

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Application Note

Document No. U17206EE1V1AN00
Date Published September 2005

 NEC Electronics Corporation 2005
Printed in Germany

Implementing a Software I²C Master

with the K-Line Microcontroller

2 Application Note U17206EE1V1AN00

1

2

3

4

VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the

CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may

malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,

and also in the transition period when the input level passes through the area between VIL (MAX) and

VIH (MIN).

HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is

possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS

devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed

high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND

via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must

be judged separately for each device and according to related specifications governing the device.

PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as

much as possible, and quickly dissipate it when it has occurred. Environmental control must be

adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that

easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static

container, static shielding bag or conductive material. All test and measurement tools including work

benches and floors should be grounded. The operator should be grounded using a wrist strap.

Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for

PW boards with mounted semiconductor devices.

STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power

source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does

not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the

reset signal is received. A reset operation must be executed immediately after power-on for devices

with reset functions.

POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external

interface, as a rule, switch on the external power supply after switching on the internal power supply.

When switching the power supply off, as a rule, switch off the external power supply and then the

internal power supply. Use of the reverse power on/off sequences may result in the application of an

overvoltage to the internal elements of the device, causing malfunction and degradation of internal

elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related

specifications governing the device.

INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current

injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and

the abnormal current that passes in the device at this time may cause degradation of internal elements.

Input of signals during the power off state must be judged separately for each device and according to

related specifications governing the device.

NOTES FOR CMOS DEVICES

5

6

3 Application Note U17206EE1V1AN00

The information in this document is current as of September, 2005. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not
all products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

•

•

•

•

•

•

M8E 02. 11-1

(1)

(2)

"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

"Standard":

"Special":

"Specific":

All (other) product, brand, or trade names used in this pamphlet are the trademarks or
registered trademarks of their respective owners.
Product specifications are subject to change without notice. To ensure that you have
the latest product data, please contact your local NEC Electronics sales office.

4 Application Note U17206EE1V1AN00

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

Ordering information

Product release schedule

Availability of related technical literature

Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

NEC Electronics America Inc.
Santa Clara, California
Tel: 408-588-6000

800-366-9782
Fax: 408-588-6130

800-729-9288

NEC Electronics (Europe) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 1101
Fax: 0211-65 03 1327

Sucursal en España
Madrid, Spain
Tel: 091- 504 27 87
Fax: 091- 504 28 60

Succursale Française
Vélizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
Singapore
Tel: 65-6253-8311
Fax: 65-6250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-2719-2377
Fax: 02-2719-5951

Filiale Italiana
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

Branch The Netherlands
Eindhoven, The Netherlands
Tel: 040-244 58 45
Fax: 040-244 45 80

Branch Sweden
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

United Kingdom Branch
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

•

•

•

•

•

5 Application Note U17206EE1V1AN00

Table of Contents

Chapter 1 Introduction. 7

Chapter 2 Hardware Arrangement . 8

Chapter 3 I²C Bus Data Format . 10
3.1 START and STOP Conditions . 10
3.2 Acknowledgement . 11
3.3 Clock Stretching . 12
3.4 Data Transfer Format. 13
3.5 EEPROM Read and Write . 15

Chapter 4 Firmware – Flow Diagrams and Description . 16
4.1 START Condition . 16
4.2 STOP Condition . 17
4.3 Bus Check . 18
4.4 Send Byte . 19
4.5 Receive Byte. 20
4.6 Get / Put I²C Byte . 21
4.7 Send EEPROM Page . 22
4.8 EEPROM Read and Write . 23

Chapter 5 Firmware – Program Listings . 24
5.1 Main (test) Program . 24
5.2 Header File – i2c.h . 26
5.3 Assembly Language Subroutines . 28

Chapter 6 Conclusion . 34

6 Application Note U17206EE1V1AN00

List of Figures

Figure 2-1: Simplified I²C Driver Architecture .. 8
Figure 2-2: I²C Bus Typical Interconnection... 9
Figure 3-1: I²C START and STOP Conditions ... 10
Figure 3-2: I²C ACK and NACK Conditions ... 11
Figure 3-3: Clock Stretching .. 12
Figure 3-4: Data Transfer Format .. 14
Figure 4-1: START Condition... 16
Figure 4-2: STOP Condition... 17
Figure 4-3: Bus Check ... 18
Figure 4-4: Send Byte.. 19
Figure 4-5: Receive Byte ... 20
Figure 4-6: Get / Put I²C Byte .. 21
Figure 4-7: Send EEPROM Page .. 22
Figure 4-8: EEPROM Read and Write ... 23

