

RL78

Application execution from RAM

R01AN2080ED0000 Rev.1.00 April 01, 2014

Introduction

Today, a lot of applications require the code execution from RAM like for example due to safety reasons or e.g. in case of bootloader for flash self-programming. Usually such an application have to be divided into two parts

- The main part that will be executed from flash. This part represents the main application like e.g. a boot-loader.
- Image within the main application which will be copied during the runtime to the RAM.

Considering the above described software concept there are several issues to be considered for development:

- How to create an application which will be stored in flash, but executed from RAM during the runtime?
- How to debug an application which is built within a different project?

This document will help you to set-up the above described two projects based on the IAR environment. The sample application related to this "Application Note" can be downloaded here:

http://www.renesas.eu/update?oc=QB-R5F10BMG-TB

For details please refer to "Chapter 4 Sample application".

Contents

1.	Com	nmon resources	3
2.	Crea	ate an application for execution from RAM	4
2.1	M	emory map	4
2	2.1.1	Scatter loading	5
2	2.1.2	Common linker file for shared information	5
2.2	2 CS	STARTUP	6
2.3	Re	eplacement of reset vector	8
2.4	Ge	eneral project options	9
2.5	5 In	struction fetch and pre-fetch in RAM	9
2.6	5 Li	nker configuration	10
2	2.6.1	Program entry	10
2	2.6.2	Output files	11
3.	Crea	ate the main application (located in ROM)	
3.1	Li	nker configuration	12
3	3.1.1	Memory mapping	12
3	3.1.2	Add binary image	12
3	3.1.3	Symbol definition for image access	13
3.2	2 De	ebugger configuration	13
3.3	Ac	ccess the image from C code	14
3	3.3.1	Copy image segments to RAM	14
3	3.3.2	Execute the RAM application function	14
3.4	De	ebugging	14
3	3.4.1	Software breakpoints usage within RAM	14
4.	Sam	ple application	15
4.1	Rı	un the sample application	15
5.	Web	osite and Support	16
_			-
Rev	ision	1 History	1
Gen	eral	Precautions in the Handling of MPU/MCU Products	2

1. Common resources

The separation of two applications requires a concept on how to handle common resources like e.g. RAM.

- RAM
 - Stack and heap definition
 - one stack and heap for both applications
 - separate stack for each application
 - SADDR and data RAM should be partitioned according to the application requirements
- SADOPTION byte
 - The OPTION BYTE will be define within one of the applications. All configurations within this option byte like e.g. watchdog shall be valid for both applications, because it cannot be changed during the run-time.
- Interrupts
 - By using the self-programming library there is a possibility to use a common interrupt service routine for all interrupts within RAM.

Following figure illustrates the memory mapping of both applications. Here the stack is used as common resource for both applications.

2. Create an application for execution from RAM

This chapter describes how to set-up an application which will be loaded via an image from the main application flash and executed from RAM. Please note that the below described configuration is based on one common Stack for both applications.

2.1 Memory map

Due to the fact that the application within RAM is a standalone application all the standard segments used by the Compiler/Assembler like RCODE, XCODE, FAR_I, FAR_CONST etc. have to be defined accordingly. The difference compared to the usual application is that this application will be executed from RAM and not from flash. That means the segments are initially located within the image (flash) and will be later copied segment by segment to the RAM and executed from there. Please note that it is not possible to copy the whole image directly in case the application has more than one segment.

The reason for this is that the segment location within the image might be different to the location within RAM and therefore all segments have to be copied segment by segment. Due to the fact that the application will be executed from RAM the linker has to be informed that the segment will be placed within flash, but executed from RAM. This can be done by the linker feature "scatter loading" which will be introduced within the next chapter.

