XENESNS

>
©
=
al
Q
=
o
-
Z
o
==
®

78KOR/Kx3-L

(on-chip USB controller)

16-bit Single-Chip Microcontroller

USB CDC (Communication Device Class) Driver

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Technology Corp.
website (http://www.renesas.com).

Renesas Electronics RO1ANOOO8SEDO0100, Rev. 1.00
July 20, 2010

www.renesas.com

Table of Contents

Chapter 1 OVEIVIEW ... 4

L R O AV =Y oY = R 4

1.1.1 Features of the USB function CONrollErcooiiiiiiiiiiiiie e 4

1.1.2 Features of SamPpPle AriVENo e e e 5

1.1.3 Files included in the sample driVercooiiiiiiiiiiiee e 5

1.2 Overview of 78KOR/KX3-L oo 6

1.2.1 APPIICADIE PrOAUCESueiiii e 6

A oY 11] (=Y R 6

Chapter2 Overview of USB ..., 8

2.1 Transfer FOrMat.......ccoooo it 8

2.2 ENAPOINTS .o 8

2.3 DEVICE ClASS.....cooiiiiiiii it aaaeeaaaaa 9

2.4 REQUESES ..ot e e aaan 9

D Tt B 1Y/ o 1= PR 9

D S o 1 11 - AR 10

P2 T I =T 4 o) o] RPN 10

D2 Tt E Y/ o 1= TSP UUR 10

D8 T2 o 1 11T S 11

Chapter 3 Sample Driver Specificationcccooviiiiiiiiii e, 13

K TRt B O 1= TR 13

T I B = (0] PP RRRSPRRPN 13

3.1.2 SUPPOMEA FEQUESES ...ttt e e e e e e et e e e e e e e e et e e eeeaaens 13

K T G T B =T To7 o) (o] 1= 1] T 1 SRR URRTPRPI 14

3.2 Operation of Each Section...........oouuuiiiiiiiiii e 18

3.21 CPU INIGANZALIONeeeiiiiiieeeee et et e e e et e e e e e e e s tbareeeaaeeas 18

3.2.2 USB function controller initialization processiNg..........coccuveiiiiiiiiiiiiiiee e 19

3.2.3 INTUSB iNTEITUPE PrOCESS.....uueeiiiieeiiiciiiteeee e ettt e e e e e e e e et ae e e e e e e e e nnbaeeeeaaes 22

3.3 Function SpecCificationouuiiiiiiiii e 23

3.3.1 U] o 1o 1= 23

3.3.2 Correlation of the FUNCHONS.............uuiiiiiiiii e e 24

3.3.3 FUNCHON TEAMUIEScoeii it e e e e e et eeeaae s 28

Chapter4 Sample Application Specificationcccoeeiiiiiiiiiiineenns 41

I O 1= YT PSP 41

o © 10T =Y (o] o PSP 41

4.3 USING FUNCHONS ... 42

Chapter 5 Development Environmentcccooeiviiiiiiiiiiiieeeeeeeeee, 44

5.1 Development environment OVEIVIEW..........oouueiiiiii i 44

5.1.1 Program develOpMENtcoo it e e ee e 44

S0t V2 B = o U T T 1o T USSR 44
RO1ANOOOSEDO0100 Rev. 1.00 RENESAS

July 20, 2010

5.2 Settingupthe Environment ... 44

5.2.1 Preparing HOSt ENVIFONMENTouiiiiiiiiii et 44

5.2.2 Setting up the target environmentcooo i 47

5.3 On-Chip DebUGQINGccoieiiiiieeeee e 48

5.3.1 Generating the debug fileScooiiiiiiii e 48

5.3.2 Download and DEDUQGccoiuuiiiiiiiiie ettt e e ee e 48

5.4 Checking the Operation..............eeuiiiiiiiiiiiiiiiiiiieieeee et 53

Chapter 6 Using the Sample Driver...........ooooiiiiiiiiee e 56

8.1 OVEIVIEW ..ottt ettt e e e e e e s r et e e e e e e e 56

6.2 Customizing the sample driVer ... 56

S0 B Y o] o] o= 11 To] g TX=T=T o1 o] 1SS RS POPRR 56

6.2.2 Setting Up the devVice regiStersiii i 57

6.2.3 Descriptor infOrmMationooiiiiiiiie e a s 57

6.2.4 Setting up the virtual COM port hOSt AFIVETccviiiiiiiiie e 57

6.3 USING FUNCHIONS ...ttt e e e e e eeeeeees 61

Chapter 7 Starter Kitcooori e 62

S I © 1 Y/=1 4/ [PP PP PP PPPPPPPPP 62

I T == (0] = PSR RPRPPN 62

7.2 SPECIfICALION .o e 62
RO1ANOOO8SEDO0100 Rev. 1.00 RENESAS

July 20, 2010

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

Chapter 1 Overview

This application note describes the USB CDC (communication device class) sample
driver created for the USB function controller incorporated in the 78KOR/KC3-L,
78KOR/KE3-L (78KOR/Kx3-L) microcontrollers. This application note provides the
following information:

e The specifications for the sample driver

¢ Information about the environment used to develop an application program by
using the sample driver

e The reference information provided for using the sample driver

This chapter provides an overview of the sample driver and describes the
microcontrollers for what the sample driver can be used.

1.1 Overview

1.1.1 Features of the USB function controller

The USB function controller that is incorporated in the 78KOR/Kx3-L and is controlled by
the sample driver has the following features:

¢ Conforms to the Universal Serial Bus Rev. 2.0 Specification
e Operates as a full-speed (12 Mbps) device.

e Includes the following endpoints:

Table 1-1 Configuration of the Endpoints of the 78 KOR/Kx3-L

Endpoint Name O Transfer Type Remark
(Bytes)
Endpoint0 Read 64 Control transfer (IN) Single buffer configuration
Endpoint0 Write 64 Control transfer (OUT) Single buffer configuration
Endpoint1 64x2 Bulk transfer 1 (IN) Dual-buffer configuration
Endpoint2 64x2 Bulk transfer 1 (OUT) Dual-buffer configuration
Endpoint3 64x2 Bulk transfer 2 (IN) Dual-buffer configuration
Endpoint4 64x2 Bulk transfer 2 (OUT) Dual-buffer configuration
Endpoint7 64 Interrupt transfer 1 (IN) Single buffer configuration
Endpoint8 64 Interrupt transfer 2 (IN) Single buffer configuration

e Automatically responds to standard USB requests (except some requests).
e Can operate as a bus-powered device or self-powered device'

e The internal or external clock can be selected?

' The sample driver selects bus power
2The sample driver selects the internal clock

RO1ANOOO8SEDO0100 Rev. 1.00 ENESANAS 4
July 20, 2010 R

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

1.1.2 Features of sample driver

The USB communication device class sample driver for the 78KOR/Kx3-L has the
features below. For details about the features and operations, see Chapter 3 Sample
Driver Specifications.

e Conforms to the USB communication device class Ver.1.1 Abstract Control
Model

e Operates as a virtual COM device

e Exclusively uses the following amounts of memory (excluding the vector table):
o ROM: About 3.0 KB
o RAM: About 0.4 KB

1.1.3 Files included in the sample driver

The sample driver includes the following files:

Table 1-2 Files included in the sample driver

Folder File Overview
src main.c Main routine, initialization, sample application
usbf78kO0r.c USB initialization, endpoint control, bulk transfer,
control transfer
usbf78k0r_communication.c Communication device class specific processing
include main.h main.c function prototype declarations
usbf78kO0r.h usbf78kO0r. function prototype declarations
usbf78k0r_communication.h usbf78k0r_communication.c function prototype
declarations
usbf78k0r_desc.h Descriptor definitions
usbf78k0r_errno.h Error code definitions
usbf78kO0r_types.h User declarations
Inf file KOR_CDC_XP.inf INF file for Windows XP

Remark In addition, the project-related files generated when creating a development environment
by using the IAR Embedded Workbench (an integrated development tool made by IAR
Systems) are also included. For details see 5.2.1 Preparing the host environment.

RO1ANO00BEDO100 Rev. 1.00 ENESAS 5
July 20, 2010 -2

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

1.2 Overview of 78KOR/Kx3-L
This section describes the 78KOR/KC3-L, 78KOR/KE3-L which are controlled by using the
sample driver.
The 78KOR/KC3-L and 78KOR/KE3-L are products in the low-power series of single chip
78KOR microcontroller, made by Renesas Electronics. They use 78KOR CPU core and
have peripheral functions such as ROM/RAM, timers/counters, POC/LVI, a serial
interface, A/D converter, DMA controller, USB function controller. For details, see the
78KOR/KC3-L, 78KOR/KE3-L USB controller built-in products Hardware User’s
manual.
1.2.1 Applicable products
The sample driver can be used for the following products.
Table 1-3 78KOR/Kx3-L Products
. Internal Memory Interrupt
Generic Part Number Flash Incorporat.ed
Name M RAM | USB Function | Internal | External
emory
78KOR/KC3-L | 4 PD78F1022 64 KB 6 KB Function controller 36 7
(48pin) 1 PD78F1023 96KB 8 KB Function controller 36 7
1 PD78F1024 128KB 8 KB Function controller 36 7
78KOR/KE3-L | 4 PD78F1025 96KB 8 KB Function controller 41 11
(64pin) 1 PD78F1026 128KB 8 KB Function controller 41 11
Caution: In this application note, all target microcontrollers are collectively indicated as the
78KOR/Kx3-L, unless distinguishing between them is necessary.
1.2.2 Features
The main features of 78 KOR/Kx3-L are as follows. For details, see 78KOR/Kx3-L user’s
manual.
Memory space:
e 1M byte linear address space (for programs and data)
Internal memory
¢ RAM: 6K/ 8K byte
e Flash memory : 64K/ 96K/ 128K byte
Multiplication/division function
e 16 bit x16 bit = 32 bit(multiplication)
e 32 bit + 32 bit = 32 bit (division)
Key interrupt
e 4 channels
e 8 channels
RO1ANOOO8SEDO0100 Rev. 1.00 RENESAS 6

July 20, 2010

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

DMA controller

e 2 channels

Serial interface
e CSI: 1 channel/ UART: 1 channel
e CSI: 1 channel/lUART: 1 channel/simple I12C: 1channel
e CSI: 1 channel note/UART: 1 channel note/simple 12C: 1channel note
e UART(for LIN-bus): 1 channel
e 12C: 1 channel

USB controller

e USB function (full speed): 1 channel

A/D converter
¢ 10 bit resolution A/D converter(AVREF = 1.8~3.6 V): 8 channel

Power supply voltage
e VDD = 1.8~3.6 V(when USB is not used)
e VDD = 3.0~3.6 V(when USB is used)

Clock output/buzzer output

o 244 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz(peripheral
hardware clock:at fyan = 20 MHz operation)

e 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz,
32.768 kHz

o (Subsystem clock: at fsyg = 32.768 kHz operation)

With built-in on chip debugging function

Note: Above mentioned information based on 78 KOR/KE3-L

July 20, 2010

78KOR/Kx3-L (on-chip USB controller)

USB CDC driver

Chapter 2 Overview of USB

Table 2-1

2.1

2.2

This chapter provides an overview of the USB standard, which the sample driver
conforms to.

