Introduction

Effectively dissipating heat from the IC through the package and to the ambient environment is crucial for optimal device and system performance. Although the device densities and functionalities have increased and with it, the associated increase in device power consumption, the maximum allowable device junction temperatures have not changed. This has made managing thermal performance of devices and systems an extremely important and challenging aspect of the overall design process.

This application note gives a brief overview of the theory of thermal management. It explains thermal resistance concepts used to measure and compare thermal performance of packages based on industry standards. It will also relate the overall construction of the package and the system to factors affecting thermal resistance, and gives example scenarios of optimizing thermal performance of packages and systems.

The application note is divided into two parts. The first part explains the objectives and challenges associated with device-level thermal management. It will give a brief overview of general packaging technology and will explain thermal resistance concepts based on industry standards. The second part gives an overview of thermal management theory and attempts to relate the overall construction of the package and the system to factors affecting thermal resistance and gives example scenarios for optimizing thermal performance of packages and systems.

Thermal Management Objective

With steadily increasing clock speeds, greater device integration, gate count, and smaller process geometries, the power densities of modern semiconductor systems is growing at an ever increasing rate. Most of the increased power is attributed to the exponential increase in leakage current with smaller process nodes, as can be seen in Figure 1.

Figure 1. Device Power Consumption vs. Process Technology

Although the device power consumption has been steadily increasing, the junction temperature requirement has remained unchanged with 125°C still being the upper limit for most applications. Junction temperature beyond 125°C presents reliability risks and impacts device operating performance. Component reliability and life time is an inverse exponential function of the device junction temperature, with interconnect electro-migration and gate oxide failure rates increasing at elevated operating temperatures. Also, with an increase in temperature delta, thermal expansion mismatches between different materials of a package or system increase, causing excessive interconnect and interfacial stress, warpage and other thermo-mechanical issues. Efficient thermal management is therefore extremely critical for reliable system performance. Selecting the right package becomes a very important component of the total heat dissipation capability of a system as it offers the first level of resistance to the flow of heat from the device junction.
To complete this topic, a brief primer on packaging technology is described below followed by a discussion on important thermal resistance concepts.

Package Types

There are two broad categories of packages based on their interconnect method to the system printed circuit board (PCB) – peripheral interconnect and area-array interconnect.

Peripheral Interconnect

These package types have the connections (also called leads) to the PCB at the periphery of the package (see Figure 2).

Figure 2. Peripheral Interconnect Packages

![Peripheral Interconnect Packages](image)

Due to the peripheral connectivity, the number of connections is limited by the size of the package body and the lead pitch. The largest available package size is 40mm x 40mm with a 0.4mm lead pitch. This can accommodate up to 304 connections from the die to the system PCB. Commonly available packages are PQFP, TQFP, SOIC, etc. These packages will generally be referred to as leaded packages throughout the following sections.

Quad-Flat Pack with No Lead (QFN)

This package is a modification to the leaded package type in which the peripheral leads do not protrude out at the periphery but are exposed under the package (see Figure 3 below).

Figure 3. Quad Flat Pack with No Lead (QFN) Package

![Quad Flat Pack with No Lead (QFN) Package](image)

The exposed paddle is typically grounded and is soldered to a corresponding pad on the PCB which in turn is electrically connected to one or more ground or power planes in the PCB with vias. This provides a very efficient heat dissipation path from the chip to the relatively large surface area planes in the PCB which act as heat sinks. Moreover, it also provides a low impedance electrical path for the chip ground connection which can assist with noise immunity.
Area-Array Interconnect

Pin connections to the PCB are underneath the package occupying some or the entire area of the package (see Figure 4).

Figure 4. Area-Array Interconnect Packages

This package type enables large pin count packages for the same footprint. The largest available package size is 45mm x 45mm with 1936 pins. A 40mm x 40mm package footprint can accommodate close to 1521 connections to the PCB compared to only 304 connections for a leaded package. These fall under the broad category of Ball Grid Array (BGA) type of packages. PBGA, CABGA, CTBGA etc. are commonly available sub-categories of this package type.