Chapter 1 Introduction

The I²C bus (I²C = IIC = Inter-Integrated Circuit) is a bi-directional two wire clock synchronous bus oper-
ating in a master / slave relationship. It consists of a data line (SDA) and a clock line (SCL). The master
device always generates the clock. Maximum throughput is 100 Kbit/s for standard devices, 400 Kbit/s
for fast mode and in 1998 version 2.0 was introduced, operating at up to 3.4 Mbit/s.

Some NEC microcontrollers are available with I²C hardware; for those parts without an I²C port a collec-
tion of software routines are presented here that can be used to create an I²C master with any NEC
MCU. Only two bi-directional port pins are needed.

I²C is a registered trademark of Philips Corporation.
7 Application Note U17206EE1V1AN00

Chapter 2 Hardware Arrangement

The I²C bus operates on a wired-AND principle, allowing cascading of any number of devices on a sin-
gle bus. (In practice the number of devices is limited by the number of device addresses available).
Figure 2-1 shows internal I²C bus interface circuitry in a simplified form:

Figure 2-1: Simplified I²C Driver Architecture

It is clear from the above that some form of pull-ups are required for the output open drain transistor to
function correctly.
Figure 2-2 shows how I²C devices are typically interconnected, using a pull-up resistor for SCL (Serial
Clock) and SDA (Serial Data). The exact value of these resistors depends on supply voltage, bus
capacitance and the number of devices on the bus. The maximum bus capacitance permitted is 400 pF.
Active pull-ups can be used in difficult conditions (e.g. where long PCB tracks give rise to high capaci-
tance). The value of 4K7 shown below works satisfactorily for most small systems.
For further information, refer to the Philips publication “The I²C Bus Specification Version 2.1”, January
2000.
The I/O port pins of the NEC MCU may be switched from input to output as required to emulate the
arrangement above.

SCL / SDA

OUT

IN
8 Application Note U17206EE1V1AN00

Chapter 2 Hardware Arrangement
Figure 2-2: I²C Bus Typical Interconnection

SCL

SDA

Master

+5V

R1 R2
I2C Pull-up
Resistors
R1, R2 = 4K7

SCL

SDA

Slave

SDA

SCL

Additional
Devices

SCLSDA
9 Application Note U17206EE1V1AN00

Chapter 3 I²C Bus Data Format

3.1 START and STOP Conditions

All data transfers are initiated and terminated with a unique bus condition. A HIGH to LOW transition on
the SDA line while SCL is HIGH is considered a START (S) condition while a LOW to HIGH transition on
SDA with SCL HIGH is a STOP (P) condition. See Figure 3-1 below.

Figure 3-1: I²C START and STOP Conditions

S P

START Condition STOP Condition

SDA

SCL
10 Application Note U17206EE1V1AN00

Chapter 3 I²C Bus Data Format
3.2 Acknowledgement

All I²C byte transfers must end with an acknowledgement (ACK) from the receiving device. This is done
by the master releasing the SDA line (i.e. switching it to an input) and transmitting a ninth clock pulse.
During this ninth clock period the receiving slave device must keep SDA pulled to a stable LOW (ACK).
If the receiver is unable to service the transfer it may leave SDA HIGH, this is called a not-acknowledge
(NACK) condition. The transmitter can then act upon the NACK, either ending the transfer with a STOP
condition or attempting the action again with a repeated START. (Repeated START is the term given to
a START condition that appears in the middle of a transfer. It is also used during an I²C read operation,
see later.)