USB (Universal Serial Bus) is an interface standard for connecting various peripherals to
a host system by using the same type of connector. The USB interface is more flexible
and easier to use than older interfaces in that it can connect up to 127 devices by adding
a branching point known as a hub and supports the hot-plug feature, which enables
devices to be recognized by Plug & Play. The USB interface is provided in most current
computers and has become the standard for connecting peripherals to a computer.

The USB standard is formulated and managed by the USB Implementers Forum (USB-
IF). For details about the USB standard, see the official USB-IF website (www.usb.org).

Transfer Format

Four types of transfer formats (control, bulk, interrupt and isochronous) are defined in the
USB standard. Table 2-1 shows the features of each transfer format.

USB Transfer Format

Transfer Format Control Bulk Transfer Interrupt Isochronous
e Transfer Transfer Transfer
Feature Transfer format Transfer format Periodic data Transfer format
used to exchange used to transfer format used for a real-
information aperiodically that has a low time transfer
required for handle large band width
controlling amounts of data
peripheral devices
Specifiable | High 64 bytes 512 bytes 1to 1,024 bytes 1 to 1,024 bytes
packet speed
size 480 Mbps
Full speed | 8, 16, 32, or 64 8, 16, 32, or 64 1 to 64 bytes 1 to 1,023 bytes
12 Mbps bytes bytes
Low 8 bytes - 1 to 8 bytes -
speed
1.5 Mbps
Transfer priority 3 3 2 1
Endpoints

An endpoint is an information unit that is used by the host device to specify a
communicating device and is specified using a number from 0 to 15 and a direction (IN or
OUT). An endpoint must be provided for every data communication path that is used for
a peripheral device and cannot be shared by multiple communication pathsS. For
example, a device that can write to and read from an SD card and print out documents
must have a separate endpoint for each purpose. Endpoint 0 is used to control transfers
for any type of device.

During data communication, the host uses a USB device address, which specifies the
device, and an endpoint (a number and direction) to specify the communication
destination in the device.

Peripheral devices have buffer memory that is a physical circuit to be used for the
endpoint and functions as a FIFO that absorbs the difference in speed of the USB and
communication destination (such as memory).

% An endpoint can be exclusively switched by using the alternative setting

RO1ANOOO8SEDO0100 Rev. 1.00

July 20, 2010

RENESAS 8

http://www.usb.org/�

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

2.3

24

241

Device Class

Various device classes, such as the mass storage class (MSC), communication device
class (CDC), and human interface device class (HID) are defined according to the
functions of the peripheral devices connected via USB (the function devices). A common
host driver can be used if the connected devices conform to the standard specifications
of the relevant device class, which is defined by a protocol.

The Communication Device Class (CDC) is intended for communication devices
connected to hosts, such as modems, FAX machines and network cards. The class is
increasingly used for devices that are used for USB-to-serial conversion performing
UART communication with a computer, because recent computers do not have an RS-
232C interface. Note that a different CDC model is defined depending on the device to
connect. The sample driver uses the Abstract Control Model.

Requests

For the USB standard, communication starts with the host issuing a command, known as
a request, to a function device. A request includes data such as the direction and type of
processing and address of the function device.

Types

There are three types of requests: standard requests, class requests and vendor
requests. The sample driver supports the following requests.

(1) Standard requests

Standard requests are used for all USB-compatible devices.

Table 2-2 Standard Requests

Request Name Target Descriptor Overview
GET_STATUS Device Reads the settings of the power supply (self or
bus) and remote wakeup.
Endpoint Reads the halt status.
CLEAR_FEATURE Device Clears remote wakeup.
Endpoint Cancels the halt status (DATA PID = 0).
SET_FEATURE Device Specifies remote wakeup or test mode.
Endpoint Specifies the halt status.
GET_DESCRIPTOR Device Reads the target descriptor.
Configuration
string
SET_DESCRIPTOR Device Changes the target descriptor (optional).
Configuration
string
GET_CONFIGURATION Device Reads the currently specified configuration
values
SET CONFIGURATION Device Specifies the configuration values.
GET_INTERFACE Interface Reads the alternatively specified value among
the currently specified values of the target
interface.
SET_INTERFACE Interface Specifies the alternatively specified value of the
target interface.
SET_ADDRESS Device Specifies the USB address
SYNCH FRAME Endpoint Reads frame-synchronous data.

(2) Class Requests

Class requests are unique to device classes. For the sample driver, processing to
respond to class requests that support the CDC Abstract Control Model is
implemented. The following requests can be responded to:

RO1ANOOO8SEDO0100 Rev. 1.00 RENESAS 9

July 20, 2010

78KOR/Kx3-L (on-chip USB controller)

USB CDC driver

SendEncapsulatedCommand
This request is used to issue commands in the format of the protocol for
controlling the communication class interface.

GetEncapsulatedResponse
This request is used to request a response in the format of the protocol for
controlling the communication class interface.

SetLineCoding
This request is used to specify the serial communication format.

GetLineCoding
This request is used to acquire the communication format settings on the device
side.

SetControlLineState
This request is used for RS-232/V.24 format control signals.

2.4.2 Format

USB requests have an 8-byte length and consist of the following fields.

Table 2-3 USB Request Format

Offset Field Description
0 bmRequestType Request attribute
Bit 7 Data transfer direction
Bits 6 and 5 Request type
Bits 4 to O Target descriptor
1 bRequest Request code
2 wValue Lower Any value used by the request
3 Higher
4 windex Lower
5 Higher Index or offset used by the request
6 wlLength L Number of bytes transferred at the data
ower
stage
7 Higher (the data length)
2.5 Descriptor
For the USB standard, a descriptor is information that is specific to a function device and
is encoded in a specified format. A function device transmits a descriptor in response to a
request transmitted from the host.
251 Types

The following five types of descriptors are defined.

Device descriptor

This descriptor exists in every device and includes basic information such as the
supported USB specification version, device class, protocol, maximum packet
length that can be used when transferring data to endpoint 0, vendor ID, and
product ID.

This descriptor is transmitted in response to a GET_DESCRIPTOR_Device
request.

Configuration descriptor

At least one configuration descriptor exists in every device and includes
information such as the device attribute (power supply method) and power

RO1ANOOO8SEDO0100 Rev. 1.00
July 20, 2010

RENESAS 10

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

consumption. This descriptor is transmitted in response to a
GET_DESCRIPTOR_Configuration request.

e Interface descriptor

This descriptor is required for each interface and includes information such as
the interface identification number, interface class, and supported number of
endpoints. This descriptor is transmitted in response to a
GET_DESCRIPTOR_Configuration request.

o Endpoint descriptor

This descriptor is required for each endpoint specified for an interface descriptor
and defines the transfer type (direction), maximum packet length that can be
used for a transfer, and transfer interval. However, endpoint 0 does not have this
descriptor. This descriptor is transmitted in response to a
GET_DESCRIPTOR_Configuration request.

e String descriptor

This descriptor includes any character string. This descriptor is transmitted in
response to a GET_DESCRIPTOR_String request.

2.5.2 Format

The size and fields of each descriptor type vary as described below.

Remark The data sequence of each field is in little endian format.

Table 2-4 Device Descriptor Format

Field Size Description
(Bytes)
bLength 1 Descriptor size
bDescriptorType 1 Descriptor type
bcdUSB 2 USB specification release number
bDeviceClass 1 Class code
bDeviceSubClass 1 Subclass code
bDeviceProtocol 1 Protocol code
bMaxPacketSize0 1 Maximum packet size of endpoint 0
idVendor 2 Vendor ID
idProduct 2 Product ID
bcdDevice 2 Device release number
iManufacturer 1 Index to the string descriptor representing the manufacturer
iProduct 1 Index to the string descriptor representing the product
iSerialNumber 1 Index to the string descriptor representing the device production
number
bNumConfigurations 1 Number of configurations

Remark Vendor ID: The identification number each company that develops a USB device
acquires from USB-IF

Product ID: The identification number each company assigns to a product after acquiring
the vendor ID

ROTANOOOSEDO0100 Rev. 1.00 ENESAS 11
July 20, 2010 -2

78KOR/Kx3-L (on-chip USB controller)

USB CDC driver

Table 2-5 Configuration Descriptor Format

Table 2-6

Table 2-7

Field Size Description
(Bytes)
bLength 1 Descriptor size
bDescriptorType 1 Descriptor type
wTotalLength 2 Total number of bytes of the configuration, interface, and

endpoint descriptors

bNuminterfaces

Number of interfaces in this configuration

bConfigurationValue

Identification number of this configuration

iConfiguration 1 Index to the string descriptor specifying the source code for this
configuration

bmAttributes 1 Features of this configuration

bMaxPower 1 Maximum current consumed in this configuration (in 2 #A units)

Interface Descriptor Format

Field Size Description
(Bytes)

bLength 1 Descriptor size
bDescriptorType 1 Descriptor type
binterfaceNumber 1 Identification number of this interface
bAlternateSetting 1 Whether the alternative settings are specified for this interface
bNumEndpoints 1 Number of endpoints of this interface
binterfaceClass 1 Class code
binterfaceSubClass 1 Subclass code
binterfaceProtocol 1 Protocol code
ilnterface 1 Index to the string descriptor specifying the source code for this

interface

Endpoint Descriptor Format

Field Size Description
(Bytes)
bLength 1 Descriptor size
bDescriptorType 1 Descriptor type
bEndpointAddress 1 Transfer direction of this endpoint
Address of this endpoint
bmAttributes 1 Transfer type of this endpoint

wMaxPacketSize

Maximum packet size of this transfer

binterval

1

Polling interval of this endpoint

Table 2-8 String Descriptor Format

Field Size Description
(Bytes)
bLength 1 Descriptor size
bDescriptorType 1 Descriptor type
bString Any Any data string

July 20, 2010

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

Chapter 3 Sample Driver Specification

3.1

3.11

3.1.2

This chapter provides details about the features and processing of the USB
Communication Device Class sample driver for the 78KOR/Kx3-L and the specifications
of the functions provided in the 78KOR/Kx3-L.

Overview

Features

The sample driver can perform the following processing.

(1) Initialization

The USB function controller is set up to manipulate various special function registers.
This setup includes specifying settings for the CPU registers of the 78KOR/Kx3-L

and specifying settings for the registers of the USB function controller. For details,
see 3.2.1 CPU Initialization, 3.2.2 USB function controller initialization processing.

(2) Monitoring endpoints

The status of transfer endpoints in USB function controller is notified from INTUSB
interrupt. There are CPUDEC interrupts, expressing the request to decode by FW for
the control transfer endpoint (Endpoint0) and BKO1DT interrupt showing the normal
reception of data for bulk-out transfer (reception) endpoint (Endpoint2). During the
processing of Endpoint0, requests are responded too. For details, see 3.2.3 INTUSB
interrupt processing.

(3) Sample application

The data at the endpoint for bulk-out transfer (reception) is read and then the data is
written to the endpoint for bulk-in transfer (transmission). For details, see Chapter 4
Sample Application Specifications.

Supported requests

This section describes the USB requests supported by the sample driver.

