
Application Note

Document No. U17173EE2V0AN00
Date Published: October 2006

© NEC Corporation 2006
Printed in Germany

Battery Charging
with the KSeries Microcontroller

2 Application Note U17173EE1V0AN00

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity

as much as possible, and quickly dissipate it once, when it has occurred. Environmental control

must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using

insulators that easily build static electricity. Semiconductor devices must be stored and transported

in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work bench and floor should be grounded. The operator should be grounded using

wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need

to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided

to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence

causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels

of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused

pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of

being an output pin. All handling related to the unused pins must be judged device by device and

related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS

does not define the initial operation status of the device. Immediately after the power source is

turned ON, the devices with reset function have not yet been initialized. Hence, power-on does

not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the

reset signal is received. Reset operation must be executed immediately after power-on for devices

having reset function.

3 Application Note U17173EE1V0AN00

• The information in this document is current as of 27.05, 2004. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.

• No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that
may appear in this document.

• NEC Electronics does not assume any liability for infringement of patents, copyrights or other
intellectual property rights of third parties by or arising from the use of NEC Electronics products
listed in this document or any other liability arising from the use of such NEC Electronics products.
No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual
property rights of NEC Electronics or others.

• Descriptions of circuits, software and other related information in this document are provided for
illustrative purposes in semiconductor product operation and application examples. The incorporation
of these circuits, software and information in the design of customer's equipment shall be done
under the full responsibility of customer. NEC Electronics no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.

• While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics
products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated
entirely. To minimize risks of damage to property or injury (including death) to persons arising from
defects in NEC Electronics products, customers must incorporate sufficient safety measures in their
design, such as redundancy, fire-containment and anti-failure features.

• NEC Electronics products are classified into the following three quality grades: “Standard”, “Special”
and “Specific”.

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated “quality assurance program” for a specific application. The recommended applications of
NEC Electronics product depend on its quality grade, as indicated below. Customers must check the
quality grade of each NEC Electronics product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement
equipment, audio and visual equipment, home electronic appliances, machine tools,
personal electronic equipment and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems,
anti-disaster systems, anti-crime systems, safety equipment and medical equipment
(not specifically designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems,
life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is “Standard” unless otherwise expressly specified in
NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in
applications not intended by NEC Electronics, they must contact NEC Electronics sales representative
in advance to determine NEC Electronics 's willingness to support a given application.

Notes: 1. " NEC Electronics" as used in this statement means NEC Electronics Corporation and
also includes its majority-owned subsidiaries.

2. " NEC Electronics products" means any product developed or manufactured by or for
NEC Electronics (as defined above).

M8E 02.10

4 Application Note U17173EE1V0AN00

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

Ordering information

Product release schedule

Availability of related technical literature

Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics America Inc.
Santa Clara, California
Tel: 408-588-6000

800-366-9782
Fax: 408-588-6130

800-729-9288

NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 1101
Fax: 0211-65 03 1327

Sucursal en España
Madrid, Spain
Tel: 091- 504 27 87
Fax: 091- 504 28 60

Succursale Française
Vélizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
Singapore
Tel: 65-6253-8311
Fax: 65-6250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

Filiale Italiana
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

Branch The Netherlands
Eindhoven, The Netherlands
Tel: 040-244 58 45
Fax: 040-244 45 80

Branch Sweden
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

United Kingdom Branch
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

•

•

•

•

•

5 Application Note U17173EE1V0AN00

Chapter 1 KSeries Introduction . 7

Chapter 2 Battery Charging Characteristics . 8
2.1 Nickel Cadmium . 8
2.2 Lithium-Ion . 9
2.3 Lead-Acid . 10

Chapter 3 Charger Basics . 11

Chapter 4 The Step-Down (Buck) Converter . 12

Chapter 5 Charger Circuit . 15

Chapter 6 Charger Firmware. 17
6.1 Program Flow . 18
6.2 State Diagrams. 20
6.3 Battery Monitor . 23
6.4 Function Descriptions . 24
6.5 Definitions . 25

Chapter 7 Other Charging Methods . 26

Chapter 8 Conclusion . 28

Chapter 9 Firmware Listing. 29

6 Application Note U17173EE1V0AN00

Figure 2-1: Nickel Cadmium battery charging profile... 8
Figure 2-2: Lithium-Ion battery charging profile ... 9
Figure 2-3: Lead acid battery charging profile ... 10
Figure 3-1: Block Diagram of a Typical Charger, Showing NEC KSeries Peripheral Usage 11
Figure 4-1: The Buck Converter... 12
Figure 4-2: Switching Waveform at switch ‘S’.. 12
Figure 4-3: Inductor waveforms ... 14
Figure 5-1: Charger Schematic.. 15
Figure 6-1: Possible battery thermistor configurations... 17
Figure 6-2: Program Flow .. 19
Figure 6-3: Lithium Ion charging state diagram ... 20
Figure 6-4: Nickel Cadmium charging state diagram... 21
Figure 6-5: Sealed Lead Acid charging state diagram... 22
Figure 6-6: Battery Monitor .. 23
Figure 7-1: Use of external charger IC... 27

Chapter 1 KSeries Introduction

Rechargable batteries are found in many products and systems nowadays, from small hand held
devices such as camcorders and portable games, through medium size appliances like power tools, up
to large systems such as emergency lighting and building fire and security systems. In effect, such bat-
teries are found in consumer products, industrial systems, building management systems and many
more either to replace disposable zinc-carbon or alkaline cells or to provide a form of backup if normal
(mains) power fails.

NEC’s KSeries microcontroller family are ideally suited for battery charging applications owing to a
large range of devices, from low pin count parts featuring the cost-effective 78K0S core through to the
32-bit V850 series. This range of microcontrollers feature a large collection of peripherals, including the
analog to digital converters and pulse width modulators (PWM) that are necessary for battery chargers.

This application note outlines several methods of using NEC microcontrollers to assist with the charging
of Lithium-Ion (Li-Ion), Sealed Lead-Acid (SLA) and Nickel Cadmium (Ni-Cd) batteries. By describing
several approaches, it is hoped the engineer will be able to make a choice that is optimum for his / her
design in terms of cost, performance and complexity.

One approach uses the microcontroller itself as the basis for a switching step-down (Buck) converter,
thus reducing external component count to a minimum. Sensing of battery voltage and current is per-
formed by the microcontroller and the charger output is varied in order to keep the charge parameters
constant. The alternative approach explains how the microcontroller can be used to control a dedicated
battery charger IC. Here the closed loop control of battery current & voltage is done by the charger IC,
and the microcontroller is performing more of a supervisory role, such as detection of battery insertion,
state-of-charge indication and termination of charging.

The charging requirements of SLA, Ni-Cd and Li-Ion batteries are different in several respects and will
be briefly explained below.