Figure 3-2: I²C ACK and NACK Conditions

SCL

SDA

S

ACK condition during ninth clock pulse (NACK shown dotted)

DATA (8 bits)

1 2 3 4 8 9
11 Application Note U17206EE1V1AN00

Chapter 3 I²C Bus Data Format
3.3 Clock Stretching

Sometimes the master device will need to access a slave device that cannot respond immediately to
the read or write request. This may be because the slave is busy or it is just an inherently slower device.
A clock stretching mechanism is available for this situation: a slave is permitted to hold the SCL line low
while it is busy, and then release it so the master can continue the transmission. For example, in Figure
3-3, the first byte could be the address of a byte to be read from a slave device. This is acknowledged
by the slave, which may then take a relatively long time to retrieve the data at this address, so it holds
SCL low while it does this. The master must poll the SCL line to detect its release; then clocking of SCL
may continue.

Figure 3-3: Clock Stretching

The firmware presented later does not allow for clock stretching as it is, but may easily be modified to
do so if the application requires it. It is important to note the macros to control SCL will need to be mod-
ified so that rather than switching SCL high or low they will switch it from input to output (with the port
value always 0) to avoid contention with a slave that is trying to hold the line low, and also to facilitate
polling of the SCL line. A timeout timer may also be added to ensure the master does not wait indefi-
nitely should there be a fault in the slave device.

SCL

SDA

Slave holds SCL Low
while busy

ACK
Slave releases SCL so

transmission can continue

1st byte acknowledged
on 9th clock pulse
12 Application Note U17206EE1V1AN00

Chapter 3 I²C Bus Data Format
3.4 Data Transfer Format

Data is always transmitted in 8 bit bytes, MSB (Most Significant Byte) first. The first byte to be sent has
the slave address in the seven MSB’s, followed by the read / write bit, which is set to read and clear to
write. The slave address is defined by the device manufacturer and is unique to a particular device, thus
allowing many devices of different manufacturer to co-exist on the same bus. Some parts, especially
memories, have an address range specified at manufacture but leave several pins free for the user to
connect to define the exact address within the range, so for example four 2K EEPROMS may be con-
nected to the bus with no additional hardware; their base address defined at manufacture and their indi-
vidual addresses defined by the logic levels on their address pins. Ten bit addressing is possible with
I²C but will not be covered by this application note.

Figure 3-4 shows the data format for a master reading and writing a slave device, and for a combination
transfer.

When the master wants to write to the slave, the following happens:

1. Master sends START condition.
2. Master sends slave address with R/W bit CLEAR.
3. Slave issues ACK on ninth clock pulse.
4. Master sends first data byte.
5. Slave issues ACK.
6. Steps 4 and 5 are repeated for all data bytes.
7. Transfer ends with either a STOP condition after the last data byte / ACK pair if the master has no

more data to send, or if the slave does not wish to take more data it can inform the master by issu-
ing a NACK after the last data byte. The master then issues a STOP condition as usual to termi-
nate the transfer.

When the master wants to read from the slave, the following happens:

1. Master sends START condition.
2. Master sends slave address with R/W bit SET.
3. Slave issues ACK on ninth clock pulse.
4. Master reads first data byte.
5. Master issues ACK.
6. Steps 4 and 5 are repeated for all data bytes except the last.
7. After reading the last byte, the master issues a NACK to inform the slave there is no more data to

be transferred.
8. The master issues a STOP condition.

For the combined transfer (example shown here is write to slave followed by read from slave) the follow-
ing happens:

1. The slave address and bytes to be written are sent in the same manner as for a straightforward
write as described above.

2. A repeated START is issued by the master followed by the slave address, this time with the R/W bit
SET (read).

3. Data is read from the slave in the usual way.
4. The master issues a NACK to indicate to the slave it no longer wishes to read data.
5. The transfer ends with a STOP condition.
13 Application Note U17206EE1V1AN00

Chapter 3 I²C Bus Data Format
Figure 3-4: Data Transfer Format

S
R/W
= 0

A DATA A A/A PDATA N

S
R/W
= 1

A DATA A A PDATA N

Master to Slave

Slave to Master

A = ACK
A = NACK
S = START
P = STOP

Master writing to slave

Master reading from slave

S Slave Address
R/W
= 0

A DATA A A/A SDATA N

Combined (write followed by read)

R/W
= 1

A DATA A P

Repeated START
condition

Slave Address

Slave Address

Slave Address
14 Application Note U17206EE1V1AN00

Chapter 3 I²C Bus Data Format
3.5 EEPROM Read and Write

The firmware listed in this application note can perform, in addition to basic read byte / write byte oper-
ations, reads and writes to a 24CXX EEPROM (Electrically Erasable Read Only Memory). More details
of the EEPROM can be found in the relevant data sheet, but the format for writing data follows “master
writing to slave” in Figure 3-4 above, i.e:

1. Write device address (R/W bit set to WRITE)
2. Write address within device
3. Write data byte

To read data, follow “combined” above, i.e:

1. Write device address (R/W bit set to WRITE)
2. Write address within device
3. Issue repeated START
4. Write device address (R/W bit set to READ)
5. Read data byte
15 Application Note U17206EE1V1AN00

Chapter 4 Firmware – Flow Diagrams and Description

Before the firmware listing is presented, flow diagrams for each function are shown here.

4.1 START Condition

Figure 4-1: START Condition

START

SCL & SDA to Output

Set SDA & SCL

Clear SDA

Clear SCL

END
16 Application Note U17206EE1V1AN00

Chapter 4 Firmware – Flow Diagrams and Description
4.2 STOP Condition

Figure 4-2: STOP Condition

START

SCL & SDA to Output

Clear SDA

Set SCL

Set SDA

END
17 Application Note U17206EE1V1AN00

Chapter 4 Firmware – Flow Diagrams and Description
4.3 Bus Check

Figure 4-3: Bus Check

START

Clear Error Flags
(CY & BUS_ERROR)

SCL & SDA to Inputs

SCL & SDA to Outputs

END

SCL low?

SDA low?

Yes

No

Set Error Flags
(CY & BUS_ERROR)

No

Yes
18 Application Note U17206EE1V1AN00

Chapter 4 Firmware – Flow Diagrams and Description
4.4 Send Byte

Figure 4-4: Send Byte

START

Bitcount = 8

Rotate byte left

SDA = 0

END

Carry set?

SDA = 1

Send clock pulse

All 8 bits sent?

SCL = 1
SDA = 1

SDA to Input

NOP

SDA = 0?
ACK

SCL = 0

Clear Carry

Clear I²C Error bit

SDA to Output,
SCL = 0

Set Carry

Set I²C Error bit

NoYes

No

Yes
19 Application Note U17206EE1V1AN00

Chapter 4 Firmware – Flow Diagrams and Description
4.5 Receive Byte

Figure 4-5: Receive Byte

START

NOP

SCL = 1

Set Carry

END

SDA = 1?

Clear Carry

Rotate a left

SCL = 0

Bitcount = Bitcount - 1

Bitcount = 0?

Clear Carry

No

Yes

Bitcount = 8

SDA to Input

NOP

No Yes
20 Application Note U17206EE1V1AN00

Chapter 4 Firmware – Flow Diagrams and Description
4.6 Get / Put I²C Byte

Figure 4-6: Get / Put I²C Byte

START

Clear I²C read

END

Reading?

Set I²C read

Check Bus

I²C Start

Send Slave Address

Bus busy?
Yes

No

Receive byte

Set (release) SDA

I2C Stop

Yes No

Error?
Yes

No

Reading?

Yes Send byte

No

Send clock pulse

ACK
21 Application Note U17206EE1V1AN00

Chapter 4 Firmware – Flow Diagrams and Description
4.7 Send EEPROM Page

Figure 4-7: Send EEPROM Page

START

Mask all but
Block select bits

Shift left

END

READ_WRITE
bit set?

No

Yes

Set bit 0

Set control
code bits

Clear bit 0

Send byte
22 Application Note U17206EE1V1AN00

Chapter 4 Firmware – Flow Diagrams and Description
4.8 EEPROM Read and Write

Figure 4-8: EEPROM Read and Write

START

Check Bus

Register
R2 = 5

Reading? No

Clear EE_READ

Yes

Set EE_READ

Error?

Set
EEPROM_ERROR

I²C Start

Clear
RW_FLAG

Send EE PAGE

No

Error?

Clear
EEPROM_ERROR

Send EEPROM
address

No

YesEEP_ERR

EEPROM_READ
set?

I²C Start

Set
RW_FLAG

Yes

Send EE PAGE X

Send EE DATA

No

Yes

I²C Start

Send EE PAGE

ACK from
EEPROM?

WAIT_COUNT =
WAIT_COUNT - 1

No

Yes

WAIT_COUNT
= 0?

