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Introduction

There are many benefits [1] which result from the use of 
feedback in electronic circuits, but the drawbacks are the 
increased complexity of the calculations and the opportunity 
for the resulting circuit to ring or oscillate. This paper employs 
graphical techniques to simplify stability calculations, thus 
enabling the designer to achieve a stable, well behaved circuit 
which meets all reasonable performance criteria. Now the 
designer can obtain the advantages of feedback without 
worrying about ringing or oscillation.

Development of the General Feedback Equation

Referring to the block diagram shown in Figure 1, Equation 1, 
Equation 2 and Equation 3 can be written by inspection if it is 
assumed that there are no loading concerns between the 
blocks. The no loading assumption is implicit in all block dia-
gram calculations, and this requires that the output imped-
ance of a block be much lower than the input impedance of 
the block it is driving. This is usually true by one or two orders 
of magnitude. Algebraic manipulation of Equation 1, Equation 
2 and Equation 3 yield Equation 4 and Equation 5 which are 
the defining equations for a feedback system.

VO = EA (EQ. 1)

E = VI - VO (EQ. 2)

E = VO/A (EQ. 3)

VO / VI = A/(1 + A) (EQ. 4)

E / VI = 1/(1 + A) (EQ. 5)

FIGURE 1. FEEDBACK SYSTEM BLOCK DIAGRAM

The parameter A, which usually includes the amplifier and 
thus contains active elements, is called the direct gain in this 
analysis. The parameter , which normally contains only 
passive components, is called the feedback factor. Notice 
that in Equation 4 as the value of A approaches infinity, the 
quantity A, which is called the loop gain, becomes much 
larger than one; thus, Equation 4 can be approximated by 
Equation 6. VO/VI is called the closed loop gain, and since 
the direct gain, or the amplifier response, is not included, the 
equation for the closed loop gain it is independent of ampli-
fier parameter changes. This is the major benefit of feedback 
circuits.

VO / VI = 1/ for A >> 1 (EQ. 6)

Equation 4 is adequate to describe the stability of any feed-
back circuit because all feedback circuits can be reduced to 
the this form through block diagram reduction techniques [2]. 
The stability of the feedback circuit is determined by setting 
the denominator of Equation 4 equal to zero.

1 + A = 0 (EQ. 7)

A = -1 = |1| / -180 (EQ. 8)

Referring to Equation 4 and Equation 8, it is observed that if 
the magnitude of the loop gain, A, can achieve one while 
the phase equals -180 degrees, the closed loop gain 
becomes infinity because of division by zero. Since this state 
is unstable, the circuit will oscillate, and it will oscillate at the 
frequency where the phase shift equals to -180 degrees. If 
the loop gain at the frequency of oscillation is slightly greater 
than one it will be reduced to one by the reduction in gain 
suffered by the active elements as they approach the limits 
of saturation, but if the value of A is much greater than one, 
gross nonlinearities can occur and the circuit may then cycle 
between saturation limits. Preventing instability is the 
essence of feedback circuit design, thus this topic will be 
touched lightly here and covered in detail later. A good start-
ing point for discussing stability is finding an easy method to 
calculate it. Figure 2 shows that the loop gain, A, can be 
calculated from a block diagram by opening current inputs, 
shorting voltage inputs, breaking the loop and calculating the 
response to a test input signal.

VTO / VTI = A (EQ. 9)

The block diagram techniques can be applied to op amps 
thus reducing the stability analysis to a simple task. The 
schematic for a non-inverting amplifier is shown in Figure 3, 
and the block diagram equivalent is shown in Figure 4. 
Equation 10 and Equation 11 are combined to yield Equation 
12 which describes the block diagram shown in Figure 4A, 
while block diagram transformations [3] are employed to get 
to Figure 4B.

FIGURE 2. BLOCK DIAGRAM FOR COMPUTING THE LOOP 
GAIN

VO = a(VI - VB) (EQ. 10)

VB = VOZ1/ (Z1 + Z2), IB = 0 (EQ. 11)

VO = aVI - aZ1VO/ (Z1 + Z2) (EQ. 12)
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FIGURE 3. NON-INVERTING CIRCUIT

The block diagram shown in Figure 4A is written by inspection 
of Equation 12. The block diagram shown in Figure 4B is 
derived from Figure 4A by block diagram manipulations. Equa-
tion 13 is derived from Equation 12 by algebraic manipulation, 
or it can be written by inspection of Figure 4B because the sys-
tem is shown in standard form.

FIGURE 4A. BLOCK DIAGRAM AS WRITTEN FROM EQUATION 12

FIGURE 4B. AFTER BLOCK DIAGRAM MANIPULATION

FIGURE 4. BLOCK DIAGRAM OF THE NON-INVERTING OP AMP 
AS SHOWN IN EQUATION 12

VO/VI = a/(1 + aZ1 / (Z1 + Z2)) (EQ. 13)

The loop gain, A, is equal to aZ1/(Z1+Z2), the closed loop 
gain, 1/, is equal to (Z1+Z2)/Z1, and the direct gain, A, is 
equal to the op amp gain, a. The loop gain can be determined 
from Figure 4B by inspection, or if the system block is not avail-
able the loop gain can be obtained directly from the amplifier 
schematic as shown in Figure 5. First set voltage sources to 
zero by grounding them, then open current sources, break the 
feedback loop at any convenient place and then calculate the 
loop gain. Remember, the output impedance of the op amp 
must be much lower than the feedback impedance so that 
block diagram techniques can be used. The test input is VTI, 
and it is amplified by the op amp gain, a. The op amp output, 
aVTI is divided by  before it is fed back as VTO .

