GUI Tool.

Once open the GUI Tool application, the Serial port settings Dialog Box Window pop up as shown in Figure 6-2. Select appropriate serial Com Port that connected with BLE Eval Board and set the baud rate. Next click "OK" button for setting confirmation. Then, the Serial port settings Dialog Box Window will be close. If you use the UART 2-wire branch connection method, check "UART 2-wire with Branch Connection" check box.

Serial port settings				
COM5 -				
4800 👻				
UART 2-wire with Branch Connection				
OK Cancel				

Figure 6-2 Serial port settings

[Note] Specify the correct baud rate in GUI to match the BLE software baud rate. In the Modem configuration, the default baud rate is 4800bps.

6.3 Display of dialog

After setting correct baud rate and the serial port setting, GUI Tool will initiate communication to BLE software that run on the RL78/G1D. The GUI Tool application has two dialog boxes: the main dialog as rBLE_Tool and log dialog as Log. They are shown in Figure 6-3.

RIFLE_Tool Main di	ialog		Log	Log dialog	
GAP Peer Device Vendor Specific GATT Profiles Standby Generic Advertising Scanning Security White List Reset rBLE Version = 01.01 Set Name rBLE Sample Get Device Info HCI Ver. Host Ver Host Ver Company BD Address Own Address 00000000000			Save Clear [12] Tx> Wed Oct 14 14 RBLE_GAP_Reset [13] Rx < Wed Oct 14 14: RBLE_GAP_EVENT_RESET_RU Status = OK Major Version = 01 Minor Version = 01	:20:18.653	
COM	4800	Hide Log	•	III	· ·

Figure 6-3 Main dialog and Log dialog

• Main dialog

Main dialog transmits a command to BLE software, displays received events parameters from the BLE software, and displays operation state of the local device (BLE Eval Board).

Log dialog

The Log dialog box displays command parameter and event parameter. The specific time stamp displays in each command parameters that transmitted to the BLE software and the event parameters, which received from the BLE software, also embedded with specific time stamp.

7. Dialog settings and operations

For operation and setting this GUI specifically, it is better off to understand Bluetooth Core Specification version 4.2 (known as Bluetooth 4.2). Refer to <u>the web Bluetooth® specification link.</u>

7.1 Log Dialog

Log dialog displays Commands and Events for their parameters with local PC time stamp whenever transmit or receive between GUI Tool and BLE software that run on the RL78/G1D.

For easy to differentiate, the commands and events are displayed in different color. The typical Log dialog box is shown in Figure 7-1, and the details are labeled with text boxes.

Log	×	
Save Clear	Transmitted Command Time Stamp	
[18] Tx> Wed Oct 14 14:22:18.960 RBLE_GAP_Set_Name namelen = 11 name = rBLE Sample	- Command name - Command parameters	
[19] Rx < Wed Oct 14 14:22:19.209 RBLE_GAP_EVENT_SET_NAME_COMP Status = OK		
[20] Tx> Wed Oct 14 14:22:20.707 RBLE_GAP_Get_Device_Info	Received Event Time Stamp	
[21] Rx < Wed Oct 14 14:22:20.879 RBLE_GAP_EVENT_GET_DEVICE_INFO_COMP Status = OK BD_ADDR = 74:90:50:00:89:AB	- Event Name	
HCI Ver = 0x08 (v4.2) LMP Ver = 0x08 (v4.2) Host Ver = 0x08 (v4.2) HCI SubVer = 0x0001 LMP SubVer = 0x0001 Uect SubVer = 0x0001 III	Event Parameters	

Figure 7-1 Log dialog

You can switch on or off the Log dialog box by clicking the Hide Log / Show Log button. That button is located in the status bar, at the bottom of Main dialog box, shown in Figure 7-2.

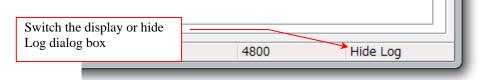


Figure 7-2 Main dialog status bar

7.2 Main Dialog

Main dialog transmits command to BLE software, displays received event parameters from BLE software, and displays operation state of the local device. Main dialog has tab interface. The GUI categorizes those tabs due to the specific functions associated with commands. Command parameters can be set on GUI using text box, check box, drop-down list and/or radio button. There are mainly five categories and they are Generic Access Profile (GAP), Peer Device, Vendor Specific, Generic Attribute Profile (GATT), and Profiles.

	rBLE_Tool Tabs by respective functions				
GAP Peer Device Vendor Specifie GATT Profiles					
	Standby Generic Advertising Scanning Security White List				
State display					
	Reset rBLE Version = 01.01 (OK)				
	Set Name rBLE Sample				
	Get Device Info HCI Ver.				
	Host Ver				
	Company				
	BD Address				
	Own Address: 💿 Public 💿 Ramdom				
	Set Random Address 00000000000				
	COM5 4800 Hide Log				

Figure 7-3 Main dialog

(1) Generic Access Profile (GAP)

It has five sub tabs: Generic, Advertising, Scanning, Security, and White List. Using GAP, you can do advertising, scanning, setting security and including white list.

(2) Peer Device

Four sub tabs associate in Peer Device, and they are Connection, Information, Pair/Key Exchange and Remote Keys tab. Using Peer Device tab, you can connect or disconnect Bluetooth devices and paring (bonding). This tab provides about connected remote device information like local name, RSSI value and exchanged key information.

(3) Vendor Specific

Using extended functionality, you can do hardware testing through Vendor Specific tab include Rx Test Mode and Tx Test Mode. In addition, it allows setting Bluetooth address as well as Power level for transmitting.

(4) Generic Attribute Profile (GATT)

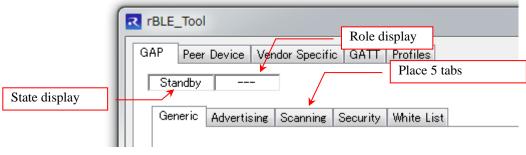
GATT has two sub tabs: Client and Server. In the Client, access Service Discovery, Characteristic Discovery, Read, and Write. In the Server tab, you can set parameters via two group boxes: Server Initiated and Permission Setting. In general, GATT allows to exchange characteristic values by using the handles of characteristics which exposed by the server to the client.

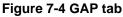
(5) Profiles

Find Me, Proximity, Alert Notification, Heart Rate and Time profiles are in this Profile tab. This tab shows interaction between client and server using one or more profiles.

Table 7-1 shows functional summary of each tab on Main dialog.

Tab Name	Summary		
GAP	Execute GAP and SM commands, which use before connection.		
Generic	Reset, Set name of local device, Get information of local device.		
Advertising	Setting of Advertising parameters and execute.		
Scanning	Setting of Scan parameters and execute. Display received Advertising data.		
Security	Local device security setting.		
White List	Add or Remove to White List.		
Peer Device	Execute GAP and SM commands, which associated connection with peer device.		
Connection	Connect, disconnect and change connection parameters with remote device.		
Information	Get information of remote device.		
Pair / Key Exchange	Pairing and Encryption parameters setting		
	Execute Pairing and Encryption		
Remote Keys	Bonding information management		
Vendor Specific	Execute the original extended features supported by Renesas		
GATT	Execute GATT Client / Server commands		
Client	Perform GATT Client functions.		
	Display Remote GATT database		
Server	Perform GATT Server functions		
Profiles	Execute 5 profiles commands		
Find Me	Perform Find Me Locator / Target functions		
Proximity	Perform Proximity Monitor / Reporter functions		
Alert Notification	Perform Alert Notification Client / Server functions		
Heart Rate	Perform Heart Rate Collector / Sensor functions		
Time	Perform Time Client / Server functions		


 Table 7-1 Functional summary of each tab


[Note] In order to use functions on Profiles tab, enable each profile in the BLE software build with Modem configuration. For details about the profile enable / disable setting of BLE software, refer to the *Bluetooth Low Energy Protocol Stack User's Manual.*

7.2.1 GAP Tab

In GAP tab, there are five tabs and indicate the state and role of the local device.

The State display is placed in the position shown in Figure 7-4. They are typically Link Layer states: Standby State, Advertising State, Scanning State, Initiating State and Connection State. The state and role will change due to the local device operation. Immediately after starting, the GUI Tool calls RBLE_GAP_Reset. Thus, the state will change from the initial state to the standby state. Depend on the selected function and executing, State Display text box shows the states listed in Table 7-2 Display column. After connection establishment, Role display text box indicates the local device role, either "Master" or "Slave".

Table 7-2 State display

Display	State	
	Initial state (Prior to serial communication)	
Standby	Standby state	
Advertising	Advertising state	
Scanning	Scanning state	
Initiating	Initiating connection state	
Connection	Already connected	

(1) GAP – Generic tab

In the GAP, "Generic" tab performs GAP Reset and sets local device name. You can also get device information as well as set its own address. In addition, you can set the local device address as the specified random address. Figure 7-5 shows Generic tab.

API	Behavior
RBLE_GAP_Reset	Execute GAP reset
RBLE_GAP_Set_Name	Set local device name
RBLE_GAP_Get_Device_Info	Get local device information
RBLE_GAP_Set_Random_Address	Set random address

	Security White	List		
Reset	rBLE Version =	= 01.01 (OK)		Reset result display
Set Name	rBLE Sample		*	
			·	Device Name input
Get Device Info	HCI Ver.	$v4.2$: Subver = 0×01	D01	
	LMP Ver.	$v4.2$: Subver = 0×0	D01	
	Host Ver	$v4.2$: Subver = 0×0		
	Company	Renesas Electronic	s Corporation (0×003	6)
	BD Address	74:90:50:00:89:AB	K	
Own Address: Public 	🔘 Ramdom			Local device information display
Set Random Address	00000000000	0		
			<u> </u>	Random Address text box
L		COM5	4800	Hide Log

Figure 7-5 GAP – Generic tab

When you press "Reset" button, it calls RBLE_GAP_Reset and execute GAP Reset. Then receive event: "GAP Reset completion" event (RBLE_GAP_EVENT_RESET_RESULT) in the "Reset result display" text box. The result message contains the rBLE version as well as result status shown in parenthesis ().

When press "Set Name" button, it calls RBLE_GAP_Set_Name with string entered in the "Device Name input" text box next to this button. This action sets local device name, typed string in the text box, to target device.

When press "Get Device Info" button, it calls RBLE_GAP_Get_Device_Info. Then receive "device information acquisition completion" event (RBLE_GAP_EVENT_GET_DEVICE_INFO_COMP). Show HCI, LMP and Host version information, company ID and Bluetooth device address in the "Local device information display" text boxes.

You can define own address type. Selecting one of the radio buttons will set the local device address types: Public or Random. After that, Advertising, Scanning, and Initiating process will use with selected address type.

To set random address, type six octets of hexadecimal value in Random Address text box for random device address. Pressing "Set Random Address" button calls RBLE_GAP_Set_Random_Address, and setup the device address. In

addition, this Random address text box will display the generated random device address with the set random address completion event (RBLE_GAP_EVENT_SET_RANDOM_ADDRESS_COMP) when setting Privacy feature.

Using the Advertising tab in GAP, you can start or stop advertising through Advertising Enable button or Advertising Disable button respectively. Furthermore, there are two group boxes: Mode and Advertising.

API	Behavior
RBLE_GAP_Broadcast_Enable	Enable broadcast
RBLE_GAP_Broadcast_Disable	Disable broadcast

Table 7-4 List of API called by GAP – Advertising tab

In Mode group box, you can set advertising mode through six check boxes that allow the choice of mode setting. Advertising group has drop-down list to set five different advertising types and three check boxes to select advertising channels: 37, 38 and 39. Four selectable Policies are allowed in advertising group box. Direct Address can be set when check Directed Connectable mode. Selecting other modes grayed out to this section. You can set the maximum and minimum advertising interval values. Settable range of advertising interval is 20 ms to 10.24 sec, but if advertising type is ADV_SCAN_IND or ADV_NONCONN_IND, the values cannot be set less than 100 ms. In addition, the minimum value cannot be set beyond the maximum value. And if advertising type is ADV_DIRECT_IND_HIGH, the values are ignored. You can set Advertising Data and Scan Response Data through popup dialog. Their detail will be explained in later section. The Advertising tab shows in Figure 7-6.

