The ZVS (Zero Voltage Switching) full-bridge topology has been around for many years and has become the industry’s workhorse. One of the drawbacks to this topology is the additional wave shaping circuitry required to produce the correct gate drive signals. This has been resolved with Intersil products such as the ISL6752 and ISL6753. These components have not only simplified the design of the ZVS full-bridge but have included additional features that are useful to the designer.

Scope
This document provides some helpful information and tips in designing with the ISL6752 and ISL6753 for the ZVS full-bridge topology. This includes such tips as setting the resonant and synchronous rectifier timings. More helpful information is available in application notes AN1002 and AN1246.

Resonant Timing and Energy
One of the key operations for the ZVS full-bridge is setting the delays to turn on the lower MOSFETs based on the resonant timing. This is accomplished by adjusting the voltage on the RESDEL pin of the IC. As a starting point and before powering up the converter, set the voltage on RESDEL pin to 1.8V. This will set a large time delay between the upper MOSFET’s transitioning and the lower MOSFET turning on. It is recommended that the synchronous rectifiers be disabled during this procedure. See "Synchronous Rectifiers" on page 3 for a method to disable the synchronous rectifiers.

With the above modifications in place, slowly bring up the supply voltage to the ZVS full-bridge and keep the load at the minimum current. Monitor the gate-source of an upper MOSFET and both the gate-source and drain-source of the lower MOSFET that is diagonally opposed. Figure 1 depicts the waveforms seen in the ZVS full-bridge:

The waveforms should clearly show the resonant cycle on the drain-source voltage of the lower MOSFET. The turn on of the lower MOSFET was intentionally delayed beyond the resonant transition for clarity. If this resonant cycle is not seen, increase the load current slightly. The resonance is due to the inductance of the transformer and the parasitic capacitance of the drain-source node, predominantly determined by the capacitance of the MOSFETs.

The amplitude of the resonant cycle is due to the load and the amount of energy stored in the transformer inductance. Figure 2 shows the effect of varying the load on the resonant cycle:

As the load increases, there is more energy available to charge and discharge the capacitance. There will be a point at which the drain-source voltage of the lower MOSFET reaches 0V. This is the minimum load which results in ZVS operation. When the load is further increased, the current starts to flow through the MOSFET body diode and becomes clamped to circuit ground. Figure 3 shows the effect on the resonant cycle when there is excess ZVS load current. The waveform has been expanded around the resonant cycle near 0V on the lower MOSFET drain-source voltage.
During this interval the excess energy is returned to the source, but results in dissipation in the body diode. The resonant current flows through the body diode, which can exhibit reverse recovery characteristics when the resonant current reverses direction. Ideally there should be as much resonant energy as possible so that the minimum ZVS load current is as low as possible. However, once above the minimum ZVS load current, the excess resonant energy becomes disadvantageous. The extra energy is not required. The resonant current may be high enough to affect the current sense signal. This will appear as a turn on current spike, but upon closer inspection, it will be apparent that the signal is sinusoidal rather than a sharp spike. There have been circuits developed that will adjust the amount of energy stored so as not to waste energy and reduce the circulating current.

Another way of looking at this resonant cycle is to realize that this behavior is very similar to what happens in a conventional full-bridge when the MOSFETs in the bridge turn off and the leakage inductance rings with the parasitic capacitances. The difference is that the primary is clamped by the upper MOSFETs so that the ringing occurs at turn on rather than at turn off.

Resonant Delay Adjustment

The resonant delay is adjusted by changing the voltage at the RESDEL pin of the IC using a resistor divider. Decreasing the voltage will decrease the resonant delay for the timing waveforms. Ideally the resonant delay should be set to the lowest point of the resonant cycle to turn the lower MOSFET on at the minimum drain-source voltage. The resonant delay is called the resonant transition and is shown in Figure 4.

The body diode is still conducting through the first half the resonant cycle until the lower MOSFET turns on, which allows the resonant current to flow through the channel of the MOSFET. As long as the $I \times R_{DS\,on}$ drop of the MOSFET is less than the body diode forward voltage drop, the body diode will not conduct. Even though the lower MOSFET turns on, the current does not change polarity immediately. The current’s rate of change will be determined by the supply voltage divided by the leakage inductance ($di/dt = V/L$).