FIGURE 5. NON-INVERTING OP AMP WITH INPUT GROUNDED
AND FEEDBACK LOOP BROKEN

(EQ. 14)

Referring to the inverting op amp configuration shown in Figure 
6, the analysis will be performed by working from the amplifier 
circuit to the block diagram. The closed loop gain equations 
are derived in references one and six as well as most elec-
tronic text books. The closed loop gain which is equal to 1/ is 
known to be -Z2/Z1; thus,  is calculated as Z1/Z2 with the 
minus sign indicating a negative input. Referring to Figure 6, if 
VI is set to zero and the loop is broken at the negative input to 
the op amp the circuit is identical to that shown in Figure 5.

FIGURE 6. INVERTING OP AMP SCHEMATIC

An examination of Figure 5 and Figure 6 reveals that the loop 
gain, A, is identical for both the inverting and non-inverting cir-
cuit configurations. The loop gain is the only parameter that 
determines stability, and it is not a function of the location of the 
inputs. Hence the loop gain for the inverting op amp is given to 
us by Equation 14. Now that A and 1/ are both known, A can 
be determined by multiplication to be aZ2/(Z1 + Z2). Since the 
direct gain and the loop gain are both known Figure 7 can be 
constructed from these quantities.

FIGURE 7. BLOCK DIAGRAM OF THE INVERTING OP AMP

Equation 15, which is the closed loop gain equation for an 
inverting op amp can be written directly from Figure 7. As (a) 
approaches infinity in Equation 15, the closed loop gain 
approaches -Z2/Z1.
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(EQ. 15)

The closed loop gain for the non-inverting circuit, 
VO/ VI = (Z1 + Z2) / Z1, is different from the closed loop gain for the 
inverting circuit, VO / VI = -Z2 / Z1. It will always be the case that the 
loop gain, hence the stability, is independent of the location of the 
inputs, but the closed loop performance is highly dependent on the 
placement of the input. Many circuits take advantage of this phe-
nomena to gain better performance as will be shown in the benefits 
section.

ANON -INV = a; which is  to AINV = aZ2 / (Z1 + Z2) (EQ. 16)

Comparing the block diagrams of the non-inverting and invert-
ing circuits reveals that their direct gains are different, and this 
explains why there are some slight performance differences 
between the configurations. The non-inverting circuit with the 
higher direct gain has less closed loop error; at a closed loop 
gain of 2 for both circuits the non-inverting circuit has a 3.5dB 
more loop gain. The inverting circuit is more stable for the 
same magnitude of closed loop gain; i.e., for a closed loop gain 
of 2, AINV = 0.33a and ANON-INV = 0.5a. Normally these dif-
ferences are minor, but they are pointed out because they may 
be taken advantage of or they can cause very subtle problems 
in unique situations.

There are many other op amp circuit configurations, but they 
will all reduce to these two basic forms; each of which is a vari-
ation of the basic feedback circuit shown in Figure 1. Letting Z1
and or Z2 equal various combinations of RLCs will give differ-
ent closed loop performance, but the analysis techniques 
remain the same. More complicated circuit configurations can 
all be reduced to these simple circuits through block diagram 
reduction techniques and superposition.

Benefits of Feedback

The tolerances and drift coefficients of passive components 
are much less than those associated with active components. 
If the circuit transfer function can be made to be dependent 
only on the passive component parameters it will be a much 
more stable circuit; feedback accomplishes this through the 
direct gain as shown here. Differentiating the closed loop 
Equation 4, with respect to the direct gain yields Equations 17 
and Equation 18 shown below. Notice that the percentage 
change in the closed loop gain is the percentage change in the 
direct gain divided by the loop gain. Thus for very high loop 
gains the initial accuracy and drift will be a function of the pas-
sive components rather than of the direct or amplifier gain. 
Although the feedback reduces the gain errors, other amplifier 
errors such as input voltage offset are not affected by the feed-
back because they occur as an input rather than within the 
feedback loop.

(EQ. 17)

(EQ. 18)

All amplifiers have noise and distortion characteristics associ-
ated with them, and low noise or low distortion amplifiers com-
mand a premium price. Very often feedback can be used at no 
cost increase to reduce the effects of distortion and noise. Both 
closed loop and open loop systems are shown in Figure 8 and 
Figure 9; notice that both systems have the same number of 
components except for the passive feedback elements.

FIGURE 8. CLOSED LOOP SYSTEM

FIGURE 9. OPEN LOOP SYSTEM

Equation 19 and Equation 20 are derived from the closed loop 
and open loop systems shown in Figure 8 and Figure 9. If 
Equation 19 is rewritten as shown in Equation 21 it is obvious 
that Equation 22 results when the quantity A1A2 approaches 
infinity as it will in an ideal system.