Chip Interconnect Method

Another classification of packages is defined by how the chip electrically connects to the package terminals.

- **Wirebond Interconnection**—In packages where the active circuitry on the chip is facing up towards the top of the package and with terminals at the chip periphery connected with wirebonds to the package are termed wirebond packages, as shown in Figure 4.

- **Flip-Chip Interconnection**—In packages with flip-chip configuration, the active circuitry of the chip is facing down with chip terminals typically occupying the entire surface of the chip (see Figure 5).

Figure 5. Package with Flip-Chip Interconnection

Flip-chip offers electrical performance benefits due to negligible parasitic inductance in the chip-to-package interconnect path. Thermally, there is no inherent advantage with this interconnect method compared to the wirebond type. But because this configuration has no wire loops and does not have active circuitry on the top side of the chip, it can connect the back side of the chip directly to a metal heat spreader. This will have an order of magnitude improvement in thermal resistance between the chip junction and the package case compared to a wirebond type configuration because of the lack of an almost thermally insulating mold compound in the heat flow path from the chip junction to the package case.

The remainder of the article will focus on heat transfer concepts related to packages.
Thermal Resistance

Thermal resistance simply is the opposition offered by the materials involved to the flow of heat energy. Heat flows when there is a temperature difference from a hot junction to a cold one. It is conceptually similar to electrical resistance with current analogous to heat and temperature difference analogous to voltage difference. The relationship between thermal resistance, heat flow (power dissipation) and temperature difference is shown in Equation 1.

\[
\text{Thermal Resistance } \theta = \frac{\Delta T}{P}
\]

In Equation 1, \(\Delta T\) defines the type of thermal resistance based on whether the resistance in question is between the chip junction to ambient location or between chip junction to package case and so on. Some of the commonly used thermal resistance terms are described in detail below.

Junction to Ambient Thermal Resistance (\(\Theta_{ja}\))

\(\Theta_{ja}\) measures the ability of the package to dissipate heat from the chip junction to the ambient environment. The methodology to calculate \(\Theta_{ja}\) is based on JEDEC standard environment (JESD 51-2 for natural convection and JESD 51-6 for forced convection environments). It is used to rate and compare thermal performance of packages but has little relevance in an actual application environment if the environment differs from JEDEC standards. Equation to calculate \(\Theta_{ja}\) is shown in Equation 2 and the respective temperature monitor points in Figure 6.

\[
\Theta_{ja} = \frac{T_j - T_a}{P}
\]

Figure 6. Temperature Monitor Points for \(\Theta_{ja}\) Calculation

From the chip junction, there are two dominant parallel paths for the heat to dissipate to the ambient environment as shown in Figure 7. The path with the lower combined thermal resistance will dissipate more heat and knowing the partial resistances will help design an optimal thermal solution. For example, if \(\Theta_{jc}\) is higher than \(\Theta_{jb}\), the effectiveness of having an external heat sink attached to the package case will be lower than desired. If \(\Theta_{jb}\) is lower than \(\Theta_{jc}\), optimizing the \(\Theta_{ba}\) resistance will have significantly more effect in lowering the junction temperature than adding a heat sink to the package case.
For packages where the majority of heat dissipates through the package bottom than through the case (Figure 8), JEDEC JESD 51-13 has redefined the \(\Theta_{jb} \) resistance to \(\Theta_{jcb} \). This change was made because, with the traditional \(\Theta_{jb} \) approach, the heat flow to the board is through the periphery of the package and this was not a true representation of the junction to board resistance for packages with significant heat dissipation through the bottom of the package.

Figure 8. Temperature Monitor Points for Redefined \(\Theta_{ja} \) Calculation

The redefined \(\Theta_{ja} \) with the partial resistances is shown in Figure 9.
The remaining sections of this article will give a primer on thermal management theory and will attempt to relate the overall package construction to factors affecting its thermal resistance.