There are two possible options that can be used if the power loss or high resonant current becomes an issue. One is, turn the lower MOSFET on sooner and catch the resonant edge earlier. This reduces the time the body diode is on but will also increase the minimum load at which the converter will fully ZVS. The other is to decrease the resonant frequency by either reducing the leakage inductance or parasitic capacitance. This will reduce the time the body diode conducts and the time taken up by the resonant period for the maximum duty cycle. It’s preferable to reduce the parasitic capacitance as much as possible. Reducing the leakage inductance will reduce the amount of energy stored and therefore require a higher minimum load to ZVS.

Switching Loss and EMC

In conventional full-bridges, the power loss in the MOSFETs is due to both switching and conduction loss. Typically, designers struggle to reduce the switching loss by turning the MOSFETs on/off as quickly as possible. Doing so results in higher switching noise due to the fast drain-source transition edge and creates EMC (Electro-Magnetic Compatibility) issues.
In the ZVS full-bridge this is not as clear cut. At loads above the minimum ZVS load current, the lower MOSFET’s losses will be strictly due to conduction loss. However, as the load current decreases, switching loss does come into effect while conduction loss decreases. Even when the ZVS full-bridge is operating below its minimum ZVS load current, switching loss does not become a significant concern as with conventional full-bridges. The designer has flexibility in slowly turning on the lower MOSFETs. Figure 6 shows a lower MOSFET turning on when below the minimum ZVS load current:

The body diodes in the upper MOSFETs conduct only until the upper MOSFETs transition. The current then flows through the MOSFET’s channel.

Should reverse recovery of the body diodes become an issue, whether it’s the lower or upper MOSFET, there are some options to consider. One option is to use devices optimized for body diode performance. International Rectifier’s IRF840LC, for example, has a low charge body diode as compared to the standard IRF840. Another option is to reduce the RDS-ON of the MOSFET, but this increases the resonant time and resonant capacitance. Infineon CoolMOS™ MOSFETs have one quarter the RDS-ON of a standard MOSFET for the same die size yet the same capacitance. They reduce power loss significantly yet have very little effect on the resonance of the circuit.

Another advantage that ZVS full-bridges have in general is the clean waveforms. No snubbers are required to dampen the primary transformer voltage ringing when the MOSFETs turn off. Instead the waveforms have a sinusoidal edge equal to the resonant transition. The dV/dt rate for the drain-source voltage is less than a conventional hard-switched full-bridge. Since leakage inductance is not an issue, the primary-secondary winding spacing can be increased to reduce the primary-secondary transformer capacitance. Doing so will reduce the common mode currents through the transformer. Usually, EMC noise is significantly less with a ZVS full-bridge than a standard full-bridge.

Synchronous Rectifiers

Once the resonant delay is adjusted, the timing of the synchronous rectifiers can be investigated. The ISL6572 incorporates signals for the synchronous rectifiers with adjustable advance and delay timing with respect to the MOSFET drive signals for the bridge. This allows flexibility in adjusting the timing; however, setting up the timings on an operating unit can be frustrating. Should the synchronous rectifier turn on too soon or turn off too late, the MOSFETs will short out the secondary side of the transformer. This will result in large spikes of current in the primary which will affect the current sensing circuit. If the overlap is large enough, the converter may even experience a catastrophic failure.

To help avoid these issues, the following step-by-step instructions will aid the designer in getting the synchronous rectifiers operating without causing potential problems to the converter.
The first step is to make the following circuit modification to the synchronous rectifier circuit.

 Disconnect the drive signal to the MOSFET so that the MOSFET operates as a standard rectifier using only the body diode. Add a capacitor to the output of the driver to mimic the gate load of the synchronous rectifiers. The value of the capacitor should equal the total gate charge divided by the maximum gate drive voltage. The total gate charge can be found in the manufacturer's datasheet of the MOSFET device. Short the gate-source of the MOSFET to ground so it remains off and the current is conducted through the body diode. Fast rising drain voltages can turn the MOSFET on through the Miller capacitance. Shorting the gate-source to ground will prevent this from occurring. Repeat the procedure for all synchronous rectifiers on the secondary output. The output will behave like a standard rectifier output with diodes that have high reverse recovery charge. R-C snubbers across the body diodes may be required to dampen any excessive voltage ringing.

 Once the procedure is completed, power up the converter with a light load and investigate the MOSFET Output Driver waveform and the MOSFET D-S Voltage. The basic concept in driving MOSFETs in synchronous rectifier applications is to turn on the MOSFET after the body diode conducts and turn off the MOSFET before the current starts to reverse direction in the MOSFET. With this procedure, any issue with the drive signal can easily be identified and corrected before reconnecting the synchronous rectifiers. The required waveforms are shown in Figure 8.