I²C Stop

No Yes

WTACK

EEP_ERR1

END

Call
RECEIVE_BYTE

EEPROM_READ
Set?

No

Yes

X

I²C Stop

EEP_ERR

Error?
Yes

No

R2 = 0?
No

Yes

R2 = R2 - 1

EEP_ERR2
23 Application Note U17206EE1V1AN00

Chapter 5 Firmware – Program Listings

5.1 Main (test) Program

The program was developed with IAR’s Embedded Workbench, with i2c_eeprom.c and i2c.msa added
to the project under “Options → Files...”.
The main program (in C) simply uses the _SEND_EEPROM and _RECV_EEPROM assembly lan-
guage routines to repeatedly write numbers 0 – 19 to EEPROM locations 0 – 19, and read them back
into a buffer as a means of testing and demonstrating the I²C operation. Other subroutines can be
called from the users application following the same convention.

/*==
** PROJECT = I2C_1.prj
** MODULE = i2c_eeprom.c
** VERSION = 0.1
** DATE = 18.03.2001
** LAST CHANGE = 01.06.2004
** ===
** Description: Operation as 16-bit timer interrupt
**
** ===
** Environment: Device: uPD78911x
** Assembler: A78000 Version 3.34.2.4
** C-Compiler: ICC78000 Version 3.34.2.4
** Linker: XLINK Version 4.55.9.0
**
** ===
** By: NEC Electronics (Europe) GmbH
** Arcadia Strasse 10
** D-40472 Duesseldorf
** and:
** NEC Electronics (Europe) GmbH
** Cygnus House
** Sunrise Parkway
** Milton Keynes MK14 6NP
**
** ===
Changes:
** ===
*/

/* ===
** pragma
** ===
*/
#pragma language = extended

/* ===
** include
** ===
*/
#include <in78000.h>
#include "df9116a.h"
#include "i2c.h"

/* ===
** type definitions (function prototypes)
** ===
*/
24 Application Note U17206EE1V1AN00

Chapter 5 Firmware – Program Listings
/* ===
** variable definitions
** ===
*/

saddr char count1 = 0, received_data[20];

/* ===
** variable init
** ===
*/

void hdwinit (void){

// port setting
PM0 = 0xF0; // port 0 = output
PM1 = 0xFC; // port 1 = output
PM2 = 0xC0; // port 2 = output
PM5 = 0xF0; // port 5 = output
PU0 = 0x00; // no pull up-resistors
PUB2 = 0x00;

// clock generator setting
PCC = 0x00; // with speed

}

/* ===
** main function
** ===
*/

void main(void){

hdwinit (); // peripheral settings
_Reset_Bus();

for(;;){ // endless loop - main loop

for (count1 = 0; count1 < 20; count1++){
_Send_Eeprom (0, count1, count1);

}

for (count1 = 0; count1 < 20; count1++){
received_data [count1] = _Recv_Eeprom(0, count1);

}

}

}

25 Application Note U17206EE1V1AN00

Chapter 5 Firmware – Program Listings
5.2 Header File – i2c.h

/*==
** PROJECT = I2C_1.prj
** MODULE = i2c.h
** VERSION = 0.1
** DATE = 20.12.2001
** LAST CHANGE = 01.06.2004
** ===
** Description: Header file for the I2C communication
** needs also i2c.msa file
** ===
** Environment: Device: uPD789xxx
** Assembler: A78000 Version 3.34.2.4
** C-Compiler: ICC78000 Version 3.34.2.4
** Linker: XLINK Version 4.55.9.0
**
** ===
** By: NEC Electronics (Europe) GmbH
** Arcadia Strasse 10
** D-40472 Duesseldorf
** and:
** NEC Electronics (Europe) GmbH
** Cygnus House
** Sunrise Parkway
** Milton Keynes MK14 6NP
**
** ===
Changes:
** ===
*/

extern void _Reset_Bus(void);

extern void _Put_I2C_Byte (unsigned char a,unsigned char d);
extern char _Get_I2C_Byte (unsigned char a);
extern void _Put_I2C_Reg (unsigned char a,unsigned char r,unsigned char d);
extern unsigned char _Get_I2C_Reg (unsigned char a,unsigned char r);
/* the variable names stand for:

a = device-address
r = register-address (address in device)
d = data byte

*/

extern void _Send_Eeprom(unsigned char page,unsigned char a,unsigned char d);
extern unsigned char _Recv_Eeprom(unsigned char page,unsigned char a);
/* the variable names stand for:

address is fixed in the .msa file to 0xA0
page = device page or chip address
a = memory adress
d = data byte