(EQ. 19)

(EQ. 20)

(EQ. 21)

 For A1A2 approaching infinity (EQ. 22)

Now let V0 and V1 represent the amplifier’s internal noise 
referred to the input, and let V2 represent the noise from the 
any other system components. Notice from Equation 22 that in 
the closed loop system V2 has disappeared, V1 is decreased 
proportional to the gain A1 and that the input noise has only 
been multiplied by the closed loop gain, 1/. Conversely, Equa-
tion 20 indicates that in the open loop system the input noise 
has been multiplied by A1A2 (which would be equivalent to the 
closed loop gain), that V1 is multiplied by A2 and that V2 is 
present. The feedback in the closed loop system has dramati-
cally reduced the noise from the sources which follow the 
amplifier A1 so this can become a big design advantage. In the 
closed loop system the amplifier A1 should be selected for it’s 
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excellent noise performance, but the amplifier A2 can be 
selected based on some other criteria such as cost. This option 
is not available in the open loop system.

Very often when driving low impedances like speakers, the out-
put amplifiers are driven as close to the power supply rails as 
possible to obtain the maximum dynamic range. One result of 
this practice is that some distortion of the signal occurs as 
active device parameters are driven so that they become non-
linear. This and most other sources of distortion usually occur 
in the output stages of the amplifier. Because the distortion 
occurs at the output it can be represented by V2 in Equation 
19, and this quantity goes to zero as the direct gain 
approaches infinity, so it is essentially eliminated by feedback. 
The connection from the speaker driver output to the preampli-
fier input in audio amplifiers is there to provide the feedback 
which reduces the amplifier’s distortion when the amplifier is 
driven to its limits. Some amplifiers such as guitar amplifiers 
purposely introduce distortion into the sound, so open loop 
amplifiers are used in these cases, but closed loop amplifiers 
are usually employed in high fidelity applications.

If the noise source, V1 , is set to zero in Equation 22, then the 
amplifier input noise represented by V0 is multiplied by the 
closed loop gain 1/. There is a method to further reduce the 
effects of V0 by using frequency discrimination methods. If V0
is examined as a function of frequency, it will be noticed that 
the noise is made up of many different frequency components, 
see Figure 10.

FIGURE 10. INSERTING AN IDEAL FILTER IN THE TRANSFER 
FUNCTION REDUCES NOISE

The signal of interest has a finite bandwidth, and if the noise 
bandwidth is larger than the signal bandwidth, the noise can be 
reduced by making the loop gain a function of frequency. 
Assuming that the noise bandwidth is 10KHz and that the sig-
nal bandwidth is 100Hz, the noise beyond 100Hz can be 
reduced to a minimum if 1/ is reduced to zero beyond 100Hz. 
One method available to accomplish this bandwidth reduction 
is through the ideal filter inserted in the closed loop, as shown 
in Figure 10. This filter can be approximated with passive com-
ponents.

The input and output impedance of the closed loop circuit can 
be controlled by the amount of feedback and by the circuit con-
figuration [4 ]. Through the use of feedback it is possible for the 
same amplifier IC to appear to have an output impedance 
approaching zero or approaching infinity, depending on the cir-
cuit configuration employed.

Another interesting aspect of feedback systems is that if a 
function is put in the feedback loop, in a manner similar to the 
feedback factor, , the inverse function will appear at the out-
put.

Graphical Representation of the Feedback Equation

The mathematical manipulations required to analyze a feedback 
circuit are complicated because they involve multiplication and 
division; H. W. Bode [5] developed a technique called a Bode 
plot which simplifies the analysis through the use of graphical 
techniques. The Bode equations are log equations which take 
the form of 20LOG (F(t)) = 20LOG (| F(t) |) + phase angle. Since 
these are log equations, the terms which were multiplied and 
divided can be now added and subtracted; thus, they can easily 
be solved graphically as will be shown. The transfer function for 
the integrator shown in Figure 11 is given in Equation 23.

FIGURE 11. INTEGRATOR CIRCUIT

(EQ. 23)

Where s = jand j = (-1)

The magnitude of the transfer function is given by the equation 
|VO / VI | = 1 /(1+(RC)2). The approximate magnitude or 
|VO / VI | =1 when  = 0.1/RC, | VO / VI| = 0.707 when  =1/ RC 
and | VO /VI | = 0.1 when  = 10 / RC. These values are plotted 
in Figure 12 using straight line approximations.

FIGURE 12. BODE PLOT OF INTEGRATING CIRCUIT TRANSFER 
FUNCTION

The downward slope of the amplitude curve in Figure 12 is -
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20dB/decade, and the point at which the slope changes, at  = 
1/RC, is termed the breakpoint. Reading the curve, it can be 
seen that gain initially is one, 0dB, at very low frequencies, fall-
ing off to 0.707, -3dB, at the break frequency and decreases at 
a rate of -20dB/decade for higher frequencies. The phase shift 
for the integrator is given in Equation 24 and plotted in Figure 
12. Notice that the phase shift is -45 degrees at the breakpoint 
where  = 1/RC.

 = -tangent-1 (1 / RC) (EQ. 24)

When the breakpoint occurs in the denominator, its slope is 
negative and is called a pole. Conversely, when the breakpoint 
occurs in the numerator, its slope is positive and it is called a 
zero.

The band reject circuit shown in Figure 13 has two poles, two 
zeros and a DC gain. Each pole and zero is plotted separately 
in Figure 14. The DC gain component is plotted as a straight 
line at -6dB because it is frequency independent. The two 
zeros in the numerator both occur at  = 1/RC; thus they are 
plotted on top of each other, and this results in a positive 
sloped line rising at 40dB/decade. The two poles in the denom-
inator occur at  = 0.44/RC and  = 4.56/RC, and they are 
each plotted with a negative slope of -20dB/decade.