RBLE_Tool GAP Peer Device Vendor Specific GATT	
Standby Generic Advertising Scanning Security White List Mode Broadcaster Imited Discoverable Non Discoverable	
Image: Windirected Connectable Image: Directed Connectable Image: Non Connectable Advertising Image: Directed Connectable Image: Directed Connectable Type ADV_IND Image: Directed Connectable	Advertising Types
Direct Address: Public Ramdom Policy Allow SCAN_REQ from Any, CONNECT_REQ from Any	Policy
Interval Max(msec) 160 Interval Min(msec) 160	Advertising / Scan Response Data
Advertising Data 020106	
Advertising Enable	Disable Advertising buttons
COM5 4800 H	ide Log

Figure 7-6 GAP – Advertising tab

• Advertising Types

Parameters for Advertising can be set arbitrarily through this drop-down list. You click drop-down arrow to select one of the following:

- ADV_IND
- ADV_DIRECT_IND_HIGH
- ADV_SCAN_IND
- ADV_NONCONN_IND
- ADV_DIRECT_IND_LOW
- Policy

Using this drop-down list, you click drop-down arrow to set one of four advertising policies as below.

- Allow SCAN_REQ from any, CONNECT_REQ from any
- Allow SCAN_REQ from WL Devices, CONNECT_REQ from any
- Allow SCAN_REQ from any, CONNECT_REQ from WL Devices
- Allow SCAN_REQ from WL Devices, CONNECT_REQ from WL Devices
- [Note] WL Device means device which registered in White List.
- Advertising buttons
 - "Advertising Enable"

To start advertising, press "Advertising Enable" button that call RBLE_GAP_Broadcast_Enable with selected parameters in Mode and Advertising group.

— "Advertising Disable"

To stop advertising, press "Advertising Disable" button that call RBLE_GAP_Broadcast_Disable. This will stop advertising and then wait at "Standby" state.

Advertising/Scan Response Data

By pressing one of the buttons, respective Advertising or Scan Response data dialog box will popup. Through these dialog boxes, set Advertising and Scan Response data easily.

Set the parameters according to the AD Types through Advertising and Scan Response Data settings dialog boxes. Here only explain Advertising data setting. If you want to configure Scan Response Data settings, duplicate from Advertising Data setting. After setting completion, press "OK" button to set value. This will reflect in Advertising tab.

While selecting Flags in AD Types drop-down list (shown in Figure 7-7), arbitrary Flags will display in text box when press the "Set" button.

Set Advertising Data					
AD Types					
Flags 👻					
LE Limited Discoverable Mode					
V LE General Discoverable Mode					
R/EDR Not Supported					
Simultaneous LE and BR/EDR to Same Device Capable(Controller)					
Simultaneous LE and BR/EDR to Same Device Capable(Host)					
Set					
020106					
OK Cancel					

Figure 7-7 Advertising data setting dialog – AD Types: Flags

While selecting 16bit UUID in AD Types drop-down list (shown in Figure 7-8), select the arbitrary services UUID from below Service selection drop-down list and then press the "Add" button. Repeat for selecting Multiple UUIDs and press the "Add" button on each selection. That action adds all selected UUIDs to text box. If complete adding all UUID(s), press the "Set" button to set selected values.

Set Advertising Data
AD Types
Complete list of 16 bit UUID 🔹
16bit UUID
Alert Notification Service 👻
Add Del
Set 020106
OK Cancel

Figure 7-8 Advertising data setting dialog – AD Types: 16bit UUID

While selecting 128bit UUID in AD Types drop-down list (shown in Figure 7-9), manually key in hexadecimal value for 128bit UUID and press the "Set" button.

Set Advertising Data
AD Types
Complete list of 128 bit UUID 👻
128bit UUID
Set
020106
OK Cancel

Figure 7-9 Advertising data setting dialog – AD Types: 128bit UUID

While selecting Local Name in AD Types drop-down list (shown in Figure 7-10), manually key in ASCII value for local device name and press the "Set" button.

Set Advertising Data
AD Types
Complete Local Name 👻
Name(ASCII)
Set
020106
OK Cancel

Figure 7-10 Advertising data setting dialog – AD Types: Local Name

If select the AD Types other than above mentioned sections, key in hexadecimal value accordance with Supplement to the Bluetooth Core Specification v7, Part A, Section 1.

In the Scanning tab of GAP, you can start or stop the Scanning. The received Advertising data displays in the bottom table as a list with BD Address, Address Type, RSSI value, Advertising Data and Scan Response Data.

Table 7-5 List of AP	l called by GAE	P – Scanning tab
	I called by OAI	- Scanning tab

API	Behavior
RBLE_GAP_Device_Search	Search remote device
RBLE_GAP_Observation_Enable	Enable observation
RBLE_GAP_Observation_Disable	Disable observation

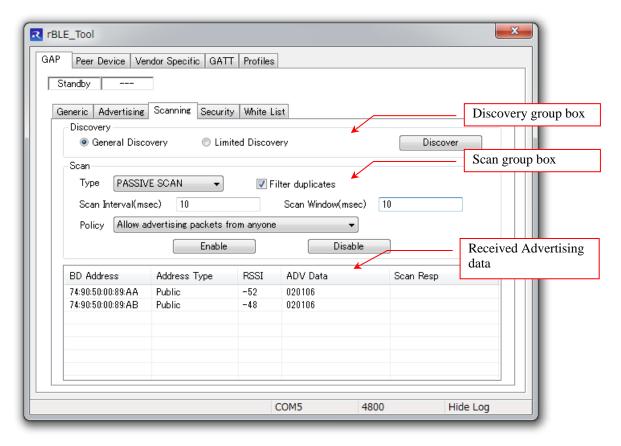


Figure 7-11 GAP – Scanning tab

Figure 7-11 shows Scanning tab of the GAP. This tab has a couple of group boxes: Discovery and Scan. The Discovery group box ha two radio buttons for selecting General Discovery or Limited Discovery along with "Discover" button. By pressing "Discover" button will call RBLE_GAP_Device_Search and subsequently search peripheral devices by scanning. It will perform Active Scan Type with enable Duplicate filtering, 11.25 m sec Scan Interval, and 11.25 m sec Scan Window.

Scan group box allows setting scan type and policy via drop-down lists. You manually can set Scan Interval and Scan Window as below.

- Scan Interval (2.5 m sec to 10.24 sec)
- Scan Window (2.5m sec to 10.24 sec)

The Scan Window shall always be set to a value smaller or equal to the value set for the Scan Interval.

You can check to filter duplicates by using check box next to Type drop-down list. In this group box, there are "Enable" button and "Disable" button. Pressing "Enable" button calls RBLE_GAP_Observation_Enable with set parameters. It operates as an observer by scanning. Pressing "Disable" button calls RBLE_GAP_Observation_Disable to stop scanning. In the bottom table, show a list of Receiving Advertising data. If receive the following events, peripheral device BD Address and Advertising data will display in the list.

GUI Tool

- Device search result notification event (RBLE_GAP_EVENT_DEVICE_SEARCH_RESULT_IND)
- $-- Advertising \ report \ notification \ event \ (RBLE_GAP_EVENT_ADVERTISING_REPORT_IND)$

You can select the advertising device from the list of Received Advertising data. Click arbitrary row in the list will highlight the selected device. Then double-click onto that selected row. This selected address will reflect to "Peer Addr" field in Peer Device tab as shown in Figure 7-12. This BD address will also be used as connection parameter.

	BD Address	Address Type	RSSI	ADV Data	Scan Resp	
	74:90:50:00:89:AA	Public	-51	020106		
	74:90:50:00:89:AB	Public	-56	020106		
				1) double-clicking	arbitrary list row	
T rB	LE_Tool					x
GAF		ndor Specific GAT	n ofiles		the "Peer Addr"	う
	Standby		eer Addr 4:90:50:00:89	● Public AB	ConnHandle Index	

Figure 7-12 Selection list

To clear the entire Received Advertising data, press right-click on to the mouse while move cursor on the table afterward popup the context menu. Select desire operation in context menu and execute the command. Figure 7-13 shows this context menu. For clearing the list, select Clear All. If you select Cancel, hide the menu in the table.

BD Address	Address Type	RSSI	ADV Data		Scan Resp	
74:90:50:00:89:AA	Public	-52	020106			
74:90:50:00:89:AB	Public	-48	020106		Clear All	
					Cancel	63
			COM5	4800		Hide Log

Figure 7-13 Clear list

Using the Security tab (show Figure 7-14) in GAP, you can setup the local device security. In this security tab, set security mode as well as bondable mode. There are two group boxes: Privacy and Local Keys.

API	Behavior
RBLE_GAP_Set_Security_Request	Set security mode
RBLE_GAP_Set_Bonding_Mode	Set bonding mode
RBLE_GAP_Set_Privacy_Feature	Set privacy feature
RBLE_SM_Set_Key	Set IRK or CSRK

Table 7-6 List of API called by GAP – Security tab

RELE_Tool GAP Peer Device Vendor Specific GATT Profiles Standby Generic Advertising Scanning Security White List	
	Security mode selection
Set Security Mode Mode=1, Lvl=1 : No security Set Bondable Mode Image: Bondable One Bondable Image: Bondable	•
Privacy	Privacy Feature selection
Privacy Device privacy disabled	
Set IRK 11223344556677881122334455667788 Set CSRK 88776655443322118877665544332211	
COM5 4800	Hide Log

Figure 7-14 GAP – Security tab

Pressing "Set Security Mode" button calls RBLE_GAP_Set_Security_Request with selected parameter. Click dropdown list to select security mode selection. This will setup the local device security mode.

Select either "Bondable" or "Non Bondable" radio button then click "Set Bondable Mode" button to set this option. Pressing "Set Bondable Mode" button calls RBLE_GAP_Set_Bonding_Mode with selected parameter and setup whether the local device bondable or not.

You can set privacy feature in Privacy group box, which sets the privacy feature for local device. Pressing "Set" button calls RBLE_GAP_Set_Privacy_Feature with selected parameter from Privacy Feature selection drop-down list. It will generate Resolvable Private Address when enable the privacy feature for each role. Before you set privacy feature, the IRK must be set by using "Set IRK" button in Local Keys group box.

To set IRK key, type 16 octets of hexadecimal value in to the text box next to "Set IRK" button. Then press "Set IRK" button. Pressing "Set IRK" button calls RBLE_SM_Set_Key, with keyed hexadecimal value for setting IRK.

To set CSRK key, type 16 octets of hexadecimal value in to the text box next to "Set CSRK" button. Then press "Set CSRK" button. Pressing "Set CSRK" button calls RBLE_SM_Set_Key, with keyed hexadecimal value for setting CSRK.

(5) GAP – White List tab

In the White List tab of GAP, you can add a device address to the White List or remove device address and also can read the White List size and set connection procedure. Figure 7-15 shows the White List tab.

API	Behavior
RBLE_GAP_Get_White_List_Size	Get White List size
RBLE_GAP_Add_To_White_List	Add address to White List
RBLE_GAP_Del_From_White_List	Delete address from White List
RBLE GAP Observation Enable	Execute connection procedure

Table 7-7 List of API called by GAP – White List tab

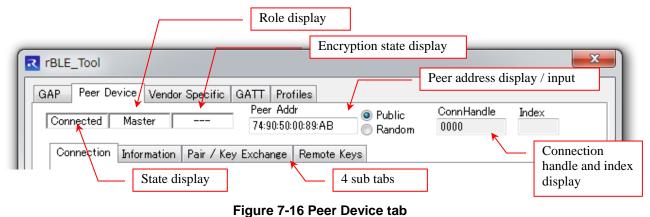
GAP Peer Device Vendor Specific GATT Pro	files	
	ite List	White List Size display text box
Read White List Size 6 BD Address 112233445566 aabbccddeeff	Address Type Public Public	BD Address table
	COM5	4800 Hide Log

Figure 7-15 GAP – White List tab

Pressing "Read White List Size" button calls RBLE_GAP_Get_White_List_Size and reads the White List size of local device. By calling this API function, you will receive the event, which is White List size read completion event (RBLE_GAP_EVENT_GET_WHITE_LIST_SIZE_COMP). Later display the size in White List Size display text box next to "Read White List Size" button.

You can add specific BD address to the White List by using Add White List group box. It allows you to type six octets of hexadecimal value for BD address and select address type either Public or Random. Pressing "Add" button calls RBLE_GAP_Add_To_White_List then add the specified device address to White List. If succeeded, receive the White List device addition completion event (RBLE_GAP_EVENT_ADD_TO_WHITE_LIST_COMP).

You also can remove specific BD address from White List by using Remove White List group box. It allows you to select all device or selected devices only. For selected option, select individual row in BD address table to delete. Successively, press "Remove" button to call RBLE_GAP_Del_From_White_List. If deleting is succeeded, it will delete all or prior selected devices by your choice and will receive the White List device removal completion event (RBLE_GAP_EVENT_DEL_FROM_WHITE_LIST_COMP).


