To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

 “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
Introduction
The software FADD adds single-precision floating-point numbers placed in general-purpose registers and places the result of addition in general-purpose registers.

Target Device
H8/38024

Contents

1. Arguments .. 2
2. Changes to Internal Registers and Flags ... 2
3. Specifications ... 2
4. Notes .. 3
5. Description .. 3
6. Flowchart .. 7
7. Program List .. 15

About Single-Precision Floating-Point Numbers <Reference> ... 19
1. Arguments

<table>
<thead>
<tr>
<th>Description</th>
<th>Memory area</th>
<th>Data length (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Augend</td>
<td>R0, R1</td>
</tr>
<tr>
<td></td>
<td>Addend</td>
<td>R2, R3</td>
</tr>
<tr>
<td>Output</td>
<td>Result of addition</td>
<td>R0, R1</td>
</tr>
</tbody>
</table>

2. Changes to Internal Registers and Flags

<table>
<thead>
<tr>
<th>R0</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>○</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I</th>
<th>U</th>
<th>H</th>
<th>U</th>
<th>N</th>
<th>Z</th>
<th>V</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>×</td>
<td>—</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

Legend
—: No change
×: Undefined
○: Result

3. Specifications

<table>
<thead>
<tr>
<th>Program memory (bytes)</th>
<th>280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data memory (bytes)</td>
<td>0</td>
</tr>
<tr>
<td>Stack (bytes)</td>
<td>0</td>
</tr>
<tr>
<td>Clock cycle count</td>
<td>268</td>
</tr>
<tr>
<td>Reentrant</td>
<td>Possible</td>
</tr>
<tr>
<td>Relocation</td>
<td>Possible</td>
</tr>
<tr>
<td>Interrupt</td>
<td>Possible</td>
</tr>
<tr>
<td></td>
<td>Possible</td>
</tr>
</tbody>
</table>
4. **Notes**

The clock cycle count (268) in the specifications is for the example shown in figure 1. For the format of floating-point numbers, see "About Single-precision floating-point Numbers <Reference>.”

5. **Description**

5.1 **Details of functions**

1. The following arguments are used with the software FADD:
 a. Input arguments:
 - R0: Sets the upper 2 bytes of a single-precision floating-point as augend.
 - R1: Sets the lower 2 bytes of a single-precision floating-point as augend.
 - R2: Sets the upper 2 bytes of a single-precision floating-point as addend.
 - R3: Sets the lower 2 bytes of a single-precision floating-point as addend.

 b. Output arguments:
 - R0: The upper 2 bytes of a single-precision floating-point are placed here as the result of addition.
 - R1: The lower 2 bytes of a single-precision floating-point are placed here as the result of addition.

2. The following figure illustrates the execution of the software FADD. When the input arguments are set as shown in (1), the result of addition is placed in R0 and R1 as shown in (2).

![Figure 1 Example of Software FADD Execution](image-url)
5.2 Notes on usage

1. The maximum and minimum values that can be handled by the software FADD are as follows:
 - Positive maximum: H'7F800000
 - Positive minimum: H'00000001
 - Negative maximum: H'80000001
 - Negative minimum: H'FF800000

2. All positive single-precision floating-point numbers H'7F800001 to H'7FFFFFFF are treated as a maximum value (H'7F800000). All negative single-precision floating-point numbers H'FF800000 to H'FFFFFFFF are treated as a minimum value (H'FF800000).

3. As a maximum value is treated as infinity (∞), the result of ∞ + 100 or ∞ - 100 becomes infinite. (See table 1.)

Table 1 Examples of Operation with Maximum Values Used as Arguments

<table>
<thead>
<tr>
<th>Augend</th>
<th>Addend</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>H'7F800000 to H'7FFFFFFF</td>
<td>*********</td>
<td>H'7F800000</td>
</tr>
<tr>
<td>Not H'7F800000 to H'FFFFFFFF</td>
<td>H'7F800000 to H'7FFFFFFF</td>
<td>H'7F800000</td>
</tr>
<tr>
<td>H'FF800000 to H'FFFFFFFF</td>
<td>*********</td>
<td>H'FF800000</td>
</tr>
<tr>
<td>Not H'7F800000 to H'7FFFFFFF</td>
<td>H'FF800000 to H'FFFFFFFF</td>
<td>H'FF800000</td>
</tr>
</tbody>
</table>

Note: * represents a hexadecimal number.