*/

extern unsigned char eeprom_bitreg;

/*
 this variable is declared in the msa file and used for several flags:

 Bit0: internally used, read flag for i2c communication
 Bit1: set to 1, if eeprom error occurs after 5 attempts to access the eeprom
 Bit2: internally used, read/write flag to distinguish between the eeprom read
 and write operations
 Bit3: set to 1 if the bus is not free
26 Application Note U17206EE1V1AN00

Chapter 5 Firmware – Program Listings
 Bit4: set to 1 if i2c communication error occurs
 Bit5: internally used, read/write flag to distinguish between the i2c read
 and write operations

The error handling has to be done by the C software.
The wait time for the write cycle of the eeprom is done by polling the acknowledge
after sending the device address again (max. 100 times)

*/
27 Application Note U17206EE1V1AN00

Chapter 5 Firmware – Program Listings
5.3 Assembly Language Subroutines

;NEC Electronics Europe
;General purpose I2C driver routines
;with EEPROM routines

#include <df9116a.h>

 public _Put_I2C_Reg
 public _Get_I2C_Reg
 public _Put_I2C_Byte
 public _Get_I2C_Byte
 public _Send_Eeprom
 public _Recv_Eeprom
 public _Reset_Bus
 public eeprom_bitreg

;
;I2C I/O...
;

SDA equ P5.1
SCL equ P5.0

#define SDAIN SET1 PM5.1
#define SDAOUT CLR1 PM5.1
#define SCLIN SET1 PM5.0
#define SCLOUT CLR1 PM5.0

;
;flags
;

rw_flag equ eeprom_bitreg.0
eeprom_error equ eeprom_bitreg.1
eeprom_read equ eeprom_bitreg.2
bus_error equ eeprom_bitreg.3
i2c_error equ eeprom_bitreg.4
i2c_read equ eeprom_bitreg.5

wait equ 100 ;check x times for acknowledge after write

; ==

;Macros...

;Set SCL
Set_SCL MACRO
 set1 SCL ;3 times to guarantee pulse width
 set1 SCL
 set1 SCL
 ENDM

;Clear SCL
Clr_SCL MACRO
 clr1 SCL
 nop
 ENDM
;
;Pulse SCL
Emit_Clock MACRO
 Set_SCL
 Clr_SCL
28 Application Note U17206EE1V1AN00

Chapter 5 Firmware – Program Listings
 ENDM

; ==

;
;variable definition
;
 RSEG UDATA2
 SADDR

bitcount DS 1
eeprom_bitreg ds 1

; ==

;
;Start of executable code
;
 RSEG CODE
;
;Subroutines...
;
; ==

;Start Sequence
Start:
 SDAOUT
 SCLOUT
 set1 SDA
 Set_SCL
 clr1 SDA
 Clr_SCL
 ret

; ==

;Stop Sequence
Stop:
 SDAOUT
 SCLOUT
 clr1 SDA
 Set_SCL
 set1 SDA
 ret

; ==

;
;Bus check routine, checks if I2C bus is free
;if not flag bus_error is set
;
Bus_check:
 clr1 bus_error
 clr1 cy
 SCLIN
 SDAIN
 bf SCL,bus_fault
 bf SDA,bus_fault ;jump if bus fault
 SDAOUT
 SCLOUT
 ret
bus_fault: ;bus fault
 set1 bus_error ;set error code
 set1 cy
29 Application Note U17206EE1V1AN00