Using Connection Procedure group box, you can set connecting procedure into either auto or selective mode. Pressing "Auto Connection" or "Selective Connection" button calls RBLE_GAP_Observation_Enable, and execute Auto Connection procedure or Selective Connection procedure respectively.

The BD Address table shows all successful BD address and its address type.

7.2.2 Peer Device Tab

There are four sub tabs in Peer Device tab, shown in Figure 7-16. They perform connection, disconnection, encryption with remote device, and displays the state.

State display text box shows the state listed in Table 7-2 according to operation of the local device. After the connection, Role display text box indicates the local device role, which is either "Master" or "Slave". Encryption state display text box does display as "Encrypted" when the link with a remote device is encrypted by LTK.

Peer device address appears in Peer address display / input text box if receive link establishment event (RBLE_GAP_EVENT_CONNECTION_COMP). Moreover, you can manually enter device address in that text box to connect. Here also copy the device address, which selected in the list in the Scanning tab. Refer to Figure 7-12 for device address.

Connection handle and index display text box shows handle and index if receive the event that notified at initiating connection or security procedure.

(1) **Peer Device – Connection tab**

In Peer Device, the Connection tab performs connection establishment procedure, terminate connection procedure; and connection parameter update procedure. Before connecting to remote device, set connection parameter through connection parameter setting text boxes. Figure 7-17 shows the Connection tab.

API	Behavior
RBLE_GAP_Create_Connection	Start LE link connection
RBLE_GAP_Connection_Cancel	Cancel LE link connection
RBLE_GAP_Disconnect	Disconnect LE link
RBLE_GAP_Change_Connection_Param	Change link parameters

rBLE_Tool				
GAP Peer Device Vendor Specific Connected Master	Peer Ad		Public ConnHa Random 0000	ndle Index
Connection Information Pair / K	ey Exchange	Remote Keys		Connection parameter setting
Scan Interval(msec)	30	Scan Wind	dow(msec)	30
Connection Interval Min(msec)	50	Connectio	on Interval Max(msec	.) 70
Slave Latency(events)	0	Supervisio	on Timeout(msec)	8000
Min CE Length(msec)	5	Max CE L	ength(msec).	5
Initiator Filter Policy Ignore	White List			-
Connect	Con	nect Cancel	Disconnect	Update parameter setting / display
Connection Interval Min(msec)	1500	Connectio	on Interval Max(msec) 2000
Slave Latency(events)	0	Supervisio	on Timeout(msec)	8000
	Upo	date Params		
		COM5	4800	Hide Log

Figure 7-17 Peer Device – Connection tab

You can set connection parameter setting as below.

- Scan interval and Scan Window (2.5 m sec to 10.24 sec)
- Minimum connection interval and Maximum connection interval (7.5 m sec to 4.0 sec)
- Slave latency (0 to 499)
- Supervision Timeout (100 m sec to 32 sec)
- Minimum connection event length and Maximum connection event length (0 to 65535)
- Initiator Filter Policy (either "ignore White List" or "use White list")

Pressing "Connect" button calls RBLE_GAP_Create_Connection along with specified parameters in connection parameter setting text boxes. It does initiate connection establishment procedure.

Pressing "Connect Cancel" button calls RBLE_GAP_Connection_Cancel, and cancel initiated connection establishment procedure.

Pressing "Disconnect" button calls RBLE_GAP_Disconnect, and disconnect the established link.

You can set update connection parameters as below before pressing "Update Params" button.

- Minimum connection interval and Maximum connection interval (7.5 m sec to 4.0 sec)
- Slave latency (0 to 499)
- Supervision Timeout (100 m sec to 32 sec)

Pressing "Update Params" button calls RBLE_GAP_Change_Connection_Param along with specified parameters in Update parameter setting / display text boxes. It changes the connection parameters for established link. In addition, connection parameters are displayed in connection parameter setting / display text boxes when the Connection parameter change request notification event (RBLE_GAP_EVENT_CHANGE_CONNECTION_PARAM_REQ_IND) from a slave device and the Connection parameter change completion event (RBLE GAP EVENT CHANGE CONNECTION PARAM COMP) are notified.

From the remote Slave device, upon receiving the Connection parameter change request notification event (RBLE_GAP_EVENT_CHANGE_CONNECTION_PARAM_REQ_IND), the Parameter Update Request dialog box appears, shown in Figure 7-18. You need to respond either "Accept" or "Reject". Pressing one of "Accept" or "Reject" button calls RBLE_GAP_Change_Connection_Param and changes a connection parameter for an established link when pressing "Accept".

Parameter Update Request
Received Connection Parameter Update Request
from Handle=0x0000, Accept or Reject ?
Accept Reject

Figure 7-18 Parameter update request

(2) **Peer Device – Information tab**

In Peer Device, the Information tab performs information acquisition of the remote device name, supported Bluetooth version number, Company ID, and Link Layer Feature. You also get RSSI level and own channel map information. The information tab is shown in Figure 7-19.

Table 7-9 List of API called by Peer Device – Information tab

API	Behavior
RBLE_GAP_Get_Remote_Device_Name	Get remote device name
RBLE_GAP_Get_Remote_Device_Info	Get remote device information
RBLE_GAP_Read_RSSI	Get RSSI value
RBLE_GAP_Channel_Map_Req	Set or Get channel map

RELE_Tool GAP Peer Device Vendor Specific GATT Profiles Connected Master Peer Addr Public ConnHand Connected Master 74:90:50:00:89:AB Random 0000 Connection Information Pair / Key Exchange Remote Keys	
Request Name Renesas-BLE	Remote device Local Name
Remote Information	Remote Information group box
Version v4.2 : Subver = 0x0001 Company Renesas Electronics Corporation (0x0036) Features 01000000000000	Read
	RSSI display text box
RSSI -51 dBm Read	t
	Channel Map display /
	setting text box
COM5 4800	Hide Log

Figure 7-19 Peer Device – Information tab

When you press "Request Name" button, it calls RBLE_GAP_Get_Remote_Device_Name and gets event known as Remote device name acquisition completion event (RBLE_GAP_EVENT_GET_REMOTE_DEVICE_NAME_COMP). This event displays specified remote device name in text box next to "Request Name" button.

Pressing "Read" button in Remote Information group box calls RBLE_GAP_Get_Remote_Device_Info and gets remote device information acquisition completion event (RBLE_GAP_EVENT_GET_REMOTE_DEVICE_INFO_COMP). This event has information about remote device supported Bluetooth version number, Company ID, and Link Layer Feature and shows in Remote device information display text box.

For remote device RSSI level, you press "Read" button next to RSSI text box. When you press "Read" button, call RBLE_GAP_Read_RSSI and get RSSI acquisition completion event (RBLE_GAP_EVENT_READ_RSSI_COMP). This event has specified remote device RSSI in dBm unit shown in RSSI display text box.

For the channel map, you can read or set using Channel Map display/setting text box. When you press "Read" button next to the Channel Map display/setting text box, call RBLE_GAP_Channel_Map_Req and acquire the data channel map. Then receive the Channel map acquisition completion event

(RBLE_GAP_EVENT_CHANNEL_MAP_REQ_COMP) and display own channel map information in Channel Map display/setting text box.

You can also set own channel map by pressing "Set" button when local device is Master role. By doing so, five octets hexadecimal value, which you manually keyed in Channel Map display / setting text box, will be set as channel map setup parameter.

(3) **Peer Device – Pair / Key Exchange tab**

In Peer Device, the Pair / Key Exchange tab performs pairing and encryption as well as setup parameter that needed for specific pairing information.

Table 7-10 List of API called by Peer Device – Pair / Key E	Exchange tab
---	--------------

API	Behavior
RBLE_GAP_Start_Bonding	Start bonding
RBLE_GAP_Bonding_Response	Respond to bonding request
RBLE_SM_Start_Enc	Start encryption
RBLE_SM_Ltk_Req_Resp	Respond to LTK request
RBLE_SM_Tk_Req_Resp	Respond to TK request

R rBLE_Tool
GAP Peer Device Vendor Specific GATT Profiles Connected Master Peer Addr Index Connection Information Pair / Key Exchange Remote Keys
Connection Information Pair / Key Exchange Remote Keys Pairing Information Key Size 10 Remote OOB OOB Authentication data not present
IO Capabilities No Input No Output
Authentication Requirements No MITM protection, Bonding Initiator Key Distribution: Initiator Key Responder Key Distribution: Encryption Key Int CSRK
Keys Security Properties Inauthenticated, No MITM EDIV ABCD Rand 1122334455667788
LTK 0123456789ABCDEF0123456789ABCDEF TK : Passkey(decimal) 123456
Pair Encrypt
COM5 4800 Hide Log

Figure 7-20 Peer Device – Pair / Key Exchange tab

Before paring the device, you need to setup the parameters using Paring Information group box, which includes as below.

- Key Size : Maximum encryption key size
- Remote OOB : select OOB data not present or OOB data from remote device present
 [Note] acronym for OOB is "Out of Band"
- IO Capabilities : select one from below list using drop-down arrow
 - Display only
 - Display Yes/No
 - Keyboard only
 - No input No output
 - Keyboard Display
- Authentication Requirements: select one of four options using drop-down arrow
 - No MITM protection, No Bonding
 - No MITM protection, Bonding
 - MITM protection, No Bonding
 - MITM protection, Bonding
 - [Note] acronym for MITM is "man-in-the-middle"
- Initiator Key Distribution : check one or more on below check boxes
 - Encryption Key
 - IRK (Identity Resolving Key)
 - CSRK (Connection Signature Resolving Key)
- Responder Key Distribution: check one or more on below check boxes
 - Encryption Key
 - IRK (Identity Resolving Key)
 - CSRK (Connection Signature Resolving Key)

The above setting parameters will be used in calling RBLE_GAP_Start_Bonding or RBLE_GAP_Bonding_Response.

For distribution phase of the pairing or encryption procedure, you need to set encryption keys using Keys group box, which contains Security Properties, EDIV (Encrypted Diversifier), Rand (Random Number), LTK (Long Term Key) and TK (Temporary Key) to specify the keys. The calling API setting will explain as follows.

- Security Properties: select Unauthenticated, No MITM or Authenticated, with MITM
- EDIV : manually enter two octets hexadecimal value
- Rand : manually enter 8 octets hexadecimal value
- LTK : manually enter 16 octets hexadecimal value

The above parameter setting will be used in calling either RBLE_SM_Ltk_Req_Resp or RBLE_SM_Start_Enc in the state of following:

- Response to LTK request notification event at distribution phase of the pairing
- Security Request from the local device (Slave)
- Encryption Session Setup from the remote device (Master)

When perform pairing by Passkey Entry, call RBLE_SM_Tk_Req_Resp with following parameter as Passkey.

— TK : manually enter 6 digit decimal value

There are "Pair" button and "Encrypt" button at bottom of this Pair/Key Exchange tab. When you press "Pair" button, it does call RBLE_GAP_Start_Bonding with parameters in Pairing Information group box. Pressing "Encrypt" button does call RBLE_SM_Start_Enc, and start encryption of the link. When the local device is Slave, it will use Keys group box parameters except TK.

Upon receiving peer device bonding request notification event (RBLE_GAP_EVENT_BONDING_REQ_IND), you will get prompt the Bond Request dialog box shown in Figure 7-21. Need to respond either "Accept" button or "Reject" button. Pressing one of the buttons calls RBLE_GAP_Bonding_Response with parameters set in Pairing Information group box.

Bond Request	x	
Received Bond Request		
Bond with device 74:90:50:00:89:AB ?		
Accept Reject		

Figure 7-21 Bonding request

When the local device become a input device in the key exchange phase of pairing by Passkey Entry, upon receiving TK request notification event (RBLE_SM_TK_REQ_IND), you will get prompt the Passkey Entry dialog box shown in Figure 7-22. You can type 6 digit decimal value in to the text box for inputting TK. The displayed value on display device or the same value as a remote device can be used as TK. Pressing "OK" button calls RBLE_SM_Tk_Req_Resp with inputted TK.

Input the Passkey	×
Input the Passkey ((Decimal, 6-digits)
123456	
ОК	Cancel
L	

Figure 7-22 Passkey Entry

(4) **Peer Device – Remote Keys tab**

In Peer Device, the Remote Keys tab manages bonding information.