4. H'80000000 is treated as H'00000000 (zero).

5. After execution of the software FADD, the augend and addend data will be lost. When the input arguments are still needed after software FADD execution, save them in memory.

5.3 Description of data memory

The software FADD uses no data memory.
5.4 Example of usage

Set an augend and an addend in the general-purpose registers and call the software FADD as a subroutine.

WORK1	. RES. W 2	Reserve a data memory area in which the user program places an augend.
WORK2	. RES. W 2	an addend.
WORK3	. RES. W 2	the result of addition.

MOV. W @WORK1, R0
MOV. W @WORK1+2, R1
MOV. W @WORK2, R2
MOV. W @WORK2+2, R3

Place the augend set by the user program in R0 and R1.

Place the addend set by the user program in R2 and R3.

JSR @FADD

Call the software FADD as a subroutine.

MOV. W R0, @WORK3
MOV. W R1 @WORK3+2

Save the result of addition set in the output argument in R0 and R1.

5.5 Operation

Addition of single-precision floating-point numbers is done in the following steps:

1. The software checks whether the augend and addend are +∞ or -∞.
 a. When the exponent of the augend is H'FF, either of the following values is output depending on the state of the sign bit:

<table>
<thead>
<tr>
<th>Sign bit</th>
<th>Output value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (positive)</td>
<td>H'7F800000 (+∞)</td>
</tr>
<tr>
<td>1 (negative)</td>
<td>H'FF800000 (−∞)</td>
</tr>
</tbody>
</table>

 b. The table above also applies when the augend is neither +∞ nor -∞ and the exponent of the addend is H'FF.

2. The software checks whether the augend and addend are "0".
 a. If either the augend or addend is "0", the other number is output (if both are "0", "H'00000000" is output).

3. The software attempts to match the exponent of the augend with that of the addend.
 a. The smaller number of the exponent is incremented and, at the same time, the mantissa (including the implicit MSB) is shifted digit by digit to right until the exponent of the augend matches that of the addend. (In the case of the denormalized format, 1 is added to the exponent and the MSB of the mantissa is taken as implicitly being zero.

4. The mantissas are added.
5. The result of addition is corrected to produce a number in the floating-point data format.

(Example)

Augend = 1.2088876915 \times 2^{114}
\quad (H'789ABCDE)
\quad Sign bit = 0, exponent = H'F1, mantissa = H'1ABCDE
\quad (implicit MSB is not included)

Addend = 1.21282410622 \times 2^{-117}
\quad (H'7A1B3DD2)
\quad Sign bit = 0, exponent = H'F4, mantissa = H'1B3DD2
\quad (implicit MSB is not included)

\[1111 \ 0001 \ 1 . 00 \ 1010 \ 1011 \ 1100 \ 1101 \ 1110 \]
\[H'789ABCDE \]
\[1111 \ 0100 \ 1 . 0011 \ 0101 \ 0111 \ 1101 \ 1101 \ 0010 \]
\[H'7A1B3DD2 \]
\[\rightarrow \text{Matches exponent parts (3 is added to the augend)} \]
\[\rightarrow \text{Shift the mantissa of the augend 3 bits to right} \]

Augend 1111 0100 0 . 0011 0101 0111 1101 1101
\[\times \]
Addend 1111 0100 1 . 0111 0011 0011 1101 1101 0010
\[\rightarrow \text{The exponent part remains unchanged.} \]
\[\rightarrow \text{Only the mantissa part undergoes addition.} \]

