Introduction

Industrial RS-485 networks often span long distances. A single bus segment, which is the direct link between remote bus nodes without a repeat function in between, can reach up to 1200m (4000ft) in length.

Since bus nodes receive their voltage supplies from different locations within the electrical installation, nodes remotely located from one another can experience large differences in ground potential.

Ground Potential Differences (GPDs) are the main contributor to the overall Common-Mode Voltage, \(V_{CM} \), on a data link (Figure 1), and thus present the main cause for corrupted data transmission and even transceiver damage, when exceeding the transceiver Common-Mode Voltage Range (CMVR).

Ground potential differences originate as voltage differences between remote Protective Earth (PE) locations within the electrical installation or mains system. The voltage differences are caused by the large neutral currents of nonlinear loads. Depending on the applied earthing system, these voltages appear at the various PE locations as attenuated or non-attenuated voltage potentials.

The PE potentials are then projected onto the bus node ground through the bus node power supply, whose DC output ground is usually connected to the local PE.

To help designers develop networks immune to ground potential differences, this application note explains the origin and waveforms of GPDs in detail, and suggests design solutions for various common-mode voltage ranges.

Linear and Nonlinear Loads

Office and factory buildings typically operate a large number of linear and nonlinear loads. The category of linear loads mainly consists of incandescent lamps. Nonlinear loads however, consists of a wide range of diverse equipment, including PCs, laser printers, fluorescent tubes, heater controls, uninterruptible power supplies, and variable speed drives.

While the phase currents of linear loads are sinusoidal, nonlinear loads often introduce large harmonics that distort phase currents, see Figure 2.

This harmonic content mainly consists of the 3rd and 5th harmonics of the 50/60Hz mains frequency. At peak consumption times, the vector sum of a distorted phase current, consisting of the fundamental and all harmonics, can exceed the fundamental phase current by more than 100%.

In the case of nonlinear loads, however, the sum of the individual distorted neutral currents of different phases, results in a total neutral current, mainly consisting of the 3rd harmonic of the 50/60Hz mains frequency (Figure 4).

Generally, it can be said that the neutral currents of nonlinear loads generate higher voltage drops across the line resistances within the electrical installation than linear loads.
Earthing Systems

The two most commonly applied earthing schemes are the TN-C-S and TN-C systems, shown in Figures 5 and 6.

TN stands for French Terre Neutral, meaning the Neutral is grounded to Earth at the mains transformer. The letter C indicates the combined use of Protective Earth and Neutral via one conductor, from the transformer to the service entrance, designated as PEN. The letter S indicates the separate runs of PE and neutral conductors through the entire installation.

For a given contingent of nonlinear loads, TN-C earthing will generate larger differences in PE potentials than the TN-C-S scheme. Making matters more complex, many companies have applied both earthing schemes during the various expansion stages of their mains system.

DC-Ground to Mains Link

The link between the transceiver ground of a bus node and the local PE is provided by the bus node power supply, converting the line voltage into the required transceiver supply.

Figure 7 shows a simplified block diagram of a typical Switched-Mode Power Supply (SMPS), utilized in computers, printers and other equipment.

Data Link Design

Because layout, wiring, and performance of an electrical installation are outside the designer's control, it is assumed that ground potential differences exist. Therefore, there is the option to either identify bus transceivers that can tolerate large GPDs, or electrically isolate the entire data link from its mains-powered bus node supplies.

Ground potential differences are commonly determined through measurements at various locations in the electrical installation during peak-usage hours. In building and factory automation, GPDs can range from 2V up to 20V. For these applications, Intersil offers various transceiver families with an extended Common-Mode Voltage Range (CMVR), listed in Table 1.

<table>
<thead>
<tr>
<th>FAMILY</th>
<th>CMVR (V)</th>
<th>OVP (V)</th>
<th>CABLE INV.</th>
<th>VCC (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISL3243X</td>
<td>±15</td>
<td>±40</td>
<td>Y</td>
<td>3 - 5</td>
</tr>
<tr>
<td>ISL3247X</td>
<td>±15</td>
<td>±60</td>
<td>N</td>
<td>5</td>
</tr>
<tr>
<td>ISL3245X</td>
<td>±20</td>
<td>±60</td>
<td>Y</td>
<td>3 - 5</td>
</tr>
<tr>
<td>ISL3248X</td>
<td>±25</td>
<td>±60</td>
<td>Y</td>
<td>5</td>
</tr>
<tr>
<td>ISL3249X</td>
<td>±25</td>
<td>±60</td>
<td>N</td>
<td>5</td>
</tr>
</tbody>
</table>
Figure 8 shows a typical application of a 250kbps data link using ISL32492E. This transceiver operates reliably over a common-mode voltage range of ±25V. The device also provides fault protection of up to ±60V to protect its bus terminals against overvoltages from 24V DC power lines that might get shorted to adjacent running bus lines due to wiring faults or breaks in the cable insulation.

In applications, such as variable frequency drives of motor controls, GPDs can reach up to several hundreds of volts. Here the bus node design requires a galvanically isolated transceiver that electrically separates its supply and data lines on the bus side from the ones on the control side (Figure 9).

Since isolation removes the direct link between transceiver ground and local PE, the PE potentials of the mains are no longer projected onto the data link. The transceiver grounds are, therefore, floating and have no common-mode relation between one another.

Isolated RS-485 transceivers can reliably operate over a common-mode voltage range that is only determined by the isolator's working voltage, which is typically in the range of ±400V to ±600V.

Their design contains a digital signal isolator that blocks high common-mode voltages across the isolation barrier and an RS-485 transceiver with standard CMVR (-7V to +12V).

Integrated designs containing both, the isolator and the transceiver dies within the same package, provide significant space savings in space constrained applications.

Figure 10 shows an isolated PROFIBUS interface using the 40Mbps transceiver, IL3685 (NVE Corporation).

Discrete designs utilize stand-alone digital isolators and transceivers. While more space consuming, a discrete design allows the individual selection of isolator and transceiver components based on a device's specific performance features. This enables the fine tuning of certain parameters, such as low-power, low emissions, and maximum drive capability, to the requirements of the respective application.

For example, Figure 11 shows the combination of the ultra-low power, magnetic isolator, ADuM1441, and the micropower transceiver, ISL32601E, for a low-power application with total supply current of 300µA at 10kbps.

Figure 12 shows the GMR isolator, IL717, in combination with an ISL3152E transceiver for minimum radiated emissions passing CISPR-22B requirements and a maximum drive capability of VOD-min = 1.5V across a 150 differential load, equivalent to a DC load of 12800 ISL3152E transceivers, or a maximum cable length of 8660ft (2640m).
Summary

Earth potential differences of the mains are projected onto the RS-485 data link via the bus node power supplies. Transceivers with extended common-mode range can operate over ground potential differences of up to ±25V. Higher GPDs require isolated transceivers, electrically separating the data link from the mains.
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third-parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment, industrial robots, etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.), traffic control (traffic lights), large-scale communication equipment, key financial terminal systems, safety control equipment, etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implants, etc.), or may cause serious property damage (space system; underground networks; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.