(1) Standard requests

The sample driver returns the following responses for requests to which the
78KOR/Kx3-L does not automatically respond.

(a) GET_DESCRIPTOR_string

The host issues this request to acquire the string descriptor of the function device.
If this request is received, the sample driver transmits the requested string
descriptor to the host through a control read transfer.

(b) Other requests

The sample driver returns a STALL.

RO1ANOOO8SEDO0100 Rev. 1.00

July 20, 2010

RENESAS 13

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

(2) Class requests

The sample driver responds to class requests of the CDC by using the following
class requests.

(a) SendEncapsulatedCommand

This request is used to issue a command in the format of the CDC interface
control protocol. If this request is received, the sample driver retrieves the data
related to the request and then transmits them through bulk-in transfer.

(b) GetEncapsulatedResponse

This request is used to request a response in the format of the CDC interface
control protocol. Currently, the sample driver does not support this request.

(c) SetLineCoding

This request is used to specify the serial communication format. If this request is
received, the sample driver retrieves the data related to the request to specify
settings such as the communication rate and then transmits a NULL packet
through control read transfer.

(d) GetLineCoding

This request is used to acquire the current communication format settings on the
device side. If this request is received, the sample driver reads settings such as
the communication rate and then transmits them through control read transfer.

(e) SetControlLineState

This request is used for RS-232/V.24 format control signals. If this request is
received the sample driver transmits a NULL packet through control read transfer.

3.1.3 Descriptor settings

The settings of each descriptor specified by the sample driver are shown below. These
settings are included in header file "usbf78k0r_desc.h".

(1) Device descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR_device request.
The settings are stored in the UFODDn registers (where n = 0 to 17) when the USBF
is initialized, because the hardware automatically responds to a
GET_DESCRIPTOR_device request.

RO1ANOOO8SEDO0100 Rev. 1.00

NS 14
July 20, 2010 XENES

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

Table 3-1 Device Descriptor Settings

Field Size Specified Description
(Bytes) Value

bLength 1 0x12 | Descriptor size: 18 bytes

bDescriptorType 1 0x01 | Descriptor type: device

bcdUSB 2 0x0200 | USB specification release number: USB 2.0

bDeviceClass 1 0x02 | Class code: CDC

bDeviceSubClass 1 0x00 | Subclass code: none

bDeviceProtocol 1 0x00 | Protocol code: No unique protocol is used

bMaxPacketSize0 1 0x40 | Maximum packet size of endpoint 0: 64

idVendor 2 0x0409 | Vendor ID:NEC

idProduct 2 0x01CD | Product ID:78KO0R /Kx3-L

bcdDevice 2 0x0001 | Device release number:1st version

iManufacturer 1 0x01 | Index to the s.tring descriptor representing the
manufacturer: 1

iProduct 1 0x02 | Index tq the string descriptor representing the
product: 2

iSerialNumber 1 0x03 | Index to the string descriptor representing the
device production number:3

bNumConfigurations 1 0x01 | Number of configurations:1

(2) Configuration descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR _configuration
request. The settings are stored in the UFOCIEn registers (where n = 0 to 255) when
the USB function controller is initialized, because the hardware automatically
responds to a GET_DESCRIPTOR_configuration request.

Table 3-2 Configuration Descriptor Settings

Field Size Specified Description
(Bytes) Value

bLength 1 0x09 | Descriptor size: 9 bytes

bDescriptorType 1 0x02 | Descriptor type: configuration

wTotalLength 2 0x0030 | Total number of bytes of the configuration,
interface, and endpoint descriptors: 48 bytes

bNuminterfaces 1 0x02 | Number of interfaces in this configuration: 2

bConfigurationValue 1 0x01 | Identification number of this configuration:1

iConfiguration 1 0x00 | Index to the string descriptor specifying the
source code for this configuration:0

bmAttributes 1 0x80 | Features of this configuration: bus-powered, no
remote wakeup

bMaxPower 1 0x1B | Maximum current consumed in this configuration:
54 mA

(3) Interface Descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR_configuration
request. The settings are stored in the UFOCIEn registers (where n = 0 to 255) when
the USB function controller is initialized, because the hardware automatically
responds to a GET_DESCRIPTOR_configuration request. Two types of descriptors
are set p because the sample driver uses two interfaces.

RO1ANO00BEDO100 Rev. 1.00 ENESAS 15
July 20, 2010 -2

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

Table 3-3 Interface Descriptor Settings for Interface 0

Field Size Specified Description
(Bytes) Value

bLength 1 0x09 | Descriptor size: 9 bytes

bDescriptorType 1 0x04 | Descriptor type: interface

binterfaceNumber 1 0x00 | Identification number of this interface: 0

bAlternateSetting 1 0x00 | Whether the alternative settings are specified for
this interface: no

bNumEndpoints 1 0x01 | Number of endpoints of this interface: 1

binterfaceClass 1 0x02 | Class code: communications interface class

binterfaceSubClass 1 0x02 | Subclass code: Abstract Control Model

binterfaceProtocol 1 0x00 | Protocol code: No unigue protocol is used.

ilnterface 1 0x00 | Index to the string descriptor specifying the
source code for this interface: 0

Table 3-4 Interface Descriptor Settings for Interface 1

Field Size Specified Description
(Bytes) Value

bLength 1 0x09 | Descriptor size: 9 bytes

bDescriptorType 1 0x04 | Descriptor type: interface

binterfaceNumber 1 0x01 | Identification number of this interface: 1

bAlternateSetting 1 0x00 | Whether the alternative settings are specified for
this interface: no

bNumEndpoints 1 0x02 | Number of endpoints of this interface: 2

binterfaceClass 1 0x0A | Class code: communications interface class

binterfaceSubClass 1 0x00 | Subclass code: Abstract Control Model

binterfaceProtocol 1 0x00 | Protocol code: No unique protocol is used.

ilnterface 1 0x00 | Index to the string descriptor specifying the
source code for this interface: 0

(4) Endpoint descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR_configuration
request. The settings are stored in the UFOCIEn registers (where n = 0 to 255) when
the USB function controller is initialized, because the hardware automatically
responds to a GET_DESCRIPTOR_configuration request. Three descriptor types are
specified because the sample driver uses three endpoints.

Table 3-5 Endpoint Descriptor Settings for Endpoint 7

Field Size Specified Description
(Bytes) Value
bLength 1 0x07 | Descriptor size: 7 bytes
bDescriptorType 1 0x05 | Descriptor type: endpoint
bEndpointAddress 1 0x87 | Transfer direction of this endpoint: IN
Address of this endpoint: 7
bmAttributes 1 0x03 | Transfer type of this endpoint: interrupt
wMaxPacketSize 2 0x0008 | Maximum packet size of this transfer: 8 bytes
binterval 1 0x0A | Polling interval of this endpoint: 10 ms

Table 3-6 Endpoint Descriptor Settings for Endpoint 1

Field Size Specified Description
(Bytes) Value
bLength 1 0x07 | Descriptor size: 7 bytes
bDescriptorType 1 0x05 | Descriptor type: endpoint
bEndpointAddress 1 0x81 | Transfer direction of this endpoint: OUT
Address of this endpoint: 2
bmAttributes 1 0x02 | Transfer type of this endpoint: bulk
wMaxPacketSize 2 0x0040 | Maximum packet size of this transfer: 64 bytes
binterval 1 0x00 | Polling interval of this endpoint: 0 ms
R0O1ANOO0BEDO100 Rev. 1.00 RENESAS 16

July 20, 2010

78KOR/Kx3-L (on-chip USB controller)

USB CDC driver

Table 3-7 Endpoint Descriptor Settings for Endpoint 2

Table 3-8

Table 3-9

Table 3-10

Table 3-11

Field Size Specified Description
(Bytes) Value
bLength 1 0x07 | Descriptor size: 7 bytes
bDescriptorType 1 0x05 | Descriptor type: endpoint
bEndpointAddress 1 0x02 | Transfer direction of this endpoint: IN
Address of this endpoint: 2
bmAttributes 1 0x02 | Transfer type of this endpoint: bulk
wMaxPacketSize 2 0x0040 | Maximum packet size of this transfer: 64 bytes
binterval 1 0x00 | Polling interval of this endpoint: 0 ms

(5) String descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR_string request. If
a GET_DESCRIPTOR _string request is received, the sample driver stores the
settings of this descriptor into the UFOEOW register of the USB function controller.

String 0 Descriptor Settings

Field Size Specified Description
(Bytes) Value
bLength 1 0x04 | Descriptor size: 4 bytes
bDescriptorType 1 0x03 | Descriptor type: string
bString 2 0x09, 0x04 | Language code: English (U.S.)
String 1 Descriptor Settings
Field Size Specified Description
(Bytes) Value
bLength” 1 0x2A | Descriptor size: 42 bytes
bDescriptorType 1 0x03 | Descriptor type: string
bString® 40 - | Vendor: NEC Electronics Corporation
String 2 Descriptor Settings
Field Size Specified Description
(Bytes) Value
bLength® 1 0xOE | Descriptor size: 14 bytes
bDescriptorType 1 0x03 | Descriptor type: string
bString® 12 - | Product type: CDCDrv (CDC driver)
String 3 Descriptor Settings
Field Size Specified Description
(Bytes) Value
bLength® 1 0x16 | Descriptor size: 22 bytes
bDescriptorType 1 0x03 | Descriptor type: string
bString® 20 - | Serial number: 0_98765432

*The specified value depends on the size of the bString field.
® The vendor can freely set up the size and specified value of this field

RO1ANOOO8SEDO0100 Rev. 1.00

July 20, 2010

RENESAS

17

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

3.2 Operation of Each Section

The processing sequence below is performed when the sample driver is executed. This
section describes each processing. For details about the sample application, see Chapter
4 Sample Application Specifications.

Figure 3-1 Sample Driver Processing Flowchart

Initializing the CPU

A
Initializing the USB function controller

&
<«

v
Executing the sample application

3.2.1 CPU Initialization

The settings necessary to use the USB function controller are specified.

(Start of CPU)
v

Setting clock generation

Figure 3-2 CPU Initialization Flowchart

A 4

End of CPU
initialization

(1) Clock generation settings
Operation of internal clock of CPU is set. Here, five registers are set.

(a) “0x41” is written to CMC register to specify X1 oscillation mode, 10MHz < fyyx <=
20MHz.

(b) “0” is written to the MSTOP bit of CSC register to start the operation of X1
oscillation circuit.

(c) Oscillation stability time is verified according to OSTC register.

RO1ANO00BEDO100 Rev. 1.00 ENESAS 18
July 20, 2010 -2

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

(d) “0x01” is written in PLLC register to stop the PLL operation.

(e) “0x38” is written to the CKC register to specify CPU/peripheral hardware clock to
main system clock (fyain), main system clock to high speed system clock (fux)
and ratio of dividing frequency to fyx .

(f) “1”is written to the HIPSTOP bit of CSC register to stop high speed built-in
oscillation circuit.

(g) “1”is written to PLLM bit of PLLC register to multiply the frequency of the clock
provided to PLL by 12.

(h) “0” is written to PLLSTOP bit of PLLC register to stat the operation of PLL.

3.2.2 USB function controller initialization processing

The settings necessary to use the USB function controller are specified.