2.1.1 Scatter loading

By using the linker "scatter loading" feature it is possible to place a segment within the flash, but execute it later from RAM. For this we need to define two segments:

```
-Z(CODE)XCODE=0xFF300-0xFF400
-Z(CODE)XCODE FLASH=0x100-0x200
```

The XCODE segment is a standard segment used by the Compiler for far code. It will be mapped to RAM. All the code will be compiled according to the defined address range. The XCODE_FLASH segment is just a segment which will be placed into flash and contains the image. After the definition of this two segments we can define the scatter loading feature which defines that the content of the segment XCODE_FLASH will be later executed from the segment XCODE in RAM. This will be done by the following instruction.

```
-QXCODE=XCODE FLASH
```

2.1.2 Common linker file for shared information

As described in Chapter "2.1 Memory map" the main application has to copy the code segment by segment to RAM. However, due to the fact that only the binary image is included the segment information is missing. The easiest way to solve this issue is to use a common XCL file which can be used for both application. You can include the common XCL file to your project specific XCL file by using the linker option '-f' like shown below.

-f common.xcl

Please note that here the absolute path is not used. To allow the linker to find this file within the correct path please add the search path to the linker within the IDE.

Category: General Options Status Category Settings
Category: Factory Settings General Options
General Options
C/C++ Compiler
Assembler
Custom Build Config Output Extra Output List #define Diagnostics Check
Build Actions
Debugger
E1
IECUBE Verride default program entry
Simulator O Entry symbolprogram_start
TK
STOOLKIT_DIRS\LIB\
\$PROJ_DIR\$\xcl\global +
Raw binary image
File: Symbol: Segment: Align:
OK Cancel

This common.xcl file can be even used for structuring the RAM resources for example to avoid segment overlapping. Please refer to the sample application which configures all the segments based on the definition within the common.xcl file.

2.2 CSTARTUP

The RAM application is a complete standalone application and therefore needs to perform the CSTARTUP. However, due to the fact that the CSTARTUP is already performed by the main application, the common resources like "Stack" etc. don't need to be re-initialized. That means we need a modified cstartup. The standard cstartup file can be copied from the IAR installation.

<IAR_INSTALL_PATH>\rl78\src\lib\cstartup.s87

Following adaptations have to be done.

• Remove stack segment placement, because the stack is already placed within the main application

```
_____
    2-
    ÷
           The stack segment.
           The stack size is defined in the linker command file
    ÷
           MODULE ?CSTARTUP
                  RSEG CSTACK: DATA: ROOT (1)
    *******
Remove reset vector placement
    :---
           The interrupt vector segment.
    ÷
    ÷
          Interrupt functions with defined vectors will reserve
          space in this area as well as conformingly written assembly
    ż
           language interrupt handlers
    2
    *----
                  COMMON INTVEC:CODE:ROOT(1)
    *******
    *******
                  DC16
                          program start
                                                       ; Reset vector
```

• Remove stack initialization

```
?C_STARTUP:
`@cstart`:
__program_start:
       DI
               MOV
                       A, #( NEAR CONST LOCATION & 1) ; Near/Far, set mirror a
 ......
               MOV1
                       CY, A.0
 ******
******
               MOV1
                       PMC.0, CY
 ******
               MOVW
                       SP, #sfe(CSTACK)
 ******
 ******
 ******
       ; Init stack segment for as the generated code may sometimes
       ; access the 4th byte of a return address before it is initialized
 *******
              MOVW
                      HL, #sfb(CSTACK)
               MOVW
                       BC, #LWRD(sizeof(CSTACK))
 *******
               CMP0
                       C
 ******
 ******
               SKZ
               INC
 ******
                       В
               MOV
                       A, #0xCD
                                      ; 0xCD to fool C-SPY's stack limit check
 *******
 ;;;;;;;loop_s:
                       [HL], A
               MOV
 *******
               INCW
                       HL
 ******
 ******
               DEC
                       С
               BNZ
                       loop s
 *******
 *******
               DEC
                       в
               BNZ
 ,,,,,,,,
                       loop s
       MOV
               CS, #0
```


• Remove copy process FAR_ID \rightarrow FAR_I from the cstartup.

