要点

本篇应用说明介绍了不使用定时器阵列单元（TAU）而使用看门狗定时器（WDT）的间隔中断功能实现间隔定时器的方法。本篇应用的参考例程中，对间隔定时器的周期进行修正处理，使得间隔定时器的精度提高到±3%以内（精度±3%以内，为环境温度25℃下的实测值）。

对象 MCU

R7F0C002

本篇应用说明也适用于其他与上面所述的MCU具有相同SFR（特殊功能寄存器）定义的产品。关于产品功能的改进，请参看手册中的相关信息。在使用本篇应用说明的程序前，需进行详细的评价。
1. 规格

本篇应用说明，使用 WDT 可以设定 100ms ~ 500ms（以 100ms 为单位）的间隔定时器。对 100ms 的间隔进行计数，产生间隔中断。

主程序中，进行间隔定时器的初始化设定后，进入 STOP 模式，等待产生看门狗定时器中断（INTWDTI）。对 INTWDTI 的发生次数进行软件计数，可以算出 100ms 的间隔时间。通过调整计数次数，来修正 100ms 的间隔时间。

经过设定好的间隔时间（100ms ~ 500ms），翻转 LED 输出。依据 SW1（INTP0）的按下次数设定间隔时间。按下 SW1 时，产生 INTP0，对按下次数进行递增计数。

复位后，设定间隔时间为 100ms，每按下一次 SW1，就加 100ms。当间隔时间为 500ms 时，按下 SW1，则间隔时间返回到 100ms。

相关外围功能和用途，请参见“表 1.1”。操作概要，请参见“图 1.1”，使用 WDT 的间隔定时器的动作，请参见“图 1.2”。

具体的间隔时间的修正方法，请参考“1.1 间隔时间精度的修正方法”和“1.2 工作中间隔时间的精度修正”。

<table>
<thead>
<tr>
<th>外围功能</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>看门狗定时器</td>
<td>使用 WDT 的间隔中断创建间隔定时器的基准时间</td>
</tr>
<tr>
<td>INTP0（外部中断）</td>
<td>变更间隔定时器的间隔时间</td>
</tr>
</tbody>
</table>

![图 1.1 操作概要](image-url)
使用看门狗定时器的中断功能实现间隔定时器（时钟修正）

图 1.2 使用 WDT 的间隔定时器的动作

<1> 执行通常周期计数，100ms 计数器到达“0”时，间隔计数器进行递减计数。

<2> 当 100ms 计数器为“0”，在产生 INTWDTI 时，进行 100ms 计数器的修正处理。通过软件测量 INTWDTI 的产生周期，在等待 INTWDTI 的产生时，对 BC 寄存器进行递增计数以此测量 INTWDTI 的产生周期。

<3> 使用步骤<2>中测量的 INTWDTI 发生周期（BC 寄存器值），计算出 100ms 中 INTWDTI 产生的次数，并将计算出的值设入 100ms 计数器中。

<4> 执行通常周期计数，每发生一次 INTWDTI，间隔计数器便进行一次间隔为 100ms 的递减计数。
1.1 间隔时间精度的修正方法

（1）INTWDTI 的周期测量

通过软件测量 INTWDTI 的产生周期。周期测量程序如“图 1.3”所示。本篇应用说明的参考例程中，清除 WDT，然后对 BC 寄存器进行递增计数，直到产生 INTWDTI。例程中的 CLOOP 部分的执行时钟数为 6 个时钟，所以 CPU 时钟为 8MHz 时 CLOOP 部分的执行时间为 0.75μs。另外，当 INTWDTI 的最长周期 (约 3.80ms (≈26/(15kHz - 15%) × 0.75) + 1 / (2 × (15kHz - 15%))) 时的 BC 寄存器的计数值为 5067，所以用 16 位的 BC 寄存器可以实现。

```
MOV WDTE, #0xAC        ; clear watch dog timer
CLOOP:
  INCW BC               ; Count up (1 clocks)
  BF WDTIF, $CLOOP     ; Wait for WDTI interrupt (5 clocks)
```

图 1.3 通过软件进行 INTWDTI 周期测量处理

（2）100ms 计数器的计算方法

通过 INTWDTI 周期测量算出的结果，可以计算出距离 100ms 最近的 INTWDTI 的产生次数。
INTWDTI 产生周期，可以通过下面的公式算出。
INTWDTI 产生周期 = 26 / fIL × 0.75 + 1 / (2 × fIL)

其中，fIL 精度为 15kHz±15％，所以 INTWDTI 的最小周期是 2.812ms～3.804ms。因此，距离 100ms 最近的 INTWDTI 的产生次数是 26～35 次。

然后，因为要从 BC 寄存器的计数值中算出 100ms 的 INTWDTI 发生次数，所以要计算判断条件。因为要在 26 或者 27 之间判断 INTWDTI 的发生次数，所以在 INTWDTI 发生次数的中间值为 26.5 的情况下，计算出 BC 计数值。同样地，在 INTWDTI 数量为 27.5～35.5（1 个单位）的情况下算出 BC 计数值（C）（参照“表 1.2”）。

```
<table>
<thead>
<tr>
<th>计数值 (A)</th>
<th>周期 (ms) (B)</th>
<th>BC 计数值 (C)</th>
<th>(D)</th>
<th>(E)</th>
<th>距离 100ms 最近的 INTWDTI 的发生次数</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.5</td>
<td>3.77</td>
<td>5031</td>
<td>39</td>
<td>25*</td>
<td>26</td>
</tr>
<tr>
<td>27.5</td>
<td>3.64</td>
<td>4848</td>
<td>37</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>28.5</td>
<td>3.51</td>
<td>4678</td>
<td>36</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>29.5</td>
<td>3.39</td>
<td>4519</td>
<td>35</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>30.5</td>
<td>3.28</td>
<td>4371</td>
<td>34</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>31.5</td>
<td>3.17</td>
<td>4232</td>
<td>33</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>32.5</td>
<td>3.08</td>
<td>4102</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>33.5</td>
<td>2.99</td>
<td>3980</td>
<td>31</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>34.5</td>
<td>2.82</td>
<td>3864</td>
<td>30</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>35.5</td>
<td>2.82</td>
<td>3755</td>
<td>29</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>
```