Figure 3-3 USB function controller Initialization Processing Flowchart

Start of USBF
initialization

USB clock supply

v
D+ signal no connection settings

v

Setting USB buffer as invalid/ floating
v

NAK settings of control endpoints

v

Initialization request of data register area

v

Settings up interface and endpoints

v

Cancellation of control endpoints NAK
settings

v

Setting up interrupt mask register

v

Initialization of driver internal flag

v

Setting USB buffer as valid/floating
v

Setting D+ signal pulling up

End of USB
initialization

RO1ANO00BEDO100 Rev. 1.00 ENESAS 19
July 20, 2010 -2

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

(1)

()

()

(4)

(5)

(6)

(@)

USB clock supply

“Ox80” is set in UCKC register so that USB clock is supplied to USB function
controller.

D+ Signal no-connection settings

"0x02” is set to UFOGPR register in order to avoid being detected by the host.

Invalidate USB buffer as and validate the floating measures

“Ox00” is set to UFOBC register to disable the operations of USB function controller
set as valid USB buffer and invalid floating measures.

NAK settings of control endpoints

In order to avoid the unintended response, before registering the data which are
used for automatic response by the hardware, 1 is written to the EPONKA bit of the
UFOEONA register, so that the hardware responds to all requests, including requests
that are automatically responded to, with a NAK.

Initializing the request data register area

The descriptor data transmitted in auto response to a GET_DESCRIPTOR request is
added to the following registers.

(a) “0x00” is written to the UFODSTL register to disable remote wakeup and operate
the USB function controller as a bus-powered device.

(b) “0x00” is written to the UFOENSL registers (where n = 0 to 2) to indicate that
endpoint n operates normally.

(c) The total data length (number of bytes) of the required descriptor is written to the
UFODSCL register to determine the range of the UFOCIEn registers (where n =0
to 255).

(d) The device descriptor data is written to the UFODDn registers (where n = 0 to 7).

(e) The data of the configuration, interface, and endpoint descriptors is written to the
UFOCIEnN registers (where n = 0 to 255).

(f) “Ox00” is written to the UFOMODC register to enable automatic responses to
GET_DESCRIPTOR_configuration requests.

NAK settings of interface and endpoints

Information such as the number of supported interfaces, whether the alternative
setting is used, and the relationship between the interfaces and endpoints are
specified for various registers. The following registers are accessed.

(a) “Ox80” is written to the UFOAIFN register to enable two interfaces.

(b) “Ox00” is written to the UFOAAS register to disable the alternative setting.
(c) “0x40” is written to the UFOE1IM register to link endpoint 1 to interface 1.
(d) “0x40” is written to the UFOE2IM register to link endpoint 2 to interface 1.
(e) “0x20” is written to the UFOE7IM register to link endpoint 7 to interface 0.

Disabling NAK settings of control endpoints

The NAK response operations for all requests are cancelled. 0 is written to the
EPONKA bit of the UFOEONA register to restart responses corresponding to each
request, including requests that are automatically responded to.

RO1ANO00BEDO100 Rev. 1.00 RENESAS 20

July 20, 2010

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

(8)

(9)

Setting up the interrupt mask registers

Masking is specified for each USB function controller interrupt source. The following
registers are accessed:

(a) “Ox00” is written to the UFOlcn registers (where n = 0 to 7) to clear all interrupt
sources.

(b) “0x00” is written to the UFOFICn registers (where n = 0 and 1) to clear all transfer
FIFOs.

(c) “Ox7B” is written to the UFOIMO register to mask all interrupt sources other than
BUSRST interrupt and SETRQ interrupt from the interrupt sources indicated by
the UFOISO register.

(d) “Ox7E” is written to the UFOIM1 register to mask all interrupt sources other than
CPUDEC interrupt from the interrupt sources indicated by the UF0IS1 register.

(e) “OxF3” is written to the UFOIM2 register to mask all interrupt sources indicated by
the UFOIS2 register.

(f) “OxFE” is written to the UFOIM3 register to mask interrupt sources indicated by
the UFOIS3 register other than those of the BKO1DT interrupt.

(g) “OxFF” is written to the UFO0IM4 register to mask all interrupt sources indicated by
the UF0IS4 register.

(h) “0” is written to the USBIF bit of CPU to clear INTUSB interrupt.
(i) “0”is written to the USBMK bit of CPU to disable mask of INTUSB interrupt.

Initialization of driver internal flag

A high level signal is output from the D+ pin to report to the host that a device has
been connected. For the sample driver, the connections shown in Figure 3-4 are
assumed and the following registers are accessed.

(10) USB buffer enabled/ floating measures disabled

“Ox03” is set to UFOBC register to enable USB buffer, to disable floating measures
and to enable USB function controller operations.

(11) Pulling up the D+ signal

“Ox02” is set to UFOGPR register to report to the host that a device has been
connected.

Figure 3-4 USB function controller Connection Example

KOR/KC3-H EVop
KOR/KE3-H e
USBPUC
oO———— IC
: :

UFOGPR

15kQ 5

USBP y» D /

o D/
50kQ <
it [eB 0bk~7F

July 20, 2010

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

3.2.3 INTUSB interrupt process

Interrupt request (INTUSB) from USB function controller reports only about the interrupts
which are masked. Disable mask at the initialization for the necessary interrupts.
Respective necessary processes are executed for the reported interrupts.

Figure 3-5 Process flow of Endpoint0 monitoring

<Start of INTUSB interrupts>

\ 4
BUSRST interrupt process

\ 4
SETRQ interrupt process

'

CPUDEC interrupt process

\ 4
BKO1DT interrupt process

A 4

< End of NTUSB interrupt >

(1)

(2)

()

BUSRST interrupt process

It is reports when Bus Reset is generated. Process is executed in the following order.
(a) “Ox7F” is written to the UFOICO to clear BUSRST interrupt.

(b) “1” is written to usbf78k0r_busrst_flg flag.

(c) usbf78k0r_buff_init() function is called.

SETRAQ interrupt process

SET_XXXX request for auto process is received and it is reported at auto processing.
Process is executed in the following order.

(a) “OxFB” is written to the UFOICO to clear SETRQ interrupt.

(b) Both SETCON bit of UFOSET register and CONF bit of UFOMODS register are
set to “1” is verified. “1” is set to CONFIGURATION by the
SET_CONFIGURATION request is indicated.

(c) “0”is written to the usbf78k0r_busrst_flg flag to report that it is switched from
reset state to normal state.

CPUDEC interrupt process

It is reported when FW process request is received. Process is executed in the
following order.

(a) “OxFD” is written to UFOIC1 register to clear PROT interrupt.
(b) UFOEOQST register is read for 8 times then request data is acquired and decoded.

(c) If request is class request, usbf78k0r_classreq() function is called and class
request process is executed.

July 20, 2010

78KOR/Kx3-L (on-chip USB controller)

USB CDC driver

(d) If request is not class request, usbf78k0r_standardreq() function is called and
standard request process is executed.

(4) BKO1DT interrupt process

It is reported when data is received in UFOBO1 register normally. Process is

executed in the following order.

(a) “OxFE” is written to the UFOIC3 register to clear BKO1DT interrupt.

(b) “1”7is set to (usbf78k0r_rdata_flg) flag indicating existence of received data to
indicate that there is received data in bulk out endpoint in the drive. This flag is
originally defined by the sample driver.

3.3 Function Specification
This section describes the functions implemented in the sample driver.
3.3.1 Functions
The functions of each source file included in the sample driver are described below.
Table 3-12 Functions in the Sample Driver
Source File Function Name Description
main.c cpu_init Initializes the CPU.
main Main routine
usbf78k0r.c usbf78kO0r_init Initializes the USB function controller

usbf78kO0r_intusbfQ

Processing INTUSB interrupt

usbf78k0r_standardreq

Processes standard requests.

usbf78k0r_getdesc

Processes GET_DESCRIPTOR(String)

usbf78k0r_send EPO

Transmits Endpoint0

usbf78k0r_receive_EPO

Receives Endpoint0

usbf78k0r_sendnullEPQ

Transmits a NULL packet for endpoint 0.

usbf78k0r_sendstallEPO

Transmit a STALL for endpoint 0.

usbf78k0r_ep_status

Notifies FIFO status of bulk/interrupt Inn end point

usbf78k0r_send_null

Transmits a NULL packet of bulk/interrupt inn endpoint

usbf78k0r_data_send

Transmits bulk/interrupt Inn end point

usbf78k0r_rdata_length

Acquires the bulk out endpoint received data length

usbf78k0r_data_receive

Receives bulk out endpoint

usbf78kO0r_fifo_clear

Clears bulk/interrupt Inn end point and bulk out endpoint
FIFO

usbf78k0r_communication.c

usbf78k0r_classreq

Processes CDC class/request

usbf78k0r_send_encapsulated_command

Processes SendEncapsulatedCommand requests

usbf78k0r_get_encapsulated_response

Processes Get Encapsulated Response requests

usbf78k0r_set_line_coding

Processes SetLineCoding requests.

usbf78k0r_get_line_coding

Processes GetLineCoding requests.

usbf78k0r_set _control_line_state

Processes SetControlLineState requests.

usbf78k0r_buff init

Clears FIFO of endpoint for CDC data transfer

usbf78k0r_get_bufinit_flg

Notifies execution state of FIFO initialization process

usbf78k0r_send_buf

Transmits CDC data

usbf78k0r recv buf

Receives CDC data

RO1ANOOO8SEDO0100 Rev. 1.00

July 20, 2010

RENESAS 23

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

3.3.2 Correlation of the functions

Some functions call other functions during the processing. The following figures show the
correlation of the functions.

Figure 3-6 Calling Functions in the Main Routine

main

L { usbf78k0r_recv_buf
L usbf78k0r_data_receive

L{ usbf78kOr_send_buf usbf78k0r_rdata_length
L usbf78k0r_send_null
L | usbf78k0r_ep_status
L usbf78k0r_data_send

RO1ANOOO8ED0100 Rev. 1.00 RENESAS 24

July 20, 2010

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

Figure 3-7 Calling Functions during the Processing for the USB function controller

usbf78KkO0r_intusb

usbf78kO0r_buff_init

[usbf78kor_fifo_clear

usbf78k0r_sendstallEPO

usbf78kO0r_classreq

usbf78k0r_send_encapsulated_command

usbf78k0r_get_encapsulated_response

usbf78k0r_set_line_coding

usbf78kO0r_set_line_coding

usbf78k0r_get_line_coding

usbf78k0r_set_control_line_state

usbf78k0r_sendstallEPO

usbf78kO0r_standardreq

usbf78k0r_sendstallEPO

usbf78k0r_getdesc

usbf78k0r_sendstallEPO

usbf78k0r_send_EPO

L usbf78k0r_sendstallEPO

RO1ANO00BEDO100 Rev. 1.00 ENESAS 25
July 20, 2010 -2

78KOR/Kx3-L (on-chip USB controller)

USB CDC driver

Figure 3-8 Calling Functions during the Processing for the USB Communication Class 1

usbf78kO0r_classreq

usbf78k0r_send_encapsulated_command

usbf78k0r_sendstallEPO

usbf78kO0r_receive_EPO

usbf78k0r_sendstallEPO

usbf78k0r_data_send

usbf78k0r_sendnullEPO

usbf78k0r_get_encapsulated_response

usbf78k0r_set_line_coding

usbf78kO0r_r

eceive_EPO

usbf78k0r_sendstallEPO

usbf78kO0r_buff_init

usbf78k0r_fifo_clear

usbf78k0r_sendnullEPO

usbf78k0r_get_line_coding

usbf78k0r_send_EPO

usbf78k0r_sendnullEPO

usbf78k0r_set_control_line_state

usbf78k0r_sendnullEPO

usbf78k0r_sendstallEPO

RO1ANOOO8SEDO0100 Rev. 1.00 RENESAS

July 20, 2010

26

78KOR/Kx3-L (on-chip USB controller)

USB CDC driver

Figure 3-9 Calling Functions during the Processing for the USB Communication Class 2

usbf78k0r_send_buf

usbf78k0r_send_null

usbf78k0r_ep_status

usbf78k0r_ep_status

usbf78k0r_data_send

usbf78kO0r_recv_buf

usbf78k0r_data_receive

usbf78k0r_rdata_length

RO1ANOOO8SEDO0100 Rev. 1.00
July 20, 2010

RENESAS

27

78KOR/Kx3-L (on-chip USB controller)

USB CDC driver

3.3.3 Function features

This section describes the features of the functions implemented in the sample driver.