FIGURE 13. BAND REJECT FILTER CIRCUIT

(EQ. 25)

Where s = j

FIGURE 14. BODE PLOT OF THE INDIVIDUAL COMPONENTS OF 
THE BAND REJECT FILTER

Each of the separate Bode plots shown in Figure 14 are com-
bined into one composite plot in Figure 15. The phase plots are 
treated much like the amplitude plots because the separate 
phase responses from the poles and zeros can be combined 
into one plot such as is shown in Figure 15. Now the complete 
amplitude or phase response of the circuit can be observed by 
looking at Figure 15. Although the phase shift at a pole is -45 
degrees, the plot indicates -5 degrees at  = 0.44/RC because 
the double zero located at  = 1/RC has already accumulated 

significant positive phase shift at the pole frequency. The non-
linearity of the phase plot, a result of the tangent function, makes 
it hard to approximate accurately when several poles and zeros 
congregate in the same vicinity.

FIGURE 15. COMPOSITE BODE PLOT FOR THE BAND REJECT
FILTER

Spacing the poles and zeros by a decade enables an accurate 
phase plot using approximate methods, but the circuit perfor-
mance criteria usually will not allow this luxury. The amplitude plot 
also becomes smeared by the close proximity of the poles and 
zeros, but the exact values are not usually plotted because the 
approximate values usually suffice for analysis  [6]. The demand 
for the phase accuracy stems from the oscillation or stability crite-
ria which is dependent on phase.

Applying logarithms to the system equations will enable a quick 
and rather complete analysis. Equation 4 is repeated in Equation 
26 in log form; i.e., both sides of the equation have been operated 
on by the function 20LOG10 (F(t)).

20LOG(VO / VI) = 20LOG(A) - 20LOG(1 + A) (EQ. 26)

As would be expected from the preceding analysis, the shape of 
the plot will be determined by the breakpoints, if any, contained in 
A or .The magnitude portion of the closed loop system equation 
is plotted in Figure 16 for the case where A and  are not a func-
tion of frequency. Notice that both plots are flat lines, and there is 
no phase plot. Obviously this case is trivial and of no interest to 
the circuit designer because it does not represent the real world 
since the gain of all amplifiers is a function of frequency  [7].

FIGURE 16. PLOT OF EQUATION 4 WHEN A AND  ARE NOT
FREQUENCY DEPENDENT

Most high gain amplifiers such as operational amplifiers have mul-
tiple poles, two per transistor, with the amplifier having as many as 
20 transistors leading to a potential of 40 or more poles. Normally 
only a few poles are important because the other poles occur at 
very high frequencies where the gain is less than one so that they 
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can not cause oscillation. In many amplifiers the manufacturer 
compensates the amplifier with a single pole usually called a 
dominant pole (fAMP), and the amplifier’s performance can be 
approximated by the transfer function A = a / (1 + j (f / fAMP)). Equa-
tion 4 is plotted in Figure 17 with the assumption that A is fre-
quency dependent and  is resistive or frequency independent.

FIGURE 17. PLOT OF EQUATION 4 WHEN A = a  / (1 + j (f /fAMP)) AND 
 IS FREQUENCY INDEPENDENT

The closed loop gain graphical approximation is constant until its 
projection intersects the amplifier gain at point X. The actual 
closed loop gain starts rolling off prior to point X, and it is down -
3dB at point X. If 20LOG(VO / VI) -20LOG(A) = -3dB then 
-20LOG(1 + A) = -3dB, and if the magnitude of (1 + A) is con-
sidered, then the square root of (1 + (A)2) = 1.414 resulting in 
A = 1. In other words, A = 1/ at the intersection of the two 
curves. There is a method  [8] of relating the phase shift, and 
thus the stability, to the slope of the curves at the intersect point, 
but this method will not be covered here in favor of the Bode A
method.

The dominant pole causes the open loop gain to have a break-
point at the frequency fAMP . The internally compensated op amp 
acts like a dominant pole characteristic so its AC parameters can 
be determined by referring to the “Open-Loop Frequency 
Response” curve contained in the data sheet. Although the curve 
is called “Open-Loop Frequency Response”, it really is the direct 
gain (A). Notice that the CA158 op amp as shown in the Intersil 
Corporation catalog [9] has a breakpoint which occurs at fAMP = 
5Hz., and the DC gain is 110dB. If the transfer function shown in 
Figure 17 was for the CA158 then the direct gain would be A = 
a / (1 + j (f / fAMP)), or A = 316,227 / (1 + j (f / 5)). Consider for a 
moment the difficulty and hence the probable error associated 
with measuring the DC gain and the break point. A popular 
method of measuring the op amp gain and phase is to configure 
the op amp in the inverting mode and then measure the error volt-
age; i.e., the voltage from the inverting input to ground. Then 
Equation 3, E = VO / A, is employed to calculate the op amp gain 
from the measured error. Assume that the op amp is configured in 
a gain of -100; then the direct gain is A = 100 / 101 times the op 
amp gain so a small offset must be accounted for because the 
measurement is not a direct measurement in the inverting circuit 
configuration. If the output voltage, VO , is kept small to guarantee 
small signal accuracy, say one volt, then for the CA158, VERROR
= 1/316,217 = 3.16V. Measuring this small voltage especially 
considering that noise may be present is a formidable task so 
designers must assume that there may be a considerable toler-
ance associated with these measurements. The numbers given in 
this paper are for explanation purposes; professional test engi-
neers will often configure the op amp with a gain of A = -10,000 
and then be measuring errors in the nano-volt range. These mea-
surements require considerable skill, and even then there may be 

a 24dB difference between the minimum specification point and 
the typical value such as in the HA5177 data sheet.