Table 7-11 List of API called by Peer Device – Remote Keys tab

API	Behavior
RBLE_SM_Irk_Req_Resp	Respond to IRK request
RBLE_SM_Csrk_Req_Resp	Respond to CSRK request
RBLE_GAP_Bonding_Info_Ind	Indicate bonding information
RBLE_SM_Chk_Bd_Addr_Req_Resp	Respond to BD address check request

BLE_Tool P Peer Device Vendor Connected Master Connection Information		Peer [74:90	0:50:00:89:AB	Public ConnHand Random 0000	dle Index Bonding informatio display text box
BD Address	Prop	EDIV	Rand	LTK	IRK
•	III				,
	A	dd		Delete	
			COM5	4800	Hide Log

Figure 7-23 Peer Device – Remote Keys tab

Bonding information display text box shows bonding information (e.g., Key that distributed at key distribution phase of the pairing) in the list. It is also possible to input the OOB data obtained from the remote device.

This Bonding information display text box can manage the bonding information up to 10 devices and store bonding information in an INI file. Thus, this initialization (rBLE_Tool.ini) file and application (rBLE_Tool.exe) file must be same folder. After that, stored bonding information is available to display in this Bonding information display text box when you open the GUI Tool next time.

Below are the lists for bonding information show in this Bonding information display text box.

- BD Address
- Security property of the keys
- Encryption keys
 - EDIV (2 octets hexadecimal value)
 - Rand (8 octets hexadecimal value)
 - LTK (16 octets hexadecimal value)
- IRK (16 octets hexadecimal value)
- CSRK (16 octets hexadecimal value)
- Sign Counter
- OOB Data (16 octets hexadecimal value)

When require any key by pairing, encryption, and address resolution while receiving any key request event, it will acquire the key from this list and respond automatically by calling RBLE_SM_Irk_Req_Resp or RBLE_SM_Csrk_Req_Resp.

When receiving BD address check request event (RBLE_SM_CHK_BD_ADDR_REQ), call RBLE_SM_Chk_Bd_Addr_Req_Resp with acquired the bond state of the corresponding device by searching from the list.

By double-clicking any list in this text box, popup the bonding information input dialog, shown in a Figure 7-24, which has same information except Sign Counter in Bonding information display text box. Thus, you can edit the bonding information using this dialog box manually.

This Remote Keys tab has two buttons at the bottom. They are "Add" button and "Delete" button.

Clicking "Add" button will prompt the bonding information input dialog (refer to Figure 7-24). By doing so, you can add new bonding information per above list except Sign Counter. Clicking "Delete" button does delete bonding information of selected device from the list in Bonding information display text box.

After adding or deleting the bonding information, call RBLE_GAP_Bonding_Info_Ind. It will notify and renew the bonding information to BLE software.

Add Remote Keys)
BD Address	
←	Enter 6 octets of hexadecimal value
Key Security Property	
Onauthenticated O Authenticated	
EDIV	
←	Enter 2 octets of hexadecimal value
Rand	
↓	Enter 8 octets of hexadecimal value
LTK	
←	Enter 16 octets of hexadecimal value
IRK	
↓	Enter 16 octets of hexadecimal value
CSRK	
←	Enter 16 octets of hexadecimal value
ООВ	
↓	Enter 16 octets of hexadecimal value
OK Cancel	
Circe Currer	

7.2.3 Vendor Specific Tab

In the Vendor Specific tab, it has Renesas original extended features, such as Direct Test Mode using the rBLE API, writing BD address, and transmit power setting. You can test in Direct Test Mode using Direct Test Mode group box, can set Bluetooth Address and can set transmit power. When you switch to this tab first after starting the GUI tool, it calls RBLE_VS_Enable and does enable the Vendor Specific feature.

API	Behavior
RBLE_VS_Enable	Enable VS feature
RBLE_VS_Test_End	Stop Rx or Tx test
RBLE_VS_Set_Test_Parameter	Set extended DTM parameters
RBLE_VS_Test_Rx_Start	Start Rx test
RBLE_VS_Test _Tx_Start	Start Tx test
RBLE_VS_Read_Test_RSSI	Get test RSSI value
RBLE_VS_Flash_Management	Execute Data Flash access management
RBLE_VS_Write_Bd_Address	Write BD address
RBLE_VS_Adapt_Enable	Enable or Disable adaptable feature
RBLE_VS_Set_Tx_Power	Set Tx power

Table 7-12 List of API called by Vendor Specific tab

RIE_Tool
GAP Peer Device Vendor Specific GATT Profiles
Direct Test Mode
© Rx Test Mode Rx_Freq 2402MHz (RF-Ch00, Idx37) → Received Packets
rx_nb_packet 0 Enable burst transfer
○ Tx Test Mode Tx_Freq 2402MHz (RF-Ch00, Idx37) Packet_Data_Type PRBS9 Packet_Data_Type PRBS9 infinite_setting Disable burst transfer
Get RSSI dBm Periodically 1 sec
Bluetooth Address Adaptable Disable Set Set
Tx Power Handle ▼ Power Lv19: 0dbm ▼ State Normal ▼ Set
COM5 4800 Hide Log

Figure 7-25 Vendor Specific tab

• Direct Test Mode group box

For direct testing, you can select Test End or Rx Test Mode or Tx Test Mode radio button in this Direct Test Mode group box. After selecting the mode, press the "Execute" button to stop Test Mode, or to start Rx Test Mode or to start Tx Test Mode. Upon pressing "Execute" button with Test End option calls RBLE_VS_Test_End, and ends the reception or the transmission test, which have being executed.

Rx Test Mode group box allows configuring parameters such as Reception frequency and the extended Direct Test Mode features. Therefore, select one of the frequencies ranging from 2402MHz to 2480MHz using drop-down arrow to set Reception frequency. For the extended Direct Test Mode features, enter number of receive packets, at which to finish current reception test, in "rx_nb_packet" text box. Setting zero value in this text box will not end the test automatically. Checking the "Enable burst transfer" check box will be enabling the burst transfer. Upon pressing "Execute" button with Rx Test Mode option calls RBLE_VS_Set_Test_Parameter and RBLE_VS_Test_Rx_Start with specified parameters in Rx Test Mode group box, and start reception test.

You, finally, receive completion of the reception test event (RBLE_VS_EVENT_TEST_END_COMP), at the end of the test. Subsequently, display numbered of received packets in the "Received Packets" text box.

Tx Test Mode group box allows setting parameters such as Transmission frequency and the extended Direct Test Mode features. Select one of the frequencies same as Rx Test Mode group box for transmission frequency. Moreover, you can set Transmission packet payload length in "Packet_Length" and set Transmission packet payload type at "Packet_Data_Type". For the extended Direct Test Mode features, enter number of transmit packets, at which to finish current transmission test, in "tx_nb_packet" text box. Setting zero value in this text box will not end automatically the test. In addition, you can set enabling or disabling burst transfer, or continuous carrier wave (CW) output at "infinit_setting" by using drop-down arrows. Upon pressing "Execute" button with Tx Test Mode option calls RBLE_VS_Set_Test_Parameter and RBLE_VS_Test_Tx_Start with specified parameters in Tx Test Mode group box, and start transmission test.

For RSSI value, you can read by pressing "Get RSSI" button. Pressing this button calls RBLE_VS_Read_Test_RSSI, and acquire RSSI value under reception Direct Test Mode. Alternately, manage regular RSSI reading by checking "Periodically" check box with interval value in "sec" text box, which allow setting in second range.

• Bluetooth Address group box

By using this group box, you can write 6 octets hexadecimal value for the specified public address to store in nonvolatile memory (Data Flash). For writing this Bluetooth Address entered in the text box, press "Set" button. It executes RBLE_VS_Flash_Management and RBLE_VS_Write_Bd_Address. The Bluetooth Address will be reflected when the GAP reset processing (RBLE_GAP_Reset) is finished after Bluetooth device restart.

• Adaptable group box

By using this group box, you can enable or disable Adaptable function. Select Disable or Enable using drop-down arrow and press "Set" button calls RBLE_VS_Adapt_Enable.

• Tx Power group box

By using this group box, you can set the transmit power level. Specifying 0x0010 in "Handle" drop-down list sets transmit power level during the Advertising, Scanning, or Initiating procedure. You can also select one of nine power levels using "Power" drop-down list and one of four states using "State" drop-down list. Select "Handle", "Power" and "State" using drop-down list then press "Set" button calls RBLE_VS_Set_Tx_Power. It will set transmit power with specified parameters.

7.2.4 GATT Tab

GATT tab has two sub tabs: Client and Server. The Client and Server tabs. They are shown in Figure 7-26 and Figure 7-31 respectively. When you switch to this tab first after starting the GUI tool, it calls RBLE_GATT_Enable and does enable the GATT feature.

API	Behavior
RBLE_GATT_Enable	Enable GATT feature

(1) **GATT – Client tab**

In the GATT, Client tab has Result display text box and Command execution text box, which consist of four sub tabs: Service Discovery, Characteristic Discovery, Read and Write. Using these tabs, you can perform service or characteristic discovery as well as characteristic value read and write. Figure 7-26 shows the GATT, Client tab.

Table 7-14 List of API called by	y GATT - Client tab
----------------------------------	---------------------

API	Behavior	
RBLE_GATT_Discovery_Service_Request Discover services		
RBLE_GATT_Discovery_Char_Request	Discover characteristics	
BLE_GATT_Discovery_Char_Descriptor_Request Discover characteristic descriptors		
RBLE_GATT_Read_Char_Request	Read characteristic value	
RBLE_GATT_Write_Char_Request	Write characteristic value	

RIE_Tool	
GAP Peer Device Vendor Specific GATT Profiles	
Client Server Service Discovery Characteristic Discovery Read Write Discovery Type Discover All Primary Services UUID: 16016bit 32bit 128bit Alert Notification Service	Command execution text box
Start Handle End Handle Remote GATT Database	- Result display text box
Handle Attribute Type Value	
COM5 4800	Hide Log

Figure 7-26 GATT – Client tab

• Command execution text box

Here is the detail on Command execution text box for each tab.

- Service Discovery tab

Figure 7-27 shows the Service Discovery tab. You can choose Discovery Types such as Discover All Primary Services, Discover Primary Services by Service UUID and Find Included Services. Set one of the "UUID" radio buttons for its size 16 bit or 32 bit or 128 bit along with specific service from drop-down list or text box. If you find included service, enter Start Handle and End Handle.

Finally, pressing "Discover" button calls RBLE_GATT_Discovery_Service_Request with specified parameters and executes discovery services on a remote server.

Service Discovery	Characteristic	Discovery	Read Write		
Discovery Type	e Discover All Primary Services				
UUID: 💿 16bit	🔘 32bit	🔘 128bit	Alert Notification Service	•	
Start Handle		End Han	dle		

Figure 7-27 GATT Client – Service Discovery

— Characteristic Discovery tab

Figure 7-28 shows the Characteristic Discovery tab. Select one of the Discovery Types: Discover All Characteristics of a Service, Discover Characteristic by UUID and Discover All Characteristic Descriptors. Set one of the "UUID" radio buttons for its size 16 bit or 32 bit or 128 bit along with specific characteristics from drop-down list. If needed, enter value in Start Handle and End Handle.

Finally, you can press "Discover" button to call RBLE_GATT_Discovery_Char_Request or RBLE_GATT_Discovery_Char_Descriptor_Request with specified parameters. It will carry out the discovery characteristics or characteristic descriptors on a remote server.

Service Discovery	Characteristic Discov	ery Read Write
Discovery Type	Discover All Charact	teristics of a Service
UUID: 💿 16bi	t 🔘 32bit 🔘 128	8bit 🛛 Aerobic Heart Rate Lower Limit 👻
Start Handle	End	l Handle

Figure 7-28 GATT Client – Characteristic Discovery

— Read tab

Figure 7-29 shows the Read tab in GATT Client. This function reads either characteristic value or characteristic descriptor on the remote GATT server. Before reading, set one of the below Read Types. After that, define handle in "Handle" text box.

- Read Characteristic Value
- Read Using Characteristic UUID
- Read Long Characteristic Values
- Read Characteristic Descriptors
- Read Long Characteristic Descriptors

If you select either Read Long Characteristic Values or Read Long Characteristic Descriptor, you need to enter Offset value in decimal format.

After setting above parameters, pressing "Read" button calls RBLE_GATT_Read_Char_Request with specified parameters, and executes read characteristic value from a remote server.

Service Discovery	Characteristic Discovery	Read	Write		
Read Type	ead Characteristic Value		•	Read	
Handle					

Figure 7-29 GATT Client – Read

— Write tab

Figure 7-30 shows the Write tab in GATT Client. Using this function, you can write either characteristic value or characteristic descriptor on the remote GATT server. Before writing, choose one of the below Write Types and enter handle value in "Handle" text box.