(1) Function description format

The functions are described in the following format.

Function name

[Overview]

An overview of the function is provided

[C description format]

The format in which the function is written in C is provided.

[Parameters]

The parameters (arguments) of the function are described.

Parameter

Description

Parameter type and
name

Parameter summary

[Return values]

The values returned by the function are described.

Symbol

Description

Return value type
and name

Return value summary

[Description]

The feature of the function is described

RO1ANOOO8SEDO0100 Rev. 1.00
July 20, 2010

RENESAS

28

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

(2) Functions for the main routine

main

[Overview]
Main processing

[C description format]
void main(void)

[Parameters]
None

[Return value]
None

[Description]
This function is called first when the sample driver is executed. This function calls
the initialization function of CPU, initialization function of USB function controller
and then the sample application processing function sequentially.

cpu_init

[Overview]
Initializes the CPU.

[C description format]
void cpu_init(void)

[Parameters]
None

[Return value]
None

[Description]
This function is called in the main processing.
The settings those are necessary to use the USB function controller in the
78KOR/Kx3, such as the clock frequency, and operation mode.

RO1ANO00BEDO100 Rev. 1.00 ENESAS 29
July 20, 2010 -2

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

(3) Functions for the USB function controller

usbf78kO0r_init

[Overview]
Initializes the USB function controller

[C description format]
void usbf78kO0r_init(void)

[Parameters]
None

[Return value]
None

[Description]
This function is called during initialization processing.
This function specifies the settings required for using the USBF, such as allocating
and specifying the data area and masking interrupt requests.

usbf78k0r_intusbf0

[Overview]
INTUSB interrupt processing

[C description format]
__interrupt void usbf78k0r_intusbf0 (void)

[Parameters]
None

[Return value]
None

[Description]
This function is an interrupt service routine called from INTUSBFO interrupt.
Generated interrupt processing is done while verifying about the interrupt requests
about the interrupt which are not masked of USB function controller.

RO1ANO00BEDO100 Rev. 1.00 ENESAS 30
July 20, 2010 -2

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

usbf78k0r_standardreq

[Overview]
Processes standard requests to which the USB function controller does not
automatically respond

[C description format]
void usbf78k0r_standardreq (USB_SETUP *req_data)

[Parameters]
Parameter Description
USB SETUP *req data Request data storage pointer address
[Return value]
None
[Description]

This function is called from the CPUDEC interrupt cause process of INTUSB
interrupt process.

If a GET_DESCRIPTOR request is decoded, this function calls the
GET_DESCRIPTOR request processing function (usbf78k0r_getdesc). For other
requests, this function calls the function for returning STALL responses for endpoint
0 (usbf78k0r_sendstallEPO).

usbf78k0r_getdesc

[Overview]
Processes GET_DESCRIPTOR requests

[C description format]
void usbf78k0r_getdesc (USB_SETUP *req_data)

[Parameters]

Parameter Description
USB SETUP *req data Request data storage pointer address

[Return value]
None

[Description]
This function is called during the processing of standard requests to which the USB
function controller does not automatically respond. If a decoded request requests a
string descriptor, this function calls the USB data transmission function
(usbf78k0r_send_EPO) for endpoint 0 and transmits a string descriptor from
endpoint 0. If a decoded request requests any other descriptor, this function calls
the function for processing STALL responses (usbf78k0r_sendstallEPO) for
endpoint 0.

ROTANOOOBEDO100 Rev. 1.00 ENESAS 31
July 20, 2010 -2

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

usbf78k0r_send_EPO

[Overview]
Transmits USB data for Endpoint0

[C description format]
INT32 usbf78k0r_send_EPO(UINT8* data, INT32 len)

[Parameters]
Parameter Description
UINT8* data Transmission data buffer pointer
INT32 len Transmission data length
[Return value]
Symbol Description
DEV _OK Normal completion
DEV ERROR Abnormal termination

[Description]
This function stores the data stored in the transmission data buffer into the FIFO for
the specified Endpoint0, byte by byte.

usbf78k0r_receive_EPO

[Overview]
Receives USB data for Endpoint0

[C description format]
INT32 usbf78k0r_receive_ EPO(UINT8* data, INT32 len)

[Parameters]
Parameter Description
UINT8* data Reception data buffer pointer
INT32 len Reception data length
[Return value]
Symbol Description
DEV_OK Normal completion
DEV _ERROR Abnormal termination

[Description]
This function reads data from the FIFO for the specified endpoint byte by byte and
stores the data into the reception data buffer.

RO1ANOOOSED0100 Rev. 1.00 RENESAS 32

July 20, 2010

78KOR/Kx3-L (on-chip USB controller)

USB CDC driver

usbf78k0r_sendnullEPO

[Overview]

Transmits a NULL packet for endpoint 0

[C description format]

void usbf78k0r_sendnullEPO(void)

[Parameters]
None

[Return value]
None

[Description]

This function clears the FIFO for endpoint 0 and transmits a NULL packet from the
USBF by setting the bit that indicates the end of data to 1.

usbf78k0r_ep_status

[Overview]

Notifies FIFO status for bulk/interrupt in endpoint

[C description format]

INT32 usbf78k0r_ep_status(INT8 ep)

[Parameters]

Parameter

Description

INT8 ep

Data transmission endpoint number

[Return value]

Symbol

Description

DEV_OK

Normal completion (FIFO empty)

DEV_ERROR

Abnormal termination (FIFO full)

DEV_RESET

During Bus Reset processing

[Description]

This function notifies the FIFO status of specified endpoint (for transmission).

RO1ANOOOSEDO0100 Rev. 1.00 RENESAS

July 20, 2010

33

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

usbf78k0r_send_null

[Overview]
Transmits a NULL packet for bulk/interrupt in endpoint

[C description format]
INT32 usbf78k0r_send_null(INT8 ep)

[Parameters]
Parameter Description
INT8 ep Data transmission end point number
[Return value]
Symbol Description
DEV_OK Normal completion
DEV ERROR Abnormal termination

[Description]
This function transmits a NULL packet from USB function controller by clearing the
FIFO of specified Endpoint (for transmission) and setting the bit that indicates the
end of data to 1.

usbf78k0r_data _send

[Overview]
Transmits USB data for bulk/interrupt in endpoint

[C description format]
INT32 usbf78k0r_data_send(UINT8* data, INT32 len, INT8 ep)

[Parameters]
Parameter Description
UINT8* data Transmission data buffer pointer
INT32 len Transmission data length
INT8 ep Data transmission end point number
[Return value]
Symbol Description
len (>=0) Normal transmission data size
DEV ERROR Abnormal termination

[Description]
This function stores the data stored in the transmission data buffer into the FIFO for
the specified endpoint, byte by byte.

ROTANOOOBEDO100 Rev. 1.00 RENESAS 34

July 20, 2010

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

usbf78k0r_rdata _length

[Overview]
Acquires the USB reception data length

[C description format]
void usbf78k0r_rdata_length(INT32 *len , INT8 ep)

[Parameters]
Parameter Description
INT32* len Pointer to the storage address of the
received data length
INT8 ep Data reception endpoint number

[Return value]
None

[Description]
This function reads the received data length of the specified endpoint. (For
reception).

usbf78k0r_data _receive

[Overview]
Receives USB data for bulk end point

[C description format]
INT32 usbf78k0r_data_receive(UINT8* data, INT32 len, INT8 ep)

[Parameters]
Parameter Description
UINT8* data Reception data buffer pointer
INT32 len Reception data length
INT8 ep Data reception endpoint number
[Return value]
Symbol Description
len (>=0) Normal transmission data size
DEV ERROR Abnormal termination

[Description]
This function reads data from the FIFO for the specified endpoint byte by byte and
stores the data into the reception data buffer.

ROTANOOOBEDO100 Rev. 1.00 ENESAS 35
July 20, 2010 -2

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

usbf78kO0r_fifo_clear

[Overview]
Clears the FIFO for bulk/interrupt Endpoint

[C description format]
void usbf78kO0r_fifo_clear(INT8 in_ep, INT8 out_ep)

[Parameters]
Parameter Description
INT8 in_ep Data transmission end point number
INT8 out ep Data reception end point number

[Return value]
None

[Description]
This function clears the FIFO of Endpoint specified in bulk/interrupt Endpoint and
clears (0) data reception flag (usbf78k0r_rdata_flg).

usbf78k0r_classreq

[Overview]
Processes class request

[C description format]
void usbf78kO0r_classreq(USB_SETUP *req_data)

[Parameters]

Parameter Description
USB SETUP *req data Request data storage pointer address

[Return value]
None

[Description]
This function is called from the CPUDEC interrupt cause process of INTUSB
interrupt process.
If a decoded request is communication class request, this function calls the each
request processing function. For other requests, this function calls the function for
returning a STALL for EndpointO (usbf78k0r_sendstallEPO).

RO1ANOOO8SEDO0100 Rev. 1.00 RENESAS 36

July 20, 2010

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

usbf78k0r_send_encapsulated_command

[Overview]
Processes SendEncapsulatedCommand requests

[C description format]
void usbf78k0r_send_encapsulated_command(USB_SETUP *req_data)

[Parameters]

Parameter Description
USB SETUP *req data Request data storage pointer address

[Return value]
None

[Description]
If request decoded in the class request process is Send Encapsulated Command,
this function is called. This function calls the data reception function
(usbf78kO0r_receive_EPO) to retrieve the data received at endpoint 0, and then calls
the data transmission function (usbf78k0r_data_send) to transmit data from
endpoint 2 via bulk-in transfer (transmission) and calls the NULL packet
transmission function (usbf78k0r_sendnullEPO) for EndpointO.

usbf78k0r_set_line_coding

[Overview]
Processes SetlLineCoding requests

[C description format]
void usbf78k0r_set_line_coding(USB_SETUP *req_data)

[Parameters]

Parameter Description
USB SETUP *req data Request data storage pointer address

[Return value]
None

[Description]
This function is called if request decoded at class request process is Set Line
Coding. This function calls the data reception function (usbf78k0r_receive EPO) to
retrieve the data received at endpoint 0, and then writes the data to the
UART_MODE_INFO structure. This function calls the FIFO initialization function
(usbf78kO0r_buff_init) for user data and then calls the NULL packet transmission
function for endpoint 0 (usbf78k0r_sendnullEPO).