 As a starting point, the Turn On Delay and Turn Off Delay should be set at around 100ns at full load. The timing on the ISL6752 allows advance or delay between the bridge MOSFETs and synchronous rectifiers. This is a phase relation adjustment where both the turn on and turn off edges will move in unison. Most likely the design will require one edge to be delayed through an R-C-D network so that it can be fine tuned. One such circuit is shown in Figure 9.

 This circuit receives the synchronous rectifier signals OUTLLN or OUTLRN from ISL6752. The timing is adjusted through VADJ so that the turn on delay is correct. Then the R-C network is adjusted so that the turn off delay is reasonable. Once this is done, the capacitor and gate-source short can be removed and the MOSFETs can be reconnected to the driver. This method of initially powering up the synchronous rectifiers prevents unnecessary debug time. Once the ZVS full-bridge is powered up, the waveforms in Figure 10 on the synchronous rectifiers may be observed.
Synchronous rectifiers. Both paths will have different primary side MOSFETs and the other is through the paths from the ISL6752 to drive the MOSFETs. One for the Temperature will have an effect on the timings. There are two conduction (shoot-through). should the synchronous rectifiers overlap and cause cross propagation delays and will vary differently with temperature.

Another option is to use saturable cores in the series with the use the technique described in this document for turn off. MOSFET. A self driven scheme for turn on may be used, but need to be adjusted for the worst case condition. Since temperature affects the switching characteristics of the synchronous rectifiers, the timings must be verified over the operating temperature range as well.

If there is too much variability, different driving schemes should be considered. One such method, is not turning on the MOSFET until the transformer voltage has risen on the other MOSFET. A self driven scheme for turn on may be used, but use the technique described in this document for turn off. Another option is to use saturable cores in the series with the drains of the MOSFETs or on the secondary windings. Saturable cores such as Toshiba’s SPIKE KILLERS® cores are suitable. This will block the current for a period of time conducting. Reducing this time can significantly improve the efficiency, but there is a risk of overlap and cross conduction.

Rectifier Output

Not all designs require synchronous rectification and the ISL6753 was developed for this reason in mind. Synchronous rectification with today’s low \(R_{DS-ON} \) MOSFETs is practical up to about 15V output. For output voltages above that, the performance improvements do not justify the cost and complexity. As MOSFET technology advances, the voltage limitation will improve.

Conventional rectifier outputs offer their own set of challenges. The rectifier of choice in designing the output stage is the Schottky diode. These diodes have a typical forward drop of 0.3V as opposed to 0.7V for standard PN junctions. This is significant in power loss at high output current.

However, today’s Schottky diodes are limited to 200V for reverse breakdown voltage. Further, at high currents it is not recommended to use Schottky diodes with 150V or higher ratings. Schottky diodes have a guard ring structure that is essentially a PN junction in parallel with the Schottky barrier. Under normal operating conditions, the PN junction is not active. However, with high voltage breakdown devices, the device doping is low, resulting in an increase in the forward voltage required to turn the Schottky diode on. Additionally, the light doping causes the bulk resistance to be higher, and at high currents, the IR drop becomes significant. This can result in the PN junction becoming forward biased at high currents and the diode will have reverse recovery charge behavior.

If PN diodes are the only option, then diodes with the lowest reverse recovery charge and lowest voltage rating are recommended. The amount of stored charge in a given family of PN diodes will be proportional to the reverse voltage rating.

Regardless of the rectifier selection, the devices will require voltage snubbing networks. One method uses an R-C network across the diode. The voltage on the diode rings because the capacitance of the diode resonates with the transformer leakage and other parasitic inductances when the voltage across the junction reverses. Placing a series R-C network

Figure 10. Timing Waveforms for Synchronous Rectifier

This shows that the body diode is conducting before and after the MOSFET is turned on and the current is flowing through the MOSFET channel when the MOSFET is on.

The efficiency of the converter due to the synchronous rectifiers is directly related to the time the body diodes are conducting. Reducing this time can significantly improve the efficiency. However, reducing this time is not without risk. The timings should be checked while varying the line and load conditions. For example, when the load is varied, rise and fall rates of the current \((\text{di/dt}) \) remain the same because the voltage developed across the leakage inductance and traces are independent of the load. Therefore, it will take more time to transition the current at full load than at light loads. The timings need to be adjusted for the worst case condition. Since temperature affects the switching characteristics of the synchronous rectifiers, the timings must be verified over the operating temperature range as well.