Background of this issue is that we would like to avoid double copy process (one during cstartup and the other by user). Usually the FAR_ID segment is located within flash and contains the initialization data for pre-initialized ____far variables. This initialization values will be copied during the cstartup process into the FAR_I segment which is located in RAM. However, due to the fact that this application is located completely within RAM (after the user copy process) the segment copy process by cstartup can be skipped.

```
MODULE ?__INIT_FAR_I
       RSEG
               FAR T-DATA(0)
       RSEG
               FAR ID:DATA(0)
               RCODE : CODE : NOROOT (0)
       RSEG
       PUBLIC INIT FAR I
 INIT_FAR_I:
                First make sure FAR I and FAR ID have the same size
.......
               LIMIT sizeof (FAR_I) - sizeof (FAR_ID), 0, 0, "FAR_I and FAR_ID not same size"
......
.........
                ; Sanity check
               LIMIT (sfb(FAR I)-sfb(FAR ID))==0,0,0,"FAR I and FAR ID have same start address"
********
........
........
               ; FAR_I and FAR_ID must start at the same offset in a 64k page, unless sizeof
               ; FAR I is less than 64k, then it's enugh if both segments reside within a 64k
........
                  boundary
.......
               LIMIT (((sfb(FAR_I)^sfb(FAR_ID)) & 0xFFFF) == 0) || ( (sizeof(FAR_I) < 0x10000) && (((sfb(FAR_I)^sfe(FAR_I)) & 0xF0000) =
.......
........
*******
.........
                         LIMIT (sfb(FAR_I)^sfb(FAR_ID)) & 0xFFFF,0,0,"FAR_I and FAR_ID must start at the same offset into a 64k page"
.........
               NOV
                       ES, #BYTES(sfb(FAR_ID))
*******
               MOVW
                       HL, #LWRD (sfb (FAR ID))
.......
.........
               NOV
                       CS, #BYTES(sizeof(FAR ID))
                                                     ; CS is used as counter
               NOVW
                       AX, #LWRD(sizeof(FAR ID))
*******
.....
               NOVW
                       BC, AX
......
               CMP0
                       С
........
               SKZ
......
               INC
                       В
........
               CMP0
                       В
........
               SKZ
               INC
                       CS
                                                      ; counter
********
......
                       A, #BYTES(sfb(FAR_I))
               NOV
.........
               NOVW
                       DE, #LWRD(sfb(FAR_I))
               NOV
                       X, A
*******
;;;;;;;;loop:
......
               NOV
                       A, ES:[HL]
               хсн
........
                       A, X
               хсн
                       A, ES
*******
........
               XCH
                       А, Х
               NOV
                       ES: (DE) , A
........
.......
               XCH
                       A, X
........
               хсн
                       A, ES
.........
               XCH
                       A. X
               INCW
                       HL
********
.....
               NOV
                       А, Н
........
               OR
                       A, L
               SKNZ
........
                       ES
.....
               INC
........
               INCW
                       DE
               NOV
                       A, D
........
.....
               OR
                       A, E
......
               SKNZ
                       х
.........
               INC
               DEC
                       с
........
......
                       loop
               BNZ
.........
               DEC
                       в
               BNZ
*******
                       loop
               DEC
......
                       CS
                                                      ; counter
               BN2
                       loop
 ******
```

ENDMOD

• Define the CALL to the application RAM function and whether the standard exit function should be executed at the end or not. In our application we will not perform the exit function, because the RAM application should return to the main application located in ROM.

```
21
÷
        Enter main
2
        Call the actual "main" function
;
·----
        MODULE ?__MAIN_CALL
                RCODE:CODE:NOROOT(0)
        RSEG
        PUBLIC <u>MAIN</u>
PUBLIC `@cend`
                  MAIN CALL
                                      ; Renesas debugger specific
        EXTERN ram_main
        EXTERN exit
 MAIN_CALL:
              FAR MODEL
#if defined(
        CALL
                F:ram main
        RET
        ;;;;;;;;;CALL
                         F:exit
#else
        ;;;;;;;CALL
                       ram main
        ;;;;;;;;CALL
                         exit
#endif
`@cend`:
        STOP
                                          ; Should not return
÷
        ENDMOD
```

2.3 Replacement of reset vector

As described before the application within RAM doesn't have a reset vector. However, it is important to know from where the application starts, because the main application has to call the entry point. Usually the cstartup is the entry point for the application, but the cstartup is located within the RCODE segment which can be internally restructured, so that the address of the cstartup might be changed. For that reason it is necessary to define an address specific starting point which can be called by the main application independent of the RCODE location. The easiest way to do this is to place one branch instruction to the cstartup on a defined address.