Modes of Heat Transfer

The three basic modes of how heat generated at the chip surface dissipates to the ambient environment are:

- **Conduction**: Heat transfer occurs due to direct contact of matter.
- **Convection**: Heat transfer between a solid and nearby fluid in motion.
- **Radiation**: Heat transfer through vacuum. The presence of a medium is not required and heat transfer can happen through empty space.

Conduction

The fundamental relationship that governs the conduction mode of heat transfer is described in **Equation 3**. The dx distance is shown in **Figure 10**.

\[
P = k \times a \times \frac{dT}{dx}
\]

Equation 3

- \(P\) = Chip power dissipation
- \(k\) = Material thermal conductivity
- \(a\) = Chip/paddle surface area normal to heat flow
- \(dT/dx\) = Temperature gradient in x direction
Figure 10. Redefined Θ_{ja} and Partial Resistances

Rearranging Equation 3 above provides a relationship between thermal resistance and the factors affecting it (see Equation 4).

$$\frac{dx}{k \times a} = \frac{dT}{P} = \Theta_{jc}, \Theta_{jb}, \Theta_{jct} \text{ or } \Theta_{jcb}$$

Equation 4

Package construction, chip or chip paddle size and the package material properties are some of the primary factors affecting the junction to case and junction to board thermal resistances. The longer the distance heat has to travel from the chip junction, the higher the thermal resistance as can be seen from Equation 4. Chip surface area and the thermal conductivity of the materials in the heat flow path have inverse relationship.

Thermal conductivities of commonly used package materials are listed in Table 1.

Table 1: Thermal Conductivity Values of Package Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>k (W/m.K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>390</td>
</tr>
<tr>
<td>Gold</td>
<td>296</td>
</tr>
<tr>
<td>Aluminum</td>
<td>200</td>
</tr>
<tr>
<td>Silicon</td>
<td>118</td>
</tr>
<tr>
<td>Solder</td>
<td>50</td>
</tr>
<tr>
<td>Mold Compound</td>
<td>0.68</td>
</tr>
<tr>
<td>Substrate Dielectric</td>
<td>0.2</td>
</tr>
<tr>
<td>Still Air</td>
<td>0.025</td>
</tr>
</tbody>
</table>

As can be seen from Table 1, any air gaps in the package construction should be minimized as this creates a pocket of still air which can significantly increase thermal resistance.
Convection

The basic relationship for heat transfer by convection has the same form as that for conduction as described in Equation 5 (Newton’s law of cooling).

\[P = h \times A \times dT \]
\[P = \text{Power dissipated through convection} \]
\[h = \text{Convective heat transfer coefficient} \]
\[A = \text{Surface area of package and PCB} \]
\[dT = \text{Temperature difference between surface and ambient} \]
Equation 5

Rearranging Equation 5 using a similar approach to that of heat transfer by conduction describes the relationship between thermal resistance and the factors affecting it (Equation 6).

\[\frac{1}{h \times A} \approx \frac{dT}{P} \approx \theta_{ba}, \theta_{ca}, \theta_{cta} \text{ or } \theta_{cba} \]
Equation 6

Surface area of the package and PCB are inversely related to the case to ambient and board to ambient thermal resistances. Larger package and PCBs will exhibit smaller resistances. External heat sinks and heat spreaders are predominantly used to increase the surface area of the heat generating system to effectively minimize these resistances.

The convective heat transfer coefficient is dependent on the type of fluid medium (gas or liquid), the flow properties of the medium such as velocity, viscosity and other flow and temperature dependent properties. Typically, the convective heat transfer coefficient for laminar flow is relatively lower compared to the coefficient for turbulent flow. This is because turbulent flows have thinner stagnant fluid film layer on the heat transfer surface. Values of \(h \) have been measured and tabulated for commonly encountered fluids and flow situations and are listed in Table 2 below.