Result of addition = 1.36393511295 \times 2^{-117}
\quad (H'7A2E956D)
\quad Sign bit = 0, exponent part = H'F4, mantissa part = H'2E956D
\quad (excluding the implicit MSB)
6. Flowchart

```
FADD

#H'00 → R6L
#H'7F80 → R5

Bit 7 of R0H → Bit 0 of R6L

0 → Bit 7 of R0H

Bit 7 of R2H → Bit 1 of R6L

0 → Bit 7 of R2H

R0 ≥ R5

Yes

R2 < R5

Yes

Shift R6L 1 bit to right

No

No

C = 0

Yes

#H'7F80 → R0

#H'0000 → R1

RTS

No

#H'FF80 → R0

#H'0000 → R1

RTS

----- Clear R6L to 0. Place #H'7F80 in R5.

----- Place the sign bit of the augend in bit 0 of R6L.

----- Clear the sign bit of the augend.

----- Place the sign bit of the addend in bit 1 of R6L.

----- Clear the sign bit of the addend.

----- Branch when the exponent part of the augend is "H'FF".

----- Branch when the exponent part of the augend is not "H'FF".

----- Shift the sign bit of the addend to bit 0 of R6L.

----- Place "H'7F800000" as output when the sign bit is "0" (positive), or "H'FF800000" as output when the sign bit is "1" (negative).
```
Addition of Single-Precision Floating-Point Numbers (FADD)

Place "1" in bit 7 of R6L when the augend is "0".

Place "1" in bit 6 of R6L when the addend is "0".

Place "1" in bit 6 of R6L when the addend is "0".

Place the augend or addend as an output value in R0 and R1.
Addition of Single-Precision Floating-Point Numbers (FADD)

- Place the exponent part of the augend in R0H.
- Places the exponent part of the addend.
- Clear bit 7 of R0L.
- Place "1" in bit 7 of R0L when the augend is represented in normalized format (R0H ≠ 0), and add #1 to R0H when the augend is represented in denormalized format (R0H = 0).
- Clear bit 7 of R2L.
- Place "1" in bit 7 of R2L when the addend is represented in normalized format (R2H ≠ 0), and adds #1 to R2H when the addend is represented in denormalized format (R2H = 0).
Addition of Single-Precision Floating-Point Numbers (FADD)

Place the exponent (R0H) of the augend in R5H and the exponent (R2H) of the addend in R5L.

Compare R5H with R5L: branch to (4) when R5H = R5L or to (5) when R5H < R5L.

Find the difference (R5H) when R5H > R5L.

Clear the addend to 0 and branch to (4) when R5H > #D’24.

Shift the mantissa of the addend to right as many times as R5H (the difference between exponents).
Addition of Single-Precision Floating-Point Numbers (FADD)

5

LBL14

\[R5L \rightarrow R5H \rightarrow R5L \]

\[R5L < \#D'24 \]

Yes

\[R2H \rightarrow R0H \]

\[\#H'0000 \rightarrow R1 \]

\[R1L \rightarrow R0L \]

Yes

\[\text{Shift R0L 1 bit to right} \]

\[\text{Rotate R1H and R1L 1 bit to right} \]

\[R5L - \#1 \rightarrow R5L \]

\[\text{Check the sign bits and branch when they have opposite signs.} \]

8

LBL17

\[C = 1 \]

Yes

No

4

LBL16

\[\text{Shift the mantissa of the augend to right as many as R5L} \]

\[\text{(the difference between exponents).} \]

\[\text{Transfer R2H to R0H.} \]

7

No

\[\text{Transfer R2H to R0H, clear the mantissa of the augend, and branch when R5L > \#D'24.} \]

\[\text{Check the sign bits and branch when they have opposite signs.} \]
Addition of Single-Precision Floating-Point Numbers (FADD)

7

R1 + R3 \rightarrow R1
R0L + R2L + C \rightarrow R0L

------ Add the mantissas.

9

R0H + #1 \rightarrow R0H

------ Rotate the mantissa 1 bit to right and add #1 to the exponent when a carry occurs.

10

Branch to (10) when R0H \neq \#H'FF or to (11) when R0H = \#H'FF.

11

R0H = \#H'FF

------ No

C = 0

Yes

Yes

No

No

Yes

Yes

LBL23

LBL19

LBL1
R1 - R3 → R1
R0L - R2L - C → R0L

Subtract the mantissa.

Yes

R0L ≠ 0

No

#H'00 → R0H

Yes

Place H'00 in R0H to end when the result of subtraction is "0".

No

LBL18

C = 0

Yes

Reverse the signed bits and take two's complement of mantissa when a borrow occurs.