Incidentally, battery capacity is measured in mAh (milliampere hours), and is denoted by the abbrevia-
tion ‘C’, so for example a battery stated as having C = 500 mAh can in theory provide 500 mA for
1 hour, 250 mA for 2 hours, etc. C is also used to express charge / discharge rate, so C/2 for a 500 mAh
battery would imply a charge / discharge current of 250 mA, C/10 implies a current of 50 mA and so
forth.
7 Application Note U17173EE1V0AN00

Chapter 2 Battery Charging Characteristics

2.1 Nickel Cadmium

Figure 2-1: Nickel Cadmium battery charging profile

Nickel Cadmium batteries are charged at a constant current which can be as high as C, but to prolong
the life of the battery and to prevent overheating C/2 is often used as the maximum charge rate. The
battery voltage (typically 1.45 V/cell for “AA” size) will rise as the battery is charged; when the battery is
fully charged its voltage will actually start to drop. This is known as the –dV/dt condition, and can be
used by the charger to detect the full charge condition. The temperature of the battery will also rise
quite abruptly as full charge is reached, this can be used as an additional mechanism for the charger to
detect full charge.
When the battery is fully charged, the charger output can be switched off entirely or a low current trickle
charge can be applied to maintain charge. A rate of C/50 to C/10 is suitable for this; alternatively the
fast charge phase can be omitted entirely and the battery only trickle charged. Fast (C/2) charging is
sometimes known as “1 hour charging” (although it may not necessarily take 1 hour) and trickle charg-
ing as “overnight charging”.

Fast charge (Typ. C/2)

-dV/dt

V

I

Time

Trickle

Nickel CadmiumV, I
8 Application Note U17173EE1V0AN00

Chapter 2 Battery Charging Characteristics
2.2 Lithium-Ion

Figure 2-2: Lithium-Ion battery charging profile

Lithium-Ion batteries have different charging requirements to nickel cadmium in that the tolerance of the
charge voltage is tighter, and after an initial constant current fast charge period a constant voltage
period is used. Some chargers do not apply the constant voltage and simply terminate charge when the
desired battery voltage is met, but this will only charge the battery to approximately 70% of its maxi-
mum. The tolerance of the voltage output should be less than 0.75%, though this figure depends upon
the battery under charge. When the battery has reached the full charge voltage the current drawn from
the charger will taper down (see Figure 2-2); when this current has fallen below a certain level (typically
100-200 mA) the charger can consider the battery fully charged and can end the charging process.
Trickle charging is not recommended for Lithium Ion batteries as they do not accommodate overcharg-
ing. Li-Ion batteries are typically 3.6 V/cell.

Constant current

V

I

Time

Constant voltage

Lithium-IonV, I
9 Application Note U17173EE1V0AN00

Chapter 2 Battery Charging Characteristics
2.3 Lead-Acid

Figure 2-3: Lead acid battery charging profile

Lead acid batteries have similar charge requirements to Lithium Ion in that they both use the constant
current and constant voltage charging phases, although the charge voltage applied has a less stringent
tolerance than for Li-Ion. In addition, when the current has tapered down to about 3% of maximum rated
current the charge voltage can be reduced from the nominal 2.4 V/cell to what is known as the float volt-
age (typically 2.25 V/cell) and this charge can be left indefinitely to avoid self discharge of the battery.

With all the above battery types, there are some common points to observe. Safety is always of prime
importance, and mechanisms can be built into the charger to enhance this. Fail-safe timers can be used
to end charging after a preset time if other charge termination methods fail. The temperature of the bat-
tery can be monitored (if the pack has a thermistor fitted) and drastic changes in pack temperature can
trigger a “fail” mode. Incidentally, the thermistor is sometimes used as an aid to the detection of a bat-
tery inserted into the charger. If the charger will be used in an environment where ambient temperature
is likely to vary considerably an additional temperature sensor can be incorporated, and its reading
compared to that of the battery temperature sensor. Close monitoring of the battery (not charger) volt-
age and current is also mandatory in a safe charging system.

Constant current

V

I

Time

Constant voltage

Lead-AcidV, I

Float
voltage
10 Application Note U17173EE1V0AN00

Chapter 3 Charger Basics

Figure 3-1: Block Diagram of a Typical Charger, Showing NEC KSeries Peripheral Usage

Remark: GPIO = General Purpose Input/Output

Figure 3-1 shows a simple block diagram of a battery charging system. The parts marked as optional
may be included in a desktop / bench charger, but are unlikely to be required if the charger is embedded
into a piece of equipment.
The main component of the system will be a regulator to convert the raw AC or DC power into a steady
voltage within the range allowed by the battery. Current limiting is also required for the constant current
charging stages mentioned before. The regulator can be a simple linear type, however for reasons of
power dissipation and efficiency a switching type is usually used, hence the PWM output drive in the
diagram. A current sensing amplifier is needed to convert the current drawn by the battery into a voltage
which can be used by the charger core to keep the current constant. The battery voltage must also be
fed back to the core to enable it to provide regulation. The battery thermistor must be monitored and
appropriate action taken if it is too hot; a sensor for ambient temperature is sometimes included too.
Additional functions can include switches to set mode / battery type etc. and LEDs to provide status
information and / or battery state-of-charge in the form of a bargraph type display.

The block “charger core” above could be either a microcontroller operating in a stand-alone mode or
controlling a battery charger IC.

NEC’s family of microcontrollers are well suited to battery charging applications as they feature the
PWM channels, timers and analog to digital converters needed for this function. The charging can
either be the sole function of the microcontroller or a secondary function with the microcontroller also
performing other tasks. Additionally NEC also manufactures a range of low voltage MOSFETs which
can be used to implement the switch S in the following section.

Rsense

CHG enablePWM output

Vset

Battery
thermistor

Ibatt

Vtherm

Charger Status LEDs

Charging supply

ready / charging /
fault etc.

User Input
(self-test, mode

select etc…)

VbattOptional

Battery
under
charge

Charger Core - NEC KSeries
MIicrocontroller

GPIO

G
P

IO

16-bit Timer / PWM

Analog to Digital Converter

8-bit Timer

Power-On-Clear, Watchdog Timer,
Low Voltage Indicator

Interrupt
Controller
11 Application Note U17173EE1V0AN00

Chapter 4 The Step-Down (Buck) Converter

Figure 4-1: The Buck Converter

Figure 4-1 shows a Buck (step-down) converter. The switch ‘S’ is in practice a transistor (often a
MOSFET) driven by the variable duty cycle PWM output from the microcontroller or battery charging IC.
When switch ‘S’ is closed, current flows through it, inductor L, capacitor C and the load causing energy
to be stored in the inductor. When the switch is opened, the energy stored in L is released and flows
through the freewheeling diode D, capacitor C and the load. The rapid repetition of this on-off switching
produces a DC level at VOUT (with some ripple); this voltage is proportional to the duty cycle of the
switching.