<table>
<thead>
<tr>
<th>Fluid Type</th>
<th>(h) (W/m².K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Convection - Air</td>
<td>5 - 25</td>
</tr>
<tr>
<td>Natural Convection - Water</td>
<td>20 - 100</td>
</tr>
<tr>
<td>Forced Convection - Air</td>
<td>10 - 200</td>
</tr>
<tr>
<td>Forced Convection - Water</td>
<td>50 - 10000</td>
</tr>
<tr>
<td>Boiling Water</td>
<td>3000 - 100000</td>
</tr>
<tr>
<td>Condensing Water Vapor</td>
<td>5000 - 100000</td>
</tr>
</tbody>
</table>

Table 2: Heat Transfer Convection Coefficient for Commonly Encountered Fluids

Radiation

For a chip at temperature \(T_2 \) radiating energy to the surrounding ambient at temperature \(T_1 \), the net radiation heat loss is governed by Equation 7 (Stefan-Boltzmann Law).

\[P = \varepsilon \times \sigma \times A \times \left(T_2^4 - T_1^4 \right) \]
\[P = \text{Power dissipated through radiation} \]
\[\varepsilon = \text{Surface emissivity of the material} \]
\[\sigma = \text{Stefan-Boltzmann constant (5.67 x 10^{-8} W.m}^{-2}.K^{-4}) \]
\[A = \text{Surface area of package and PCB} \]
\[T_2 = \text{Surface temperature of package and PCB} \]
\[T_1 = \text{Ambient temperature} \]
Equation 7
Rearranging Equation 7 is not as straightforward to separate the thermal resistance but the same package and PCB geometry factors affect radiation heat loss as convection heat loss. The emissivity values vary greatly with different materials. They are near unity for rough surfaces such as ceramics or oxidized metals and roughly 0.02 for polished metals or silvered reflectors. Emissivity values of commonly used package materials are listed in Table 3. Radiation heat transfer is more effective in natural convection environment than in forced convection environments. The effect of radiation can be ignored in forced convection environments.

Table 3: Surface Emissivity of Common Electronic Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>0.03</td>
</tr>
<tr>
<td>Polished Al</td>
<td>0.04</td>
</tr>
<tr>
<td>Anodized Al</td>
<td>0.9</td>
</tr>
<tr>
<td>Mold Compound</td>
<td>0.8</td>
</tr>
</tbody>
</table>

The next few sections illustrate the factors affecting thermal resistance with actual test cases.

Reducing $\Theta_{jb} / \Theta_{jcb}$

Figure 11 is a cross-section of a 10mm x 10mm, 100 pin TQFP package with 3mmx3mm chip size mounted on a 4-layer PCB. Also shown are the associated thermal resistances and the maximum allowable power dissipation.

Figure 11. 100 pin TQFP Package with 3mm x 3mm Chip Size

$\Theta_{jc} = 16.5$ C/W
$\Theta_{jb} = 33$ C/W
$\Theta_{ja} = 50$ C/W

Max. P = (125-70) / 50 = 1.1 W

Exposing the chip paddle towards the bottom face of the package (Figure 12) has negligible impact on the power dissipation since the thermal resistance components remain almost unchanged. In fact, the Θ_{jc} gets slightly worse due to the increased mold cap thickness above the chip surface. Θ_{jb} increases because the gap between paddle and leads widens.
Figure 12. 100 pin TQFP Package with 3mmx3mm Chip Size & Exposed Paddle

No Solder Connection

θjc = 17.3 C/W
θjb = 33.3 C/W
θja = 50.2 C/W
Max. P = (125-70) / 50.2 = 1.09 W

The maximum power dissipation almost doubles by exposing the paddle and connecting it to a corresponding pad on the PCB with solder (Figure 13) which in turn is connected to the PCB plane with vias.