No

Bit 0 of R6L

LBL19

R0L → R0L
R1H → R1H
R1L → R1L

LBL17

R1L + #1 → R1L
R1H + #H'00 + C → R1L
R0L + #H'00 + C → R0L

RTS

R0L → R0L
R1H → R1H
R1L → R1L
Shift R1L 1 bit to left
Rotate R1H and R0L 1 bit to left

R0H - #1 → R0H

R0H = 0

C = 0

C → Bit 7 of R0L

Bit 0 of R6L → C
C → Bit 7 of R0H

RTS
7. Program List

*** H8/300 ASSEMBLER VER 1.0B ** 08/18/92 10:20:43

PROGRAM NAME =

;***
;* 00 - NAME :FLOATING POINT ADDITION (FADD)
;***

;***
;* ENTRY :R0 (UPPER WORD OF SUMMAND)
;* R1 (LOWER WORD OF SUMMAND)
;* R2 (UPPER WORD OF ADDEND)
;* R3 (LOWER WORD OF ADDEND)
;***

;***
;* RETURNS :R0 (UPPER WORD OF RESULT)
;* R1 (LOWER WORD OF RESULT)
;***

;***

17 FADD_cod C 0000
18 .SECTION FADD_code,CODE,ALIGN=2
19 .EXPORT FADD

20 FADD_cod C 00000000 FADD .EQU $;Entry point
21 FADD_cod C 0000 FE00 MOV.B #H'00,R6L ;Clear R6L
22 FADD_cod C 0002 79057F80 MOV.W #H'7F80,R5 ;Set "H'7F80"

23 FADD_cod C 0006 7770 BLD #7,R0H
24 FADD_cod C 0008 670E BST #0,R6L ;Set sign bit to bit 0 of R6L
25 FADD_cod C 000A 7272 BCLR #7,R0H ;Bit clear bit 7 of R0H
26 FADD_cod C 0012 1D05 CMP.W R0,R5
27 FADD_cod C 0014 4306 BLS LBL1 ;Branch if "exponent of summand"="H'FF"
28 FADD_cod C 0016 1D25 CMP.W R2,R5
29 FADD_cod C 0018 421A BHI LBL4 ;Branch if not "exponent of summand"="H'FF"
30 FADD_cod C 0020 7272 BCLR #7,R2H ;Bit clear bit 7 of R2H
31 FADD_cod C 0022 110E SHLR R6L 1 bit right
32 FADD_cod C 0024 450A BCS LBL3 ;Branch if sign bit=1
33 FADD_cod C 0026 79007F80 MOV.W #H'7F80,R0 ;Set plus maximum number
34 FADD_cod C 0028 79010000 MOV.W #H'0000,R1
35 FADD_cod C 0030 5470 RTS
36 FADD_cod C 0032 5470 RTS

;
Addition of Single-Precision Floating-Point Numbers (FADD)