Figure 4-2: Switching Waveform at switch ‘S’

In practice, some form of regulation is required to compensate for changes in supply voltage and load.
The current and voltage feedback to the charger core in Figure 3-1 are used to modify the duty cycle of
the switch to keep the output constant.

LoadVOUT
C

L

VL

VD
DVIN

VSW

S

f
1 tON

tOFFT

T + tON

tON
× 100%Duty Cycle =
12 Application Note U17173EE1V0AN00

Chapter 4 The Step-Down (Buck) Converter
For a Buck converter, the inductor value is given by:

VIN = Input voltage
VOUT = Required output voltage
VSW = Saturation voltage of switch (transistor)
IPK = Peak current drawn from converter
tON= switch time ‘on’

For a step down converter,

where IMAX is the maximum output current.

To determine the capacitance of capacitor C use the following formula:

Figure 4-3 below shows the current and voltage waveforms associated with the inductor.
Since the periods tON and tOFF are short compared to the time constant of L they may be approximated
to a straight line.

L =
VIN - VOUT - VSW

IPK
× tON Equation (1)

IPK = 2 IMAX Equation (2)

IPK (tON + tOFF)

8 VRIPPLE
C ≥ Equation (3)
13 Application Note U17173EE1V0AN00

Chapter 4 The Step-Down (Buck) Converter
Figure 4-3: Inductor waveforms

Example:

VIN = 24 V
VOUT = 12 V
VSW = 0.2 V
IMAX = 2 A
f = 25 KHz

Firstly,

Assuming 50% duty cycle, tON = 20 µs

From equation (2), IPK = 2 IMAX = 2 × 2 = 4 A

Now, from equation (1),

Now the value of C can be determined using equation (3):

Assuming 50 mV ripple is acceptable:

so take 470 µF.

0 V

+(V
IN

- V
SW

 - V
OUT

)

-(VOUT + VD)

Inductor voltage VL

VIN VSW VOUT

L
slope =

V
OUT

V
D

slope =
L

IL (average) = IOUT

I PK

0

Inductor current I L

- -
+

f

1
T= = 40 µs

24 - 12 - 0.2
4 × 20 × 10

-6
= 59 µHL =

4 × 40 × 10
-6

8 × 50 × 10 -3
= 400 µFC =
14 Application Note U17173EE1V0AN00

Chapter 5 Charger Circuit

Figure 5-1: Charger Schematic

Figure 5-1 shows the full schematic of the battery charging circuit. The Buck converter is comprised of
D1, L1, Q2 and C1. When laying out this circuit, it is important to keep connections between these com-
ponents as short as possible. Q4 is used to switch the charger output on or off, as measurements of
battery voltage will be inaccurate if the battery is still connected to the charger. NPN transistors Q1 and
Q4 provide the gate drive for MOSFETs Q2 and Q4. R6 and R7 provide a potential divider to feed the
ADC for charger output voltage measurement. U2 forms a differential amplifier for battery voltage
measurement, and U3 forms a current sensing amplifier, measuring the voltage across sense resistor
R16. D3 and R18 form a voltage reference to the microcontroller analog to digital converter. Component
tolerances have not been specified here; they are largely dependant on the type of battery being
charged. For example, lithium-ion batteries may require 0.1% resistors around the voltage sensing
amplifier and a 0.1% tolerance voltage reference diode D3, whilst for other battery chemistries standard
1% components may be used. Similarly, exact values for L1 and C1 will be dependant upon battery
charge voltage and can be determined by the formulae above. D1 and D2 should be Schottky diodes of
sufficient current rating. If charge currents less than 1 A are required, NEC offer the uPA507TE P-chan-
nel MOSFET with schottky barrier diode in a space saving SC-95 package that can be used in the
charger with some modification to the circuit. R4 is to prevent RF oscillations around the MOSFET, its
value depends on the input capacitance of the MOSFET (CISS) and generally a value in the order of
100 R is adequate.

Vs

Vs = 18V

Battery
thermistor

Q1
2N2222

Q3
2N2222

Q2
NEC 2SJ325

R2 2K7

R1 4K7

R3 1K
R4

R5 4K7

R6 30K

R8 2K7

R9 1K

R10 30K

R16
Rsense

R17

L1
(see text)

D1

C1
(see text)

ANI0

P50

ANI0

ANI0

P01

Current sensing amplifier

R11 10K

D2

R12 18K

R13 72K

R14 72K

R15 18K

ANI0

U3 ½ NEC uPC358

U2 ½ NEC uPC358

(Internal
to battery)

0R5

R7 10K

+18V

R18
2K7

D3
4.096V

78K0/K0S
AVREF

FOR 72K USE 2 X 36K

Q4
NEC 2SJ325

Battery under charge.
For example 3 cell Li-Ion
(3.6 V/cell = 10.8V, 3.6Ah)

+

+

-

-

U1
NEC 78K0 / 78K0S

Microcontroller
15 Application Note U17173EE1V0AN00

Chapter 5 Charger Circuit
To take an example of charging a lithium-ion battery with a 12.3 V charge voltage at a maximum current
of 2 A:

FCPU = 10 MHz. VIN = 18 V, VOUT= 12.3 V, IMAX = 2 A

For 8-bit PWM, PWM value will be

If IMAX = 2 A, IPK = 4 A.

So from equation (1),

so take nearest preferred value.

It is important that the charge voltage provided to the battery is of sufficient accuracy. 8-bit PWM is
used here, so the error in producing, say, 12.3 V for the above example is:

Higher accuracy is possible by increasing PWM resolution (up to 10 bit) but the PWM period (and there-
fore tON) will increase, making a larger (and more expensive) inductor necessary.

12.3
18

× 256 = 205

@ 10 MHz, tON =
10 × 10

6

1
× 255 ×

205

255
= 2.05 × 10

-5
s

18 - 12.3 - 0.2
4

× 2.05 × 10
-5

= 28 µHL =

1 LSB = = 0.070 V
18 V

256

0.070

12.3
× 100% = 0.57%
16 Application Note U17173EE1V0AN00

Chapter 6 Charger Firmware

The code for the charger is implemented in C with IAR’s Embedded Workbench. See the firmware list-
ing for the versions of compiler, assembler and linker used.

This application note was developed using the µPD78F0148, from NEC’s KSeriesKSeries range as
used in the NEC “Play-It” development kit. Owing to the scalability of NEC’s microcontroller family, the
application can be easily ported down to the cost-effective 78K0S family, or up to the more powerful 32-
bit V850 range. The peripherals in the KSeries range are compatible so minimal code modifications are
required.

The code is in a state machine form, the intention being that the battery charging application will not
block any other application the user wants to run on the microcontroller. For example a 2 second delay
is used in the charger; waiting in a for-loop will stop any other functions from running which in many
applications is unacceptable. Instead, a software-based timer is started which is checked every time
round the main loop. Therefore other parts of the application are not blocked.