FIGURE 18. OPEN LOOP FREQUENCY RESPONSE OF THE 
HA2842C

Figure 18 is a plot of the gain phase relationship for a high fre-
quency op amp, the HA2842C. The DC gain is 90dB, and 
since the phase shift reaches -45 degrees at 1200Hz the first 
pole must occur at approximately 1200Hz. This is a high fre-
quency op amp so the internal compensation capacitor has 
been reduced significantly to increase the bandwidth available 
to the designer, and it is apparent that a second pole exists 
because the phase shift approaches -135 degrees at 70MHz. 
Looking closely at the point where the gain crosses the 0dB 
axis, and then following that constant frequency line, 120MHz, 
down to the phase curve indicates that the phase shift is about 
-165 degrees. This op amp is marginally stable, and the op 
amp is susceptible to stability problems unless external com-
pensation techniques are employed. The HA2842C can be 
modeled with a DC gain of 31,623, the first break point at 
1200Hz and the second breakpoint at 145MHz. The equation 
for the HA2842C is then A = 31,623 / (1 + j (f / 1200))(1 + j 
(f / 145E6)).

Stability as Determined from Loop Plots

A = -1 = |1|  /-180 (EQ. 27)

Equation 8 has been repeated above as Equation 27. If the 
magnitude of the gain is greater than one in Equation 27, the 
equation will be satisfied because the non-linear effects of the 
active devices as they enter saturation will reduce the gain to 
one. This is demonstrated in oscillator design where the 
designer must design for a worse case gain of at least one, so 
the circuit will oscillate under all conditions, and the nominal 
gain usually is much greater than one. The oscillator designers 
are caught in a trap, for if they design for a worse case low gain 
greater than one, then the worse case high gain will be much 
greater than one. In the low gain case, the circuit barely oscil-
lates, but the sinewave is very pure. In the high gain case, the 
circuit always oscillates, but there is significant distortion in the 
sinewave. Just as the oscillator designer must make compro-
mises for the sake of instability, so, the analog designer make 
compromises for the sake of stability. In the case of amplifier 
design, the phase shift must never become -180 degrees, at a 
gain greater than one, or oscillation will occur. The compromise 
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occurs when the amplifier designer trades off gain and / or 
bandwidth for positive phase shift because the methods which 
produce a safe phase shift tend to reduce gain or bandwidth, as 
will be shown later. In many cases oscillation is not the limiting 
factor because as the phase shift gets much greater than -135 
degrees, the amplifier output will have increasing overshoot and 
ringing. Plotting the loop gain gives great insight into both the sta-
bility and closed loop performance; stability will be discussed in 
this section and closed loop performance predictions from open 
loop plots will be discussed in the next section.

(EQ. 28)

where K = DC gain.

FIGURE 19. LOOP PHASE AND GAIN PLOT OF EQUATION 27

Figure 19 is used to help define the industry standard terms, 
phase margin, M, and gain margin, GM. Phase margin is a mea-
sure of relative stability, and it is defined as the amount of phase 
shift between the point where the loop gain equals 0dB and -180 
degrees. Equation 29 defines the phase margin mathematically.

M = 180 - tangent-1(A) (EQ. 29)

Gain margin is defined as the gain at the point where the phase 
equals -180 degrees. Gain margin is always a negative (dB), or 
less than one, in a stable system, and it does not contain much 
information about stability or closed loop performance. The phase 
margin shown in Figure 19 is approximately 16 degrees; attempt-
ing to measure the phase margin in Figure 19 points out how 
important it is to plot phase margin accurately. This circuit will be 
stable since the phase margin is positive; the phase shift cannot 
ever reach the -180 degrees required for oscillation if the circuit is 
to remain stable. Because the phase margin is very small, the 
overshoot will be very large, and the output will exhibit a damped 
oscillation commonly known as ringing. If the gain, K, were 
increased in the loop transfer function until it crossed the 0dB axis 
at -180 degrees phase shift, then the circuit would oscillate; thus, 
there is a definite limit on the loop gain. The loop transfer function, 
shown as Figure 19, is repeated in Figure 20 with the gain 
increased by a factor of C. Notice that indeed the -180 degree 
phase crossover point occurs prior to the 0dB crossover point, so 
the phase margin is negative and the circuit will oscillate. Con-
versely, the transfer function shown in Figure 20 does not even 
have enough gain at the -180 degree point to ensure oscillation 
under production tolerances, so the circuit is good for nothing in its 
present condition.

FIGURE 20. LOOP PHASE AND GAIN PLOT OF EQUATION 27 
WITH ADDED GAIN C

Extremely high gain systems have very low errors, but they are 
limited in the bandwidth they can obtain without oscillating, so 
designers resort to other techniques such as non-linear trans-
fer functions. An example of a high gain, accurate system 
which employs non-linear techniques to achieve stability, is a 
gyro stabilization platform which would go into a limit cycle if 
the gain was not reduced upon start-up.