- Write Without Response
- Signed Write Without Response
- Write Characteristic Value
- Write Long Characteristic Values
- Write Characteristic Descriptors
- Write Long Characteristic Descriptors

If you select either Write Long Characteristic Values or Write Long Characteristic Descriptors, you need to enter Offset value in decimal format. Select either Hex or ASCII format to write in Write Data text box then enter the data.

Now, pressing "Write" button calls RBLE_GATT_Write_Char_Request with specified parameters and executes write characteristic value to a remote server.

Service Discover	y Characteristic Discovery F	Read Write	
Write Type	Write Without Response		Write
Handle			
Write Data	● Hex ● Ascii		

Figure 7-30 GATT Client – Write

• Result display text box

The Client tab also has Remote GATT Database table, which shows the results inside Result display text box. In the list, show the information obtained by execution of the commands from above listed tabs.

RENESAS

Select one of the listed database component and double clicking to selected component will automatically fill up the respective handle value into "Handle", "Start Handle" or "End Handle" text boxes in Command execution text box. If you need to set the value, you can simply access the respective text box and enter the value.

(2) GATT – Server tab

In the GATT tab, Server tab, shown in Figure 7-31, has Server Initiated group box and Permission Settings group box. This tab does indication or notification, and local GATT database update.

API	Behavior
RBLE_GATT_Set_Data	Update characteristic value
RBLE_GATT_Indicate_Request	Execute indication
RBLE_GATT_Notify_Request	Execute notification
RBLE_GATT_Set_Permission	Set permission
RBLE_GATT_Write_Response	Respond characteristic value write request

R rBLE_Tool
GAP Peer Device Vendor Specific GATT Profiles Client Server Server Initiated Handle Indicate Notify Set Data
Permission Settings Read Read(Unauthentication Required) Read(Authentication Required) Read(Authorization Required) Write Write(Unauthentication Required) Write(Authentication Required) Write(Authorization Required) Notify/Indicate Notify/Indicate(Unauthentication Required) Notify/Indicate(Authentication Required) Notify/Indicate(Authorization Required) Notify/Indicate(Authentication Required) Notify/Indicate(Authorization Required) Encryption Required Start Handle Encryption Key Size Required End Handle
COM5 4800 Hide Log

Figure 7-31 GATT – Server tab

• Server Initiated group box

Using this group box, you can update the data in the local GATT database with specifying handle. Key in handle of hexadecimal value in "Handle" text box and select either Hex or ASCII format to write Data text box then enter the data. There are three buttons in this group box. If you want to indicate or notify characteristic value from the local GATT server to the remote GATT client, press one of the respective buttons. Pressing Set Data button only update characteristic value in the local GATT server relating to specified handle.

Pressing "Indicate" button calls RBLE_GATT_Set_Data, and update the attribute value of the specified handle. Successively, call RBLE_GATT_Indicate_Request, and do characteristic value indications.

Pressing "Notify" button calls RBLE_GATT_Set_Data, and update the attribute value of the specified handle. Successively, call RBLE_GATT_Notify_Request, and do characteristic value notifications.

Pressing "Set Data" button calls RBLE_GATT_Set_Data, and update the attribute value of the specified handle.

• Permission Settings group box

The group box allows you to set the permission to the specified range of local GATT database by handles. Before pressing "Set Permission" button, check one or more check boxes in this group box, and key in Start and End handle value to set handles in series. After that, pressing "Set Permission" button calls RBLE_GATT_Set_Permission, and executes permission settings of the specified handle range attributes.

When receive the characteristic value write indication event (RBLE_GATT_EVENT_WRITE_CMD_IND) from the remote GATT Client, it will call RBLE_GATT_Set_Data, and update the attribute value of the specified handle.

In the case of written by the "Write Request", dialog box is shown in Figure 7-32. Respond by pressing the "Accept" button or "Reject" button. By pressing either button, RBLE_GATT_Write_Response is called.

Received Write Request	
Received Write Request from Handle = 0x0000	
Attr Handle=0x000F, Data Length = 2, Accept or Reject ?	
Accept Reject	

Figure 7-32 Write Indication by "Write Request"

7.2.5 Profiles Tab

There are five profiles in Profiles tabs: They are Find Me, Proximity, Alert Notification, Heart Rate, and Time. Each has its own tab to configure the setting.

(1) **Profiles – Find Me tab**

The Find Me tab performs Find Me Locator role and Target role functions. Thus, this tab has two group boxes: Locator and Target. Set Find Me Locator as GATT Client and Find Me Target as GATT server. Figure 7-33 shows Find Me tab.

API	Behavior
RBLE_FMP_Locator_Enable	Enable Locator role
RBLE_FMP_Locator_Disable	Disable Locator role
RBLE_FMP_Locator_Set_Alert	Set alert level value
RBLE_FMP_Target_Enable	Enable Target role
RBLE_FMP_Target_Disable	Disable Target role

Table 7-16 List	of API called b	y Profiles – Fi	ind Me tab

rBLE_Tool			×
GAP Peer Device Vendor Spe	cific GATT Profiles		
Find Me Proximity Alert Noti	fication Heart Rate Time		
Locator			
Enable	🖲 Discovery 💿 Normal		
Disable			
Set Alert Level	🖲 No Alert 💿 Mild Alert	🔘 High Alert	
Target Enable	No security 📄 Unauthentic Authenticated Pairing 🔲 A		ryption
Disable			
Alert Level			
	COM5	4800	Hide Log

Figure 7-33 Profiles – Find Me tab

• Locator group box

In the Locator group box, it has three buttons: "Enable", "Disable" and "Set Alert Level",

To enable the locator, press "Enable" button. It calls RBLE_FMP_Locator_Enable with specified parameters, and does enable the Find Me Locator role. This will display the acquired service information in the Remote GATT Database at GATT-Client tab. If you select "Normal" radio button, the handle information, which acquired in the previous connection, will be used.

Pressing "Disable" button calls RBLE_FMP_Locator_Disable, and disable the Find Me Locator role.

To set alert level, select one of the alert level radio buttons, which are No Alert, Mild Alert and High Alert. Then press "Set Alert Level" button. It calls RBLE_FMP_Locator_Set_Alert, and write specified Alert Level characteristic value to the Target device.

• Target group box

The Target group box has "Enable" and "Disable" buttons. To show alert level by notification, there is an Alert Level text box. You can set security option by checking one of the check boxes such as No security, Unauthenticated Paring, Authenticated Paring, Authentication and Encryption. Pressing "Enable" button in Target group box calls RBLE_FMP_Target_Enable with specified security level and does enable the Find Me Target role.

Pressing "Disable" button in Target group box calls RBLE_FMP_Target_Disable, and disable the Find Me Target role.

Figure 7-34 shows Alert Level display text box. In this text box, the Alert Level message has been notified by alert indication event (RBLE_FMP_EVENT_TARGET_ALERT_IND). The text box color will change when the alert level change.

No Alert	Mild Alert	High Alert

Figure 7-34 Display text box of Alert Level

(2) **Profiles – Proximity tab**

Figure 7-35 shows Proximity tab, which performs Proximity Monitor role and Reporter role and it has two group boxes: Monitor and Reporter. The Proximity Monitor shall act as GATT Client, and the Proximity Reporter shall act as GATT server. Enabling this profile will be monitoring the proximity between two connected Bluetooth devices.

API	Behavior
RBLE_PXP_Monitor_Enable	Enable Monitor role
RBLE_PXP_Monitor_Disable	Disable Monitor role
RBLE_PXP_Monitor_Set_Alert_Level	Set alert level value
RBLE_PXP_Monitor_Get_Tx_Power	Get Tx power
RBLE_PXP_Monitor_Get_Alert_Level	Get alert level value
RBLE_GAP_Read_RSSI	Get RSSI value
RBLE_PXP_Reporter_Enable	Enable Reporter role
RBLE_PXP_Reporter_Disable	Disable Reporter role

RLE_Tool
GAP Peer Device Vendor Specific GATT Profiles
Find Me Proximity Alert Notification Heart Rate Time
Monitor
Enable O Discovery O Normal
Disable
Set Alert Level 📃 Link Loss Alert 💌 💿 No Alert 💿 Mild Alert 💿 High Alert
Get Tx Power 0 dBm Get Alert Level
Calculate Path Loss 1 sec
Reporter
Enable No security Unauthenticated Pairing Authenticated Pairing Encryption
Disable
Alert Level
COM5 4800 Hide Log

Figure 7-35 Profiles – Proximity tab

• Monitor group box

In the Monitor group box, it has five buttons: "Enable", "Disable", "Set Alert Level", "Get Tx Power" and "Get Alert Level". Before enabling Proximity Monitor, select "Discovery" or "Normal" radio button. Selecting "Normal" will use the handle information acquired in the previous connection.

Pressing "Enable" button in this group calls RBLE_PXP_Monitor_Enable with specified parameters, and enable the Proximity Monitor role. At GATT-Client tab, the acquired service information is listed in the Remote GATT Database.

Pressing "Disable" button calls RBLE_PXP_Monitor_Disable, and disable the Proximity Monitor role.

To set alert level, select either Link Loss Alert or Immediate Alert option from drop-down list, then choose one of the alert level radio buttons: No Alert, Mild Alert and High Alert. After that, pressing "Set Alert Level" button calls

RBLE_PXP_Monitor_Set_Alert_Level. The Reporter device will be set the specified alert level value to Alert Level characteristic of Link Loss Service or Immediate Alert Service per respective option.

Pressing "Get Tx Power" button calls RBLE_PXP_Monitor_Get_Tx_Power, and reads the Tx Power Level characteristic value exposed by the Reporter device. The Tx Power level value will be shown with dBm unit in the text box when receive the characteristic read response event (RBLE_PXP_EVENT_MONITOR_READ_CHAR_RESPONSE).

Again, pressing "Get Alert Level" button calls RBLE_PXP_Monitor_Get_Alert_Level, and reads the Alert Level characteristic value in Link Loss service exposed by the Reporter device. Subsequently receiving characteristic read response event (RBLE_PXP_EVENT_MONITOR_READ_CHAR_RESPONSE) displays the Alert level.

Using Calculate Path Loss, you can monitor the path loss level display with progressive bar, which has three path lost ranges: normal range (index below 60), warning range (index below 80), and alarm range (index above 80). The index value will be calculated by subtracting the RSSI from Tx Power Level. Figure 7-36 shows path loss progressive bar with three range of path loss levels.

When check "Calculate Path Loss" check box, RSSI value will be acquired periodically with the specified interval in seconds. This will keep calling RBLE_GAP_Read_RSSI and update the path loss progressive bar.

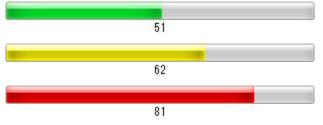


Figure 7-36 Display part of path loss

• Reporter group box

The Reporter group box has "Enable" and "Disable" buttons. It has also an Alert Level text box for showing alert level by notification.

Pressing "Enable" button in this group calls RBLE_PXP_Reporter_Enable with specified parameters, and enable the Proximity Reporter role.

Pressing "Disable" button calls RBLE_PXP_Reporter_Disable, and disable the Proximity Reporter role.

The Alert Level display text box will show Alert Level, which has been notified by alert indication event (RBLE_PXP_EVENT_REPORTER_ALERT_IND). The text box color will be changed with respect to the alert level. Refer to below Figure 7-37

Figure 7-37 Display text box of Alert Level

(3) **Profiles – Alert Notification tab**

Figure 7-38 shows Alert Notification Profile, which Client device receives different types of alerts and event information from the server device. Using Alert Notification tab, you can configure Alert Notification Client role or Server role.