ROTANOOOBEDO100 Rev. 1.00 ENESAS 37
July 20, 2010 -2

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

usbf78k0r_get_control_line_coding

[Overview]
Processes GetLineCoding requests

[C description format]
void usbf78k0r_get_line_coding(USB_SETUP *req_data)

[Parameters]

Parameter Description
USB SETUP *req data Request data storage pointer address

[Return value]
None

[Description]
This function is called if request decoded at class request process is Get Line
Coding. This function transmits the UART_MODE_INFO structure value from
Endpoint0 by calling USB data transmission function (usbf78k0r_send_EPO) for
Endpoint0.

usbf78k0r_set_control_line_state

[Overview]
Processes SetControlLineState requests.

[C description format]
void usbf78k0r_set_control_line_state(USB_SETUP *req_data)

[Parameters]

Parameter Description
USB SETUP *req data Request data storage pointer address

[Return value]
None

[Description]
This function is called if request decoded in the class request process is “Set
Control Line State”. This function calls the NULL packet transmission function for
endpoint 0 (usbf78k0r_sendnullEPO).

ROTANOOOBEDO100 Rev. 1.00 ENESAS 38
July 20, 2010 -2

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

usbf78k0r_buff_init

[Overview]
Initializes the FIFO for user data

[C description format]
void usbf78k0r_buff_init(void)

[Parameters]
None

[Return value]
None

[Description]
This function initializes the FIFO for communication class user data by calling FIFO
clear function (usbf78kO0r_fifo_clear) for bulk/interrupt Endpoint and sets the flag
(usbf78kO0r_bufinit_flg) that indicates transmission packet size of internal driver as
clear (0) and FIFO initialization to 1.

usbf78k0r_get_bufinit_flg

[Overview]
Notifies FIFO status for user data

[C description format]
INT32 usbf78k0r_get bufinit_flg(void)

[Parameters]
None

[Return value]

Symbol Description
DEV_OK Normal status
DEV ERROR FIFO initialization status

[Description]
This function notifies the internal driver flag (usbf78kO0r_bufinit_flg) status that
indicates the initialization of FIFO. If flag is set as 1, it indicates that FIFO is
initialized and then it notifies the initialization status and clears flag to 0.

RO1ANO00BEDO100 Rev. 1.00 ENESAS 39
July 20, 2010 -2

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

usbf78k0r_send_buf

[Overview]
Transmits user data for communication class

[C description format]
INT32 usbf78k0r_send_buf(UINT8* data, INT32 len)

[Parameters]
Parameter Description
UINT8* data Transmission data buffer pointer
INT32 len Transmission data length
[Return value]
Symbol Description
len (>=0) Normal transmission data length
DEV ERROR Abnormal termination

[Description]
This function transmits NULL packet that calls the NULL packet transmission
function (usbf78k0r_send_null) for bulk/interrupt inn Endpoint, if transmission data
size (Parameter:len) is 0 and size of the packet transmitted earlier (g_send_size) is
Max Packet Size. If transmission data size (Parameter:len) is greater than 0 and
transmission FIFO has null status (return value of usbf78k0r_ep_status is
DEV_OK), this function calls the USB data transmission function
(usbf78k0r_data_send). If data transmission is completed normally, it stores the
size of the data transmitted to transmission completion packet size (g_send_size)
defined in the driver.

usbf78k0r_recv_buf

[Overview]
Receives user data for communication class

[C description format]
INT32 usbf78k0r_recv_buf(UINT8* data, INT32 len)

[Parameters]
Parameter Description
UINT8* data Reception data buffer pointer
INT32 len Reception data length
[Return value]
Symbol Description
len (>=0) Normal transmission data length
DEV _ERROR Abnormal termination

[Description]
This function calls USB data reception function (usbf78k0r_data_receive).

ROTANOOOBEDO100 Rev. 1.00 ENESAS 40
July 20, 2010 -2

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

Chapter 4 Sample Application Specification

This chapter describes the sample application included with the sample driver.

4.1 Overview

The sample application is provided as a simple example of using the USB
communication device class driver and is incorporated in the main routine of the sample
driver. It reads the data received by the USB function controller and then transmits the
read data. Various functions of the sample driver are used during this processing.

4.2 Operation

The sample application performs the processing shown in the following flowchart.

Figure 4-1 Flowchart for the Sample Application Processing

Ctart of sample application processinD

»

y

YES
Initialization of FIFO?

v

Clearing transmitted/received

NO

NO
Normal termination
of transmission

YES

Reception process of user data for communication class

NO

Normal termination of
reception process

A 4

YES

Transmission process of user data for communication
class

&
<«

(1) Verifying FIFO initialization for user data

FIFO status notification function (usbf78k0r_get_bufinit_flg) for user data is called
and if it is in normal state, verification process of transmission processing result is
executed and if it is in the initialization state, transmission/reception result clear
process (clearing transmission/reception process result of user data for
communication class to 0) is executed.

RO1ANOOO8SEDO0100 Rev. 1.00 ENESANAS 41
July 20, 2010 R

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

4.3

(2)

()

(4)

(5)

Verifying transmission process result of user data for communication class

If the transmission process result of user data for communication class is Normal
completion (and initial state), control shifts over to reception process of user data for
communication class and if it is abnormal termination state, shifts to reception
process result confirmation process.

Reception process of user data for communication class

Buffer address and buffer size storing reception data are specified and the reception
function (usbf78kO0r_recv_buf) of user data for communication class is called.

Verifying reception process result of user data for communication class

If reception process result of user data for communication class is Normal
completion (and initial state), control shifts over to transmission process of user data
for communication class and if it is abnormal termination state, shifts to FIFO
initialization confirmation process for user data.

Transmission process of user data for communication class

Buffer size, where data to be transmitted is stored, the transmission data size is
specified and transmission function (usbf78k0r_send_buf) of user data for
communication class is called.

Using functions

The main.c source file that includes this sample application is coded as follows in order to
call sample driver functions. For details about the functions, see 3. 3 Specifications of
Eunctions.

(1)

(2)

()

(4)

(%)

(6)

Definitions and declarations

2 header files “usbf78k0r.h” and “usbf78k0r_communication.h” are included in order
to use the sample driver functions. User buffer (UserBuf) of a size sufficient to
process the 1 packet data for user data is set. (Maximum packet size of bulk
endpoint in Full Speed USB is set to 64Byte)

Initialization processing of CPU

Initialization processing of CPU function (cpu_init) is called.

Initialization process of USB function controller

USB function controller initialization function (usbf78kO0r_init) is called.

Verification of FIFO status for user data

FIFO state notification function (usbf78k0r_get bufinit_flg) for user data is called and
FIFO status is verified.

Reception process of user data

User data reception function (usbf78kO0r_recv_buf) for communication class is called
and result is stored.

Transmitting user data

User data transmission function (usbf78k0r_send_buf) for communication class is
called and result is stored.

July 20, 2010

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

(7) Clearing process of transmission/reception process result

If FIFO for user data is initialized, transmission/reception process result stored in (5),
(6) is cleared to 0.

List 4-1 Sample Application Code (Portion)

1 void main (void)
2 {
3 INT32 rcv_ret = 0;
4 INT32 snd ret = 0;
5
6 cpu_init();
7
8 DI();
9 usbf78k0r_init(); /* initial setting of the USB Function */
10 ETI();
11
12 while (1)
13 {
14 if (usbf78k0r get bufinit flg() != DEV_ERROR) {
15 if (snd_ret >= 0) {
16 rcv_ret = usbf78k0r_ recv_buf (&UserBuf[0], USERBUF SIZE);
17 }
18 if (rcv_ret >= 0) {
19 snd_ret = usbf78k0r_send buf (&UserBuf[0], rcv_ret);
20 }
21 }
22 else {
23 snd_ret = 0;
24 rcv_ret = 0;
25 }
26 }
27 1}
RO1ANOOO8SEDO0100 Rev. 1.00 RENESAS 43

July 20, 2010

78KOR/Kx3-L (on-chip USB controller)

USB CDC driver

Chapter 5

5.1

5.1.1

Table 5-1

5.1.2

Table 5-2

5.2

5.2.1

Development Environment

This chapter provides an example of creating an environment for developing an
application program that uses the USB communication device class sample driver for the
78KOR/Kx3-L and the procedure for debugging the application.

Development environment overview

This section describes the used hardware and software tool products.

Program development

The following hardware and software are necessary to develop a system that uses the
sample driver.

Example of the Components Used in a Program Development Environment

Components Product Example Remark
. PC/AT compatible computer
Hardware Host machine - (OS : Windows XP)
IAR Embedded

Software Integrated development tool Workbench for 78K V4.70

Compiler ICC78KOR V4.70.1

Assembler A78KOR V4.70.1
Debugging

The following hardware and software are necessary to debug a system that uses the
sample driver.

Example of the Components Used in a Debugging Environment

Components Product Example Remark
. PC/AT compatible computer
Host machine - (OS : Windows XP)
Hardware Target device TK-78KOR/KE3L+USB
In circuit emulator MINICUBE2
USB cables - 2 x miniB-to-A connector cable
Integrated development IAR Embedded V470
Software environment Workbench for 78K)
Debu%er IAR C-SPY debu%}er V4.70.1

Setting up the Environment

This section describes the preparations required for developing and debugging a system
by using the products described in 5.1 Development Environment.

Preparing Host Environment

Open the dedicated workspace on the host for debugging the sample application.

RO1ANOOO8SEDO0100 Rev. 1.00

July 20, 2010

RENESAS 44

78KOR/Kx3-L (on-chip USB controller)

USB CDC driver

(1) Installing the Integrated development environment

()

Install the IAR Embedded Workbench for 78K. For details, see the IAR Embedded
Workbench for 78K User’s Manual.

Copying drivers

Store the set of files, provided with the sample driver, in any directory without
changing the folder structure. You can store it in any directory on your host system
hard drive.

Figure 5-1 Folder Structure of the Sample Driver

Figure 5-2

T AR W

Ve N
EW 78K project

Any folder Folder containing IAR sample projects

I~

include

Folder containing include files

inf Folder containing INF files

src Folder containing source files

xcl

Folder containing Linker command file

i

(3) Loading the CDC driver Workspace

The procedure for using project files included with the sample driver is described
below.

(a) Start the IAR Embedded Workbench for 78K, and then select “Open >
Workspace” in the “File” menu.

IAR Embedded Workbench open workspace (1)

| ‘:ﬂ:IAR Embedded Workbench IDE

File Edit %ew Project Tools ‘Window Help

New v o cu x|

Close W ce STRGHUMSCHALTH4

Save Warkspace
Close \Workspace

Header/Source Fle STRGHIMSCHALT+HH

Save STRGHS
Save fs. ..