END

2.4 General project options

Within the "General Options" menu the following settings shall be configured

- Code model = Far
 - Application will be executed from RAM and therefore the code model shall be configured for "Far" execution.
- "Use far runtime library calls" feature shall be activated
 - Due to the fact that the application might call the runtime library functions, the runtime library functions shall be called via the "Far" addressing method

Options for node "application_ram"
Category: C/C++ Compiler Assembler Custom Build Build Actions Linker Debugger E1 E1 E20 IECUBE Simulator TK Vear constant location Start address: Size (Kbytes): Mirror ROM O O Orford 47.75
OK Cancel

2.5 Instruction fetch and pre-fetch in RAM

On the RL78 device family it is mandatory to initialize the RAM before reading the data. The same applies to the area used for code execution from RAM. For that reason, it is important that the whole RAM area consumed by the application is initialized.

Please note that the pipeline of the RL78 devices performs an instruction pre-fetch of 10 bytes. Therefore the pre-fetch area after the last instruction has also to be initialized. The easiest way to do this is to extend the segment to be copied to RAM by 10bytes. The initialization will then be done by the copy process automatically.

2.6 Linker configuration

2.6.1 Program entry

Within the linker configuration the program entry shall be set to "defined application", because the reset vector will not be generated.

Options for node "appli	cation_ram"
Category: General Options C/C++ Compiler Assembler Custom Build Build Actions Linker Debugger E1 E1 E20 IECUBE Simulator TK	Corfig Output Extra Output List #define Diagnostics Check 4 Linker configuration file Image: Corfig Override default Image: Corfig Override default
	OK Cancel

2.6.2 Output files

For debugging purpose please configure the C-SPY output file and allow the extra output file for the binary image.

Options for node "applicat	ion_ram"					×
Category: General Options C/C++ Compiler Assembler Custom Build Build Actions Linker Debugger E1 E1 E20 IECUBE Simulator TK	Config Output Output file Ovemid application Format © Debug V With V W V A © Other Module-loo	Extra Output e default n_ram.d87 information for C runtime control r /ith I/O emulatior Buffered termina low C-SPY-spec Output format: Format variant: cal symbols:	List SPY modules al output fric extra intel-ext None clude all	#define Second (None f s output file ended	Fact Diagnostics dary output file or the selecter	tory Settings Check
					UK	Lancei

Within the extra output dialog the binary image can be defined.

Options for node "applicatio	n_ram"
Category: General Options C/C++ Compiler Assembler Custom Build Build Actions Linker Debugger E1 E1 E20 IECUBE Simulator TK	Factory Settings anfig Output Extra Output List #define Diagnostics Check () Generate extra output file Output file Image: Check () Image: Check () Image: Check () Output file Output default Image: Check () Image: Check () Image: Check () Format Output format: Image: Check () Image: Check () Image: Check () Format Output format: Image: Check () Image: Check () Image: Check () Format Output format: Image: Check () Image: Check () Image: Check () Format Output format: Image: Check () Image: Check () Image: Check () Format Output format: Image: Check () Image: Check () Image: Check () Format Output format: Image: Check () Image: Check () Image: Check () Image: Check () Format Output format: Image: Check () Output format: Image: Check () Image: Check () Image: Check () Image: Check

3. Create the main application (located in ROM)

Within the previous chapter we introduced the procedure on how to creation an application which will be execute from RAM. This chapter will describe how to integrate this application into the main application and run it from RAM.