Temperature will have an effect on the timings. There are two paths from the ISL6752 to drive the MOSFETs. One for the primary side MOSFETs and the other is through the synchronous rectifiers. Both paths will have different propagation delays and will vary differently with temperature.
across the diode changes the characteristics of the resonant circuit as shown in Figure 11.

![Figure 11. R-C Snubber](image)

The idea of the R-C snubber is to make \(CS \) to 2 to 10 times larger than the average capacitance of the diode, \(CD \). This effectively “swamps” out the effects of \(CD \) in the circuit. \(RS \) is set to 2 to 5 times \(\sqrt{L/(CD + CS)} \) which will provide damping to the diode voltage. \(L \) can be determined by the resonant frequency with \(CD \) and \(CS \). This procedure will provide a good starting point. There are some pitfalls that need to be avoided.

- If \(CS \) is too small, the R-C snubber will have no effect.
- If \(CS \) is too large, there will be a large spike of current to charge and discharge \(CS \). This will show up as an initial current spike in the current switch waveform. This will cause the converter to behave abnormally. If \(CS \) is changed, then \(RS \) needs to be adjusted.
- If \(RS \) is too small, there will not be enough damping. Resonant frequency will depend on \(CD + CS \).
- If \(RS \) is too large, the R-C snubber will have no effect. Resonant frequency will depend on \(CD \) only.
- The power dissipated in the snubbers are directly proportional to the switching frequency and the value of \(CS \).
- If PN diodes are used there will be reverse recovery charge as an added effect. The snubber will require more dampening.

Another method for snubbing output rectifiers is the use of saturable cores. This is discussed in more detail in application note AN1246.

Another major issue with conventional rectifier outputs is that at low output current, the inductor current becomes discontinuous. This occurs when the output current falls below one half of the inductor ripple current. In this mode, the converter has 3 modes of operation: \(Ton \), charging the output inductor, \(Toff \), discharging the output inductor, and \(Trelax \) where the output inductor current is zero. This is shown graphically in Figure 12.

![Figure 12. Discontinuous Conduction Mode](image)

In this mode of operation, \(V_{OUT} \) is no longer the simple relationship indicated in Equation 1 for continuous conduction mode (CCM).

\[
V_{out} = Ton \times Fsw \times Vin
\]

(EQ. 1)

Instead, it is a complex relationship based on energy. The on time, \(Ton \), is a function of the load current, output inductance, input voltage, output voltage, and switching frequency. Since the transfer function of the converter has changed, some unique problems occur.

The converter design is usually compensated for stability with the assumption of CCM operation. If the converter goes discontinuous, there is a chance the converter will become unstable because the transfer function has changed. Careful control loop compensation design will prevent this.

In discontinuous conduction mode (DCM), as the output current decreases, \(Ton \) will also decrease. There will be a point where the required \(Ton \) will be less than the minimum on time the PWM controller is capable of. At this point, pulse skipping occurs. Since the minimum output pulses exceed the required duration, the output is maintained by omitting pulses so that the long term average duty cycle is correct. The output maintains regulation, but output ripple performance degrades.

There are ways to lessen these issues by keeping the converter operating in CCM at lower output currents. One way to prevent DCM operation is to use a bleed resistor on the output so that when the converter is at minimum load, the bleed resistor draws enough current to maintain CCM operation. To improve efficiency, this bleed resistor can be activated only under light loads. This is an effective, if inelegant, method.

A better method is to use inductor core materials such as Molypermalloy (MPP®), or use a step gapped inductor so that the inductor is non-linear with load. The desired behavior is to have the inductance increase as load current decreases. Inductors designed with MPP® core material can have 3X the 0A inductance when compared to normal operating current.
This can reduce the minimum load at which the inductor becomes discontinuous by a factor of 3. The stepped gap inductor design varies the gap distance across the face of the center leg. This effectively tailors the inductance as a function of current. Like the MPP® designs, the inductor will have higher inductance at lighter loads. Inductors with this behavior are often referred to as swinging chokes.

Efficiency

The ZVS full-bridge topology does offer an improvement in switching losses. However, it only affects the primary side MOSFETs. For high input voltage designs, this is significant. Additionally, no primary side snubbers are required. The leakage inductance of the transformer is clamped so that no power is wasted in dampening the ringing or dissipating the excess energy.