If the second breakpoint, 1 / R2C2, were moved closer to the 
first breakpoint, then the circuit would accumulate phase shift 
from the breakpoint earlier and it may become unstable. Figure 
19 is repeated as Figure 21, where the second breakpoint has 
been moved closer to the first breakpoint. Notice that the -45 
degree phase point is not affected, the -135 degree phase 
point has moved in towards the -45 degree phase point, and 
that the -180 degree phase point occurs prior to the 0dB cross-
over point. Generally, moving the two poles closer together can 
cause instability.

FIGURE 21. LOOP PHASE AND GAIN PLOT OF EQUATION 27 
WITH 1/R2C2 CLOSER TO 1/R1C1

The single pole system cannot accumulate more than -90 
degrees of phase shift so it cannot become unstable; thus single 
pole systems will not be discussed here. This does not mean 
that an internally compensated op amp, which acts like a domi-
nant pole, cannot become unstable because all op amps have 
more than one pole. The proof of this is the data sheet, consider 
the HA2500  [10] which is internally compensated for unity gain, 
where the Open Loop Frequency and Phase Response curve 
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shows phase shifts beyond -90 degrees. Lots of good data can 
be gathered from these curves; i.e., the phase margin for the 
HA2500 is approximately 30 degrees so there will be some 
overshoot, and there is a second pole at about 3MHz. There is 
no such thing as an unconditionally stable op amp unless it lies 
on the table with power disconnected, because all op amps are 
multiple pole devices especially when stray capacitances are 
considered. This conclusion may lead someone to wonder 
where to draw the line when doing an analysis, and most engi-
neers draw the line at two poles because the mathematics are 
easy to handle. If required, they obtain a solution for larger sys-
tems through the use of superposition, but usually the poles are 
separated far enough for some of them to be ignored or the cir-
cuit is modified to achieve the separation. The next section will 
delve into the second order stability analysis more deeply. Poles 
and zeros always occur in pairs, although sometimes either the 
pole or zero may be at the origin or infinity, thus they will not 
always appear in the transfer function. Whenever a pole is 
referred to, its corresponding zero is also considered.

Predicting Stability and Performance from Closed Loop 
Plots

The closed loop AC performance of a feedback circuit is 
dependent on the order of the denominator equation which is 
often considered equivalent to the number of poles contained 
in the circuit. If the circuit has no poles then its AC performance 
does not vary with frequency. If the circuit has one pole then 
the closed loop AC performance is rather easy to describe; the 
gain on a Bode plot will be 20LOG(K) and the amplitude 
response will start falling off at the breakpoint with a -
20dB/decade slope. If the circuit has two or more poles the 
closed loop AC response is much more complicated, the circuit 
can overshoot, then ring and finally oscillate. The second order 
circuit, which contains two poles, is so popular that it is 
described extensively in the literature  [11], and it is the one that 
will be dwelled on here. Higher order circuits can usually be 
reduced to second order for closed loop performance analysis, 
so this analysis will be restricted to stability and closed loop per-
formance for second order circuits. Equation 7 is written here as 
Equation 30 with a second order loop transfer function substi-
tuted for A. Equation 31 is obtained from Equation 30 through 
algebraic manipulation.

(EQ. 30)

where  = RC

(EQ. 31)

Equation 32 is the standard second order control equation, and 
it is compared to Equation 31 to obtain Equation 33 and Equa-
tion 34 which define the damping ratio, , and undamped natu-
ral frequency,  N.

(EQ. 32)

 = 2f

(EQ. 33)

(EQ. 34)

The frequency where the magnitude of the loop transfer func-
tion, A, is equal to one is defined as the crossover frequency, 
 C; this is expressed in Equation 35 with  C substituted for . 
Then Equation 35 is algebraically manipulated to obtain Equa-
tion 36 from which the phase functions shown in Equation 37 
and Equation 38 are obtained.

(EQ. 35)

C
4 + 2N 2C 2-N

4 = 0 (EQ. 36)

(EQ. 37)

(EQ. 38)

Considering the transfer function shown in Figure 22, if the 0dB 
crossover frequency,  =  C , occurs well after the break fre-
quency, 1 / 2, then Equation 39 can be simplified to Equation 
40. Solving Equation 40 for  C yields Equation 41.

20LOG(A) = 20LOG(K) -20LOG(1 + 21
2)1/2

-20LOG(1 + 22
2)1/2 (EQ. 39)

20LOG(A) = 20LOG(K) - 20LOG(1) 
-20LOG(2) for  » 1/2 (EQ. 40)

(EQ. 41)

FIGURE 22. PHASE MARGIN AND PERCENT OVERSHOOT AS A 
FUNCTION OF DAMPING RATIO

Figure 22 is a plot of Equation 38; now the phase margin is 
expressed in terms of known quantities so it can be calculated 
from a knowledge the pole locations. The estimation procedure 
is to determine the pole locations from knowing the op amp 
pole locations and from the external circuitry. Once the pole 
locations and the gain are known or estimated the phase mar-
gin, damping ratio and cutoff frequency can be calculated. 
Then using Figure 22 yields the percent overshoot. The pole 
locations and gain can be varied to obtain different solutions to 
the problem. After all of this data is satisfactory, then the loop 
transfer function should be plotted to determine stability. While 
only the poles were used in the estimation procedure, both the 
poles and zeros must be used to plot the open transfer func-
tion. After several iterations a workable solution should pop out 
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if one exists. Remember that this procedure is an approxima-
tion, thus it must always be verified in the laboratory.