The program can accommodate one of the three battery types, set by:

charger_mode = CHARGER_MODE_LION; // or CHARGER_MODE_NICD or CHARGER_MODE_SLA

The code could be modified to automatically detect different battery types, often the battery thermistor
value / wiring arrangement are used for this. Figure 6-1 shows the thermistor arrangements possible; by
switching in pull up / down resistors and making ADC measurements the program can determine the
battery type. Because of the variations possible here, and the range of possible thermistor values, it is
left to the reader to determine a suitable value for the pull up / down resistor and a suitable threshold for
the program to compare the thermistor ADC reading to.

Figure 6-1: Possible battery thermistor configurations

+

-

T
Rpullup

+

-

T
Rpulldown
17 Application Note U17173EE1V0AN00

Chapter 6 Charger Firmware
6.1 Program Flow

Figure 6-2 below shows a simple diagram of program flow. After initialization the general housekeeping
tasks are performed in a loop along with the detection / charging state machine. As mentioned before
the charger operation is non-blocking, so other code can be added where shown, provided it does not
block the charger code from running.

Figures 6-3, 6-4 and 6-5 show state diagrams for the three battery types which differ to allow the differ-
ent stages of charging for each type (i.e. SLA has CC, CV and float, NICD just CC and trickle). The dia-
grams are self-explanatory and are very similar to each other, but a few comments are made here:

1. The system waits for detection of a battery, by measuring the voltage at the battery terminals and
comparing it to limits.

2. Upon detection, the system proceeds through the CC – CV states for Li-Ion, the CC – trickle states
for Ni-Cd and the CC – CV – float states for SLA.

3. At all times during these states the common “housekeeping” block monitors for over temperature
and over voltage conditions as well as looking for removal of the battery. Over temperature and
over voltage conditions will put the system in a “fault” state where it will remain. The reader can
implement code to act upon this condition as required.

4. A long-term timer (2 hours) is started when a battery is detected, and is used as a fail-safe if the
other termination methods fail. It also terminates trickle and float charging (Ni-Cd and SLA respec-
tively).

5. When a battery charge cycle is complete the system waits in the “terminate” state until battery
removal, then it returns to the “detect” state.
18 Application Note U17173EE1V0AN00

Chapter 6 Charger Firmware
Figure 6-2: Program Flow

Initialize Ports

Initialize Timers

Initialize ADC

Initialize PWM

Clear Watchdog Timer

Update Software Timers

Do ADC Conversions & Average

Monitor Long-Term Timer

Monitor Battery for Overvoltage

Monitor Battery Thermistor

Monotor Battery Voltage & Current

User Application Code can go here

Detect / Charge State Machine

(see State Diagrams for Details)

Initialization Code
Initialize CPU Clock

START
19 Application Note U17173EE1V0AN00

Chapter 6 Charger Firmware
6.2 State Diagrams

Figure 6-3: Lithium Ion charging state diagram

Initial

Detect

Constant
Current
Charge

Fault

Terminate
Battery detected

Battery nominal voltage
reached

Overvoltage or
Overtemperature

Condition

Timeout condition

Battery removed

Battery
removed

Constant
Voltage
Charge

Current tapered
to low level,

ot Timeout condition

Battery removed
20 Application Note U17173EE1V0AN00

Chapter 6 Charger Firmware
Figure 6-4: Nickel Cadmium charging state diagram

Initial

Detect

Constant
Current
Charge

Fault

Terminate
Battery detected

Battery nominal voltage
reached (-dV/dt Condition)

Overvoltage or
Overtemperature

Condition

Timeout condition

Battery removed

Battery
removed

Trickle
Charge

Battery removed

Timeout condition
21 Application Note U17173EE1V0AN00

Chapter 6 Charger Firmware
Figure 6-5: Sealed Lead Acid charging state diagram

Initial

Detect

Constant
Current
Charge

Fault

Terminate

Battery detected

Battery nominal voltage
reached

Overvoltage or
Overtemperature

Condition

Timeout condition

Battery removed

Battery
removed

Constant
Voltage
Charge

Current tapered
to low level,

ot Timeout condition

Battery removed

Float Charge

Timeout Condition

Battery removed
22 Application Note U17173EE1V0AN00

Chapter 6 Charger Firmware
6.3 Battery Monitor

The battery voltage and current must both be monitored whilst the battery is charged. It is necessary
that the battery be disconnected from the charger to measure voltage, and connected to measure cur-
rent. The charge_enable line can be used to disconnect the battery as required. It is important that a
short delay is completed after charge output is switched off in order to let the terminal voltage of the bat-
tery to settle. Figure 6-6 shows the operation of the battery monitor. The action shown is in the “house-
keeping” section of the program and is thus repeated continuously during charging, and the
do_adc_conversions() function (also running continuously) will read battery voltage or current depend-
ant on the state of charge_enable.

Figure 6-6: Battery Monitor

100 ms
charge_enable = FALSE

2 s
charge_enable = TRUE

Battery voltage
measured here

Battery current
measured here
23 Application Note U17173EE1V0AN00

Chapter 6 Charger Firmware
6.4 Function Descriptions

void update_timers(void); Called upon timeout of 8 bit hardware timer TM50
100 times per second. Decrements the software
timers, and sets them to timeout state as necessary
for reading by rest of program

void load_timer (char timer_id, int
timer_val);

Loads a software timer in centiseconds (up to 65535)

void start_timer (char timer_id); Starts specified timer

void stop_timer (char timer_id); Stops specified timer. (Does not reset it)

char check_timer (char timer_id); Returns: TIMER_STOPPED, TIMER_RUNNING,
TIMER_TIMEOUT or TIMER_IDLE

void reset_timer (char timer_id); Clears specified timer and sets its state to
TIMER_IDLE

void initialize_pwm (int initial_pw); Initialises microcontroller PPG (PWM) module to
value passed

int get_adc_value (char channel); Makes a single reading of specified analog to digital
converter channel (channels 0 to 3 used here)

void write_pwm (int pwm_value); Writes pwm_value to PWM module. pwm_value max-
imum value determined by chosen PWM resolution
(255 for 8-bit)

void initialize_adc (void); Sets up analog to digital converter

void cv_cc_control (signed int
setpoint, signed int parameter);

Computes PWM output. Limits result and drives PWM
module with write_pwm function

void do_adc_conversions (void); Called from the main “housekeeping” loop, reads
ADC channels for battery voltage, battery current,
thermistor value and charger voltage. Takes a moving
average and stores results in variables for use by rest
of program
24 Application Note U17173EE1V0AN00

Chapter 6 Charger Firmware
6.5 Definitions

Individual battery parameters can be set in the #defines below:

#define LION_CC_CURRENT_NOMINAL 1800 // milliamps
#define LION_CV_VOLTAGE_NOMINAL 12300 // millivolts
#define LION_TERMINAL_VOLTAGE_NOMINAL 10800 // millivolts