API	Behavior
RBLE_ANP_Client_Enable	Enable Client role
RBLE_ANP_Client_Disable	Disable Client role
RBLE_ANP_Client_Read_Char	Read characteristic value
RBLE_ANP_Client_Write_Char	Control notification
RBLE_ANP_Client_Write_Alert_Notification_CP	Set control point
RBLE_ANP_Server_Enable	Enable Server role
RBLE_ANP_Server_Disable	Disable Server role
RBLE_ANP_Server_Send_New_Alert	Send new alert information
RBLE_ANP_Server_Send_Unread_Alert	Send unread alert information

R rBLE_Tool					
GAP Peer Device Vendor Specific GATT Profiles					
Find Me Proximity Alert Notification Heart Rate Time					
Enable O Discovery O Normal Disable					
Read Char Supported New Alert Cate 🗸 🗸					
Write Char New Alert					
Write CP Command Enable New Incoming Alert Notifi Category Simple Alert					
Server					
New Alert Category ID Simple Alert Number of New Alert 0 Text String Information					
Unread Alert Status Category ID Simple Alert Unread Count 0 Notify					
COM5 4800 Hide Log					

Figure 7-38 Profiles – Alert Notification tab

• Client group box

In the Client group box, there are five buttons: "Enable", "Disable", "Read Char", "Write Char" and "Write CP". Before enabling Alert Notification Client, select "Discovery" or "Normal" radio button. Selecting "Normal" will use the handle information acquired in the previous connection.

Pressing "Enable" button in this group calls RBLE_ANP_Client_Enable with specified parameters, and enable the Alert Notification Client role. At GATT-Client tab, the acquired service information is listed in the Remote GATT Database.

Pressing "Disable" button calls RBLE_ANP_Client_Disable, and disables the Alert Notification Client role.

For reading characteristic value or characteristic descriptor, select one of the options from drop-down list.

- 1. Supported New Alert Category
- 2. New Alert Client Characteristic Configuration
- 3. Supported Unread Alert Category
- 4. Unread Alert Status Client Characteristic Configuration

Pressing "Read Char" button calls RBLE_ANP_Client_Read_Char with specified parameters, and read a characteristic value or characteristic descriptor exposed by Server device. Display the characteristic value or characteristic descriptor upon receiving characteristic read response event (RBLE_ANP_EVENT_CLIENT_READ_CHAR_RESPONSE).

For writing characteristic descriptor, set either "New" or "Unread" radio button, then select Disable Notification or Enable Notification.

Pressing "Write Char" button calls RBLE_ANP_Client_Write_Char, and writes specified value to selected Client Characteristic Configuration Descriptor of the alert notification service to the Server.

Set one command option and one Category for drop-down lists. After that, pressing "Write CP" button calls RBLE_ANP_Client_Write_Alert_Notification_CP with specified parameters, and sets the Alert Notification Control Point.

You will get message box prompt as shown in Figure 7-39 to display the content of the notification when receive New Alert notification event (RBLE_ANP_EVENT_CLIENT_NEW_ALERT_NTF) or Unread Alert Status event (RBLE_ANP_EVENT_CLIENT_UNREAD_ALERT_NTF) from the Server.

New Alert Notification	x
Category ID: 0x00 (Simple Alert)	
Number of New Alert: 1	
Text String Information: Test Alert	
	•

Figure 7-39 New Alert / Unread Alert Status Notification

• Server group box

In the Server group box, you can use "Enable" button, "Disable" button, and two sub group boxes such as New Alert and Unread Alert Status for interaction with Client.

Before enabling Alert Notification Server, select "Configuration" or "Normal" radio button. Selecting "Normal" will use the handle information acquired in the previous connection.

Pressing "Enable" button in this group calls RBLE_ANP_Server_Enable with specified security level, and enables the Alert Notification Server role.

Pressing "Disable" button calls RBLE_ANP_Server_Disable, and disables the Alert Notification Server role.

When Client device enables Notification either New or Unread, the respective "Notify" buttons will be available. Otherwise, the "Notify" buttons will be grayed out. Once "Notify" button active, you can send New Alert or Unread Alert Status to Client.

Pressing "Notify" button in New Alert group box calls RBLE_ANP_Server_Send_New_Alert with specified parameters, and notifies New Alert information to the Client.

RENESAS

Pressing "Notify" button in Unread Alert Status group box calls RBLE_ANP_Server_Send_Unread_Alert with specified parameters, and notifies Unread Alert Status information to the Client.

The Write Control Point Received dialog box, shown in Figure 7-40, will be prompt when receive Alert Notification Control Point change indication event (RBLE_ANP_EVENT_SERVER_CHG_ALERT_NTF_CP_IND). Execute the operation according to the displayed Command and Category in the message box.

Write Con	trol Point Received
0	Write Alert Notification Control Point Command: Enable New Incoming Alert Notification Category: Simple Alert
	ок

Figure 7-40 Alert Notification Control Point change indication

(4) **Profiles – Heart Rate tab**

Figure 7-41 shows Heart Rate profile, which interact between a Heart Rate Collector device and a Heart Rate Sensor device. The Collector shall act as GATT Client, and Heart Rate Sensor shall act as GATT Server. You can use this Heart Rate tab to perform Heart Rate Collector role and Sensor role functions.

API	Behavior
RBLE_HRP_Collector_Enable	Enable Collector role
RBLE_HRP_Collector_Disable	Disable Collector role
RBLE_HRP_Collector_Read_Char	Read characteristic value
RBLE_HRP_Collector_Write_Char	Control notification
RBLE_HRP_Collector_Write_Control_Point	Set control point
RBLE_HRP_Sensor_Enable	Enable Sensor role
RBLE_HRP_Sensor_Disable	Disable Sensor role
RBLE_HRP_Sensor_Send_Measurements	Send heart rate measurements

RE_Tool		×
GAP Peer Device Vendor Specific GATT Profile Find Me Proximity Alert Notification Heart Rate Collector Enable Image: Collector section Image: Collector section	s Time	Disable
Read Char Heart Rate Measuremen Write Char Disable Noification Sensor	 Reset Energy Exp Normal Unauthenticated Pairin 	e
Flags: Heart Rate Value Format is set to UINT16 Sensor Contact feature is supported Sensor Contact is detected Energy Expended field is present RR-Interval values are present Send Measurements	Heart Rate: Energy Expended: RR-Interval 1: 0 2: 0 3: 6: 0 7: 0 8:	0 bpm 0 kJ 0 (0 - 9) 0 4: 0 5: 0 0 9: 0 (1/1024 sec)
	COM5 480	0 Hide Log

Figure 7-41 Profiles – Heart Rate tab

• Collector group box

The Collector group box has five buttons: "Enable", "Disable", "Read Char", "Write Char" and "Reset Energy Expended".

To enable the Collector, press "Enable" button. It calls RBLE_HRP_Collector_Enable with specified parameters, and does enable the Heart Rate Collector role. This will display the acquired service information in the Remote GATT Database at GATT-Client tab. The handle information, acquired in the previous connection, will be used if you select "Normal" radio button.

Pressing "Disable" button calls RBLE_HRP_Collector_Disable, and disable the Heart Rate Collector role.

For reading characteristic value or characteristic descriptor, select one of the options from drop-down list and press "Read Char" button. It will call RBLE_HRP_Collector_Read_Char with specified parameters, and read a characteristic value or characteristic descriptor exposed from the Sensor device. Subsequently display the characteristic value or characteristic descriptor in the text box upon receiving characteristic read response event (RBLE HRP EVENT COLLECTOR READ CHAR RESPONSE).

For writing characteristic descriptor, select Disable Notification or Enable Notification and press "Write Char" button. It will call RBLE_HRP_Collector_Write_Char, and write specified value to Client Characteristic Configuration Descriptor of the Sensor to control Heart Rate Measurement notification from the Sensor.

Pressing "Reset Energy Expended" button sets the Heart Rate Control Point characteristic value of the heart rate service. This button press calls RBLE_HRP_Collector_Write_Control_Point.

When receive Heart rate measurement information notification event

(RBLE_HRP_EVENT_COLLECTOR_MEASUREMENTS_NTF), the content of the notification which displayed in the message box. Figure 7-42 shows the message box.

Heart Rate Measurement Notification	x			
Flags: 0x1F				
Heart Rate Value Format is set to UINT16.				
Sensor Contact feature is supported and contact is detected				
Energy Expended field is present.				
One or more RR-Interval values are present.				
Heart Rate Measurement Value: 80 (bpm)				
Energy Expended: 90 (kJ)				
RR-Interval :				
[0 - 1]: 50 (sec)				
[1 - 2]: 60 (sec)				
[2 - 3]: 70 (sec)				
•	•			

Figure 7-42 Heart Rate Measurement Notification

• Sensor group box

In the Sensor group box, use "Enable" button or "Disable" button for enabling or disabling the Heart Rate Sensor respectively.

Pressing "Enable" button in Sensor group box calls RBLE_HRP_Sensor_Enable with specified security level, and enable the Heart Rate Sensor role. Client Characteristic Configuration Descriptor value, set from the Collector in the previous connection, will be used if you select "Normal" radio button.

Pressing "Disable" button calls RBLE_HRP_Sensor_Disable, and disable the Heart Rate Sensor role.

When Collector enables Notification, "Send Measurement" button will be available. Otherwise, it will be grayed out. Before sending measurement, check appropriate check boxes and key in the values to send to Collector.

Pressing "Send Measurements" button calls RBLE_HRP_Sensor_Send_Measurements with specified parameters, and notify Heart Rate Measurement information to the Collector.

Figure 7-43 shows dialog box for Heart Rate Control Point change. When receive Heart Rate Control Point change indication event (RBLE_HRP_EVENT_SENSOR_CHG_CP_IND), after clicking "OK" button sets to 0 in the Energy Expended text box from Sensor group box.

Figure 7-43 Heart Rate Control Point change indication

(5) **Profiles – Time tab**

Figure 7-44 shows Time Profile, which allows the Time Client to receive date, time, time zone, and daylight savings time (DST) information exposed by the Time Server. In the Time tab, you can configure Time Client role and Server role functions.

API	Behavior
RBLE_TIP_Client_Enable	Enable Client role
RBLE_TIP_Client_Disable	Disable Client role
RBLE_TIP_Client_Read_Char	Read characteristic value
RBLE_TIP_Client_Write_Char	Control notification
RBLE_TIP_Client_Write_Time_Update_CP	Set control point
RBLE_TIP_Server_Enable	Enable Server role
RBLE_TIP_Server_Disable	Disable Server role
RBLE_TIP_Server_Write_Data	Update characteristic value
RBLE_TIP_Server_Send_Current_Time	Send current time information

Table 7-20 List of API called by	/ Profiles – Time tab
----------------------------------	-----------------------

R rBLE_Tool
GAP Peer Device Vendor Specific GATT Profiles
Find Me Proximity Alert Notification Heart Rate Time
Client Enable © Discovery © Normal Disable
Read Char Current Time
Write Char Disable Noification - Write CP Get Reference Update -
Server Enable Disable Server
Current Time Local Time Reference Time Next DST Update State
Year Month Day Hour Min Sec Day of Week 2015 Oct ▼ 14 ▼ 13 : 58 : 39 Wed ▼ Fractions256 Adjust Reason
Marual time update Manual time update Change of time zone Change of DST
COM5 4800 Hide Log

Figure 7-44 Profiles – Time tab

• Client group box

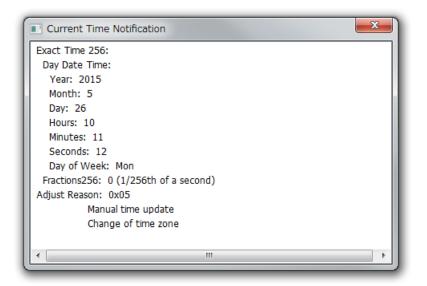
In the Client group box, there are five buttons: "Enable", "Disable", "Read Char", "Write Char" and "Write CP". Before enabling, select "Discovery" or "Normal" radio button. Selecting "Normal" will use the handle information acquired in the previous connection.

Pressing "Enable" button in this group box calls RBLE_TIP_Client_Enable with specified parameters, and enable the Time Client role. At GATT-Client tab, the acquired service information is listed in the Remote GATT Database.

Pressing "Disable" button calls RBLE_TIP_Client_Disable, and disable the Time Client role.

Before reading characteristic value or characteristic descriptor, select one of the below options from drop-down list.

- 1. Current Time
- 2. Current Time Characteristic Configuration
- 3. Local Time Information
- 4. Reference Time Information
- 5. Time with DST
- 6. Time Update State


Pressing "Read Char" button calls RBLE_TIP_Client_Read_Char with specified parameters, and read a characteristic value or characteristic descriptor exposed by the Server device. Display the characteristic value or characteristic descriptor upon receiving characteristic read response event (RBLE_TIP_EVENT_CLIENT_READ_CHAR_RESPONSE).

For writing characteristic descriptor, select Disable Notification or Enable Notification from drop-down list.

Pressing "Write Char" button calls RBLE_TIP_Client_Write_Char, and write specified value to Client Characteristic Configuration Descriptor of the Server to control Current Time notification from the Server.