However, there are drawbacks and some are listed below:

- The primary current needs to carry the freewheeling current and the switch current. The primary transformer winding must be sized to handle the additional RMS current.
- One of the upper MOSFETs is always conducting the freewheeling current through the body diode. For high voltage designs this is usually not an issue because the forward voltage drop of the body diode is comparable to the $I \times R_{DS\text{ON}}$ voltage drop of an upper MOSFET in a typical design. For low input voltage designs this becomes an issue because the body diode forward voltage drop is significant when compared to the supply voltage and the primary currents are high.
- The resonant time reduces the allowed maximum duty-cycle. Because of this, the primary-secondary transformer turns ratio must be reduced to maintain output voltage regulation for the input voltage range. If the turns ratio is reduced, the primary side current will increase at a given load.

All these behaviors can impact the efficiency negatively.

Even though there is no switching loss in the bridge MOSFETs, there is a practical limitation to the frequency of operation. As the frequency increases, the resonant time becomes a more significant portion of the maximum duty-cycle. To compensate, the primary to secondary turns ratio has to decrease and therefore, the primary current will increase. The savings in ZVS will be eroded by the increase in conduction loss in the primary side MOSFETs. A possible technique to reduce the resonant time is to bypass the body diode with a Schottky diode in series with the drain of the MOSFET and use a low capacitance ultra-fast diode as the new body diode. This can reduce the resonant time by a factor of 10 and practical 1MHz ZVS full-bridge have been developed.

However, operating magnetic components at high frequency poses problems as well. Normally, as the operating frequency increases, the size of the magnetic components decreases. However there will be a point where eddy currents [1] and core losses become an issue and the transformer size will need to increase to compensate. If saturable cores are used to help steer the secondary currents, the frequency limitation starts at about 150kHz to 200kHz.

If synchronous rectifiers are used, the performance improvements decline as the frequency increases. There is a fixed minimum turn on and turn off time as well as a minimum body diode conduction time. As the frequency increases, the amount of time the body diode is conducting remains constant but the time the MOSFET channel conduction is on within a switching cycle will decrease. The result is the duty cycle for MOSFET channel conduction decreases as frequency increases and the synchronous rectifier becomes less efficient [2, 3].

With all these issues, the practical limitation for the operating frequency is 150kHz to 400kHz for the ZVS full-bridge.

Comparison of Different ZVS Full-Bridge Algorithms

This document discussed one type of ZVS full-bridge in which current freewheels in the upper MOSFETs. There is another type of ZVS full-bridge that is more commonly known as “Phase-Shifted ZVS Full-Bridge”. In this topology, the freewheeling current circulates in either the MOSFETs in the upper or lower sections of the bridge. In the Phase-shifted algorithm, the drive signals to the MOSFETs are always 50% duty cycle, but the phase difference between the left side and right side of the bridge determines the duty-cycle applied to the main transformer. For more detail information on a ZVS phase-shift design see application note, AN9506.

The following lists out some of the advantages of the Phase-Shifted ZVS Full-Bridge:

- The freewheeling current will always flow through the MOSFET channel as opposed to one of the body diodes for the ZVS full-bridge discussed here. Assuming the voltage drop due to the $R_{DS\text{ON}}$ is lower than the forward voltage drop of the body diode. This is advantageous with low input voltage designs.
- Since the gate drive signals are always at 50%, the gate drive transformer becomes easier to design. With PWM gate drive signals there is always an issue of voltage ringing on the transformer, which may turn the MOSFET back on at the wrong time.

Advantages of the ZVS Full-Bridge:

- The control logic required to generate the MOSFET signals for Phase-Shifted ZVS Full-Bridge is more complex because the modulation is phase related.
- The ZVS full-bridge discussed here freewheels in the upper MOSFETs. Since the upper MOSFETs carry both the switch and freewheeling current, they will dissipate more power than the lower MOSFETs. Since this extra power is in the upper MOSFETs, those devices can be cooled more easily since they can be tied directly to a heatsink without generating EMI.
From these two ZVS type full-bridges, there have been circuit modifications that have been added to overcome some of the drawbacks. A small sample of these modifications is listed below:

- Adding an inductor in series with the primary winding of the transformer to effectively increase the leakage inductance. This improves the minimum load at which the converter can achieve ZVS operation.

- Adding a saturable inductor in series with the primary winding of the transformer to effectively increase the leakage inductance during zero voltage transitions.

- Add both an inductor and a capacitor in series with the primary winding of the transformer. Set the resonance to the switching frequency to form a resonant converter that will ZVS and ZCS (zero current switch).