#define NICD_CC_CURRENT_NOMINAL 1000 // milliamps
#define NICD_TRICKLE_CURRENT_NOMINAL 200 // milliamps

#define SLA_CC_CURRENT_NOMINAL 1500 // milliamps
#define SLA_CV_VOLTAGE_NOMINAL 14700 // millivolts
#define SLA_TERMINAL_VOLTAGE_NOMINAL 12000 // millivolts
#define SLA_FLOAT_VOLTAGE_NOMINAL 13500 // millivolts

Parameters are either in mV or mA

Voltage thresholds for battery detection are below:

#define LION_DETECT_VOLTAGE_MIN 8000 // millivolts
#define LION_DETECT_VOLTAGE_MAX 14000 // millivolts
#define NICD_DETECT_VOLTAGE_MIN 8000 // millivolts
#define NICD_DETECT_VOLTAGE_MAX 14000 // millivolts

#define SLA_DETECT_VOLTAGE_MIN 8000 // millivolts
#define SLA_DETECT_VOLTAGE_MAX 14000 // millivolts

These are very broad limits, and can be “tightened” to, for example, 10000mV to 11000mV for a 10.8V
nominal lithium ion battery. The charger firmware could be modified to detect batteries of different volt-
ages by comparing the measured terminal voltage with different limits, and if this is combined with ther-
mistor detection as mentioned before, a very flexible charger can be produced.

#define AVERAGING_POINTS 4

Sets the number of points for the moving average of the ADC readings. In practice it is a compromise
between execution time and “smoothness” of battery parameter readings.
25 Application Note U17173EE1V0AN00

Chapter 7 Other Charging Methods
Chapter 7 Other Charging Methods

An alternative to using the microcontroller alone to charge batteries is mentioned briefly here. Battery
charging ICs are available from several sources and range from relatively simple switched mode con-
trollers / power supplies to more sophisticated devices featuring system management bus, synchronous
rectifiers etc.

The advantages of using an external IC include the freeing-up of the microcontroller CPU time; a loop
continuously measuring and correcting battery voltage and current may leave little time for other CPU
tasks. A charger IC will require the voltage and current be initially set by the microcontroller (usually
through PWM) but will then use its own internal analog circuitry to maintain the closed loop control.
Additionally the PWM module of a charger IC will typically run up to ten times the frequency than that of
a microcontroller, allowing a smaller inductor and higher efficiency. The main disadvantage is cost; the
charger IC may cost significantly more than the microcontroller.

The microcontroller is used here more in a supervisory role since as well as setting charge voltage and
current it can monitor battery voltage independently of the charger IC for safety reasons, or to provide
state-of-charge information to the user through a bargraph LED display or some form of LCD. Charger
ICs do not generally feature a means of reading temperature via a thermistor, so this and any appropri-
ate over-temperature shutdown mechanism must be undertaken by the microcontroller. See Figure 7-1
below.
26 Application Note U17173EE1V0AN00

Figure 7-1: Use of external charger IC

Notes: 1. 78K microcontroller functions:
Fixed o/p voltage assumed (for a charger built into equipment)
o/p current PWM variable for fast / slow / trickle charge.

2. ADC measurements:
VBATT - for charge termination (Ni-Cd -dV/dt), & safety monitoring
IBATT - for charge termination (Li-Ion - current taper) & safety monitoring
VTHERM - for battery detection & safety monitoring

Rsense

CHG enable

PWM output

Vset

Battery
thermistor

VBATT

IBATT

VTHERM

PWM0 - set charge
current

Charger Status LEDs

NEC KSeries
Microcontroller

Charger IC

Charging supply

Charging voltage set here

ready / charging /
fault etc.

Possible RS232 for
debug & charge logging
27 Application Note U17173EE1V0AN00

Chapter 8 Conclusion
Chapter 8 Conclusion

For this application the resource usage was as follows:

2227 bytes of CODE memory
209 bytes of DATA memory
6 bits of BIT memory

so it therefore leaves plenty of program memory space for other application code.

This application note has outlined some of the typical types of rechargable battery commonly in use
and their requirements for charging, and has shown several methods of how the NEC KSeries micro-
controller family can suit this application. The ideas presented here can be used how they are, or
adapted to fit in with the users system.
28 Application Note U17173EE1V0AN00

Chapter 9 Firmware Listing

/*===
** PROJECT = BATTCHG1
** MODULE = battchg1.c
** VERSION = V1.0
** DATE = 11.03.2004
** LAST CHANGE = 12.05.2004
**
** ===
** Description: Multi-chemistry battery charger firmware
**
** ===
** Environment: Device: uPD78F0148
** Assembler: A78000 Version 3.34.2.4
** C-Compiler: ICC78000 Version 3.34.2.4
** Linker: XLINK Version 4.55.9.0
** ===
** By: NEC Electronics (Europe) GmbH
** Cygnus House
** Sunrise Parkway
** Milton Keynes
**
** ===
Changes:
** ===
*/
/* ===
** pragma
** ===
*/
#pragma language = extended
/* ===
** include
** ===
*/

#include <in78000.h>
#include <Df0148.h>

#define TRUE 1
#define FALSE 0
#define INPUT 1
#define OUTPUT 0
#define DISABLED 1
#define ENABLED 0

#define MAX_TIMERS 2

#define TIMER_STOPPED 0
#define TIMER_RUNNING 1
#define TIMER_TIMEOUT 2
#define TIMER_IDLE 3

#define AVERAGING_POINTS 4

#define BATTERY_VOLTAGE 0 // ADS values to select ADC channel
#define CHARGER_VOLTAGE 1 // "
#define BATTERY_THERMISTOR 2 // "
#define BATTERY_CURRENT 3 // "

#define BATT_V_SCL_FACTOR 16
#define CHG_V_SCL_FACTOR 16
#define BATT_I_SCL_FACTOR 2

#define PWM_RESOLUTION 8
#define XTAL_FREQ 10000000
#define PWM_PERIOD (1 << PWM_RESOLUTION)-1
#define PWM_OUT_PIN P0.1
#define PWM_OUT_DIR PM0.1
#define TOC004 TOC00.4 // not in header file
#define PWM_VAL_MIN 50 // 50 OK with emulator @ 10MHz 8 bit PWM

#define CHARGE_ENABLE P5.0

#define CHARGER_MODE_LION 0
#define CHARGER_MODE_NICD 1
#define CHARGER_MODE_SLA 2

#define LION_DET_V_MIN 8000 // millivolts
#define LION_DET_V_MAX 14000 // millivolts
#define NICD_DET_V_MIN 8000 // millivolts
#define NICD_DET_V_MAX 14000 // millivolts
29 Application Note U17173EE1V0AN00

#define SLA_DET_V_MIN 8000 // millivolts
#define SLA_DET_V_MAX 14000 // millivolts