Select Get Reference Update or Cancel Reference Update from drop-down list. Pressing "Write CP" button calls RBLE_TIP_Client_Write_Time_Update_CP, and set the Time Update Control Point.

You will get message box prompt as shown in Figure 7-45 to display the content of the notification when receive Current time notification event (RBLE_TIP_EVENT_CLIENT_CURRENT_TIME_NTF) from the Server.

Figure 7-45 Current Time Notification

• Server group box

In the Server group box, there are "Enable" button and "Disable" button for enabling or disabling Time Service.

Pressing "Enable" button in this group calls RBLE_TIP_Server_Enable with specified security level, and enable the Time Server role. Select "Configuration" or "Normal" radio button. Selecting "Normal" will use Client Characteristic Configuration Descriptor value set from the Client in the previous connection.

Pressing "Disable" button calls RBLE_TIP_Server_Disable, and disable the Time Server role.

There are five tabs in this server group box for Time Service configuration.

- 1. Current Time
- 2. Local Time
- 3. Reference Time
- 4. Next DST
- 5. Update State

You can set Characteristic value from the above listed tabs and details are as follow.

— Current Time

Current Time tab allows you to set current date, time, Fractions256, and Adjust Reason as shown in Figure 7-46. Pressing "Set" button calls RBLE_TIP_Server_Write_Data with specified parameters and change Current Time characteristic value in local GATT database.

"Notify" button will be available when the Client does enable Current Time notification. If not, the button will be grayed out.

Pressing "Notify" button calls RBLE_TIP_Server_Send_Current_Time with specified parameters and notifies Current Time information to the Client.

Current Time	Local Time	Reference	Time	Next DST	Update	e State		
Year 2015	Month Oct ▼	Day 14 👻	Hour 13	Min : 58 :	Sec 39	Day of We	eek 💌	Set
Fractions25	56 Adju	st Reason						Uet
0		lanual time u hange of tim			ternal ref ange of [ference time DST	update	Notify

Figure 7-46 Time Server – Current Time

— Local Time

Local Time tab allows you to set Time Zone and Daylight Saving Time as shown in Figure 7-47. Pressing "Set" button in this tab calls RBLE_TIP_Server_Write_Data with specified parameters, and change Local Time Information characteristic value in local GATT database.

Current Time	Local Time	Reference Time	Next DST	Update State		
Time Zor	ne	UTC+0:00		•]	
Daylight Saving Time		Standard Time		•	Set	

Figure 7-47 Time Server – Local Time

- Reference Time

Reference Time tab allows you to set Time Source, Accuracy and Updated on which Days and Hours. The tab is shown in Figure 7-48.

Pressing "Set" button in this tab calls RBLE_TIP_Server_Write_Data with specified parameters and changes Reference Time Information characteristic value in local GATT database.

Current Time Local Time Reference Time Next DST Update State	
Time Source Network Time Protocol Accuracy 0	
Days Since Update 0 🔹 Hours Since Update 0 💌	Set

Figure 7-48 Time Server – Reference Time

— Next DST

Next DST tab allows you to set daylight saving time: date and time, and select option from drop-down list shown in Figure 7-49.

Pressing "Set" button in this tab calls RBLE_TIP_Server_Write_Data with specified parameters and changes Time with DST characteristic value in local GATT database.

Current Time	Local Time	Reference Time	Next DST	Update State	
Year 2015	Month Jan 👻	Day Ho	ur Min 10 : 11 :	Sec 12	
Daylight	Saving Time	Standard Time		•	Set

Figure 7-49 Time Server – Next DST

- Update State

Update State tab allows you to set Current State and Result as shown in Figure 7-50.

Pressing "Set" button in this tab calls RBLE_TIP_Server_Write_Data with specified parameters and changes Time Update State characteristic value in local GATT database.

Current Time Local	Time Reference Time Next DST	Update State	
Current State	Idle	-	
		•	
Result	Successful	-	Set

Figure 7-50 Time Server – Update State

You will get dialog box prompt as shown in Figure 7-51 when receive Time Update Control Point change indication event (RBLE_TIP_EVENT_SERVER_CHG_TIME_UPDATE_CP_IND). Press "OK" button to appropriate request, in which shows message with Get Reference Update or Cancel Reference Update, from the Client.

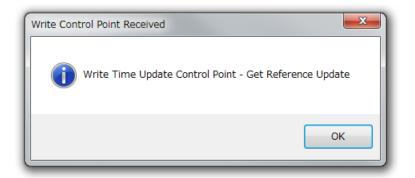
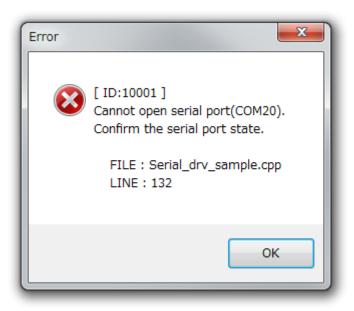


Figure 7-51 Time Update Control Point change indication

8. Appendix

8.1 File and Folder Organization


The file and folder organization related to the GUI Tool is as shown below.

rBLE_Tool_Err_Msg.tbl

Application Note: GUI Tool Executable files GUI Tool executable program for windows PC INI file for GUI Tool Definition file for error message

8.2 Error Messages

GUI Tool displays the error message box shown in Figure 8-1 when occur an error. In this message box, display Error ID, error message, and the source file name and source code line that detected the error.

Figure 8-1 Error Message Box

The error IDs, and the error messages are listed in below table.

Error ID	Error Message	Supplement, countermeasure
10000	INTERNAL ERROR: Serial communication program cannot be started. Please restart rBLE_Tool.	Restart GUI Tool.
10001	Cannot open serial port (port number). Confirm the serial port state.	Check the status of serial port.

Table 8	3-1 AF	l Quick	Reference	List
10010 0		I QUION	11010101100	

API	Behavior	Tab
GAP		
RBLE_GAP_Reset	Execute GAP reset	GAP - Generic
RBLE_GAP_Set_Name	Set local device name	GAP - Generic
	Enable observation	GAP - Scanning
RBLE_GAP_Observation_Enable	Execute connection procedure	GAP - White List
RBLE_GAP_Observation_Disable	Disable observation	GAP - Scanning
RBLE_GAP_Broadcast_Enable	Enable broadcast	GAP - Advertising
RBLE_GAP_Broadcast_Disable	Disable broadcast	GAP - Advertising
RBLE_GAP_Set_Bonding_Mode	Set bonding mode	GAP - Security
RBLE_GAP_Set_Security_Request	Set security mode	GAP - Security
RBLE_GAP_Get_Device_Info	Get local device information	GAP - Generic
RBLE_GAP_Get_White_List_Size	Get White List size	GAP - White List
RBLE_GAP_Add_To_White_List	Add address to White List	GAP - White List
RBLE_GAP_Del_From_White_List	Delete address from White List	GAP - White List
RBLE_GAP_Get_Remote_Device_Name	Get remote device name	Peer Device - Information
RBLE_GAP_Get_Remote_Device_Info	Get remote device information	Peer Device - Information
RBLE_GAP_Device_Search	Search remote device	GAP - Scanning
RBLE_GAP_Set_Random_Address	Set random address	GAP - Generic
RBLE_GAP_Set_Privacy_Feature	Set privacy feature	GAP - Security
RBLE_GAP_Create_Connection	Start LE link connection	Peer Device - Connection
RBLE_GAP_Connection_Cancel	Cancel LE link connection	Peer Device - Connection
RBLE_GAP_Disconnect	Disconnect LE link	Peer Device - Connection
RBLE_GAP_Start_Bonding	Start bonding	Peer Device - Pair / Key Exchange
RBLE_GAP_Bonding_Info_Ind	Indicate bonding information	Peer Device - Remote Keys
RBLE_GAP_Bonding_Response	Respond to bonding request	Peer Device - Pair / Key Exchange
RBLE_GAP_Change_Connection_Param	Change link parameters	Peer Device - Connection
RBLE_GAP_Channel_Map_Req	Set or Get channel map	Peer Device - Information
RBLE_GAP_Read_RSSI	Get RSSI value	Peer Device - Information
RDLE_GAF_Reau_R331	Get KSSI value	Profiles - Proximity
SM		
RBLE_SM_Set_Key	Set IRK or CSRK	GAP - Security
RBLE_SM_Start_Enc	Start encryption	Peer Device - Pair / Key Exchange
RBLE_SM_Tk_Req_Resp	Respond to TK request	Peer Device - Pair / Key Exchange
RBLE_SM_Ltk_Req_Resp	Respond to LTK request	Peer Device - Pair / Key Exchange
RBLE_SM_Irk_Req_Resp	Respond to IRK request	Peer Device - Remote Keys
RBLE_SM_Csrk_Req_Resp	Respond to CSRK request	Peer Device - Remote Keys
RBLE_SM_Chk_Bd_Addr_Req_Resp	Respond to BD address check request	Peer Device - Remote Keys
VS		
RBLE_VS_Enable	Enable VS feature	Vendor Specific
RBLE_VS_Test_Rx_Start	Start Rx test	Vendor Specific
RBLE_VS_Test_Tx_Start	Start Tx test	Vendor Specific
RBLE_VS_Test_End	Stop Rx or Tx test	Vendor Specific
RBLE_VS_Set_Test_Parameter	Set extended DTM parameters	Vendor Specific
RBLE_VS_Read_Test_RSSI	Get test RSSI value	Vendor Specific
RBLE_VS_Write_Bd_Address	Write BD address	Vendor Specific

RBLE_VS_Set_Tx_Power	Set Tx power	Vendor Specific
RBLE_VS_Flash_Management	Execute Data Flash access management	Vendor Specific
RBLE_VS_Adapt_Enable	Enable or Disable adaptable feature	Vendor Specific
GATT		
RBLE_GATT_Enable	Enable GATT feature	<u>GATT</u>
RBLE_GATT_Discovery_Service_Request	Discover services	GATT - Client
RBLE_GATT_Discovery_Char_Request	Discover characteristics	GATT - Client
RBLE_GATT_Discovery_Char_Descriptor_Request	Discover characteristic descriptors	GATT - Client
RBLE_GATT_Read_Char_Request	Read characteristic value	GATT - Client
RBLE_GATT_Write_Char_Request	Write characteristic value	GATT - Client
RBLE_GATT_Notify_Request	Execute notification	GATT - Server
RBLE_GATT_Indicate_Request	Execute indication	GATT - Server
RBLE_GATT_Write_Response	Respond characteristic value write request	GATT - Server
RBLE_GATT_Set_Permission	Set permission	GATT - Server
RBLE_GATT_Set_Data	Update characteristic value	GATT - Server
FMP		
RBLE_FMP_Locator_Enable	Enable Locator role	Profiles - Find Me
RBLE_FMP_Locator_Disable	Disable Locator role	Profiles - Find Me
	Set alert level value	Profiles - Find Me
	Enable Target role	Profiles - Find Me
RBLE_FMP_Target_Disable	Disable Target role	Profiles - Find Me
PXP		
RBLE_PXP_Monitor_Enable	Enable Monitor role	Profiles - Proximity
RBLE_PXP_Monitor_Disable	Disable Monitor role	Profiles - Proximity
RBLE_PXP_Monitor_Get_Alert_Level	Get alert level value	Profiles - Proximity
RBLE_PXP_Monitor_Set_Alert_Level	Set alert level value	Profiles - Proximity
RBLE_PXP_Monitor_Get_Tx_Power	Get Tx power	Profiles - Proximity
RBLE_PXP_Reporter_Enable	Enable Reporter role	Profiles - Proximity
RBLE_PXP_Reporter_Disable	Disable Reporter role	Profiles - Proximity
RBLE_ANP_Client_Enable	Enable Client role	Profiles - Alert Notification
RBLE_ANP_Client_Disable	Disable Client role	Profiles - Alert Notification
RBLE_ANP_Client_Read_Char	Read characteristic value	Profiles - Alert Notification
RBLE ANP Client Write Alert Notification CP	Set control point	Profiles - Alert Notification
RBLE_ANP_Client_Write_Char	Control notification	Profiles - Alert Notification
RBLE_ANP_Server_Enable	Enable Server role	Profiles - Alert Notification
RBLE_ANP_Server_Disable	Disable Server role	Profiles - Alert Notification
RBLE_ANP_Server_Send_New_Alert	Send new alert information	Profiles - Alert Notification
RBLE_ANP_Server_Send_Unread_Alert	Send unread alert information	Profiles - Alert Notification
HRP		- tomos - Allort Hotmodulon
RBLE_HRP_Collector_Enable	Enable Collector role	Profiles - Heart Rate
RBLE_HRP_Collector_Disable	Disable Collector role	Profiles - Heart Rate
RBLE_HRP_Collector_Read_Char	Read characteristic value	Profiles - Heart Rate
RBLE_HRP_Collector_Write_Char	Control notification	Profiles - Heart Rate
		Profiles - Heart Rate
RBLE_HRP_Collector_Write_Control_Point	Set control point Enable Sensor role	
RBLE_HRP_Sensor_Enable		Profiles - Heart Rate
RBLE_HRP_Sensor_Disable	Disable Sensor role	Profiles - Heart Rate
RBLE_HRP_Sensor_Send_Measurements	Send heart rate measurements	Profiles - Heart Rate
TIP		

Bluetooth[®] Low Energy Protocol Stack

RBLE_TIP_Client_Enable	Enable Client role	Profiles - Time
RBLE_TIP_Client_Disable	Disable Client role	Profiles - Time
RBLE_TIP_Client_Read_Char	Read characteristic value	Profiles - Time
RBLE_TIP_Client_Write_Char	Control notification	Profiles - Time
RBLE_TIP_Client_Write_Time_Update_CP	Set control point	Profiles - Time
RBLE_TIP_Server_Enable	Enable Server role	Profiles - Time
RBLE_TIP_Server_Disable	Disable Server role	Profiles - Time
RBLE_TIP_Server_Send_Current_Time	Send current time information	Profiles - Time
RBLE_TIP_Server_Write_Data	Update characteristic value	Profiles - Time

8.4 How to use the Direct Test Mode

Direct Test Mode is executed in Vendor Specific tab. Refer to 7.2.3 about detail of Vendor Specific tab.