Layout Guidelines

Like any other switching power regulator, ISL6752, ISL6753 and the associated circuitry require that good layout guidelines be followed. One of the most common mistakes made is using a ground plane and assuming that all the noise issues due to layouts can be resolved. Sometimes the opposite is true. Not only could the noise be worse but there is added capacitance to the ZVS full-bridge which hurts its minimum ZVS load current and increases the PWB cost because of extra internal layers.

Figure 13 shows an example circuit with the ground wired as one large plane.

VBULK supplies power to the ZVS full-bridge stage and Q is one of the lower MOSFETs. VCC supplies power to U1, which in this example is the ISL6752 PWM, and to U2, a generic MOSFET driver. In reality, the ground plane still has some resistances and inductances. Keep in mind, that there will be pulses of current flowing and that the resistance of the ground plane will be due to skin effect. Figure 14 shows the equivalent circuit with current flowing from the ZVS Full-bridge.

Every time Q turns on, there is a pulse of current that will flow from the MOSFET through the ground plane and back to the bulk supply generating voltage spikes which will affect the analog circuitry on U1. Even if the VBULK supply were moved next to the MOSFET (Q) there will be some effect throughout the ground plane. When Q switches, the ground plane is effectively a matrix of R’s and L’s. From another perspective, the pulse currents generated by the switching action of the MOSFET (Q) is like throwing a rock in a pond. The ripples it generates are the electrical noise. Even though the noise sensitive circuits are far away, the ripples will still reach them.

Granted, a ground plane will be superior to using a single wire in a poor layout because the effective impedance will be lower, but it is not good design practice. This is the reason why going to a ground plane seems to help the noise issues, but a properly connected layout will be even better.

The preferred way is to connect the circuit so that U1’s ground does not share the high current ground as shown in Figure 15.

Instead of allowing the switch current to go through the ground plane, wire a path directly between the source of the MOSFET (Q) to the bulk supply, VBULK. This allows the Instead of allowing the switch current to go through the ground plane, wire a path directly between the source of the MOSFET (Q) to the bulk supply, VBULK. This allows the switch current to directly flow from the MOSFET (Q) to the bulk supply and not affect U1.

The ground of the driver must be tied directly to the source of MOSFET (Q) because there is a spike of current when the
driver discharges the MOSFET capacitance. There will also be a spike of current going into the positive supply of the driver when charging the MOSFET capacitance. This should not affect the rest of the circuit because the decoupling capacitor of the driver (between the positive supply pin and return of the driver) will circulate the current around the driver and its decoupling capacitor. Therefore, the positive supply of the driver does not have to be connected directly to VCC to bypass U1. The connection between the returns for VBULK and VCC maintains a DC reference connection. Theoretically, no current will flow.

At first glance, there may be an issue with noise between the returns of U1 and U2. This is true because the switch current flowing between the MOSFET and the bulk supply will generate some voltage spikes. This will also be true when U2 discharges the MOSFET gate capacitance. However, the signal between U1 and U2 is not analog but digital. You can have significant noise levels and not affect the behavior of U1 and U2.

Special care should be taken for connecting the analog circuitry for U1. The PWM IC such as U1 contains the reference voltage used for regulation. All the analog components must be then referenced to U1’s ground to eliminate a ground shift. One method is to use a star grounding pattern as shown in Figure 16.

However, it’s not always easy to wire a star pattern when there is a significant number of components. In this case, it’s acceptable to set up a ground plane under U1 and extended it out to cover some of the analog circuitry. The ground plane should be tied directly to the ground of U1 and then a wire from the ground of U1 back to the VCC ground. This ground plane is considered a “quiet ground” since there are no switch currents flowing in this plane. The quiet ground plane also adds a small amount of capacitance between it and the pins of U1. This helps reduce noise on some of the critical pins of U1.

A final issue to be concerned with on the layout is the drive paths for the primary side MOSFETs and synchronous rectifiers. The circuitry driving the MOSFETs from the ISL6752 must be symmetrical so as not to cause unmatched propagation delay. The timings for resonant periods or turn on and turn off delays could be less than 50ns.

Conclusion

This document has some helpful tips in designing with the ISL6752, ISL6753 and the ZVS Full-bridge converter. For further helpful information, see application notes AN1002 and AN1246.

References

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality.” The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 “Standard” : Computers, office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 “High Quality” : Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations, etc.), or may cause serious property damage (space systems; underground repowers; nuclear power control systems; aircraft control systems; key plant systems; military equipment, etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to, redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacturer, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Rev.A-0-1 November 2017)

© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.0