Figure 13. 100 pin TQFP Package with 3mmx3mm Chip Size & Exposed Paddle Soldered to PCB

Solder Connection

θjc = 17.3 C/W
θjcb = 4.6 C/W
θja = 28 C/W
Max. P = (125-70) / 28 = 2 W
Maximizing Power Dissipation in Wirebond BGAs

Figure 14 shows a cross-section of a typical 19mmx19mm, 324 ball, 2-layer wirebond BGA with the associated thermal resistances.

Figure 14. 324 ball, 19mm x 19mm BGA with 2-Layer Substrate

\[
\begin{align*}
\theta_{ji} &= 6.1 \text{ C/W} \\
\theta_{jc} &= 4.6 \text{ C/W} \\
\theta_{ja} &= 22 \text{ C/W} \\
\text{Max. } P &= (125-70) / 22 = 2.5 \text{ W}
\end{align*}
\]

Changing the package substrate to 4-layers (Figure 15), the \(\theta_{ja}\) drops by about 7% increasing the power dissipation to 2.7W.

Figure 15. 324 ball, 19mm x 19mm BGA with 4-Layer Substrate

\[
\begin{align*}
\theta_{ji} &= 5.9 \text{ C/W} \\
\theta_{jc} &= 4.4 \text{ C/W} \\
\theta_{ja} &= 20.5 \text{ C/W} \\
\text{Max. } P &= (125-70) / 22 = 2.7 \text{ W}
\end{align*}
\]

Adding an integrated heat-slug (Figure 16) increases the power dissipation to only 2.8W. The marginal improvement in thermal performance is because in order to accommodate the heat-slug, the mold-cap thickness has to grow keeping the mold-cap thickness above the chip similar to the package without heat-slug.
Reducing $\Theta_{cta} / \Theta_{cba}$

An external heat-sink is used to increase the surface area of the package to maximize heat transfer through convection and radiation. Figure 17 shows the same package assembly as shown in Figure 15 with additional details on the fraction of heat escaping the package bottom vs. the package top without an external heat-sink. About 93% of the heat escapes the package bottom than the top because the board to ambient thermal resistance is significantly smaller than the case to ambient resistance.

By adding an external heat-sink as shown in Figure 18, the proportion of heat escaping the package top and bottom changes with 11% of heat dissipated at the chip surface escaping though the package top and 87% escaping through the package bottom. The proportion of heat escaping the package top increased because of the reduction in case to ambient thermal resistance.
Adding airflow at the rate of 1 m/s and an external heat-sink, θ_{ja} drops to 11 C/W, significantly increasing the power dissipation capability of a given package. The heat-sink is significantly more effective with 41% of heat now escaping the package top.

Package Type, θ_{ja} & Airflow

Figure 19 shows the effect of package type and airflow rate on θ_{ja} for a 27mmx27mm BGA package. 27mm PBGA is the worst performing package and 27mm flip chip BGA with heat spreader is the best performing package.

Figure 19. Effect of Package Type & Airflow Rate on θ_{ja}

$\theta_{ja} = 18.4$ C/W

Heat escaping through package top = 11%

Heat escaping through package bottom = 87%
Effect of Radiation

For the package in Figure 17, θ_{ja} in a natural convection environment with the effect of radiation factored in is about 20.5 C/W. Without taking radiation into account, θ_{ja} rises to 26.6 C/W. The increase in θ_{ja} is significant and hence is important to account for in a natural convection environment. At 1m/s airflow rate, θ_{ja} with radiation is 15.5 C/W and without radiation is 15.7 C/W. This is an insignificant change and hence in most cases, the effect of radiation can be ignored.

Summary

In summary, an attempt has been made to state the objectives and challenges associated with component and system-level thermal management. An overview of general packaging technology and thermal resistance concepts are discussed from the theoretical and application perspective and example approaches to minimize thermal resistance and maximize power dissipation are shown.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations and all laws and regulations administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2020 Renesas Electronics Corporation. All rights reserved.