注：此表中，加载的值均为小数点后第三位四舍五入。

*: 修正目标

另外，为了简单地算出 100ms 的 INTWDTI 发生的次数，要找出使用 BC 寄存器的计数值的近似算式。BC 寄存器的计数值除以 128（实际上就是左移 1 位得到 B 寄存器的值），几乎可以得到一个整数值 (D)。为了将这个 (D) 值调整到 INTWDTI 的发生次数在 26～35 之间，要从 64 中减去 (D) 得到 (E)。将 (E) 中的不连续修正对象 (*) 加 1，即可得到 26～35 的连续整数。这样的处理在实际程序中如图 1.4 所示，可以通过 7 个时钟的程序来实现。
使用看门狗定时器的中断功能实现间隔定时器（时钟修正） CC-RL

```
SHLW BC, 1 ; 1bit shift left
MOVAL, #64
SUBAL, B ; get loop count data
CMPAL, #25 ; check less than 26
SKNC
INCA, ; adjust +1 if 25
```

图1.4 100ms的INTWDTI发生次数的演算程序

通过上述处理，可以实现100ms计数器。

1.2 工作中间隔时间的修正处理

为了保持使用看门狗定时器的中断功能的间隔定时器的间隔时间的准确度，有必要周期性地对间隔时间进行测量和修正。

本篇应用说明中，在100ms的计数开始时，对INTWDTI的发生周期进行测量和修正。

1.3 间隔定时器的实际测量值（参考）

本篇应用说明中，实现的间隔定时器的实际测量值（参考）如表1.3所示。表1.3的实际测量值是在环境温度（Ta）= 25℃下的测量结果。

因为各间隔时间基准的100ms的误差率为2.0%，所以200ms～500ms的误差率也是2.0%。

表1.3 间隔定时器的实际测量值（Ta = 25℃）

<table>
<thead>
<tr>
<th>目标值 (ms)</th>
<th>实际测量值 (ms)</th>
<th>误差率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>98.0</td>
<td>2.0</td>
</tr>
<tr>
<td>200</td>
<td>196.0</td>
<td>2.0</td>
</tr>
<tr>
<td>300</td>
<td>294.0</td>
<td>2.0</td>
</tr>
<tr>
<td>400</td>
<td>392.0</td>
<td>2.0</td>
</tr>
<tr>
<td>500</td>
<td>490.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>
2. 动作确认条件

本应用说明中的参考例程，是在下面的条件下进行动作确认的。

表 2.1 动作确认条件

<table>
<thead>
<tr>
<th>项目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>所用微控制器</td>
<td>R7F0C002L</td>
</tr>
<tr>
<td>工作频率</td>
<td>高速内部振荡器（HOCO）时钟：8MHz
CPU/外围功能时钟：8MHz</td>
</tr>
<tr>
<td>工作电压</td>
<td>5.0V（工作电压范围：2.9V5.5V）
LVD工作模式（Vlvd）：复位模式
上升沿 2.81V（2.76V2.87V）
下降沿 2.75V（2.70V~2.81V）</td>
</tr>
<tr>
<td>集成开发环境</td>
<td>CS+ for CC V3.02.00 （瑞萨电子开发）</td>
</tr>
<tr>
<td>C编译器</td>
<td>CC-RL V1.01.00 （瑞萨电子开发）</td>
</tr>
</tbody>
</table>
3. 硬件说明

3.1 硬件配置示例

本篇应用说明中使用的硬件配置示例，请参见“图 3.1”。

![硬件配置示例图](image)

图 3.1 硬件配置

注意：
1. 上述硬件配置图是为了表示硬件连接情况的简化图。在实际电路设计时，请注意根据系统具体要求进行适当的引脚处理，并满足电气特性的要求（输入专用引脚请注意分别通过电阻上拉到 \(V_{DD} \) 或是下拉到 \(V_{SS} \)）。
2. 如果有名称以 \(EV_{SS} \) 为开头的引脚，请连接至 \(V_{SS} \)；如果有名称以 \(EV_{DD} \) 为开头的引脚，请连接至 \(V_{DD} \)。
3. 请将 \(V_{DD} \) 电压值保持在由 LVD 设置的复位解除电压 \(V_{LVD} \) 以上。

3.2 使用引脚一览

使用的引脚及其功能，请参见“表 3.1”。

<table>
<thead>
<tr>
<th>引脚名</th>
<th>输入/输出</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>P10</td>
<td>输出</td>
<td>LED 驱动用端口</td>
</tr>
<tr>
<td>P137/INTP0</td>
<td>输入</td>
<td>间隔时间设定用按键输入（SW1）</td>
</tr>
</tbody>
</table>

表 3.1 使用的引脚及其功能
4. 软件说明

4.1 操作概要

本篇应用说明介绍了主程序中进行间隔定时器的初始化设置后，在 STOP 模式中等待产生 INTWDTI。100ms 计数器开始时，进行间隔时间的精度修正。软件对 INTWDTI 的发生周期进行计数，并由此结果设定 100ms 计数器（变量 TIMEBASE）。此后，每次 INTWDTI 发生时，对 100ms 计数器（变量 TIMEBASE）进行递减计数。