49 FADD_cod C 0034 LBL4
50 FADD_cod C 0034 0D11 MOV.W R1,R1 ;
51 FADD_cod C 0036 4608 BNE LBL5 ;Branch if Z=0
52 FADD_cod C 0038 0D00 MOV.W R0,R0
53 FADD_cod C 003A 4604 BNE LBL5 ;Branch if Z=0
54 FADD_cod C 003C 707E BSET #7,R6L ;Bit set bit 7 of R6L
55 FADD_cod C 003E 720E BCLR #0,R6L ;Bit clear bit 0 of R6L
56 FADD_cod C 0040 LBL5
57 FADD_cod C 0040 0D33 MOV.W R3,R3
58 FADD_cod C 0042 4608 BNE LBL6 ;Branch if Z=0
59 FADD_cod C 0044 0D22 MOV.W R2,R2
60 FADD_cod C 0046 4604 BNE LBL6 ;Branch if Z=0
61 FADD_cod C 0048 706E BSET #6,R6L ;Bit set bit 6 of R6L
62 FADD_cod C 004A 721E BCLR #1,R6L ;Bit clear bit 1 of R6L
63 FADD_cod C 004C LBL6
64 FADD_cod C 004C 777E BLD #7,R6L
65 FADD_cod C 004E 746E BOR #6,R6L
66 FADD_cod C 0050 440C BCC LBL8 ;Branch if not summand+addend=0
67 FADD_cod C 0052 0931 ADD.W R3,R1 ;Set summand and addend to result
68 FADD_cod C 0054 0920 ADD.W R2,R0
69 FADD_cod C 0056 770E BLD #0,R6L
70 FADD_cod C 0058 741E BOR #1,R6L
71 FADD_cod C 005A 6770 BST #7,R0H ;Set sign bit
72 FADD_cod C 005C 5470 RTS
73
74 FADD_cod C 005E LBL8
75 FADD_cod C 005E 7778 BLD #7,R0L
76 FADD_cod C 0060 1200 ROTXL R0H ;Set exponent of summand to R0H
77
78 FADD_cod C 0062 777A BLD #7,R2L
79 FADD_cod C 0064 1202 ROTXL R2H ;Set exponent of addend to R0L
80
81 FADD_cod C 0066 7278 BCLR #7,R0L
82 FADD_cod C 0068 0C00 MOV.B R0H,R0H
83 FADD_cod C 006A 4704 BEQ LBL9 ;Branch if summand is normalized
84 FADD_cod C 006C 7078 BSET #7,R0L ;Set implicit MSB to summand
85 FADD_cod C 006E 4002 BRA LBL10 ;Branch always
86 FADD_cod C 0070 LBL9
87 FADD_cod C 0070 8001 ADD.B #H'01,R0H
88 FADD_cod C 0072 LBL10
89 FADD_cod C 0072 727A BCLR #7,R2L
90 FADD_cod C 0074 0C22 MOV.B R2H,R2H
91 FADD_cod C 0076 4704 BEQ LBL11 ;Branch if addend is normalized
92 FADD_cod C 0078 707A BSET #7,R2L ;Set implicit MSB to addend
93 FADD_cod C 007A 4002 BRA LBL12 ;Branch always
94 FADD_cod C 007C LBL11
95 FADD_cod C 007C 8201 ADD.B #H'01,R2H
96
97 FADD_cod C 007E LBL12
98 FADD_cod C 007E 0C05 MOV.B R0H,R5H
99 FADD_cod C 0080 0C2D MOV.B R2H,R5L
100 FADD_cod C 0082 1CD5 CMP.B R5L,R5H
101 FADD_cod C 0084 4738 BEQ LBL16 ;Branch if R5H=R5L
102 FADD_cod C 0086 451A BCS LBL14 ;Branch if R5H<R5L
H8/300L Series
Addition of Single-Precision Floating-Point Numbers (FADD)