8.4.1 Direct Test Mode (Receiver)

R rBLE_Tool Select for test stop	
GAP Peer Device Vendor Specific GATT Profiles	Test start / stop
Direct Test Mode Select for test start Rx Test Mode Rx Test Mode	cute
Rx_Freq 2402MHz (RF-Ch00, Idx37)	
	Display the number of receiving packets
Tx Test Mode Tx_Freq 2402MHz (RF-Ch00, Idx37) Packet_Data_Type PRBS9 Packet_Data_Type PRBS9 infinite_setting Disable burst transfer Get RSSI dBm Periodically 1	
Bluetooth Address Adaptable Disable Tx Power Handle Vig: Odbm State Normal	Set
COM5 4800 Hid	de Log

Figure 8-2 Control of Direct Test Mode (Receiver)

You can start the Direct Test Mode (Receiver) by Rx Test Mode group box.

Set the reception frequency that is the same frequency as the transmitter by "Rx_Freq" after selecting Rx Test Mode radio button. After that, pressing "Execute" button starts receiving test packets.

To stop the Direct Test Mode (Receiver), press "Execute" button again after selecting Test End radio button. When the test is finished, you can check the number of reception packets in the Received Packets text box.

8.4.2 Direct Test Mode (Transmitter)

R rBLE_Tool Select for test stop	
GAP Peer Device Vendor Specific GATT Profiles Test start / stop)
Direct Test Mode Select for test start Execute	
Rx_Freq 2402MHz (RF-Ch00, Idx37) Received Packets 	
rx_nb_packet 0 Enable burst transfer	
Tx Test Mode Tx_Freq 2402MHz (RF-Ch00, Idx37) Packet_Data_Type PRBS9 Vacket_Data_Type PRBS9 Infinite_setting Disable burst transfer Get RSSI dBm Periodically 1 Set the test parameters	
Bluetooth Address Set Disable Tx Power Handle Power Lv19: 0dbm State Normal Set	
COM5 4800 Hide Log	

Figure 8-3 Control of Direct Test Mode (Transmitter)

You can start the Direct Test Mode (Transmitter) by Tx Test Mode group box.

Set the transmission frequency that is the same frequency as the receiver by "Tx_Freq" after selecting Tx Test Mode radio button. In Accordance with the test specification, also set the packet length in "Packet_Length" and set the data type in "Packet_Data_Type". After that, pressing "Execute" button starts transmitting test packets.

To stop the Direct Test Mode (Transmitter), press "Execute" button again after selecting Test End radio button.

8.5 References

- 1. Visual C++ Redistributable for Visual Studio 2012 Update 4 http://www.microsoft.com/en-us/download/details.aspx?id=30679
- 2. FTDI (Future Technology Devices International) Drivers http://www.ftdichip.com/Drivers/D2XX.htm
- Bluetooth Core Specification version 4.2
 <u>https://www.bluetooth.com/specifications/bluetooth-core-specification/legacy-specifications</u>
- 4. GATT Specifications <u>https://www.bluetooth.com/specifications/gatt</u>

8.6 Terminology

Term	Description
Service	A service is provided from a GATT server to a GATT client. The GATT server exposes some characteristics as the interface. The service prescribes how to access the exposed characteristics.
Profile	A profile enables implementation of a use case by using one or more services. The services used are defined in the specifications of each profile.
Characteristic	A characteristic is a value used to identify services. The characteristics to be exposed and their formats are defined by each service.
Role	Each device takes the role prescribed by the profile or service in order to implement the specified use case.
Client Characteristic Configuration Descriptor	This is used to control the transmission (notification / indication) of the characteristic values from the GATT server with a client characteristic configuration descriptor.
Connection Handle	This is the handle determined by the controller stack and is used to identify connection with a remote device. The valid handle range is between 0x0000 and 0x0EFF.
Universally Unique Identifier (UUID)	This is an identifier for uniquely identifying an item. In the BLE standard, a 16-bit UUID is defined for identifying services and their characteristics.
Bluetooth Device Address (BD Address)	This is a 48-bit address for identifying a Bluetooth device. The BLE standard defines both public and random addresses, and at least one or the other must be supported
Public Address	This is an address that includes an allocated 24-bit OUI (Organizationally Unique Identifier) registered with the IEEE.
Random Address	This is an address that contains a random number and belongs to one of the following three categories: Static Address Non-Resolvable Private Address Resolvable Private Address
Static Address	This is an address whose 2 most significant bits are both 1, and whose remaining 46 bits form a random number other than all 1's or all 0's. This static address cannot be changed until the power is switched off.
Non-resolvable private Address	This is an address whose 2 most significant bits are both 0, and whose remaining 46 bits form a random number other than all 1's or all 0's. Static addresses and public addresses must not be equal. This type of address is used to make tracking by an attacker difficult by changing the address frequently.
Resolvable private Address	This is an address generated from an IRK and a 24-bit random number. Its 2 most significant bits are 0 and 1, and the remaining higher 22 bits form a random number other than all 1's or all 0's. The lower 24 bits are calculated based on an IRK and the higher random number. This type of address is used to make tracking by an attacker difficult by changing the address frequently. By allocating an IRK to the peer device, the peer device can identify the communicating device by using that IRK.
Broadcaster	This is one of the roles of GAP. It is used to transmit advertising data.
Observer	This is one of the roles of GAP. It is used to receive advertising data.
Central	This is one of the roles of GAP. It is used to establish a physical link. In the link layer, it is called Master.
Peripheral	This is one of the roles of GAP. It is used to accept the establishment of a physical link. In the link layer, it is called Slave.
Advertising	Advertising is used to transmit data on a specific channel for the purpose of establishing a connection or performing data transmission.
Scan	Scans are used to receive advertising data. There are two types of scans: Passive scan, in which data is simply received, and active scan, in which additional information is requested by sending SCAN_REQ.
White List	By registering known devices that are connected or bonded to a White List, it is possible to filter devices that can accept advertising data or connection requests.

Device Name	This is a user-friendly name freely assigned to a Bluetooth device to identify it.	
	In the BLE standard, the device name is exposed to the peer device by the GATT server as a GAP characteristic.	
Reconnection Address	If a non-resolvable private address is used and the address is changed frequently, not only attackers but also the peer device will have difficulty identifying the device. Therefore, the address to be used at reconnection is reported by setting a new reconnection address as the exposed reconnection address characteristic.	
Scan Interval	This is the interval for receiving advertising data.	
Scan Window	This is the period of time during which advertising data is received at the scan interval.	
Connection Interval	This is the interval for transmitting and receiving data periodically following connection establishment.	
Connection Event	This is the period of time during which data is transmitted and received at the connection interval.	
Slave Latency	his is the period of time during which data is transmitted and received at the connection interval.	
Supervision Timeout	This is the timeout interval after which the link is considered to have been lost when no response is received from the peer device.	
Passkey Entry	This is a pairing method whereby a six-digit number is input by each device to the other, or a six-digit number is displayed by one of the devices and that number is input to the other device.	
Just Works	his is a pairing method that does not require user action.	
ООВ	This is a pairing method whereby pairing is performed by using data obtained a communication method other than Bluetooth.	
Identity Resolving Key (IRK)	(IRK) This is a 128-bit key used to generate and resolve resolvable private addresses.	
Connection Signature Resolving Key (CSRK)	This is a 128-bit key used to create data signatures and verify the signature of ncoming data.	
Long Term Key (LTK)	This is a 128-bit key used for encryption. The key size to be used is the size agreed on during pairing.	
Short Term Key (STK)	This is a 128-bit key used for encryption during key exchange. It is generated using TK.	
Temporary Key (TK)	This is a 128-bit key used required for STK generation. In the case of Just Works, the TK value is 0. In the case of Passkey Entry, it is the 6-digit number that was input, and in the case of OOB, it is the OOB data.	

8.7 GUI Tool Changes Log

- GUI Tool Version 1.12 (Sep 20, 2016)
 - BLE software version 1.20 has been supported.
 - Fixed some minor bugs.
- GUI Tool Version 1.11 (May 13, 2016)
 - Optimized the transmission processing of the serial driver.
 - Fixed some minor bugs.
- GUI Tool Version 1.10 (Mar 11, 2016)
 - Added a feature of UART 2-wire branch connection method.Fixed some minor bugs.
- GUI Tool Version 1.01 (Oct 21, 2015)
 - BLE software version 1.10 has been supported.
 - Changed some of the GUI for usability improvement.
 - Fixed some minor bugs.
- GUI Tool Version 1.00 (May 29, 2015)
 - BLE software version 1.00 has been supported.
 - Added the "GATT" tab.
 - Added the "Profiles" tab.
- GUI Tool Version 0.50 (Nov 28, 2014)
 - First version issued.

Website and Support

Renesas Electronics Website http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

Bluetooth is a registered trademark of Bluetooth SIG, Inc. U.S.A. All trademarks and registered trademarks are the property of their respective owners.

Revision Record

		Description		
Rev.	Date	Page	Summary	
0.50	Nov 28, 2014	-	First edition issued	
0.90	May 29, 2015	7	Changed the composition of chapter and section.	
		34	Added 7.2.4 GATT Tab	
		40	Added 7.2.5 Profiles Tab	
		54	Updated file and folder organization.	
1.00	Oct 21, 2015	All	Described a detailed description and setting ranges for the	
			parameters in the main dialog	
		All	Updated figures with adding the detail description	
		All	Added API list in each tab page	
		55	Added 8.3 API Quick Reference List	
		55	Added 8.4 How to use the Direct Test Mode	
		59	Added 8.5 References	
		60	Added 8.6 Terminology	
1.10	Mar 11, 2016	-	Compliant with the GUI Tool Ver1.10	
		4	Added a description of the UART 2-wire branch connection	
			method.	
		62	Added 8.7 GUI Tool Changes Log	
1.11	May 13, 2016	-	Compliant with the GUI Tool Ver1.11	
		62	Updated the GUI Tool Changes Log	
1.12	Sep 20, 2016	-	Compliant with the GUI Tool Ver1.12	
		62	Updated the GUI Tool Changes Log	
1.13	Mar 30, 2018	16	Updated the version of Supplement to the Bluetooth Core	
			Specification.	
		59	Updated the link of Bluetooth core specifications.	
		59	Updated the GATT specifications name.	

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

- ³⁄₄ The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- ³⁄₄ The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- ³⁄₄ The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

³⁄₄ The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for velucting the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

(Rev.4.0-1 November 2017)

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information. Renesas Electronics America Inc. Murphy Ranch Road, Milpitas, CA 95035, U.S.A. +1-408-432-8888, Fax: +1-408-434-5351 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700, Fax: +44-1628-651-804 **Renesas Electronics Europe GmbH** Arcadiastrasse 10, 40472 Düsseldorf, Germar Tel: +49-211-6503-0, Fax: +49-211-6503-132 Renesas Electronics (China) Co., Ltd. Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Si No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338