始终接受间隔时间设定用按键（SW1）的输入。一旦按下 SW1，进行防抖对策的处理。按下 SW1，则产生 INTP0 中断，禁止 INTP0 中断，设定抖动对策用计数器（变量 CHATCOUNT）。依据 INTWDTI 的发生次数，对抖动对策用计数器（变量 CHATCOUNT）进行递减计数，在经过防抖时间后（变量 CHATCOUNT = 0），确认 P137/INTP0 引脚的输入电平。如果 P137/INTP0 引脚为低电平的话，就判断 SW1 被按下，并且再度允许 INTP0 中断，然后对 SW1 的按下次计数器（变量 KEYCOUNT）递增计数。和 SW1 按下次数计数器（变量 KEYCOUNT）相对应的数据，将会作为下次间隔时间，被放入间隔计数器（变量 PERIOD）中。

100ms 计数器的动作是，每次 INTWDTI 发生时，对 100ms 计数器（变量 TIMEBASE）进行递减计数，达到 100ms（变量 TIMEBASE = 0）时，对间隔时间数（变量 PERIOD）递减计数。经过设定好的间隔时间（变量 PERIOD = 0）时，翻转 LED，并将 SW1 按下次数计数器（变量 KEYCOUNT）相应数据，作为下次间隔时间，放入间隔计数器（变量 PERIOD）中。

(1) 对所使用外围功能进行初始化设置。
<设定条件>
- 屏蔽 INTWDTI 中断，设定中断优先级为高优先级。
- 将 INTP0 的有效沿设为下降沿，解除 INTP0 的中断屏蔽。

(2) 对所使用变量进行初始化设置。
- INTWDTI 中断处理中，在跳转目标地址（变量 PROCEDURE）上，设定抖动对策处理（标签 INTWDTISUB）的地址。
- 清除 SW1 按下次数计数器（变量 KEYCOUNT）。
- 清除抖动对策用计数器（变量 CHATCOUNT）。

(3) 100ms 计数器开始计数，并且测量截至 INTWDTI 发生时的时间。
- 清除测量 INTWDTI 产生周期的 BC 寄存器。
- 清除 WDT 计数器。
- 一边对 BC 寄存器进行递增计数，一边等待 INTWDTI 的发生。
- INTWDTI 发生时，根据 INTWDTI 的发生周期（BC 寄存器的值），算出最接近 100ms 的 INTWDTI 的发生次数，并放入 100ms 计数器（变量 TIMEBASE）中。

(4) 设置间隔时间。

将间隔存储表 TINTVL[KEYCOUNT]中的值放入间隔设定变量 PERIOD 中。复位后，在这个处理前清除 KEYCOUNT，则 TINTVL[KEYCOUNT]被设定为“1”。因此，复位后的间隔时间被设定为 100ms（PERIOD = 1）。

(5) 熄灭 LED，解除 INTWDTI 的中断屏蔽，并允许向量中断。

(6) 进入 STOP 模式，等待中断。主程序通过一个无限循环执行 STOP 命令。所有后续程序处理由 INTP0 的中断处理程序或者 INTWDTI 的中断处理程序进行。

(7) 一旦发生 INTP0 中断，将抖动对策用计数器（变量 CHATCOUNT）设为“9”，禁止 INTP0 中断，并从处理中返回。
发生 INTWDTI 时，进行抖动对策处理和 100ms 计数器处理。

发生 INTWDTI 时，将运行解除 STOP 模式的中断处理程序（从解除 STOP 模式到启动中断处理，大概需要花费 3.2ms 的 STOP 解除时间，这对 INTWDTI 的产生周期而言大概占 1%~2%）。在 100ms 计数器的精度修正时，这个 STOP 解除时间会补充在 BC 寄存器的初始值中。具体处理的流程如下所示。

1. 清除 WDT 计数器。
2. 100ms 的计数器中，进行抖动对策处理和 100ms 计数处理。

抖动对策处理的流程如下所示。

- 抖动对策用计数器（变量 CHATCOUNT）为"0"时，进入 100ms 计数处理。抖动对策用计数器（变量 CHATCOUNT）不为"0"时，对其递减计数。
- 变量 CHATCOUNT 变为"0"时，经过抖动判断等待时间后，允许 INTO 中断，并确认 P137/INTP0 引脚的输入电平。
- P137/INTP0 引脚的输入电平为"L"时，判断 SW1 被按下，对 SW1 按下次数计数器（变量 KEYCOUNT）进行递增计数。
- P137/INTP0 引脚的输入电平为"H"时，判断 SW1 未被按下，进入 100ms 计数处理。
- SW1 按下次数计数器（变量 KEYCOUNT）超过间隔表 TINTVL 的范围时，清除 SW1 按下次数，并进入 100ms 计数处理。

100ms 计数处理的流程如下所示。

- 对 100ms 计数器（变量 TIMEBASE）进行递减计数。
- 100ms 计数器（变量 TIMEBASE）为"0"时（经过 100ms），对间隔计数器（变量 PERIOD）进行递减计数。
- 100ms 计数器（变量 TIMEBASE）不为"0"时，执行下面的处理。
- 间隔计数器（变量 PERIOD）为"0"时（经过指定间隔），将间隔表的值（变量 TINTVL[KEYCOUNT]）设入间隔定时器（变量 PERIOD）中，并翻转 LED 输出。然后，在 INTWDTI 中断处理中分支地址（变量 PROCEDURE）上，设定截至 INTWDTI 发生时的时间的计算处理（标签 MEASURESUB）的地址。
- 间隔计数器（变量 PERIOD）不为"0"时，执行下面的处理。