103
104 FADD_cod C 0088 18D5 SUB.B R5L,R5H
105 FADD_cod C 008A A518 CMP.B #D'24,R5H ;Set bit counter
106 FADD_cod C 008C 4508 BCS LBL13 ;Branch if R5H<D'24
107 FADD_cod C 008E 79020000 MOV.W #H'0000,R2 ;Clear addend
108 FADD_cod C 0092 0D23 MOV.W R2,R3
109 FADD_cod C 0094 4028 BRA LBL16 ;Branch always
110 FADD_cod C 0096 LBL13
111 FADD_cod C 0096 110A SHLR R2L ;Shift mantissa of addend 1 bit left
112 FADD_cod C 0098 1303 ROTXR R3H
113 FADD_cod C 009A 1305 ROTXR R3L
114 FADD_cod C 009C 1A05 DEC.B R5H ;Decrement bit counter
115 FADD_cod C 009E 46F6 BNE LBL15 ;Branch Z=0
116 FADD_cod C 00A0 401C BRA LBL16 ;Branch always
117
118 FADD_cod C 00A2 LBL14
119 FADD_cod C 00A2 185D SUB.B R5H,R5L
120 FADD_cod C 00A4 AD18 CMP.B #D'24,R5L ;Branch if R5L<D'24
121 FADD_cod C 00A6 4508 BCS LBL15 ;Branch if R5L<D'24
122 FADD_cod C 00A8 0C20 MOV.B R2H,R0H
123 FADD_cod C 00AA 79010000 MOV.W #H'0000,R1 ;Clear summand
124 FADD_cod C 00AE 0C98 MOV.B R1L,R0L
125 FADD_cod C 00B0 400C BRA LBL16 ;Branch always
126 FADD_cod C 00B2 LBL15
127 FADD_cod C 00B2 1108 SHLR R0L ;Shift mantissa of summand 1 bit right
128 FADD_cod C 00B4 1301 ROTXR R1H
129 FADD_cod C 00B6 1309 ROTXR R1L
130 FADD_cod C 00B8 1A05 DEC.B R5L ;Decrement bit counter
131 FADD_cod C 00BA 46F6 BNE LBL15 ;Branch if Z=0
132 FADD_cod C 00BC 0C20 MOV.B R2H,R0H
133
134 FADD_cod C 00BE LBL16
135 FADD_cod C 00BE 770E BLD #0,R6L
136 FADD_cod C 00C0 751E BXOR #1,R6L
137 FADD_cod C 00C2 4516 BCS LBL17 ;Branch if different sign bit
138
139 FADD_cod C 00C4 0931 ADD.W R3,R1 ;Addition mantissa
140 FADD_cod C 00C6 0EA8 ADDX.B R2L,R0L
141 FADD_cod C 00C8 442A BCC LBL19 ;Branch if C = 0
142 FADD_cod C 00CA 1308 ROTXR R0L ;Rotate mantissa 1 bit right
143 FADD_cod C 00CC 1301 ROTXR R1H
144 FADD_cod C 00CE 1309 ROTXR R1L
145 FADD_cod C 00D0 8001 ADD.B #H'01,R0H ;Increment exponent
146 FADD_cod C 00D2 A0FF CMP.B #H'FF,R0H
147 FADD_cod C 00D4 4638 BNE LBL23 ;Branch if not exponent=H'FF
148 FADD_cod C 00D6 5A000000 JMP @LBL1 ;Jump
149
150 FADD_cod C 00DA LBL17
151 FADD_cod C 00DA 1931 SUB.W R3,R1 ;Substruct mantissa
152 FADD_cod C 00DC 1A08 SUBX.B R2L,R0L
153 FADD_cod C 00DE 4604 BNE LBL18 ;Branch if Z=0
154 FADD_cod C 00E0 F000 MOV.B #H'00,R0H ;Clear R0H
155 FADD_cod C 00E2 5470 RTS
156 FADD_cod C 00E4 LBL18
157 FADD_cod C 00E4 440E BCC LBL19 ;Branch if C = 0
158 FADD_cod C 00E6 710E BNOT #0,R6L ;Bit not sign bit
159 FADD_cod C 00E8 1708 NOT R0L ;2's complement mantissa
160 FADD_cod C 00EA 1701 NOT R1H
161 FADD_cod C 00EC 1709 NOT R1L
162 FADD_cod C 00EE 8901 ADD.B #H'01,R1L
163 FADD_cod C 00F0 9100 ADDX.B #H'00,R1H
164 FADD_cod C 00F2 9800 ADDX.B #H'00,R0L
165 ;
166 FADD_cod C 00F4 LBL19
167 FADD_cod C 00F4 1009 SHLL R1L ;Shift mantissa 1 bit left
168 FADD_cod C 00F6 1201 ROTXL R1H
169 FADD_cod C 00F8 1208 ROTXL R0L
170 FADD_cod C 00FA 1A00 DEC.B R0H ;Decrement exponent
171 FADD_cod C 00FC 470C BEQ LBL22 ;Branch if exponent=0
172 FADD_cod C 00FE 44F4 BCC LBL19 ;Branch if exponent>0
173 FADD_cod C 0100 LBL20
174 FADD_cod C 0100 0A00 INC.B R0H ;Increment exponent
175 FADD_cod C 0102 LBL21
176 FADD_cod C 0102 1308 ROTXR R0L ;Rotate mantissa 1 bit right
177 FADD_cod C 0104 1301 ROTXR R1H
178 FADD_cod C 0106 1309 ROTXR R1L
179 FADD_cod C 0108 4004 BRA LBL23 ;Branch always
180 FADD_cod C 010A LBL22
181 FADD_cod C 010A 45F4 BCS LBL20 ;Branch if C = 1
182 FADD_cod C 010C 40F4 BRA LBL21 ;Branch always
183 ;
184 FADD_cod C 010E LBL23 ;Change floating point format
185 FADD_cod C 010E 1100 SHLR R0H
186 FADD_cod C 0110 6778 BST #7,R0L
187 FADD_cod C 0112 770E BLD #0,R6L
188 FADD_cod C 0114 6770 BST #7,R0H
189 FADD_cod C 0116 5470 RTS
190 ;
191 .END