#define LION_MAX_V 16000 // millivolts
#define NICD_MAX_V 16000 // millivolts
#define SLA_MAX_V 16000 // millivolts

#define BATT_REMOVED_LIMIT 6000 // millivolts

#define LION_CC_CURRENT_NOM 1800 // milliamps
#define LION_CV_VOLTAGE_NOM 12300 // millivolts
#define LION_TERM_VOLTAGE_NOM 10800 // millivolts

#define NICD_CC_CURRENT_NOM 1000 // milliamps
#define NICD_TRICKLE_CURRENT_NOM 200 // milliamps

#define SLA_CC_CURRENT_NOM 1500 // milliamps
#define SLA_CV_VOLTAGE_NOM 12000 // millivolts
#define SLA_TERMINAL_VOLTAGE_NOM 12000 // millivolts
#define SLA_FLOAT_VOLTAGE_NOM 11000 // millivolts

#define NICD_CHG_TERM_V 250 // millivolts

// thermistor
#define BATTERY_THERMISTOR_LIMIT 500

// SYSTEM STATES
#define STARTUP_STATE 0
#define DETECT_STATE STARTUP_STATE + 1
#define CC_LION_STATE DETECT_STATE + 1
#define CV_LION_STATE CC_LION_STATE + 1
#define CC_NICD_STATE CV_LION_STATE + 1
#define TRICKLE_NICD_STATE CC_NICD_STATE + 1
#define CC_SLA_STATE TRICKLE_NICD_STATE + 1
#define CV_SLA_STATE CC_SLA_STATE + 1
#define FLOAT_SLA_STATE CV_SLA_STATE + 1
#define FAILURE_STATE FLOAT_SLA_STATE + 1
#define TERMINATE_STATE FAILURE_STATE + 1

#define ADC_CHANNELS_USED 4

#define BATT_MON_STATE_0 0
#define BATT_MON_STATE_1 BATT_MON_STATE_0 + 1
#define BATT_MON_STATE_2 BATT_MON_STATE_1 + 1

int adc_result = 0;
int data_samples[AVERAGING_POINTS + 1][ADC_CHANNELS_USED];
char sample_pointers[ADC_CHANNELS_USED];

char system_state;

char batt_mon_state;

char sub_state_1;
bit wait_for_interrupt;
int global_pwm_value = PWM_VAL_MIN;
char charger_mode;
char minute_counter;
bit charge_in_progress;
bit battery_removed;
bit safety_timer_expired;
bit charger_error;
bit over_temperature;

// battery & charger parameters
int battery_voltage;
int charger_voltage;
int battery_thermistor_value;
int battery_current;
int highest_battery_voltage;

// prototypes
void update_timers(void);
void load_timer (char timer_id, int timer_val);
void start_timer (char timer_id);
void stop_timer (char timer_id);
char check_timer (char timer_id);
void reset_timer (char timer_id);
void initialize_pwm (int initial_pw);
int get_adc_value (char channel);
void write_pwm (int pwm_value);
void initialize_adc (void);
void cv_cc_control (signed int setpoint, signed int parameter);
void do_adc_conversions (void);
30 Application Note U17173EE1V0AN00

Chapter 9 Firmware Listing
typedef struct timer_struct{
 int timer_value; // counts centiseconds
 char timer_state;
}timers;

timers timer_block[MAX_TIMERS];

void main (void){

 _DI(); // disable interrupts

 PCC = 0x00; // processor clock control register
 // oscillation possible
 // on-chip feedback resistor used
 // X1 input clock or ring-osc clock
 // CPU clock (fCPU) selection = 1:1

 OSTS = 0x05; // Osc stabilization time = 2^16/Fxp = 6.55 ms @10MHz
 MOC = 0x00; // start main osc.
 while (OSTC <= 0x18){ // wait for main oscillator to stabilize
 _NOP();
 }
 MCM0 = 1; // set cpu clock = main osc.

 PM5.0 = 0; // set data direction for CHARGE_ENABLE

 // initialize 8 bit timer TM50
 TCL50 = 0x07; // clock is fx/(2^13)
 CR50 = 12;
 TMC50 = 0x80; // enable timer 50
 TMIF50 = FALSE;

 load_timer (0, 25);
 start_timer (0);

 // ensure bit variables are cleared
 charge_in_progress = FALSE;
 battery_removed = FALSE;
 safety_timer_expired = FALSE;
 charger_error = FALSE;
 over_temperature = FALSE;

 CHARGE_ENABLE = FALSE;

 initialize_adc();

 wait_for_interrupt = FALSE;
 initialize_pwm (50); // initialising with 0 gives high DC (> 99%)
 TMIF000 = FALSE;
 _EI(); // global interrupt enable

 charger_mode = CHARGER_MODE_LION; // set battery type here
 // charger_mode = CHARGER_MODE_NICD;
 // charger_mode = CHARGER_MODE_SLA;

 for(;;){

 WDTE = 0xAC;

 if (TMIF50){
 TMIF50 = FALSE;
 update_timers();
 }

 do_adc_conversions();

 if (charge_in_progress == TRUE){
 if (check_timer(1) == TIMER_TIMEOUT){
 load_timer (1, 6000);
 minute_counter--;
 if (minute_counter == 0)
 safety_timer_expired = TRUE;
 }

 }

 switch (charger_mode){

 case (CHARGER_MODE_LION):{

 if (battery_voltage >= LION_MAX_V){
 system_state = FAILURE_STATE;
31 Application Note U17173EE1V0AN00

Chapter 9 Firmware Listing
 charger_error = TRUE;
 }

 break;

 }

 case (CHARGER_MODE_NICD):{

 if (battery_voltage >= NICD_MAX_V){
 system_state = FAILURE_STATE;
 charger_error = TRUE;
 }

 break;

 }

 case (CHARGER_MODE_SLA):{

 if (battery_voltage >= SLA_MAX_V){
 system_state = FAILURE_STATE;
 charger_error = TRUE;
 }

 break;

 }

 }

 if (battery_thermistor_value >= BATTERY_THERMISTOR_LIMIT){
 over_temperature = TRUE;
 system_state = FAILURE_STATE;

 }

 switch (batt_mon_state){
 case (BATT_MON_STATE_0):{
 CHARGE_ENABLE = FALSE;
 load_timer (0, 10);
 start_timer (0);
 batt_mon_state = BATT_MON_STATE_1;
 break;
 }

 case (BATT_MON_STATE_1):{
 if (check_timer (0) == TIMER_TIMEOUT){
 if ((charge_in_progress == TRUE) && (system_state != TERMINATE_STATE) && (charger_error
== FALSE))
 CHARGE_ENABLE = TRUE; // don't enable charge output
 // when detecting battery,
 // in terminate state or error state

 load_timer (0, 200);
 start_timer (0);
 batt_mon_state = BATT_MON_STATE_2;
 }
 break;
 }

 case (BATT_MON_STATE_2):{
 if (check_timer (0) == TIMER_TIMEOUT){
 batt_mon_state = BATT_MON_STATE_0;
 }
 break;
 }

