1. Abstract

This document describes how to use the multi-port repeat sweep mode 0. In multi-port repeat sweep mode 0, the analog voltage applied to the following 16 pins is A/D converted:

- Eight pins of port P10 (AN_0 to AN_7)
- One port (eight pins) from port P0 (AN0_0 to AN0_7), port P2 (AN2_0 to AN2_7), or port P15 (AN15_0 to AN15_7).

Note:
1. Available in the 144-pin package

2. Introduction

The application example described in this document applies to the following microcomputers (MCUs):

MCUs: R32C/118 Group, R32C/117 Group, and R32C/116 Group

This program can be used with other R32C/100 Series MCUs which have the same special function registers (SFRs) as the above groups. Check the manuals for any modifications to functions. Careful evaluation is recommended before using the program described in this application note.
3. Application Example

The following settings show how to perform repeated A/D conversion on the input voltage of each pin from AN_0 to AN_7 and AN0_0 to AN0_7.

- Operation clock ϕ_{AD} (1): f_{AD} divided by 2
- Resolution: 10-bit precision
- A/D conversion start condition: software trigger
- A/D conversion method: with sample and hold function
- DMAC operating mode: enabled
- DMAC addressing mode: non-incrementing addressing → incrementing addressing
- A/D sweep pin: AN_0 to AN_7, AN0_0 to AN0_7

Note:
1. The ϕ_{AD} frequency should be as follows:
 - When VCC = 4.2 to 5.5 V, 16 MHz or below,
 - When VCC = 3.0 to 5.5 V, 10 MHz or below
 - Without the sample and hold function; 250 kHz or above
 - With the sample and hold function; 1 MHz or above.

3.1 Explanation

In multi-port repeat sweep mode 0, the A/D conversion result of each analog input pin is stored to the AD00 register by setting the DSU bit in the AD0CON3 register to 1 (DMAC operating mode enabled).

The DMAC transfers the conversion result to a given memory space by selecting the A/D conversion interrupt request as the DMAC request source, fixed addressing as the source address, incrementing addressing as the destination address, setting the transfer size to 16 bits and setting repeat transfer. Figure 3.1 shows an Operation Example in Multi-port Repeat Sweep Mode 0. The updated A/D conversion result of each pin is overwritten and stored into a given RAM.

Note: The AD00 register should not be read.

Figure 3.1 Operation Example in Multi-port Repeat Sweep Mode 0
3.2 Settings

This section shows the setting procedure and setting values to execute 3.1 “Explanation”. Refer to hardware user’s manuals for details of each register.

![Flowchart of Setting Procedure](image)

- Start of setting
- Set PLL Clock
- Disable maskable interrupts
- Set DMAC
- Set AD0CON0 ← 98h
 - Frequency selected: fAD divided by 2
 - A/D operation mode: repeat sweep mode
- Set AD0CON1 ← 2Bh
 - 10-bit mode selected
 - VREF connected
- Set AD0CON2 ← 03h
- Set AD0CON3 ← 03h
- Set AD0CON4 ← 08h
- Use P0 and P10 as A/D converter inputs
- Set interrupt priority level to 0
- Enable maskable interrupts
- ADST_AD0CON0 ← 1
- End of setting

Set A/D control register 0.
- Frequency selected: fAD divided by 2
- A/D operation mode: repeat sweep mode

Set A/D control register 1.
- 10-bit mode selected
- VREF connected

Set A/D control register 2.
- A/D conversion method: with sample and hold function

Set A/D control register 3.
- DMAC operating mode enabled
- Multi-port sweep mode enabled
- Multi-port sweep status flag: AN_0 to AN_7

Set A/D control register 4.
- Multi-port sweep bit: AN_0 to AN_7, AN0_0 to AN0_7

A/D conversion started.

Figure 3.2 Setting Procedure of Multi-port Repeat Sweep Mode 0 (1/2)
A/D Converter Operation (Multi-port Repeat Sweep Mode 0)

Start of DMAC setting

- **DMD0 ← 24h**
 - Set the DMA transfer mode.
 - DMA transfer disabled

- **DM0SL ← 18h**
 - DM0S2 ← 00h
 - Select the DMA request source.
 - A/D0 interrupt request

- **DCT0 ← 10h**
 - DCR0 ← 10h
 - Set the number of DMA transfers.
 - Reload the number of DMA transfers.

- **DSA0 ← &ad00_addr**
 - DSR0 ← &ad00_addr
 - Set the DMA transfer source address (AD00 register).
 - Reload the DMA transfer source address.

- **DDA0 ← &ad_result[0]**
 - DDR0 ← &ad_result[0]
 - Set the DMA transfer destination address (store in internal variables).
 - Reload the DMA transfer destination address.

- **DM0IC ← 07h**
 - Set the DMA transfer complete interrupt request level.

- **DMD0 ← 27h**
 - Set the DMA transfer mode.
 - Transfer mode: repeat transfer
 - Transfer size: 16 bits
 - Destination addressing: incrementing addressing

Figure 3.3 Setting Procedure of Multi-port Repeat Sweep Mode 0 (2/2)
4. **Sample Program**
 A sample program can be downloaded from the Renesas Electronics website.

5. **Reference Documents**
 User’s Manuals
 - R32C/118 Group User’s Manual: Hardware Rev.1.00
 - R32C/117 Group User’s Manual: Hardware Rev.1.00
 - R32C/116 Group User’s Manual: Hardware Rev.1.00
 The latest versions can be downloaded from the Renesas Electronics website.

 Technical Update/Technical News
 The latest information can be downloaded from the Renesas Electronics website.

 C Compiler Manual
 - R32C/100 Series C Compiler Package V.1.02 C Compiler User’s Manual Rev.2.00
 The latest version can be downloaded from the Renesas Electronics website.

Website and Support
Renesas Electronics website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry
REVISION HISTORY

R32C/100 Series
A/D Converter Operation (Multi-port Repeat Sweep Mode 0)

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>July 30, 2010</td>
<td>First edition issued</td>
</tr>
</tbody>
</table>

All trademarks and registered trademarks are the property of their respective owners.
General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
 Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
 - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
 The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
 Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
 After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
 Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.
 - The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted herein under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not, nor shall you, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application example. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

8. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

10. “High Quality” - Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

11. “Specific” - Aircraft, aerospace equipment, submarine repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g., artificial life support devices or systems), surgical implants, or healthcare intervention (e.g., excision, etc.), and any other applications or purposes that pose a direct threat to human life.

12. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installations and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

13. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of reconfigurable software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

14. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You should use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages incurred by you resulting from errors or omissions from the information included herein.

15. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

16. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product"(s) mean(s) any product developed or manufactured by or for Renesas Electronics.