100ms 计数开始时，INTWDTI 的发生周期测量后，进行抖动对策处理和 100ms 计数处理。

INTWDTI 的发生周期测量的流程如下所示。

- 将 BC 寄存器作为初始值，设定常量 TMOFFSET+1。

本篇应用说明中，将常量 TMOFFSET 设为"40"。STOP 模式解除时间为 27μs（TYP）+11 个时钟（执行向量中断时），因为本篇应用说明中 R7F0C002 的工作时钟为 8MHz，所以为 28.375ms。由于 BC 寄存器的递增计数需要 6 个时钟（0.75μs），所以可通过下面的算式求得偏移量。

\[
TMOFFSET = \left(\frac{28.4\mu s + 11 \times 0.1\mu s}{0.75\mu s}\right) = 39
\]

另外，在 BC 寄存器进行递增计数前，因为要将 BC 寄存器的内容保存到堆栈中（2 个时钟），将初始值设入 BC 寄存器中（1 个时钟）、跳转到 BC 寄存器递增处理（3 个时钟），所以需要 6 个时钟，要给 TMOFFSET 加“1”。

STOP 模式的解除时间，请参照 R7F0C002 用户手册 硬件篇。

- 一边对 BC 寄存器进行递增计数，一边等待 INTWDTI 的产生。
- INTWDTI 发生时，根据 BC 寄存器，算出大约 100ms 的 INTWDTI 的发生次数，并将其设入 100ms 计数器（变量 TIMEBASE）中。
- 对 100ms 计数器（变量 TIMEBASE）进行递减计数。
- 将抖动对策处理的地址设入 INTWDTI 中断处理中的跳转地址（变量 PROCEDURE）中，进行抖动对策处理和 100ms 计数处理。
4.2 选项字节设置一览

选项字节的设置，请参见“表 4.1”。

表 4.1 选项字节设置

<table>
<thead>
<tr>
<th>地址</th>
<th>设定值</th>
<th>内容</th>
</tr>
</thead>
</table>
| 000C0H | 11110001B | 看门狗定时器动作运行
复位后，开始计数
间隔中断时间：$2^6 / f_{IL} \times 0.75 + 1 / (2 \times f_{IL})$
在 HALT/STOP 模式中，允许计数器动作 |
| 000C1H | 01111111B | LVD 复位模式
检测电压：上升沿 2.81V（2.76V~2.87V），下降沿 2.75V（2.70V~2.81V） |
| 000C2H | 11101010B | HOCO：8MHz |
| 000C3H | 10000101B | 允许片上调试 |

4.3 常量一览

参考例程中使用的常量，请参见“表 4.2”。

表 4.2 参考例程中使用的常量

<table>
<thead>
<tr>
<th>常量</th>
<th>数值</th>
<th>内容</th>
</tr>
</thead>
</table>
| TMOFFSET| 39 | BC 寄存器的偏移值
（和 STOP 模式解除时间相对应的 BC 寄存器的计数值） |
| CHATNo | 9 | 抖动对策用的 INTWDTI 计数值
为了消抖，INTP0 发生后，等到 INTWDTI 发生 9 次后，确认 P137/INTP0 引脚的输入电平。 |

4.4 变量一览

参考例程中使用的变量，请参见“表 4.3”。

表 4.3 参考例程中使用的变量

<table>
<thead>
<tr>
<th>变量类型</th>
<th>变量名</th>
<th>内容</th>
<th>使用的函数</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 bits</td>
<td>TINTVL</td>
<td>间隔表 Interval table</td>
<td>LIINTWDTI, SETINTERVAL</td>
</tr>
</tbody>
</table>
| 16 bits | PROCEDURE | INTWDTI 中断处理中跳转地址
设定在 100ms 的计数开始时，跳转至标签 MEASURESUB 处；在 100ms 计数中，跳转至标签 INTWDTISUB 处。 | main, LIINTWDTI |
| 8 bits | KEYCOUNT | SW1 按下次数计数器 | main, LIINTWDTI, SETINTERVAL |
| 8 bits | CHATCOUNT | 抖动对策用计数器 | main, LIINTWDTI |
| 8 bits | TIMEBASE | 100ms 计数器 | main, LIINTWDTI |
| 8 bits | PERIOD | 间隔计数器 | LIINTWDTI, SETINTERVAL |
4.5 函数（子程序）一览

参考例程中使用的函数，请参见“表 4.4”。

表 4.4 函数（子程序）

<table>
<thead>
<tr>
<th>函数（子程序）名</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESET_START</td>
<td>CPU 初始化设置</td>
</tr>
<tr>
<td>SINIPORT</td>
<td>输入/输出端口的设置</td>
</tr>
<tr>
<td>SINICLK</td>
<td>时钟发生电路的设置</td>
</tr>
<tr>
<td>SINIINTP0</td>
<td>INTP0 初始化设置</td>
</tr>
<tr>
<td>SINIWDT</td>
<td>INTWDTI 初始化设置</td>
</tr>
<tr>
<td>main</td>
<td>主函数处理</td>
</tr>
<tr>
<td>SETINTERVAL</td>
<td>间隔设置</td>
</tr>
<tr>
<td>GETINTERVAL</td>
<td>测量 INTWDTI 的发生周期（测量前清除 BC 寄存器和 WDT 计数器）</td>
</tr>
<tr>
<td>CLOOP</td>
<td>测量 INTWDTI 的发生周期（测量前不清除 BC 寄存器和 WDT 计数器）</td>
</tr>
<tr>
<td>IINTP0</td>
<td>INTP0 中断处理函数</td>
</tr>
<tr>
<td>IINTWDTI</td>
<td>INTWDTI 中断处理函数</td>
</tr>
</tbody>
</table>
4.6 函数（子程序）说明

