Introduction

The proliferation of personal computers and especially video applications has created a requirement for sending high speed analog signals over twisted pair for short distances (up to 200 feet). Twisted pair data transmission is easy to set up, the wire cost is very low compared to coax, so it is becoming a popular replacement for coax. Most electronic signals exist in a single-ended format, so the signal must be converted to a double-ended or differential format prior to taking advantage of twisted pair data transmission schemes. The circuit described in Figure 1 converts single-ended analog or digital signals into a differential signal capable of directly driving a twisted pair cable.

Q1, Q2, and Q3 are one half of a HFA3102 dual long-tailed pair transistor array, and they are configured in Figure 1 to function as a linear differential amplifier. Because the transistors are matched they will yield nearly identical performance depending upon their bias circuits. The base of Q2 is biased at 1.24V, and the base voltage of Q1 ranges from 1.0V to 1.6V depending on the setting of R3. When R3 is set at 1.24V the signals are amplified equally by both transistors, thus R3 becomes a symmetry adjustment which can be used to obtain equal amplitude but opposite phase outputs at the collectors of Q1 and Q2. This criteria satisfies the definition of a differential signal.

The differential gain is 5 to 7 as configured in Figure 1. The gain is set in this range because a typical video signal is less than two volts in amplitude, and these low gains will not cause distortion. R5 adjusts the current through both transistors, and because the gain is proportional to the emitter current R5 functions as a gain control. If the gain range is too high float the inverting inputs (pins 3 and 6) of the HFA1212 programmable gain amplifiers, and the gain will fall to half of it’s previous value. If higher gains are required because longer twisted pairs must be driven, the differential output must be fed into a transformer which then drives the twisted pair cable. The transformer drive increases the signal amplitude without introducing distortion.

The circuit as shown will drive twisted pair cables directly. Each wire in the cable is connected to one of the differential outputs, and the cable is terminated at the receiving end in it’s characteristic impedance (about 100Ω). The frequency response for linear signals is shown in Figure 2, and it indicates a -3dB bandwidth of 200MHz. The frequency response of twisted pair cables falls off at higher frequencies, so the amplifier response curve is purposely peaked at higher frequencies in an attempt to compensate for this. The combination will yield a flatter overall frequency response curve. This driver when coupled with a differential receiver will reliably transmit data over 200 feet of twisted pair cable in the presence of several hundred millivolts of single-ended noise. Digital signals should be handled the same as video signals except that wide fluctuations in the digital data rate will cause skew because of the AC coupling.

FIGURE 1. SINGLE ENDED TO DIFFERENTIAL TWISTED PAIR DRIVER
FIGURE 2. FREQUENCY RESPONSE PLOT FOR THE SINGLE-ENDED TO DIFFERENTIAL TWISTED PAIR DRIVER
Notice

1. Descriptions of circuits, software, and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality.” The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 “Standard”: Computers, office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots, etc.

 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implants, etc.), or may cause serious property damage (space system; underwater repulsors; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to, redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics products” means any product developed or manufactured by or for Renesas Electronics.

(Rv. A-0-1 November 2017)