3.1 Linker configuration

3.1.1 Memory mapping

To avoid any overlapping of segments defined within the RAM application the symbols defined in common.xcl file should be used. Please refer to chapter "2.1.2 Common linker file for shared information" for details.

3.1.2 Add binary image

The binary image generated within the RAM application project can be loaded via the linker option --image_input. The parameter for this option are defined as follows.

Please note that the usage of a binary image without a defined path is only possible, if the path is added to the search path of the linker. You can define it here:

In our application we will not access the symbol "app_ram_img_src_symbol" defined during the image load. Therefore the symbol is not referenced and will be removed by the linker due to optimization reason. To avoid the removal of the image the linker option "-g" can be used.

-gapp_ram_img_src_symbol

3.1.3 Symbol definition for image access

The image is now integrated into the project and so that we can define the access method to the functions, constant etc. within the image. There are several ways to do this, like e.g.

- Usage of C function pointers to access functions etc.....
- Definition of symbols within the linker file and access directly within the C code

Due to the fact that our RAM application is a standalone application we don't need to access each function separately. We only have to call the address where the branch instruction is located (see 2.3 Replacement of reset vector).

The branch instruction is mapped to the image start address and therefore we can use the symbol image start addr RAM defined in common.xcl as shown below.

-Dmy_app_ram=image_start_addr_RAM

The symbol my app ram will be later used as a function entry within the C code.

3.2 Debugger configuration

Since the binary image doesn't contains any symbol definition for debugging we have to load an additional file for symbol information. Load the symbol information from the C-SPY debug file within the debugger configuration here.

Options for node "appli	cation_rom"
Category: General Options C/C++ Compiler Assembler Custom Build Build Actions Linker Debugger E1 E1 E20 IECUBE Simulator TK	cation_rom" Factory Settings Factory Settings Setup Images Extra Options Plugins Ø Download extra image Path: Offset: 0 Ø Debug info only Ø Download extra image Path: Øffset: 0 Ø Debug info only Ø Download extra image Ø Ø Debug info only Ø Ø Debug info only Ø Ø Ø Debug info only Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø
	OK Cancel

Please check the check box "Debug info only", because the image itself is already loaded via the linker.

3.3 Access the image from C code

3.3.1 Copy image segments to RAM

First of all the image have to be copied segment by segment to the RAM. The segment address information within our sample is available from the common.xcl file and can be accessed within the C code like shown below.

Import the addresses from the common.xcl file by using the extern keyword.

extern ___far void ___far * XCODE_start_addr; extern ___far void * RAM_XCODE_start_addr; extern ___far void * XCODE size;

Implement a function for copy the segments from flash to RAM.

```
void copySegmentToRam(UCHAR __far *src, UCHAR *dst, ULONG size)
{
  while( size > 0) {
    *dst++ = *src++;
    size--;
  }
}
```

Note: Precondition for the above code is that the whole source segment is located within a 64KB flash page. If the segment overlaps two 64KB pages, the pointer increment "src++" is not enough, because it can be incremented within one 64KB page only. On IAR version V1.40.1 and later you can use the __huge pointer to avoid this problem.

Copy the segment by calling the copy function.

3.3.2 Execute the RAM application function

Within our sample the application within RAM is a standalone application and therefore we just need to call it. If the application is finished it will return to the application located in ROM.

First of all we have to define the function prototype by using the symbol defined within the ROM application xcl file.

extern ___far_func void my_app_ram(void);

After the copy process described within the chapter before we can call the function and execute code from RAM.

my_app_ram();

3.4 Debugging

3.4.1 Software breakpoints usage within RAM

The software breakpoints within RAM can only be used after the copy process of the segments is performed. Otherwise the breakpoint instruction within RAM would be deleted by the segment copy process.

