F1325 Operation at 450 MHz

- July 28, 2014
- AT0105
- Non Automated Measurements

Michael J. Virostko
Principal Product Application Engineer
(I) IDT

Integrated Device Technology
The Analog and Digital Company ${ }^{\text {m }}$

Agenda

> Introduction
$>$ Test Requirements
> Test Results

Introduction

> A customer is interested in using the F1325 DPD Demodulator with a RF frequency of 450 MHz .
> This demodulator has a switched LO and a Switched RF input paths which are currently specified at an RF frequency of 600 to 1100 MHz .
> The output is an I/Q signal in the 20 to 350 MHz range.
$>$ We will test per their request with exceptions.
> This is only for the non automated measurement for Return Losses and LO Isolations, RF Isolations.

Test Requirements (1)

$>$ Fixed IF Testing

- Output IF = 138 MHz
- RF 435 to 495 MHz in 10 MHz Steps
- High Side Injection (LO > RF)
- Conditions
\checkmark Case Temperature: $-40,+25$, and $+105^{\circ} \mathrm{C}$
\checkmark LO Power $=-3,0$, and +3 dBm
\checkmark Vcc $=+4.75,+5.00$, and +5.25 V
\checkmark Maximum Gain (Attenuation $=0 \mathrm{~dB}$)
- Parameters
\checkmark Gain
\checkmark Intermodulation Products, IP3, IP2
\checkmark Harmonics
\checkmark LO to IF Isolation
\checkmark Power Compression
\checkmark Current

Test Requirements (2)

> Fixed LO Testing

- Output IF = 108 to 168 MHz in 10 MHz Steps
- RF 435 to 495 MHz in 10 MHz Steps
- High Side Injection (LO > RF)
- Conditions
\checkmark Case Temperature: $+25^{\circ} \mathrm{C}$
\checkmark LO Power $=0 \mathrm{dBm}$
\checkmark Vcc $=+5.00 \mathrm{~V}$
\checkmark Attenuation $=0$ to 26 dB in 2 dB steps
- Parameters
\checkmark Gain
\checkmark Attenuator Accuracy
\checkmark Intermodulation Products, IP3, IP2

Test Requirements (3)

> Fixed IF

- Output IF = 138 MHz
- RF 435 to 495 MHz in 10 MHz Steps
- High Side Injection (LO > RF)
- Conditions
\checkmark Case Temperature: -40, 25, and $105^{\circ} \mathrm{C}$
\checkmark LO Power $=-3,0$, and +3 dBm
$\checkmark \mathrm{Vcc}=+4.75,+5.00$, and +5.25 V
\checkmark Maximum Gain (Attenuation $=0 \mathrm{~dB}$)
- Parameters
\checkmark Noise Figure
\checkmark Quadrature Parameters (I/Q Imbalance)

Test Requirements (4)

> Other Parameters

- Conditions
\checkmark Case Temperature: $+25^{\circ} \mathrm{C}$
\checkmark LO Power $=0 \mathrm{dBm}$
\checkmark Vcc $=+5.00 \mathrm{~V}$
- Parameters
\checkmark Return Losses - RF, IF, and LO Ports \checkmark Isolations
- RFA to RFB
- LOA to LOB
- LO to IF
- LO to RF

Test Setup for Return Loss and Isolation between RF and IF ports

Test Setup for Return Loss and Isolation between LO and IF

Test Setup for Return Loss and Isolation between LO and RF

Exceptions

> The RF and LO input capacitors (C17, C18, C19, C25) where changed from 160 pF to 390 pF .

- This will assure than the capacitor will not affect the RF signals.
$>$ The LO was rebiased by changing R20 from 2.8 kohms to 4.0 kohms.
- A previous task showed that doing this helps for operation at 450 MHz .
- Under normal operation Noise Figure is greater than 15 dB and will not be measured.

Test Case 4 (TC4):

> The following data was taken at the evaluation board connectors.
> The following parameters was varied:

- Case Temperature: $\quad-40,+25,+105^{\circ} \mathrm{C}$
- Applied Voltage: 5.00 V
- LO Frequency:

703 MHz

- LO Power:

0 dBm

- LO Input:
- RF Power:
- Attenuation:

LOA
$-10 \mathrm{dBm}$
0 dB (Maximum Gain)

- Frequency
\checkmark IF Band 10 MHz to 400 MHz
\checkmark RF/LO Band 300 to 1000 MHz

TC4: Port RFX Return Loss

F1325 Return Loss - RFX Port
LO = $703 \mathrm{MHz}, 0 \mathrm{dBm}$, LOA Selected
at Evaluation Board Connector

TC4: Port RFY Return Loss

F1325 Return Loss - RFY Port LO $=703 \mathrm{MHz}, 0 \mathrm{dBm}$, LOA Selected at Evaluation Board Connector

TC4: Port IF-I Return Loss

TC4: Port IF-Q Return Loss

F1325 Return Loss - IF-Q Port
LO $=703 \mathrm{MHz}, 0 \mathrm{dBm}$, LOA Selected
at Evaluation Board Connector

TC4: Isolation RFX to RFY

F1325 Isolation RFX to RFY LO = $703 \mathrm{MHz}, 0 \mathrm{dBm}$, LOA Selected
at Evaluation Board Connector

TC4: Isolation RFY to RFX

F1325 Isolation RFY to RFX LO = $703 \mathrm{MHz}, 0 \mathrm{dBm}$, LOA Selected
at Evaluation Board Connector

TC4: Isolation LOA to RFX

F1325 Isolation LOA to RFX
LO Power $=0 \mathrm{dBm},+25 \mathrm{C}$
at Evaluation Board Connector

TC4: Isolation LOA to RFY

F1325 Isolation LOA to RFY
LO Power $=0 \mathrm{dBm},+25 \mathrm{C}$
at Evaluation Board Connector

TC4: Isolation LOB to RFX

F1325 Isolation LOB to RFX
LO Power $=0 \mathrm{dBm},+25 \mathrm{C}$
at Evaluation Board Connector

TC4: Isolation LOB to RFY

F1325 Isolation LOB to RFY
LO Power $=0 \mathrm{dBm},+\mathbf{2 5} \mathrm{C}$
at Evaluation Board Connector

TC4: Isolation LOA to LOB

F1325 Isolation LOA to LOB
LO Power $=0 \mathrm{dBm},+25 \mathrm{C}$
at Evaluation Board Connector

TC4: Isolation LOB to LOA

F1325 Isolation LOB to LOA
LO Power $=0 \mathrm{dBm},+25 \mathrm{C}$
at Evaluation Board Connector

TC4: Isolation LOA to IF-I

F1325 Isolation LOA to IF-I
LO Power $=0 \mathrm{dBm},+25 \mathrm{C}$ at Evaluation Board Connector

TC4: Isolation LOA to IF-Q

F1325 Isolation LOA to IF-Q
LO Power $=0 \mathrm{dBm},+25 \mathrm{C}$ at Evaluation Board Connector

TC4: Isolation LOA to IF-I

F1325 Isolation LOB to IF-I
LO Power $=0 \mathrm{dBm},+25 \mathrm{C}$ at Evaluation Board Connector

TC4: Isolation LOB to IF-Q

F1325 Isolation LOB to IF-Q
LO Power $=0 \mathrm{dBm},+25 \mathrm{C}$
at Evaluation Board Connector