Compensation Schemes

All op amps are compensated; some are compensated with 
internal components thus saving the designer time and money. 
Many op amps are not compensated internally because leav-
ing out the compensation gives the designer an extra degree of 
freedom, and these op amps must have some kind of external 
compensation or they will oscillate. The internally compen-
sated op amps are usually compensated with a method called 
‘dominant pole’ or ‘lag’ compensation several forms of which 
are shown in Figure 23.

FIGURE 23. EXAMPLES OF DOMINANT POLE COMPENSATION

Dominant pole compensation circuits tend to be associated with 
the op amp, and they usually are not part of the feedback circuit. 
The loop transfer function for an op amp is shown in Figure 24 in 
solid lines. There are two poles accumulating phase shift prior to 
the 0dB crossover point; thus this circuit may very well be unsta-
ble. The first pole, 1/1, is the low frequency break point of the 
op amp, and the second pole, 1/ 2, is the high frequency break 
point. Since these pole locations are inherent in the op amp 
design, the circuit designer must live with them, but the effects of 
these poles can be modified with external feedback compo-
nents. Locating the dominant pole, 1/ DP  , so that the 0dB cross-
over point coincides with the first op amp pole,1, yields a phase 
margin of 45 degrees. By locating the dominant pole zero cross-
ing at 1/1 the circuit sacrifices significant bandwidth which can 
be regained by moving the pole further out. The exact pole 
placement will be a function of the circuit specifications such as 
the allowed overshoot or the bandwidth required.

FIGURE 24. DOMINANT POLE COMPENSATION PLOT

Because of the loop gain loss and the bandwidth loss dominant 

pole compensation is only used inside the op amp, when the 
closed loop bandwidth requirements are not great, or if noise 
reduction is desired. A simpler method of compensating the op 
amp is with gain compensation. Consider Equation 14 which is 
repeated here as Equation 42; this equation is for the loop gain 
and it is valid for both inverting and non-inverting op amps. If 
the closed loop inverting gain is increased to 9, then Equation 
42 becomes A/10 a decrease of 20dB in the DC intercept. Plot-
ting these results in Figure 25 reveals that the circuit has 
become stable without much of a bandwidth reduction.

(EQ. 42)

FIGURE 25. GAIN COMPENSATION

The occasion always arises where the closed loop gain must 
be one or less, thereby precluding the use of gain compensa-
tion; thus the designer must resort to other techniques to 
achieve the circuit performance. An alternate method of com-
pensation is called lead compensation, and it consists of put-
ting a zero in the loop transfer function to cancel out one of the 
poles. The best place to locate the zero is on top of the second 
pole, since this cancels the negative phase shift caused by the 
second pole. The schematic of a circuit which employs lead 
compensation is shown in Figure 26, and Equation 43 is for the 
loop transfer function.

FIGURE 26. LEAD COMPENSATION

The zero in Equation 43 occurs before the pole, so it can be 
used to cancel out the pole at 1/ 2 by placing the zero on top of 
the pole. Now the 135 degree phase shift point has moved out 
to 1/RF||RICs yielding better phase margin. There are always 
compromises to be made when designing a feedback circuit, 
and the one made here is to add external components. If the 
op amp has additional poles close to 1/ 2, and many op amps 
do, then the pole placement is critical. Some op amps have so 
many poles in the area of 1/ 2 that this method of compensa-
tion cannot be used.

(EQ. 43)

Unless specified otherwise, the amplifier gain (a) will be 
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assumed to have the form a = K / (1 + 1s)(1 + 2s).

FIGURE 27. LEAD COMPENSATION PLOT

Sometimes a good look at the problem reveals a potential solu-
tion, so the case of stray input capacitance will be investigated. 
An inverting amplifier with a stray input capacitance, CI, is 
shown in Figure 28. Looking at Equation 44 for the open loop 
transfer function, it is obvious that the stray capacitance adds a 
pole to the transfer function, and if the added pole is close to 
1/ 2 the circuit will become unstable. The capacitor, CF shown 
in dotted lines, is added to the circuit to yield the transfer func-
tion shown in Equation 45. Inspection of Equation 45 reveals 
that if RICI = RFCF , then the poles and zeros in the transfer 
function will cancel each other, and the transfer function will 
appear to be independent of frequency. This type of compen-
sation is named after the same idea used in the compensated 
attenuator, which is an old instrument design trick. Which just 
proves that little in circuit design is really new.

FIGURE 28. COMPENSATED ATTENUATOR CIRCUIT
SCHEMATIC, GAIN PLOT AND PHASE PLOT

No CF:

(EQ. 44)

CF in circuit:

(EQ. 45)

There are times when an extra degree of freedom is required 
and the lead-lag, sometimes called the feed-forward, form of 
compensation yields this freedom. This method of compensa-
tion puts a pole and a zero in the loop transfer function. If the 
pole and zero locations must be independent of each other, 
then separate compensation networks need to be used. An 
example of this would be to use a lag circuit similar to that 
shown in Figure 24, and a lead circuit similar to that shown in 
Figure 26. The lead and lag would then be independent in the 
example so they could be placed conveniently for compensa-
tion purposes. The circuit shown in Figure 29 has both a pole 
and a zero, but their placement is not independent.