4. Sample application

In order to provide you an easy start into the above described software concept, Renesas provides a sample application which covers all the described aspects. The sample application can be downloaded from the following site:

http://www.renesas.eu/update?oc=QB-R5F10BMG-TB

				1	
Family	Device	Package	File	Version	Issue date
RL78	R5F10BMG	Sample Code	StartupSampleQB-R5F10BMG- TB_V100.zip README: StartupSampleQB- R5F10BMG-TB_V100.pdf	V1.00	12-Dec-2012
RL78	R5F10BMG	Sample Code	AppliletSampleQB-R5F10BMG- TB_V100.zip README: AppliletSampleQB- R5F10BMG-TB_V100.pdf	V1.00	28-Nov-2013
RL78	R5F10BMG	Sample Code	RL78_F13_LIN_Slave_V100.zip README:	V1.0	06-Feb-2014
RL78	R5F10BMG	Sample Code	RAM_ExecutionSampleQB- R5F10BMG_TB_V100.zip README: RAM_ExecutionSampleQB- R5F10BMG_TB_V100.pdf	V1.00	01-Apr-2014
RL78	R5F10BMG	Sample Code	RL78_F13_LIN_Master_V100.zip README:	V1.0	06-Feb-2014
RL78	R5F10BMG	Sample Code	R5F10BMG_RSCAN_Lite_v1.5.zip README:	V1.5	05-Mar-2014

6 Software Package(s) available

This sample application is designed for the target board QB-R5F10BMG-TB where the RL78/F13 (R5F100BMG) device is mounted.

4.1 Run the sample application

Please follow the steps to run the sample application on your target board.

- 1. Unpack the sample application and open the workspace.eww file via RL78 IAR environment V1.30.5 or higher
- 2. Build application "application_ram".
- **3.** Build application "application_rom".
- 4. Connect the target board with E1 and start the debug session.
- 5. Press button "Go" to start the debug session. During the execution of the application "application_ram" in RAM the LED1 on the target board should blink.

Please note that the "application_ram" cannot be debugged as a standalone application. Start debug session for application "application_rom" only.

5. Website and Support

Renesas Electronics Website <u>http://www.renesas.com/</u>

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

Revision History

		Descript	ion	
Rev.	Date	Page	Summary	
V1.0	01/04/2014		Initial version	

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

- 2. Processing at Power-on
 - The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