Chapter 5 Firmware – Program Listings
 ret

; ==

;
;Transmit a byte over the I2C bus
;input: acc contains byte to transmit
;output: cy = 0 if sequence completes
; cy = 1 if unable to transmit
;on error the i2c error flag is set
;
Xmit_Byte:

mov bitcount,#8 ;8 bits to send
xb1: rolc a,1

bnc xb1a
set1 SDA ;put bit on pin
br xb1b

xb1a: clr1 SDA
xb1b: Emit_Clock ;emit clock pulse

dbnz bitcount,xb1 ;loop until done

;setup to accept ACK from slave device
set1 SDA ;release data pin
Set_SCL ;SCL high
SDAIN
nop
bf SDA,xb2 ;jump if ACK seen
SDAOUT
Clr_SCL ;drop SCL
set1 cy ;set error code
set1 i2c_error
ret

xb2: SDAOUT
Clr_SCL ;drop SCL
clr1 cy ;set completion code
clr1 i2c_error
ret

; ==

;
;Receive a byte over the I2C bus
;output: acc contains received byte
; cy is dummied up with a 0
;
Rec_Byte: mov bitcount,#8 ;8 bits to receive
 SDAIN
zb1:nop
 Set_SCL ;SCL high
 nop
 bf SDA,zb10
 set1 cy ;pick bit off of pin
 br zb11
zb10: clr1 cy
zb11: rolc a,1
 Clr_SCL ;SCL low
 dbnz bitcount,zb1 ;more bits to receive?
 clr1 cy ;must complete ok
 ret

; ==

;
;Public routines...
;

;

30 Application Note U17206EE1V1AN00

Chapter 5 Firmware – Program Listings
;Reset Bus routine, tries to clear the bus after hang-up
;if no clearance is possible, flag bus error is set
;
_Reset_Bus:
 mov eeprom_bitreg,#0
 mov bitcount,#9
 SDAIN
_reset_loop:bt SDA,Reset_end
 Clr_SCL
 nop
 nop
 Set_SCL
 nop
 dbnz bitcount,_reset_loop
 set1 bus_error
Reset_end: ret

; ==

;
;Transmit and Receive routine for adressable data
;Transmit device-address and register-adress over I2C bus
;transmits or receives databyte
;input: r1 contains slave address and contains received data
; r3 contains register address
; r2 contains data byte, if transmit is used
;output: cy = 0 if sequence completes
; cy = 1 if unable to transmit
;

_Get_I2C_Reg:
 set1 i2c_read
 br xrd1
_Put_I2C_Reg:
 clr1 i2c_read
xrd1:
 call Bus_check
 bc xrd_end
 mov x,a ;setup slave address
 call Start ;set Start condition
 call Xmit_Byte ;send slave address
 bc xrd2 ;jump on error
 mov a,r3 ;setup register address
 call Xmit_Byte ;send register address
 bc xrd2 ;jump on error
 bt i2c_read,xrd1b
 mov a,r2 ;setup data byte
 call Xmit_Byte ;go send
 br xrd2
xrd1b:
 call Start ;set repeated Start
 mov a,x ;setup slave address
 set1 a.0 ;indicate read operation
 call Xmit_Byte ;send slave address again
 bc xrd2 ;jump on error
 call Rec_Byte ;go receive
 ;store data byte
 ;sequence complete, return code is already in cy:
 set1 SDA ;set SDA idle
 Emit_Clock ;emit clock pulse

;
;set Stop condition, return code is already in cy
xrd2:
 call Stop ;set Stop condition
xrd_end:
 ret
31 Application Note U17206EE1V1AN00

Chapter 5 Firmware – Program Listings
; ==

;
;Transmit and receive routine for standard devices
;Transmit address and receives or transmits a data byte over I2C bus
;input: r1 contains slave address and contains received data
; r3 contains data byte in transmit-mode
;output: cy = 0 if sequence completes
; cy = 1 if unable to transmit
;
_Get_I2C_Byte:
 set1 i2c_read
 set1 a.0 ;indicate read operation
 br xrdb1
_Put_I2C_Byte:
 clr1 i2c_read
xrdb1:
 call Bus_check
 bc xrdb1_end
 ;setup slave address
 call Start ;set Start condition
 call Xmit_Byte ;send slave address
 bc xrdb2 ;jump on error
 bt i2c_read,xrdb1b
 mov a,r3 ;setup data byte
 call Xmit_Byte ;send data byte
 br xrdb2
xrdb1b:
 call Rec_Byte ;go receive
 ;store data byte

;sequence complete, return code is already in cy
 set1 SDA ;set SDA idle
 Emit_Clock ;emit clock pulse

;set Stop condition, return code is already in cy
xrdb2:
 call Stop ;set Stop condition
xrdb1_end:
 ret