本节对参考例程中使用的函数（子程序）进行说明。

<table>
<thead>
<tr>
<th>函数名</th>
<th>功能说明</th>
<th>参数</th>
<th>返回值</th>
<th>参考</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESET_START</td>
<td>复位开始时的 CPU 初始化设置</td>
<td>无</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td>SINIPORT</td>
<td>P1 的初始化设置</td>
<td>无</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td>SINICLK</td>
<td>HOCODIV 的初始化设置</td>
<td>无</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td>SINIINTP0</td>
<td>INTP0 的初始化设置</td>
<td>无</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td>SINIWDT</td>
<td>INTWDTI 的初始化设置</td>
<td>无</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td>main</td>
<td>主函数处理</td>
<td>无</td>
<td>无</td>
<td>无</td>
</tr>
</tbody>
</table>
使用看门狗定时器的中断功能实现间隔定时器（时钟修正）

函数名：SETINTERVAL
概要：间隔设置
说明：从表中读出和 SW1 按下次数相对应的间隔，并设置到计数用的变量（PERIOD）中。
参数：无
返回值：无
参考：参照变量 KEYCOUNT

函数名：GETINTERVAL
概要：INTWDTI 的发生周期测量（清除 BC 寄存器和 WDT 计数）
说明：清除 BC 寄存器和 WDT 计数后，测量 INTWDTI 产生周期，算出最接近 100ms
的 INTWDTI 的发生次数，然后将计算结果设入 100ms 计数器（变量 TIMEBASE）中。
参数：无
返回值：无
参考：无

函数名：CLOOP
概要：INTWDTI 的发生周期测量（不清除 BC 寄存器和 WDT 计数）
说明：测量 INTWDTI 发生周期，算出最接近 100ms 的 INTWDTI 的发生次数，然后将计
算结果设入 100ms 计数器（变量 TIMEBASE）中。
参数：无
返回值：无
参考：无

函数名：INTP0
概要：INTP0 中断处理函数
说明：接受 INTP0 中断，设定防抖计数器。
参数：无
返回值：无
参考：无

函数名：INTWDTI
概要：WDT 间隔中断处理函数
说明：接受 INTWDTI 中断，SW1 按下时进行抖动对策处理。
参数：无
返回值：无
参考：无
4.7 流程图

本篇应用说明中参考例程的整体流程，请参见“图 4.1”。

![流程图](图 4.1 整体流程图)
4.7.1 CPU 初始化设置

CPU 初始化设置的流程，请参见“图 4.2”。

图 4.2 CPU 初始化函数
4.7.2 输入/输出端口的设置

输入/输出端口的设置的流程，请参见“图 4.3”。

![图 4.3 输入/输出端口的设置](image)

端口模式的设置
- LCD 端口功能寄存器 3 (PFSEG3)
 切换段输出或者端口（段输出除外）

<table>
<thead>
<tr>
<th>符号</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFSEG3</td>
<td>PFSEG31</td>
<td>PFSEG30</td>
<td>PFSEG29</td>
<td>PFSEG28</td>
<td>PFSEG27</td>
<td>PFSEG26</td>
<td>PFSEG25</td>
<td>PFSEG24</td>
</tr>
<tr>
<td>设定值</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

位 4

<table>
<thead>
<tr>
<th>PFSEG28</th>
<th>P10 引脚的端口（段输出除外）或者段输出的指定</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>用作端口（段输出除外）</td>
</tr>
<tr>
<td>1</td>
<td>用作段输出</td>
</tr>
</tbody>
</table>

- 端口寄存器 1 (P1)
 设定各端口的输出锁存器

<table>
<thead>
<tr>
<th>符号</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>P17</td>
<td>P16</td>
<td>P15</td>
<td>P14</td>
<td>P13</td>
<td>P12</td>
<td>P11</td>
<td>P10</td>
</tr>
<tr>
<td>设定值</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1</td>
</tr>
</tbody>
</table>

位 0

<table>
<thead>
<tr>
<th>P10</th>
<th>输出数据的控制（输出模式）</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>输出 “0”</td>
</tr>
<tr>
<td>1</td>
<td>输出 “1”</td>
</tr>
</tbody>
</table>

注意：关于寄存器设置的详细方法，请参考 R7F0C002 用户手册硬件篇。
寄存器图中的设定值说明：
x: 未使用位；空白: 未变更位；—: 预留位或者是什么都不配置的位
端口模式寄存器 1（PM1）
选择各端口的输入/输出模式

<table>
<thead>
<tr>
<th>符号</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM1</td>
<td>PM17</td>
<td>PM16</td>
<td>PM15</td>
<td>PM14</td>
<td>PM13</td>
<td>PM12</td>
<td>PM11</td>
<td>PM10</td>
</tr>
<tr>
<td>设定值</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
</tr>
</tbody>
</table>

位 0

<table>
<thead>
<tr>
<th>PM10</th>
<th>P10 引脚的输入/输出模式的选择</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>输出模式（输出缓冲器 ON）</td>
</tr>
<tr>
<td>1</td>
<td>输入模式（输出缓冲器 OFF）</td>
</tr>
</tbody>
</table>