 }

 switch (system_state){

 case (STARTUP_STATE):{

 system_state = DETECT_STATE;

 break;

 }

 case (DETECT_STATE):{

 switch (charger_mode){

 case (CHARGER_MODE_LION):{
 if ((battery_voltage >= LION_DET_V_MIN) && (battery_voltage <= LION_DET_V_MAX)){
 CHARGE_ENABLE = TRUE;
32 Application Note U17173EE1V0AN00

Chapter 9 Firmware Listing
 charge_in_progress = TRUE;
 minute_counter = 120; // 2 hours
 load_timer (1, 6000); // 1 minute period
 start_timer (1);
 system_state = CC_LION_STATE;

 }

 break;

 }

 case (CHARGER_MODE_NICD):{
 if ((battery_voltage >= NICD_DET_V_MIN) && (battery_voltage <= NICD_DET_V_MAX)){
 highest_battery_voltage = 2000; // initial (low) value
 CHARGE_ENABLE = TRUE;
 charge_in_progress = TRUE;
 minute_counter = 120; // 2 hours
 load_timer (1, 6000); // 1 minute period
 start_timer (1);
 system_state = CC_NICD_STATE;

 }

 break;

 }

 case (CHARGER_MODE_SLA):{
 if ((battery_voltage >= SLA_DET_V_MIN) && (battery_voltage <= SLA_DET_V_MAX)){
 CHARGE_ENABLE = TRUE;
 charge_in_progress = TRUE;
 minute_counter = 120; // 2 hours
 load_timer (1, 6000); // 1 minute period
 start_timer (1);
 system_state = CC_SLA_STATE;

 }

 break;

 }

 }

 break;

 }

 case (CC_LION_STATE):{

 if (charge_in_progress == FALSE) // battery removed
 system_state = DETECT_STATE;
 else if (safety_timer_expired == TRUE){
 safety_timer_expired = FALSE;
 system_state = TERMINATE_STATE;
 reset_timer (1);
 }
 else if (battery_voltage >= LION_TERM_VOLTAGE_NOM)
 system_state = CV_LION_STATE; // ready for constant voltage charge
 else
 cv_cc_control (LION_CC_CURRENT_NOM, battery_current);

 break;

 }

 case (CV_LION_STATE):{

 if (charge_in_progress == FALSE) // battery removed
 system_state = DETECT_STATE;
 else if (safety_timer_expired == TRUE){
 safety_timer_expired = FALSE;
 system_state = TERMINATE_STATE;
 reset_timer (1);
 }
 else if (battery_current <= (LION_CC_CURRENT_NOM / 10)){
 system_state = TERMINATE_STATE; // current has tapered down, battery charged

 }
 else
 cv_cc_control (LION_CV_VOLTAGE_NOM, battery_voltage); // apply constant voltage

 break;
33 Application Note U17173EE1V0AN00

Chapter 9 Firmware Listing
 }

 case (CC_NICD_STATE):{

 if (charge_in_progress == FALSE) // battery removed
 system_state = DETECT_STATE;
 else if (safety_timer_expired == TRUE){
 safety_timer_expired = FALSE;
 system_state = TERMINATE_STATE;
 reset_timer (1);
 }
 else if ((battery_voltage < (highest_battery_voltage - NICD_CHG_TERM_V)) && (battery_voltage
> (highest_battery_voltage - (2 * NICD_CHG_TERM_V))))
 system_state = TRICKLE_NICD_STATE; // ready for trickle charge
 else{
 cv_cc_control (NICD_CC_CURRENT_NOM, battery_current);
 if (battery_voltage > highest_battery_voltage)
 highest_battery_voltage = battery_voltage;
 }

 break;

 }

 case (TRICKLE_NICD_STATE):{

 if (charge_in_progress == FALSE) // battery removed
 system_state = DETECT_STATE;
 else if (safety_timer_expired == TRUE){
 safety_timer_expired = FALSE;
 system_state = TERMINATE_STATE;
 reset_timer (1);
 }
 else
 cv_cc_control (NICD_TRICKLE_CURRENT_NOM, battery_current);

 break;

 }

 case (CC_SLA_STATE):{

 if (charge_in_progress == FALSE) // battery removed
 system_state = DETECT_STATE;
 else if (safety_timer_expired == TRUE){
 safety_timer_expired = FALSE;
 system_state = TERMINATE_STATE;
 reset_timer (1);
 }
 else if (battery_voltage >= SLA_TERMINAL_VOLTAGE_NOM)
 system_state = CV_SLA_STATE; // ready for constant voltage charge
 else
 cv_cc_control (SLA_CC_CURRENT_NOM, battery_current);

 break;

 }

 case (CV_SLA_STATE):{

 if (charge_in_progress == FALSE) // battery removed
 system_state = DETECT_STATE;
 else if (safety_timer_expired == TRUE){
 safety_timer_expired = FALSE;
 system_state = TERMINATE_STATE;
 reset_timer (1);
 }
 else if (battery_current <= (SLA_CC_CURRENT_NOM / 50)){
 system_state = FLOAT_SLA_STATE; // current has tapered down, battery charged,
ready for float voltage

 }
 else
 cv_cc_control (SLA_CV_VOLTAGE_NOM, battery_voltage); // apply constant voltage

 break;

 }

 case (FLOAT_SLA_STATE):{

 if (charge_in_progress == FALSE) // battery removed
 system_state = DETECT_STATE;
 else if (safety_timer_expired == TRUE){
 safety_timer_expired = FALSE;
 system_state = TERMINATE_STATE;
 reset_timer (1);
34 Application Note U17173EE1V0AN00

Chapter 9 Firmware Listing
 }
 else
 cv_cc_control (SLA_FLOAT_VOLTAGE_NOM, battery_voltage); // apply constant voltage

 break;

 }

 case (TERMINATE_STATE):{

 CHARGE_ENABLE = FALSE; // disable charger output

 if (charge_in_progress == FALSE){ // wait for battery removal
 system_state = DETECT_STATE;

 }
 break;

 }

 case (FAILURE_STATE):{

 CHARGE_ENABLE = FALSE;

 break;

 }

 }

 }

}

// ===

void update_timers (void){

 char loop;

 for (loop = 0; loop < MAX_TIMERS; loop++){
 if (timer_block[loop].timer_value){ // if timer value is non-zero
 if (!--timer_block[loop].timer_value)
 timer_block[loop].timer_state = TIMER_TIMEOUT;
 }
 }
}

// ===

void load_timer (char timer_id, int timer_val){

 timer_block[timer_id].timer_value = timer_val;
 timer_block[timer_id].timer_state = TIMER_RUNNING;