Save Al

Page Setup...

Prink. .. STRGHE

Rearant Filae 3

(b) Inthe Open Workspace dialog box, specify the workspace file
(78KOR_Kx3L(CDC).eww) in the EW78K_project folder, which is the sample
driver installation directory.

RO1ANOOO8SEDO0100 Rev. 1.00

July 20, 2010

RENESAS 45

78KOR/Kx3-L (on-chip USB controller) USB CDC driver
Figure 5-3 IAR Embedded Workbench open workspace (2)

Look in: | (9 E%/78K_Project

R N o ==

| ")Debug
|-¢f7akOR_Kx3L(CDC).emm;

File name: I?SKDH_KﬁaL[EDE].BWW j Open I
Files af type: IW’DIkspace Files [*.) | Cancel |

(4) Verify that the correct device is selected

To make sure that the correct device is selected in this project open the Project
options by clicking “Project” - “Options” and check that the “78KOR —
uPD78F1026 64" is chosen as Device.

Figure 5-4 IAR Embedded Workbench General (Project) Options

Options for node "78KOR_Kx3L{CDC)" il

Cateqary:

CliZ++ Compiler
Assembler
Custom Build
Build Actions
Linker
Debugger
IE-75
IECUEE
MIMNICUEE
Sirmulakar
TE-7&

Target |Dutput| Librars Configurationl Library Options StackaeapI 1 I ’I

Device Code model:

|?‘8KDF| - UPDVEF1026_64 'Ek-l = j
Data model:
N [o o I INear j

— Mear constant location

Start address: Size (Khytes]:
[inor RoM 0~ [0e1000 [51.75
- Eode banking
Fegaddiess: i of Banks:
IDHFFF3 |4
Bank address; Bank size; [Kbytes]:
[orz000 B

1 Carncel |

RO1ANOOO8SEDO0100 Rev. 1.00

July 20, 2010

RENESAS 46

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

Figure 5-5

Figure 5-6

(5) Verify that the correct debugger is selected

To make sure that the correct Debugger is selected, switch to the Debugger menu in
the Project Options and verify that MINICUBE is selected as Driver.

IAR Embedded Workbench Debugger Options

Options for node " T8KOR _Kx3L{CDC)" 5[

Cateqgory: Factory Settings |

General Options
C/C++ Compiler

Azzembler
Custarn Build Setup | Eutra Dptionsl Imagesl F'Iuginsl
Build Actions .
Linker Criver
Debugger IMINIEUBE (AB-7EKOMIMNI, LEB-FEEOS =xxbIMI, GB-MINI2j
IE-78 v Funto
IECLBE :
MINICUBE |main
Simultor — Setup macros
TE-78

™ Use macro file

| |

 Device descriptions
[Overide default

I$TEIDLKIT_DIF|$\EDNFIG'\DDF\i0?8f1 026_E4. ddf J

Cancel |

Do not close the IAR Embedded Workbench for 78K now, you will need it later.

Setting up the target environment

Connect the target device to use for debugging.

(1) Connecting the target device
Connect the two USB ports on the TK-78KOR/KE3L+USB to the USB ports of the
host by using USB cables.

Connecting the TK-78KOR/KE3L+USB

___—]

B ——
USB2: Debugging port

USB1: 78KOR USB port

(2) Installing the host driver

The procedure for using the virtual COM port host driver included with the sample
driver is described in the starter kit User's manual
(R20UTO0010EDO100_78k0rkx3l.pdf) chapter USB Driver installation. This
document is also available on the Starter Kit CD-ROM

July 20, 2010

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

5.3 On-Chip Debugging

This section describes the procedure for debugging an application program that was
developed using the workspace described in 5.2 Setting Up the Environment.

For the 78KOR/Kx3-L, a program can be written to its internal flash memory and the
program operation can be checked by directly executing the program using a debugger
(on-chip debugging).

5.3.1 Generating the debug files

To write a program to the target device, you need to generate a machine code file
including debug information from the given CDC sample project. To do so return to the
IAR Embedded Workbench for 78K and generate the output files by clicking “Project” >

“Make” or pressing the Make button (%).

5.3.2 Download and Debug

After the output files are correctly generated they can be downloaded to the target device
using the IAR C-SPY debugger. To do so just click on “Project” > “Download and
Debug” or use the Download and Debug button (£). When starting the first debug
session the communication interface has to be configured. The following message will
occur. Press OK to get to the configuration window.

Figure 5-7 1AR C-SPY debug interface configuration (1)

MINICUBE x|

D Emulator has to be configured before downloading a new application.,

)

Press QK to enter Emulator Hardware Setup.,

The Hardware setup window will occur. As the default hardware configuration can be
used for this all settings can be left untouched and only the OK button has to be pressed.

RO1ANO00BEDO100 Rev. 1.00 ENESAS 48
July 20, 2010 -2

78KOR/Kx3-L (on-chip USB controller) USB CDC driver
Figure 5-8 IAR C-SPY debug interface configuration (2)
x
~ID code Tirne unit >
FFFFFFFFFFFFFFFFFFFF

[Erase flash before next 1D check

I nzec v I

— Main clock Sub clock
) Clock board) Clock board Defaul |
% Euternal &+ Eutemal
= Spstem " Spstem Failtzafe break:
INDne vI MHz INDne vI kHz ’7|_ Wiew zetup
— Flazh programming Target power off Low-volkage — Target connect
i+ i i i .
Permit . Permit . On I T00LD j
= Mot Permit & ot Permit & [ff
— Pin mask Peripheral break. Target
[T welT [T TARGET RESET I & (timer) O Carres
™ Hkl [~ INTERMAL RESET [B [zenial etc.]) Mot Connest
— Memony map
Start addrezs: Lenagth: Type:
[0 EE -] [Irtermal ROM =l Add

(00000 - 01FFFF Internal ROM 128 Kbytes
0«FDFO0 - D«FFEFF Internal BAM 8192 bytes

Remove |
Remowve All |

When the download of the program is finished, the IAR C-SPY debugger window will
open up, the CDC sample project will run to the beginning of the main function and will

break at this p

oint.

To start the application, click “Debug” = “Go” or press the Go button (=). When
running the CDC sample application the first time the Windows new Hardware detection
will recognize the device and the windows driver has to be installed properly.

(1) On the first page of the Found New Hardware Wizard dialog box, select No, not
this time, and then click the Next button.

RO1ANOOO8SEDO0100 Rev. 1.00
July 20, 2010

RENESAS

49

78KOR/Kx3-L (on-chip USB controller)

USB CDC driver

Figure 5-9 Windows New Hardware Wizard (1)

Found Mew Hardware Wizard

YWelcome to the Found New
Hardware Wizard

Windows will zearch for current and updated software by
looking on your computer, on the hardware ingtallation CD, or on
the Windows pdate Web site [with your permizsion].

Read our privacy policy

Can Windows connect o Windows Update to search for
zoftware?

7 Yes, this time only

ime | connect a device

Click Mezt to continue.

<Ea(|ﬂextﬁl Cancel |

~N @2~

(2) Select Install from a list or specific location (Advanced) and then click the Next

button.

Figure 5-10 Windows New Hardware Wizard (2)

Found New Hardware Wizard

This wizard helps yau install software Far:

MEC Electronice KOR Virtual UART

3'\'\‘| If your hardware came with an installation CD

B2 or floppy disk. insert it now.

What do you want the wizard to do?

€ nstall from a list or specific location [Advanced)

Click Mest to continue.

<Eack(| Hest » \I Cancel

N rd

—

(3) Select Search for the best driver in these locations and check the Include this
location in the search. Click the Browse button to locate the driver location.

RO1ANOOO8SEDO0100 Rev. 1.00 RENESAS

July 20, 2010

50

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

Figure 5-10 Windows New Hardware Wizard (2)

Found Mew Hardware Wizard

Pleaze choose your search and installation optlions.

(@c Search for the best driver in theze locations. >
Usge the check boxesz Delow to hmit or expand the default search, which includes local

paths and removable media. The best driver faund will be installed.

[Search removable media [floppy, CO-ROM...]

v Include this location in the seanch;
I_ Browse |

= Don't search. | will choose the driver ko install

Chooze thiz optioh to select the device driver fram a list. Windows dogs nat guarantee that
the driver pou chooze will be the best match for pour hardware,

< Back I Heut » I Cancel |

(4) You will find the driver in the Inf folder of the CDC sample project
(5) Press the Next > button.

Figure 5-11 Windows New Hardware Wizard (3)

Hardware Update Wizard

Please choose your search and installation options.

' Search for the best driver in these locations.

Uze the check boxes below to limit or expand the default search, which includes local
pathz and removable media. The best diver found will be installed,

[Search remavable media [floppy, CO-ROM.]

¥ Include this lozation in the search:

IKE3L+USE\SampIes'\?BKDH xR USE[EDE]\inf\XF’j Browse |

" Dion't zearch. | will choose the driver to install.

Choose thiz option to select the device driver from a list. Windows does not guarantee that
the driver you chooge will be the best match for your hardware.

/

< Back (Hewt » I Cancel

(6) The driver installation starts
(7) In the Hardware Installation dialog box, click the Continue Anyway button.

ROTANOOOSEDO0100 Rev. 1.00 RENESAS 51

July 20, 2010

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

Figure 5-12 Windows New Hardware Wizard (4)

L ‘1 The software you are instaliing for this hardware:
L3
MEC Electronics KOR Vitual UART

haz not paszed Windows Logo testing ta werify its compatibility
with Windows XP. [Tell me why this testing iz important.]

Continuing your installation of thiz software may impair
or destabilize the correct operation of your system
either inmediately or in the future. Microzoft strongly
recommends that you stop thiz installation now and
contact the hardware vendor for zoftware that has
pazzed Windows Logo testing.

@nue Anyway | _'T'Iﬁ'F‘"I"r'ié't'éiié't'i'é'ﬁ"'i

(8) The driver will be installed. This might take a while depending on the environment.

(9) On the next page, click the Finish button.

Figure 5-13 Windows New Hardware Wizard (5)

Found New Hardware Wizard

Completing the Found New
:? Hardware Wizard

The wizard has finished installing the software for:

(3 MEC Electronics K.OR Wirtual ULART

Click Finizh to cloze the wizard.

< Hack [Eancel I

(10) Open the Windows Device Manager window. In the Ports category, make sure that
NEC Electronics KOR Virtual UART is displayed and check the assigned COM port
number.

RO1ANO00BEDO100 Rev. 1.00 ENESAS 52
July 20, 2010 -2

78KOR/Kx3-L (on-chip USB controller)

USB CDC driver

Figure 5-14 Windows Device Manager

JRI=TEY
File Action Wiew Help
0 HEE 2HE A =R

vj Camputer ;I
g Disk drives
é Display adapkers
[DVD{CD-ROM drives
@ Floppy disk controllers
@ Flappy disk drives
--ﬁ Hurnan Inkerface Devices
-2 IDE ATAJATAPL controllers
[#-&5 IEEE 1394 Bus host controllers
#-Z Keyboards
#1177} Mice and other pointing devices
-8 Monitors
E Metwork adapters
= Ports (COM & LPT)
L~ Tommunications Port {CoM1)
A C Electronics KOR Yirtual LIART (CC
ﬂ. Processars
-- = S5 and RAID controllers
-8, sound, videno and game controllers | |
g;.i Syskem devices
18 Universal Serial Bus cantrallers LI

5.4 Checking the Operation

If the target device that has loaded the sample driver is connected to the host via USB,
the result of executing the sample application in the driver can be checked. Start terminal

software (such as Microsoft Hyper Terminal) on the host.