注意：关于寄存器设置的详细方法，请参考 R7F0C002 用户手册硬件篇。
寄存器图中的设定值说明：
x: 未使用位；空白：未变更位；—: 预留位或者是什么都不配置的位
4.7.3 时钟发生电路的设置

时钟发生电路的设置的流程，请参见“图 4.4”。

图 4.4 时钟发生电路的设置

高速内部振荡频率的选择
- 高速内部振荡器频率选择寄存器（HOCODIV）
 - 选择高速内部振荡器的频率

<table>
<thead>
<tr>
<th>符号</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOCODIV</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>设定值</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HOCODIV2</th>
<th>HOCODIV1</th>
<th>HOCODIV0</th>
<th>高速内部振荡器时钟频率的选择</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24MHz</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>12MHz</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6MHz</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3MHz</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>禁止设置</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>禁止设置</td>
</tr>
<tr>
<td>其他</td>
<td></td>
<td></td>
<td>禁止设置</td>
</tr>
</tbody>
</table>

注意：关于寄存器设置的详细方法，请参考 R7F0C002 用户手册硬件篇。

寄存器图中的设定值说明：
- x：未使用位；空白：未变更位；—：预留位或者是什么都不配置的位
4.7.4 INTP0 初始化设置

INTP0 初始化设置的流程，请参见“图 4.5”。

![图 4.5 INTP0 初始化设置](image)

- **SINIINTP0**
 - 禁止 INTP0 中断
 - PMK0 位 ← 1
 - 禁止检出上升沿
 - EGP0 寄存器 ← 00000000B
 - 允许检出下降沿
 - EGN0 寄存器 ← 00000001B
 - 清除 INTP0 中断请求
 - PIF0 位 ← 0
 - 允许 INTP0 中断
 - PMK0 位 ← 0

返回
(1) 设定 INTP0 引脚的边沿检测
- 外部中断上升沿、下降沿允许寄存器（EGP0、EGN0）
 指定 INTP0 的有效沿

<table>
<thead>
<tr>
<th>符号</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGP0</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>符号</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGN0</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1</td>
</tr>
</tbody>
</table>

位 0

<table>
<thead>
<tr>
<th>EGP0</th>
<th>EGN0</th>
<th>INTP0 引脚有效边沿的选择</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>禁止检测边沿</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>下降沿</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>上升沿</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>上升和下降的双边沿</td>
</tr>
</tbody>
</table>

注意：关于寄存器设置的详细方法，请参考 R7F0C002 用户手册硬件篇。

寄存器图中的设定值说明：
x: 未使用位；空白: 未变更位；—: 预留位或者是什么都不配置的位
（2）设置 INTP0 边沿检出中断
- 中断请求标志寄存器（IF0L）
 清除中断请求标志
- 中断屏蔽标志寄存器（MK0L）
 设置中断屏蔽

IF0L
<table>
<thead>
<tr>
<th>符号</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIF5</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

位 2
- **PIF0**
 - 0: 不产生中断请求信号
 - 1: 产生中断请求，处于中断请求状态

MK0L
<table>
<thead>
<tr>
<th>符号</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMK5</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

位 2
- **PMK0**
 - 0: 允许中断处理
 - 1: 禁止中断处理

注意：关于寄存器设置的详细方法，请参考 R7F0C002 用户手册硬件篇。
寄存器图中的设定值说明：
- x: 未使用位；空白：未变更位；—: 预留位或者是什么都不配置的位
4.7.5 INTWDTI 初始化设置

INTWDTI 初始化设置的流程，请参见“图 4.6”。

![图 4.6 INTWDTI 初始化设置](image)

- SINITWDT
- 禁止INTWDTI中断
 - WDTIMK位 ← 1
- 中断设定为高优先级
 - WDTIPR0位 ← 0
 - WDTIPR1位 ← 0
- 清除INTWDTI中断请求标志
 - WDTIIF位 ← 0
- 返回
（1）设置 INTWDTI 中断

- 中断请求标志寄存器（IF0L）
 清除中断请求标志
- 中断屏蔽标志寄存器（MK0L）
 设置中断屏蔽

<table>
<thead>
<tr>
<th>符号</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF0L</td>
<td>PIF5</td>
<td>PIF4</td>
<td>PIF3</td>
<td>PIF2</td>
<td>PIF1</td>
<td>PIF0</td>
<td>LVIIIF</td>
<td>WDTIIIF</td>
</tr>
<tr>
<td>设定值</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
</tr>
</tbody>
</table>

位 0

<table>
<thead>
<tr>
<th>符号</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK0L</td>
<td>PMK5</td>
<td>PMK4</td>
<td>PMK3</td>
<td>PMK2</td>
<td>PMK1</td>
<td>PMK0</td>
<td>LVIMK</td>
<td>WDTIMK</td>
</tr>
<tr>
<td>设定值</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1</td>
</tr>
</tbody>
</table>

位 0

<table>
<thead>
<tr>
<th>符号</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDTIIIF</td>
<td>中断请求标志</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>不产生中断请求信号</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>产生中断请求，处于中断请求状态</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>符号</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDTIMK</td>
<td>中断处理的控制</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>允许中断处理</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>禁止中断处理</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注意：关于寄存器设置的详细方法，请参考 R7F0C002 用户手册硬件篇。
寄存器图中的设定值说明:
- x: 未使用位；空白：未变更位；—：预留位或者是什么都不配置的位。
（2）设置中断优先级