*****TOTAL ERRORS 0
*****TOTAL WARNINGS 0
About Single-Precision Floating-Point Numbers <Reference>

Single-Precision Floating-Point Formats:

1. Internal representation of single-precision floating-point numbers

In this Application Note, the following formats are applied to single-precision floating-point numbers depending on their values \(R = \text{real number} \):

A. Internal representation for \(R = 0 \)

\[
\begin{array}{cccccccccccccccccccccccc}
31 & 30 & 29 & \cdots & \cdots & 2 & 1 & 0 \\
0 & 0 & 0 & \cdots & \cdots & 0 & 0 & 0 \\
\end{array}
\]

All of the 32 bits are 0's.

B. Normalized format

\[
\begin{array}{cccccccccccccccccccccccc}
31 & 30 & \alpha & 23 & 22 & 0 \\
S & \alpha & \beta & \cdots & \cdots & 0 \\
\end{array}
\]

\(\alpha \) is an exponent whose field is 8 bits long, \(\beta \) is a mantissa whose field is 23 bits long. The value of \(R \) can be represented by the following equation (on conditions that \(1 \leq \alpha \leq 254 \)):

\[
R = 2^S \times 2^{\alpha-127} \times (1 + 2^{-1} \times \beta_{22} + 2^{-2} \times \beta_{21} + \ldots \ldots + 2^{-23} \times \beta_0)
\]

where \(\beta_i \) is the value of the i-th bit \((0 \leq i \leq 22) \) and \(S \) is the sign bit.

C. Denormalized format

\[
\begin{array}{cccccccccccccccccccccccc}
31 & 30 & 23 & 22 & 0 \\
S & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \beta \\
\end{array}
\]

where \(\beta \) is a mantissa whose field is 23 bits long. This format is used to represent a real number too small to be represented in the normal format. In this format, \(R \) can be represented by the following equation:

\[
R = 2^S \times 2^{-126} \times (2^{-1} \times \beta_{22} + 2^{-2} \times \beta_{21} + \ldots \ldots + 2^{-23} \times \beta_0)
\]

D. Infinity

\[
\begin{array}{cccccccccccccccccccccccc}
31 & 30 & 23 & 22 & 0 \\
S & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \beta \\
\end{array}
\]

where \(\beta \) is a mantissa whose field is 23 bits long. In this Application Note, however, the following rules apply if all exponents are 1's;

Positive infinity when \(S = 0 \)

\(R = +\infty \)

Negative infinity when \(S = 1 \)

\(R = -\infty \)
2. Example of internal representation

If \(S = \text{B'}0 \) (binary)
\[\alpha = \text{B'}10000011 \] (binary)
\[\beta = \text{B'}1011100……0 \] (binary)

Then the corresponding real number is as follows:
\[R = 2^0 \times 2^{131-127} \times (1 + 2^{-1} + 2^{-3} + 2^{-4} + 2^{-5}) \]
\[= 16 + 8 + 2 + 1 + 0.5 = 27.5 \]

A. Maximum and minimum values

The maximum value (\(R_{\text{MAX}} \)) and minimum value (\(R_{\text{MIN}} \)), in terms of the absolute value, are as follows:
\[R_{\text{MAX}} = 2^{254-127} \times (1 + 2^{-1} + 2^{-2} + 2^{-3} \ldots + 2^{-23}) \]
\[= 3.37 \times 10^{38} \]
\[R_{\text{MIN}} = 2^{-126} \times 2^{-23} = 2^{-149} = 1.40 \times 10^{-45} \]

The absolute values within the above range can be represented.
Website and Support

Renesas Technology Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
csc@renesas.com

Revision Record

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
<th>Page</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Sep.18.03</td>
<td>—</td>
<td>—</td>
<td>First edition issued</td>
</tr>
<tr>
<td>2.00</td>
<td>Nov.30.06</td>
<td>All pages</td>
<td>All</td>
<td>Content correction</td>
</tr>
</tbody>
</table>
Notes regarding these materials

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in the light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 - (1) artificial life support devices or systems
 - (2) surgical implantations
 - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 - (4) any other purposes that pose a direct threat to human life
Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

© 2006. Renesas Technology Corp., All rights reserved.