}

// ===

char check_timer (char timer_id){

 return (timer_block[timer_id].timer_state);

}

// ===

void start_timer (char timer_id){

 timer_block[timer_id].timer_state = TIMER_RUNNING;

}

// ===

void reset_timer (char timer_id){

 timer_block[timer_id].timer_state = TIMER_IDLE;
 timer_block[timer_id].timer_value = 0;

}

// ===

void initialize_pwm (int initial_pw){

 PWM_OUT_PIN = FALSE; // set up PWM output
35 Application Note U17173EE1V0AN00

Chapter 9 Firmware Listing
 PWM_OUT_DIR = OUTPUT;

 TMC00 = 0x00; // stop timer TM00
 PRM00 = 0x00; // 1:1 prescale to TM00
 // *** CANNOT LOAD DCs < 50 as PWM running too fast ***
 CRC00 = 0x00; // CR000 operates as compare register
 CR000 = PWM_PERIOD;
 CR010 = initial_pw; // set PWM duty cycle
 TOC00.0 = 1;
 TOC00 |= 0x1B;
 TOC00 &= 0x13; // inversion enabled on match of CR000 and TM00
 // timer output F/F set (1)
 // inversion enabled on match of CR010 and TM00

 TMC00 = 0x0c; // 16-bit timer mode control register
 // 16-bit timer counter TM0n starts operation when TMC0n2 and TMC0n3 are set
 // Clear & start occurs on match between TM00 and CR000
 // inversion occurs on match between TM00 and CR000 or match between TM00 and
CR010

}

// ===

interrupt [INTTM000_vect] void timer00 (void){

 TMC00 = 0x00;
 wait_for_interrupt = FALSE;
 CR010 = global_pwm_value;
 TMC00 = 0x0C;

}

// ===

int get_adc_value (char channel){

 int adc_result;

 ADS = channel; // select ADC channel

 ADCS = TRUE; // start conversion
 while (!ADIF) // wait for EOC
 ;
 adc_result = (ADCR >> 6);
 ADCS = FALSE; // to stop continuous conversions
 ADIF = FALSE; // clear interrupt flag

 return (adc_result);

}

// ===

void write_pwm (int pwm_value){

 global_pwm_value = pwm_value;
 TMIF000 = FALSE;
 TMMK000 = ENABLED; // load PWM at end of period
 wait_for_interrupt = TRUE;
 while (wait_for_interrupt == TRUE)
 WDTE = 0xAC;
 TMMK000 = DISABLED;

}

// ===

void initialize_adc (void){

 ADM = 0x38; // ADC mode register
 ADS = 0x02; // analog input channel specification register
 PFM = 0x00; // power-fail comparison mode register - POR value
 PFT = 0x00; // power-fail comparison threshold register - POR value
 ADIF = FALSE;

}

// ===

void cv_cc_control (signed int setpoint, signed int parameter){

 signed int temp;

 temp = setpoint - parameter;
36 Application Note U17173EE1V0AN00

Chapter 9 Firmware Listing
 if (temp > 0)
 global_pwm_value++;
 else if (temp < 0)
 global_pwm_value--;

 if (global_pwm_value <= PWM_VAL_MIN)
 global_pwm_value = PWM_VAL_MIN;
 else if (global_pwm_value >= 254)
 global_pwm_value = 254;

 write_pwm (global_pwm_value);

}

// ===

void do_adc_conversions (void){

 char loop_1;
 char loop_2;
 int total;
 static char pointer;

 if (CHARGE_ENABLE == TRUE) // measure battery current if charger output enabled...
 data_samples[pointer][BATTERY_CURRENT] = get_adc_value(BATTERY_CURRENT);
 else // ...otherwise measure battery voltage
 data_samples[pointer][BATTERY_VOLTAGE] = get_adc_value(BATTERY_VOLTAGE);

 data_samples[pointer][CHARGER_VOLTAGE] = get_adc_value(CHARGER_VOLTAGE);
 data_samples[pointer][BATTERY_THERMISTOR] = get_adc_value(BATTERY_THERMISTOR);

 if (++pointer >= AVERAGING_POINTS)
 pointer = 0;

 for (loop_1 = 0; loop_1 < ADC_CHANNELS_USED; loop_1++){
 total = 0;
 for (loop_2 = 0; loop_2 < AVERAGING_POINTS; loop_2++){
 total += data_samples[loop_2][loop_1];
 }
 total /= AVERAGING_POINTS;
 data_samples [AVERAGING_POINTS][loop_1] = total;
 }

 battery_voltage = data_samples [AVERAGING_POINTS][BATTERY_VOLTAGE] * BATT_V_SCL_FACTOR;
 charger_voltage = data_samples [AVERAGING_POINTS][CHARGER_VOLTAGE] * CHG_V_SCL_FACTOR;
 battery_thermistor_value = data_samples [AVERAGING_POINTS][BATTERY_THERMISTOR];
 battery_current = data_samples [AVERAGING_POINTS][BATTERY_CURRENT] * BATT_I_SCL_FACTOR;

 if ((charge_in_progress == TRUE) && (battery_voltage < BATT_REMOVED_LIMIT)){
 charge_in_progress = FALSE; // then battery removed
 CHARGE_ENABLE = FALSE; // disable charger
 reset_timer (1);
 }

}

// ===
// ===
37 Application Note U17173EE1V0AN00

Chapter 9 Firmware Listing
38 Application Note U17173EE1V0AN00

[MEMO]

	Chapter 1 KSeries Introduction
	Chapter 2 Battery Charging Characteristics
	2.1 Nickel Cadmium
	Figure 2-1: Nickel Cadmium battery charging profile

	2.2 Lithium-Ion
	Figure 2-2: Lithium-Ion battery charging profile

	2.3 Lead-Acid
	Figure 2-3: Lead acid battery charging profile

	Chapter 3 Charger Basics
	Figure 3-1: Block Diagram of a Typical Charger, Showing NEC KSeries Peripheral Usage

	Chapter 4 The Step-Down (Buck) Converter
	Figure 4-1: The Buck Converter
	Figure 4-2: Switching Waveform at switch ‘S’
	Figure 4-3: Inductor waveforms

	Chapter 5 Charger Circuit
	Figure 5-1: Charger Schematic

	Chapter 6 Charger Firmware
	Figure 6-1: Possible battery thermistor configurations
	6.1 Program Flow
	Figure 6-2: Program Flow

	6.2 State Diagrams
	Figure 6-3: Lithium Ion charging state diagram
	Figure 6-4: Nickel Cadmium charging state diagram
	Figure 6-5: Sealed Lead Acid charging state diagram

	6.3 Battery Monitor
	Figure 6-6: Battery Monitor

	6.4 Function Descriptions
	6.5 Definitions

	Chapter 7 Other Charging Methods
	Figure 7-1: Use of external charger IC

	Chapter 8 Conclusion
	Chapter 9 Firmware Listing