优先级指定标志寄存器（PR00L、PR10L）

设置中断优先级

<table>
<thead>
<tr>
<th>符号</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR00L</td>
<td>PPR05</td>
<td>PPR04</td>
<td>PPR03</td>
<td>PPR02</td>
<td>PPR01</td>
<td>PPR00</td>
<td>LVIPR0</td>
<td>WDTIPR0</td>
</tr>
<tr>
<td>设定值</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>符号</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR10L</td>
<td>PPR15</td>
<td>PPR14</td>
<td>PPR13</td>
<td>PPR12</td>
<td>PPR11</td>
<td>PPR10</td>
<td>LVIPR1</td>
<td>WDTIPR1</td>
</tr>
<tr>
<td>设定值</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0</td>
</tr>
</tbody>
</table>

位 0

<table>
<thead>
<tr>
<th>WDTIPR1</th>
<th>WDTIPR0</th>
<th>中断优先级的选择</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>指定优先级 0（高优先级）</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>指定优先级 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>指定优先级 2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>指定优先级 3（低优先级）</td>
</tr>
</tbody>
</table>

注意：关于寄存器设置的详细方法，请参考 R7F0C002 用户手册硬件篇。
寄存器图中的设定值说明：
x：未使用位；空白：未变更位；—：预留位或者是什么都不配置的位
4.7.6 主函数处理

主函数处理的流程，请参见“图 4.7”。

![流程图](image)

- 初始化变量
- 截至INTWDTI发生的时间测量
- 间隔的设置
- 熄灭LED
- 解除INTWDTI中断屏蔽
- 允许向量中断
- STOP指令

图 4.7 主函数处理
4.7.7 间隔设置

间隔设置的流程，请参见“图 4.8”。

图 4.8 间隔设置
4.7.8 测量 INTWDTI 的发生周期（测量前清除 BC 寄存器和 WDT 计数器）

测量 INTWDTI 的发生周期（测量前清除 BC 寄存器和 WDT 计数器）的流程，请参见“图 4.9”。

图 4.9 测量 INTWDTI 的发生周期（测量前清除 BC 寄存器和 WDT 计数器）
4.7.9 测量 INTWDTI 的发生周期（测量前不清除 BC 寄存器和 WDT 计数器）

测量 INTWDTI 的发生周期（测量前不清除 BC 寄存器和 WDT 计数器）的流程，请参见“图 4.10”。

图 4.10 测量 INTWDTI 的发生周期（测量前不清除 BC 寄存器和 WDT 计数器）
4.7.10 INTP0 中断处理函数

INTP0 中断处理函数的流程，请参见“图 4.11”。

图 4.11 INTP0 中断处理函数

流程图：
1. **INTP0**
2. 禁止 INTP0 中断
3. 设定抖动对策用计数器
4. PMK0 位 ← 1（抖动对策）
5. 变量 CHATCOUNT ← 常量 CHATNo
6. 返回
4.7.11 INTWDTI中断处理函数

INTWDTI中断处理函数的流程，请参见“图4.12”～“图4.14”。

图4.12 INTWDTI中断处理函数（1/3）
使用看门狗定时器的中断功能实现间隔定时器（时钟修正）

将抖动对策处理（标签INTWDTIUSUB）的地址设置到AX寄存器中时，跳转到这里。

抖动计数中？

否

是

对抖动对策用计数器进行递减计数

变量CHATCOUNT ←变量CHATCOUNT - 1

结束抖动计数？

否

是

允许INTP0中断

PIF0位 ← 0：清除中断请求标志
PMK0位 ← 0：解除中断屏蔽

SW1被按下？

否

是

判断变量CHATCOUNT是否为“0”

变量CHATCOUNT ←变量CHATCOUNT - 1

对SW1按下次数进行递增计数

变量KEYCOUNT ← KEYCOUNT + 1

SW按下次数超过上限？

否

是

判断变量KEYCOUNT是否超过表TINTVL中的个数

变量KEYCOUNT ← 0

清除SW1按下次数

对100ms计数器进行递减计数

变量TIMEBASE ← TIMEBASE - 1

图4.13 INTWDTI中断处理函数（2/3）
使用看门狗定时器的中断功能实现间隔定时器（时钟修正）

判断变量TIMEBASE是否为“0”

经过100ms？
否

是

变量PERIOD ←变量PERIOD - 1

对间隔定时器进行递减计数

间隔计数器计数结束？
否

是

变量PERIOD ← TINTVL[KEYCOUNT]

间隔定时器的设定
SETINTERVAL

翻转LED输出

P1.0位 ← P1.0位 ^ 1

INTWDTI中断处理中设定跳转地址

变量PROCEDURE ← INTWDTI发生周期测量处理
（标签MEASURESUB）的地址

恢复AX寄存器

从堆栈区恢复AX寄存器

返回

图 4.14 INTWDTI 中断处理函数（3/3）
5. 参考例程
参考例程请从瑞萨电子网页上取得。

6. 参考文献
R7F0C001G/L、R7F0C002G/L 用户手册 硬件篇（R01UH0350C）
RL78 family User's Manual: Software (R01US0015E)
（最新版本请从瑞萨电子网页上取得）
技术信息/技术更新
（最新信息请从瑞萨电子网页上取得）

公司主页和咨询窗口
瑞萨电子主页
- http://cn.renesas.com/

咨询
- http://cn.renesas.com/contact/
- contact.china@renesas.com
使用看门狗定时器的中断功能实现间隔定时器（时钟修正） CC-RL

修订记录

<table>
<thead>
<tr>
<th>Rev.</th>
<th>发行日</th>
<th>修订内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>2016.06</td>
<td>—</td>
</tr>
</tbody>
</table>