; ==

;
;Transmit and Receive routine for serial I2C-EEprom type 24Cxx
;Transmit device-address and memory-adress over I2C bus
;transmits or receives one databyte
;input: r1 contains slave address and contains received data
; r3 contains register address
; r2 contains data byte, if transmit is used
;output: cy = 0 if sequence completes
; cy = 1 if unable to transmit
;on error the eeprom error flag is set
;

_Recv_Eeprom:
set1 eeprom_read
br eep1

_Send_Eeprom:
clr1 eeprom_read

eep1: push rp2
call Bus_check
bc eep_end
mov x,a ;save eeprom page
push rp1
32 Application Note U17206EE1V1AN00

Chapter 5 Firmware – Program Listings
pop rp2 ;free register R2 R3
mov r2,#5

eep_loop:
set1 eeprom_error
call Start
clr1 rw_flag
mov a,x
call send_eeprom_page
bc eep_err
clr1 eeprom_error
mov a,r5 ;setup eeprom address
call Xmit_Byte
bt eeprom_read,eep2
mov a,r4 ;setup eeprom data
call Xmit_Byte
br eep_err

eep2:
call Start
set1 rw_flag
mov a,x
call send_eeprom_page
call Rec_Byte

eep_err:
call Stop
bt eeprom_read,eep_err2

wtack:
call Start
mov R3,#wait
mov a,x
call send_eeprom_page
bnc eep_err1
dbnz R3,wtack

eep_err1:
call Stop

eep_err2:
bf eeprom_error,eep_end
dbnz r2,eep_loop

eep_end:
pop rp2
ret

send_eeprom_page:
and a,#00000111b
rol a,1
or a,#10100000b
clr1 a.0
bf rw_flag,send_eeprom_addr
set1 a.0

send_eeprom_addr:
call Xmit_Byte
ret

; ==

end

; ==
; ==
33 Application Note U17206EE1V1AN00

Chapter 6 Conclusion

This note has given an outline of I²C theory, and has shown how an I²C master can be implemented
using an NEC K-line microcontroller that has no dedicated I²C port. Speed of operation is determined
largely by device choice and operating frequency, and often operation far below the nominal 100 KHz is
acceptable. Although used here to access an external EEPROM, the routines may be used to interface
to any I²C device, such as a Real Time Clock (RTC), analog to digital converter etc.
34 Application Note U17206EE1V1AN00

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-2719-5951

Address

North America
NEC Electronics America Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Market Communication Dept.
Fax: +49(0)-211-6503-1344

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-6250-3583

Japan
NEC Semiconductor Technical Hotline

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 99.1

Name

Company

From:

Tel. FAX

Facsimile Message

Fax: +81- 44-435-9608

[MEMO]

	COVER
	Table of Contents
	Chapter 1 Introduction
	Chapter 2 Hardware Arrangement
	Figure 2-1: Simplified I2C Driver Architecture
	Figure 2-2: I2C Bus Typical Interconnection

	Chapter 3 I2C Bus Data Format
	3.1 START and STOP Conditions
	Figure 3-1: I2C START and STOP Conditions

	3.2 Acknowledgement
	Figure 3-2: I2C ACK and NACK Conditions

	3.3 Clock Stretching
	Figure 3-3: Clock Stretching

	3.4 Data Transfer Format
	Figure 3-4: Data Transfer Format

	3.5 EEPROM Read and Write

	Chapter 4 Firmware - Flow Diagrams and Description
	4.1 START Condition
	Figure 4-1: START Condition

	4.2 STOP Condition
	Figure 4-2: STOP Condition

	4.3 Bus Check
	Figure 4-3: Bus Check

	4.4 Send Byte
	Figure 4-4: Send Byte

	4.5 Receive Byte
	Figure 4-5: Receive Byte

	4.6 Get / Put I2C Byte
	Figure 4-6: Get / Put I2C Byte

	4.7 Send EEPROM Page
	Figure 4-7: Send EEPROM Page

	4.8 EEPROM Read and Write
	Figure 4-8: EEPROM Read and Write

	Chapter 5 Firmware - Program Listings
	5.1 Main (test) Program
	5.2 Header File - i2c.h
	5.3 Assembly Language Subroutines

	Chapter 6 Conclusion