— The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

— The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

	Notice	
1. Descriptions of circuits, software and other rela	ted information in this document are provided only to illustrate the operation of semiconductor products and ap	plication examples. You are fully responsible for
the incorporation of these circuits, software, and	d information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses in	ncurred by you or third parties arising from the
use of these circuits, software, or information.		
2. Renesas Electronics has used reasonable care	e in preparing the information included in this document, but Renesas Electronics does not warrant that such in	formation is error free. Renesas Electronics
assumes no liability whatsoever for any damag	es incurred by you resulting from errors in or omissions from the information included herein.	
3. Renesas Electronics does not assume any liab	ility for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from	the use of Renesas Electronics products or
technical information described in this docume	nt. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellect	tual property rights of Renesas Electronics or
others.		
4. You should not alter, modify, copy, or otherwise	misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes	no responsibility for any losses incurred by you or
third parties arising from such alteration, modifi	cation, copy or otherwise misappropriation of Renesas Electronics product.	
5. Renesas Electronics products are classified ac	cording to the following two quality grades: "Standard" and "High Quality". The recommended applications for	r each Renesas Electronics product depends on
the product's quality grade, as indicated below.		
"Standard": Computers; office equipment; comr	nunications equipment; test and measurement equipment; audio and visual equipment; home electronic applia	ances; machine tools; personal electronic
equipment; and industrial robots etc.		
"High Quality": Transportation equipment (auto	mobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipr	ment etc.
Renesas Electronics products are neither inten	ded nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (ar	rtificial life support devices or systems, surgical
implantations etc.), or may cause serious prope	rty damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of ea	ach Renesas Electronics product before using it
in a particular application. You may not use an	y Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not b	e in any way liable for any damages or losses
incurred by you or third parties arising from the	use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.	
6. You should use the Renesas Electronics produ	cts described in this document within the range specified by Renesas Electronics, especially with respect to th	ne maximum rating, operating supply voltage
range, movement power voltage range, heat ra	diation characteristics, installation and other product characteristics. Renesas Electronics shall have no liabilit	ty for malfunctions or damages arising out of the
use of Renesas Electronics products beyond s	uch specified ranges.	
7. Although Renesas Electronics endeavors to im	prove the quality and reliability of its products, semiconductor products have specific characteristics such as th	ne occurrence of failure at a certain rate and
malfunctions under certain use conditions. Fur	ther, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement	nt safety measures to guard them against the
possibility of physical injury, and injury or dama	ge caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardwa	are and software including but not limited to
redundancy, fire control and malfunction preven	ntion, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation	of microcomputer software alone is very difficult,
please evaluate the safety of the final products	or systems manufactured by you.	
8. Please contact a Renesas Electronics sales of	ice for details as to environmental matters such as the environmental compatibility of each Renesas Electronic	cs product. Please use Renesas Electronics
products in compliance with all applicable laws	and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU	J RoHS Directive. Renesas Electronics assumes
no liability for damages or losses occurring as a	a result of your noncompliance with applicable laws and regulations.	
9. Renesas Electronics products and technology	may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited	d under any applicable domestic or foreign laws or
regulations. You should not use Renesas Elec	tronics products or technology described in this document for any purpose relating to military applications or us	se by the military, including but not limited to the
development of weapons of mass destruction.	When exporting the Renesas Electronics products or technology described in this document, you should comp	bly with the applicable export control laws and
regulations and follow the procedures required	by such laws and regulations.	
10. It is the responsibility of the buyer or distributor	of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third part	ty, to notify such third party in advance of the
contents and conditions set forth in this docume	ant, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of	f unauthorized use of Renesas Electronics
products.		
11. This document may not be reproduced or dupli	cated in any form, in whole or in part, without prior written consent of Renesas Electronics.	
12. Please contact a Renesas Electronics sales of	ice if you have any questions regarding the information contained in this document or Renesas Electronics pro	oducts, or if you have any other inquiries.
(Note 1) "Renesas Electronics" as used in this do	cument means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.	
(Note 2) "Renesas Electronics product(s)" means	any product developed or manufactured by or for Renesas Electronics.	
	RENESAS	
SALES OFFICES	Renesas Electronics Corporation	http://www.renesas.com
Pofor to "http://www.roposos.com/" for the		http://www.renesas.com
Renesas Electronics America Inc	ז ומנסג מווט טכולוושט וווטווואנוטוו.	
2801 Scott Boulevard Santa Clara, CA 95	5050-2549, U.S.A.	

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: 1+4005-588-6000, Fax: 1+400-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada 11cl: 1+1095-888-5441, Fax: 1+1905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-9128-5657-00, Fax: +44-9228-5657-00, Fax: +44-922-858-900 Renesas Electronics China) Co., Ltd. Renesas Electronics China) Co., Ltd. Renesas Electronics (China) Co., Ltd. Romon 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +84-71-8235-1155, Fax: +861-08235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langoo Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-71-2226-0888, Fax: +862-91-2226-0999 Renesas Electronics Invers, 555 Langoo Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-71-2226-588, Fax: +861-9219044 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langoo Road, Putuo District, Shanghai, P. R. China 200333 Tel: +852-2226-5888, Fax: +852-9229044 Renesas Electronics Indig Cond Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2457-58070, Fax: +862-9175-9607 Renesas Electronics Singapore Pte, Ltd. 303, Fu Shing North Road, Taipei 10543, Taiwan Tel: +856-2475-9500, Fax: +862-9175-9607 Renesas Electronics Malaysia Sdn.Bd. Unit 306, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +86-6213-0200, Fax: +805-24510-0300 Renesas Electronics Malaysia Sdn.Bd. Unit 306, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +80-3-7935-930, Fax: +802-3-7935-930, Renesas Electronics Malaysia Sdn.Bd. Unit 306, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malay