初版发行

所有商标及注册商标均归各自拥有者所有。
产品使用时的注意事项

本文对适用于单片机所有产品的“使用时的注意事项”进行说明。有关个别的使用时的注意事项请参照正文。此外，如果在记载上有与本手册的正文有差异之处，请以正文为准。

1. 未使用的引脚的处理
 【注意】将未使用的引脚按照正文的“未使用引脚的处理”进行处理。
 CMOS产品的输入引脚的阻抗一般为高阻抗。如果在开路的状态下运行未使用的引脚，由于感应现象，外加LSI周围的噪声，在LSI内部产生穿透电流，有可能被误认为是输入信号而引起误动作。未使用的引脚，请按照正文的“未使用引脚的处理”中的指示进行处理。

2. 通电时的处理
 【注意】通电时产品处于不定状态。
 通电时，LSI内部电路处于不确定状态，寄存器的设定和各引脚的状态不定。通过外部复位引脚对产品进行复位时，从通电到复位有效之前的期间，不能保证引脚的状态。
 同样，使用内部上电复位功能对产品进行复位时，从通电到达到复位产生的一定电压的期间，不能保证引脚的状态。

3. 禁止存取保留地址（保留区）
 【注意】禁止存取保留地址（保留区）
 在地址区域中，有被分配将来用作功能扩展的保留地址（保留区）。因为无法保证存取这些地址时的运行，所以不能对保留地址（保留区）进行存取。

4. 关于时钟
 【注意】复位时，请在时钟稳定后解除复位。
 在程序运行中切换时钟时，请在要切换成的时钟稳定之后进行。复位时，在通过使用外部振荡器（或者外部振荡电路）的时钟开始运行的系统中，必须在时钟充分稳定后解除复位。另外，在程序运行中，切换成使用外部振荡器（或者外部振荡电路）的时钟时，在要切换成的时钟充分稳定后再进行切换。

5. 关于产品间的差异
 【注意】在变更不同型号的产品时，请对每一个产品型号进行系统评价测试。
 即使是同一个群的单片机，如果产品型号不同，由于内部ROM、版本模式等不同，在电特性范围内有时特性值、动作容限、噪声耐量、噪声辐射量等也不同。因此，在变更不同型号的产品时，请对每一个型号的产品进行系统评价测试。
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the application, testing, and end-user verification of your products. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any losses incurred by you or your third parties arising from the use of these circuits, software, or information.

2. In the process of preparing this document, Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any losses incurred by you or your third parties arising from the use of these circuits, software, or information.

3. You should not alter, modify, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or your third parties arising from such alteration, modification, or otherwise misappropriation of Renesas Electronics products.

4. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below:

 "Standard": Computers, office equipment, communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantable equipment, etc.) or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall have no liability for any damages or losses incurred by you or your third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

5. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

6. Although Renesas Electronics endeavours to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard against the possibility of physical injury, injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundant fire and control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.

7. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for any damages or losses occurring as a result of your non-compliance with applicable laws and regulations.

8. Please note that Renesas Electronics products and technology may not be used or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.

9. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the conditions set forth in this document. Renesas Electronics assumes no responsibility for any losses incurred by you or your third parties as a result of unauthorized use of Renesas Electronics products before it is used by the third party.

10. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

11. Please contact a Renesas Electronics sales office for a list of the information contained in this document if you have any other questions or require further information not covered in this document. (Note 1) “Renesas Electronics” as used in this includes its majority-owned subsidiaries.

(1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and all of its independently operated subsidiaries.

(2) “Renesas Electronics products” as used in this document means Renesas Electronics Corporation as well as its or for Renesas Electronics.

以下注意事项为英语原文,并已由英文版、中文版进行正式翻译。注意事项

1. 本产品应只用于其正常用途，即半导体产品目录中被指定的用途。使用该产品时应参照有关标准，如质量等级、电压、电流等。请按照此手册中所记载的电压降容特性使用，用户因本手册中所记载的电压降容特性而遭受的任何损失，瑞萨电子产品不承担任何责任。

2. 瑞萨电子不承担任何责任。

3. 该产品仅用于指定的用途。该产品不得用于上述用途之外的任何用途。使用该产品时应参照有关标准，如质量等级、电压、电流等。请按照此手册中所记载的电压降容特性使用，用户因本手册中所记载的电压降容特性而遭受的任何损失，瑞萨电子产品不承担任何责任。

4. 瑞萨电子不承担任何责任。

5. 瑞萨产品根据相关法规成为高风险产品。如果瑞萨产品用于上述法规中的高风险产品时，请按照相关法规的要求采取适当的预防措施。

6. 请注意在使用瑞萨产品时，您有责任确保产品的安全。瑞萨电子产品在特定条件下可能发生故障，导致断电或电缆过载。

7. 瑞萨电子产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。瑞萨电子产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。

8. 瑞萨产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。瑞萨电子产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。

9. 瑞萨电子产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。瑞萨电子产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。

10. 瑞萨产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。瑞萨电子产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。

11. 瑞萨产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。瑞萨电子产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。

12. 瑞萨产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。瑞萨电子产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。

13. 瑞萨产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。瑞萨电子产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。

14. 瑞萨产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。瑞萨电子产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。

15. 瑞萨产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。瑞萨电子产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。

16. 瑞萨产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。瑞萨电子产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。

17. 瑞萨产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。瑞萨电子产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。

18. 瑞萨产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。瑞萨电子产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。

19. 瑞萨产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。瑞萨电子产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。

20. 瑞萨产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。瑞萨电子产品在特定条件下可能发生故障，导致断电或电缆过载。使用前应确保产品的安全。