1. Abstract

This document describes how to use repeat sweep mode 1. In repeat sweep mode 1, repeated A/D conversion is performed on the input voltage of eight selected pins including some prioritized pins from the following: AN_0 to AN_7, AN0_0 to AN0_7, AN2_0 to AN2_7, and AN15_0 to AN15_7.

2. Introduction

The application example described in this document applies to the following microcomputers (MCUs):

MCUs: R32C/118 Group, R32C/117 Group, and R32C/116 Group

This program can be used with other R32C/100 Series MCUs which have the same special function registers (SFRs) as the above groups. Check the manuals for any modifications to functions. Careful evaluation is recommended before using the program described in this application note.
3. Application Example

This application example describes how to perform repeated A/D conversion in repeat sweep mode 1 on the input voltage of pins AN_0 to AN_7.

- Operation clock ϕ_{AD}: f_{AD} divided by 2
- Resolution: 10-bit precision
- A/D conversion start condition: software trigger
- A/D conversion method: with sample and hold function
- DMAC operating mode: disabled
- Prioritized pin: AN_0 (one pin)

3.1 Explanation of Prioritized Pins

In repeat sweep mode 1, repeated A/D conversion is performed on the input voltage of eight selected pins including some prioritized pins selected by setting bits SCAN1 and SCAN0 in the AD0CON1 register and bits APS1 and APS0 in the AD0CON2 register.

Figure 3.1 shows the Sweep Order When AN_0 is Selected as a Prioritized Pin.

![Sweep Order Diagram](image-url)
3.2 Explanation

(1) When setting the ADST bit in the AD0CON0 register to 1 (A/D conversion started), the input voltage applied to the AN_0 pin is A/D converted.

(2) After A/D conversion is completed on the AN0 pin, the conversion result (the contents of successive conversion register) is transferred to the AD00 register.

(3) Repeated A/D conversion is performed in the following order:

\[AN_0 \rightarrow AN_1 \rightarrow AN_0 \rightarrow AN_2 \rightarrow AN_0 \rightarrow AN_3 \rightarrow \ldots \rightarrow AN_0 \rightarrow AN_7 \rightarrow AN_0 \rightarrow AN_1 \rightarrow \ldots \]

The conversion result is transferred to the corresponding AD0i register each time A/D conversion is completed on the selected pin. The IR bit in the AD0IC register is not set to 1 (interrupt requested) \((i = 0 \text{ to } 7)\).

(4) The A/D converter does not stop operating until the ADST bit is set to 0 (A/D conversion stopped) by a program.

Figure 3.2 shows an Operation Example in Repeat Sweep Mode 1.

![Figure 3.2 Operation Example in Repeat Sweep Mode 1](image-url)
3.3 Settings

The section shows the setting procedure and setting values to execute 3.2 “Explanation”. Refer to the hardware user’s manuals for details of each register.

![Setting Procedure of Repeat Sweep Mode 1](image)

Note:
1. Operating clock \(\phi_{AD} \) is selected from a combination of the CKS0 bit in the AD0CON0 register, the CKS1 bit in the AD0CON1 register, and the CKS2 bit in the AD0CON3 register. For more details, refer to the hardware user’s manuals.
4. **Sample Program**

A sample program can be downloaded from the Renesas Electronics website.

5. **Reference Documents**

User’s Manuals
- R32C/118 Group User’s Manual: Hardware Rev.1.00
- R32C/117 Group User’s Manual: Hardware Rev.1.00
- R32C/116 Group User’s Manual: Hardware Rev.1.00
The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

C Compiler Manual
- R32C/100 Series C Compiler Package V.1.02 C Compiler User’s Manual Rev.2.00
The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
REVISION HISTORY

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Aug. 31, 2010</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>

All trademarks and registered trademarks are the property of their respective owners.
General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
 Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
 The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
 Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
 After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
 Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.
 - The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of the third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application example. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any damages incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is free of errors. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade. Under these circumstances, you should choose a product based on the applicable law and the importance of the application. Renesas Electronics assumes no responsibility for damages incurred by you or third parties arising from the use of any Renesas Electronics products for any application or environment that is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard against these. You should not use Renesas Electronics products for any application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

10. You should use Renesas Electronics products described in this document for personal electronic equipment; and industrial robots.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics products" mean any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES
Renesas Electronics Corporation
http://www.renesas.com

Refer to "http://www.renesas.com" for the latest and detailed information.

Renesas Electronics America Inc.
3980 Scott Boulevard Santa Clara, CA 95052-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1121 Richardson Road, Markham, Ontario L3Y 9C3, Canada
Tel: +1-905-959-3441, Fax: +1-905-959-3220

Renesas Electronics Europe Limited
Suleas Maltmore, Millbrook Road, Balstre End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-586-100, Fax: +44-1628-586-900

Renesas Electronics Europe GmbH
Amrasstrasse 15, 40472 Dusseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7F, Foor, Quantum Plaza, No.37 ZhongHua Nasional District, Beijing 100083, P.R.China
Tel: +86-10-6230-1169, Fax: +86-10-6230-7879

Renesas Electronics Hong Kong Limited
Unit 1901-1913, 16/F, Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2888-9516, Fax: +852-2888-9920

Renesas Electronics Taiwan Co., Ltd.
7F., No.382-F, No.172, North Road, Taichung, Taichung
Tel: +88-2-2815-9650, Fax: +88-2-2815-9670

Renesas Electronics Singapore Pte. Ltd.
100 Science Park Drive, #06-10, Science Park II, Singapore 118226
Tel: +65-6213-5000, Fax: +65-6213-5001

Renesas Electronics Malaysia Sdn Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +603-7955-9390, Fax: +603-7955-9510

Renesas Electronics Korea Co., Ltd.
11F, Bank of Korea Bldg., 202-2 Yeouido-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3757, Fax: +82-2-558-5141

© 2010 Renesas Electronics Corporation. All rights reserved.
Colophon 1.0