(EQ. 46)

FIGURE 29. LEAD-LAG COMPENSATION SCHEMATIC AND A 
AMPLITUDE PLOT

Referring to Figure 29, it can be seen that the lead-lag com-
pensated circuit crosses 0dB at a lower frequency than the 
uncompensated circuit, thus the compensation has made the 
circuit more stable. Also, the transfer function of the compen-
sation has been shown in Figure 29 for clarity. There is an 
additional advantage to lead-lag compensation in that it yields 
higher gain at high frequencies. The closed loop gain plots, 
Figure 30, show that the zero precedes the pole; the poles and 
zeros interchange when the plot changes from the loop gain to 
the closed loop gain. Also, the high frequency gain is empha-
sized with lead-lag compensation. The high frequency empha-
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sis may be desirable when a high overall gain is needed, but 
some unwanted effects, such as DC offset, must be minimized. 
The lead-lag method of compensation usually requires the pre-
cise placement of the poles and zeros so a detailed and accu-
rate [12] phase plot is generally constructed for this case.

FIGURE 30. LEAD-LAG CLOSED LOOP GAIN PLOTS FOR COM-
PENSATED AND UNCOMPENSATED CIRCUITS

Comparison of Compensation Results

Dominant pole compensation is the easiest method of 
compensation to implement within an IC, but it rolls off the 
closed loop gain so quickly that it is seldom used except in op 
amp design. The circuit resulting from dominant pole design is 
very well behaved because the phase margin is usually about 
45 degrees, but the frequency response is very poor. If the 
transfer function for the HA2842C shown in Figure 18 is com-
pensated by dominant pole compensation, the pole would be 
placed at 1200Hz; the loop gain when moving to a lower fre-
quency would then rise at a rate of 20dB/decade until it hit the 
90dB point at 0.06Hz. This is an effective bandwidth reduction 
of 4.5 decades, from 120MHz to 1200Hz, so this method is 
only used when no other type of compensation is available, 
noise reduction is more important than bandwidth or bandwidth 
is not important. 

Gain compensation is always the preferred method of 
compensation if the resulting higher closed loop gain meets the 
performance criteria, but many times the design specifications 
call for a buffer or an inverter both with a gain of one, which 
precludes gain compensation. Gain compensation does not 
require any additional external components beyond the gain 
setting resistors, it preserves the op amp bandwidth and it is 
easy to implement. In a single pole system, increasing gain will 
reduce the bandwidth by the same factor.

Lead compensation offers an AC compensation which can func-
tion for any DC gain, and it is has a much higher frequency 
response than dominant pole compensation. One deficiency 
with lead compensation is that the DC gain, the zero and the 
pole are all tied together tightly. For example if the HA2842C 
shown in Figure 18 is lead compensated for a closed loop gain 
of -1 then RI = RF . This means that the pole and zero are only 
separated by an octave so the compensation must be done in 
an area of the loop gain plot which is very close to 0dB. Observ-
ing Figure 18, it can be seen that the best place that lead com-
pensation can improve stability significantly is at the second pole 
where the phase equals -135 degrees phase shift and the fre-
quency is 75MHz. Placing the zero at 75MHz yields a phase 
margin of about 60 degrees resulting a nice stable circuit with 
10% overshoot per Figure 22. The closed loop response equa-
tion is VI/VF = R / RI1 / (RFCs + 1), and the closed loop gain is -1 
until it reaches the frequency f =1/2RFC, 150MHz, where it is 
down by -3dB. Lead compensation rolls off the closed loop fre-
quency response dramatically.
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The compensated attenuator approach works well for negating 
the effects of an input capacitance because both the open loop 
and closed loop transfer functions have a flat frequency 
response. Also, the compensation required is very small. 
When the output resistance of an op amp gets very high, the 
stray capacitance seen across the resistor acts like a lead cir-
cuit and rolls off the high frequency gain. Adding an input 
capacitor, the reverse of attenuator compensation, serves to 
restore the high frequency performance. Both digital-to-analog 
converters and optical receiving diodes have large associated 
capacitances, so when they are put into the input circuit of an 
op amp, often in an I-to-V converter configuration, the circuit 
oscillates. The compensated attenuator tames these circuits, 
but beware, the compensation must consider the worst case 
especially for current DACs which have a wide range of output 
capacitance.

The lead-lag compensation scheme is very similar to the lead 
compensation scheme but it has two advantages. First, setting 
the DC gain does not fix the pole zero separation, so for low 
gains the pole and zero could be separated by more than an 
octave. Second, a zero shows up in the closed loop transfer 
function where it increases the gain at high frequencies. The 
combination of these two advantages are great enough to out-
weigh the cost of the extra components added to the circuit.

The compensation techniques demonstrated here serve as a 
good foundation for feedback circuit design, but like all founda-
tions it is meant to be built on  [13]. There are other methods of 
treating compensation such as closed loop stability plots, Nich-
ols charts, root locus plots and Nyquist analysis. Each tech-
nique offers some advantages and disadvantages; the Bode 
method simply is the author’s personal choice so the other 
techniques deserve investigation.
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Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for 

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by 

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or 

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application 

examples. 

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by 

you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the 

product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic 

equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are 

not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause 

serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all 

liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or 

other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the 

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation 

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified 

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a 

certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas 

Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury 

or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to 

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult 

and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and 

sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics 

products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable 

laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws 

or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or 

transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third 

party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1)  “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2)  “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.