(1) Start Microsoft HyperTerminal™ and select a Connection name and press OK.

Figure 5-15 Microsoft HyperTerminal™ Connection Description

Connection Description 7 x|

Enter a name and choose an icon for the connection;

Mame:
IEDE sample project
lcon:

Ei

=1

(ak. WI Caticel |
_~
RO1ANOOO8SEDO0100 Rev. 1.00 RENESAS 53

July 20, 2010

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

(2) Select the connection interface.

Figure 5-16 Microsoft HyperTerminal™ Connected To

L COC sample project

Enter detailz for the phone number that you want to dial;

Country/region; I Germarny [43] j

Area code: IEIEI#EI

Phone number: I

Connect using:

k. I Cancel

Note You can check the actual COM port in the Windows Device Manager

(3) Please select the Port settings shown below.

Figure 5-16 Microsoft HyperTerminal™ COM Properties

Puart Settingz |

Bitz per second: I 9600 j

Data bits: I a j

Parity: I Mane j

Stop bits: |1 =l

Flow contral: |[RGE -

Besztaore Defaulks |

] 4 I Cancel | Apply |

RO1ANOOO8SEDO0100 Rev. 1.00 NS 54
July 20, 2010 RENES

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

(4) Now the connection is set up and you will see the echoed keyboard inputs in the
Microsoft HyperTerminal™ window.
Figure 5-17 Microsoft HyperTerminal™ showing echoed keyboard inputs

“g CDC sample project - HyperTerminal
File Edit WYiew Call Transfer Help

o] s13]

bhbcdefghi jklmnoparstuvwsyzabce

=13l x|

-
4| | »
[caPs |wum [Capt

[Connected 0:01:58 |futo detect [36008-1-1 SCROLL

RO1ANO00BEDO100 Rev. 1.00 AS 55
July 20, 2010 RENES

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

Chapter 6 Using the Sample Driver

This chapter describes information that you should know when further using the USB
Communication Device Class sample driver for the 78KOR/Kx3-L.

6.1 Overview

The sample software can be used in the following two ways.
(1) Customizing the sample driver
Rewrite the following sections of the sample driver as required.
e The sample application section in “main.c”
e The values specified for the various registers in “usbf78k0r.h” file
e The descriptor information in “usbf78k0r_desc.h” file

e Device names and provider information included in the virtual COM port host
driver (inf file)

Remark For the list of files included in the sample driver, see 1.1.3 Files included in the sample
driver.

(2) Using functions

Call functions from within the application program as required. For details about the
provided functions see 3.3 Function Specifications.

6.2 Customizing the sample driver

This section describes the sections to rewrite as required when using the sample driver.

6.2.1 Application section

The code in main.c file below includes a simple example of processing using the sample
driver. The initialization before and after the processing and endpoint monitoring can be
used by including the processing to actually use for the application in this section.

List 6-1 Sample Application Code

O ~J oy U bW N

12 void main(void)

13 {

14 INT32 rcv_ret
15 INT32 snd ret

17 cpu_init ();

RO1ANO00BEDO100 Rev. 1.00 ENESAS 56
July 20, 2010 -2

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

19 DI();

20

21 usbf78k0r_init(); /* initial setting of the USB Function */

22

23 EI();

24

25 while (1)

26 {

27 if (usbf78k0r get bufinit flg() != DEV_ERROR) {

28 if (snd ret >= 0) {

29 rcv_ret = usbf78k0r_recv_buf (&UserBuf[0], USERBUF_ SIZE);
30 }

31 if (rcv_ret >= 0) {

32 snd_ret = usbf78k0r_send buf (&UserBuf[0], rcv_ret);

33 }

34 }

35 else {

36 snd_ret
37 rcv_ret
38 }

39 }

40 }

o
o

6.2.2 Setting up the device registers

The registers the sample driver uses (writes to) and the values specified for them are
defined in “usbf78kO0r.h” file. By rewriting the values in this file according to the actual use
case for the application, the operation of the target device can be specified by using the
sample driver.

6.2.3 Descriptor information

The data the sample driver adds to the USBF during initialization processing (described
in 3.1.3 Descriptor settings) is defined in "usbf78k0r_desc.h" file. Information such as the
attributes of the target device can be specified by using the sample driver by rewriting the
values in this file according to the use in an actual application.

If the vendor ID and product ID of the device descriptor are rewritten, the vendor ID and
product ID must also be rewritten in the host driver to install (the INF file) when
connecting the target device. (For details, see 6.2.4 (3) Changing the vendor and product

IDs).

Any information can be specified for the string descriptor. The sample driver defines
manufacturer and product information, so rewrite the information as required.

6.2.4 Setting up the virtual COM port host driver

The driver that was installed in 5.3.2 Download and Debug can be customized as follows.

(1) Changing the COM port number

When the connection of a USB device is recognized by the host, the host
automatically assigns the COM port number of the device, but the number can be
changed to any number. To change the COM port number by using the host,
perform the following procedure.

(a) Open the Windows Device Manager window and display the “Port” tree in the
device list display.

(b) Select “NEC Electronics KOR Virtual UART (COMn)” (where n is a number
assigned by the host) to display its properties.

(c) Click the “Advanced” button on the “Port Settings” tab.

RO1ANO00BEDO100 Rev. 1.00 ENESAS 57
July 20, 2010 -2

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

Figure 6-1 Virtual UART port settings

NEC Electronics KOR Yirtual UART (COM12) Prope ed |

General Port Settings | Diriver I Detailsl

Bits per second: R0
Databits: [a =l
Baty: [More =l
Stop bits: [1 =l
Flow coniral: [None =l
T ——

Advanced... MESIDIE D efaultz |

ok I Carncel |

(d) Inthe “Advanced Settings for COMn” dialog box (where n is a number
assigned by the host), select any port number from the “COM Port Number”

drop-down list.

Figure 6-2 Advanced Virtual UART settings

v Usze FIFD buffers [requires 16550 compatible UART

Select lower zettings o correct connection problems.

flek

Cancel
Select higher zettings for faster pefformance.
Defaults
Receive Buffer: Law [1] J High(14) [14]
Transmit Buffer: Low (1] J High[16] [16]

COM Part Mumber: I COM12 7 I

Remark 1 Make sure not to select a port number that is used for a different device.

Remark 2 Immediately after applying this change, the new port number becomes valid but might not
be reflected immediately in the Device Manager.

(2) Properties

Some information, such as the attributes of the device used by the Windows Device
Manager, can be changed. The information that can be changed is shown below.

(a) The device name (in the list of devices)

RO1ANO00BEDO100 Rev. 1.00 ENESAS 58
July 20, 2010 -2

78KOR/Kx3-L (on-chip USB controller)

USB CDC driver

Figure 6-3 Windows Device Manager

L. Device Manager

=10 x|

File Action ‘iew Help

- W &G 2N

iy Computer

e Disk drives

§ Display adapters

s DVDJCD-ROM drives

=) Floppy disk contrallers

_ﬂ, Floppy disk drives

{8 Human Inkerface Devices

=) IDE ATASATAPT contrallers

&9 IEEE 1394 Bus host contrallers

‘e Kevboards

Ty Mice and ather painting devices

Monitars

HE Metwork adapters

El- 5 Parts (COM & LPT)
oA EOME)

----- onics KOR. Yirkual UART (COM12)

@% 531 and RAID controllers
)., sound, video and game controllers

;.,;Li System devices
- Universal Serial Bus contrallers

(c) The device name, manufacturer name, and version (in the device properties)

Figure 6-4 Virtual UART driver properties

NEC Electronics KOR Yirtual UART {(COM12) Proper”.

21|

Generall Part Settings Driver |Details|

3 EC Elecironics KOR, Vitual UART [COM12
MEC Electronics Corporation

Driver Date: 15.10.1939

Mot digitally si

To view detailz about the driver files.

Update Driver... | To update the driver for thiz device.
: If the device fails after updating the driver, roll
) B Diver back tothe previously installed driver.
Urnirztall | Tao uninztall the driver [Advanced).

] Cancel

Ciriver Provider:

Diriver Werzion:

Digital Signer.

RO1ANOOOSEDO100 Rev. 1.00 AS
July 20, 2010 RENES

59

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

Because this information is displayed based on the information included in the host driver
(the INF file), it can be changed by rewriting the INF file. The sections in the INF file,
which correspond to the numbers in the example on the previous page, are shown below.

List 6-2 INF file "KOR_CDC_XP.inf" code

; .inf file (Win2000,XP):

[Version]

Signature="$Windows NT$"

Class=Ports
ClassGuid={4D36E978-E325-11CE-BFC1-08002BE 10318}

Provider=%NEC%
LayoutFile=layout.inf
DriverVer=10/15/1999,5.0.2153.1 <3>

CoO~NOOOPRWN -

11 [Manufacturer]
12 %NEC%=NEC

13
14 [NEC]

15 %NEC78KORKx3L%=Reader, USB¥VID_0409&PID_01D9
16

17 [Reader_Install.NTx86]
18 ;Windows2000

20 [DestinationDirs]
21 DefaultDestDir=12
22 Reader.NT.Copy=12

24 [Reader.NT]
25 CopyFiles=Reader.NT.Copy
26 AddReg=Reader.NT.AddReg

28 [Reader.NT.Copy]
29 usbser.sys

31 [Reader.NT.AddReg]

32 HKR,,DevLoader,,*ntkern

33 HKR,,NTMPDriver,,usbser.sys

34 HKR,,EnumPropPages32,,"MsPorts.dll,SerialPortPropPageProvider"

36 [Reader.NT.Services]
37 AddService = usbser, 0x00000002, Service_Inst

39 [Service_lInst]

40 DisplayName = %Serial.SvcDesc%

41 ServiceType = 1 ; SERVICE_KERNEL_DRIVER
42 StartType = 3 ; SERVICE_DEMAND_START
43 ErrorControl = 1 ; SERVICE_ERROR_NORMAL
44 ServiceBinary = %12%¥usbser.sys

45 LoadOrde/rGroup = Base

46

47 [Strings]

48 NEC ="NEC Electronics Corporation" <2>
49 NEC78KORKXx3L ="NEC Electronics KOR Virtual UART" <1>

50 Serial.SvcDesc = "USB Serial emulation driver"

(3) Changing the vendor and product IDs

If the vendor and product IDs in the device descriptor are changed, the same
changes must be specified in the host driver (the INF file). Include the vendor and
product IDs in the INF file as shown on line 15 in List 6-2.

Vendor ID: Represented by four digits in hexadecimal format following “VID_”

Product ID: Represented by four digits in hexadecimal format following “PID_"

RO1ANO00BEDO100 Rev. 1.00 ENESAS 60
July 20, 2010 -2

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

6.3

Using functions

The code for applications can be simplified and the code size can be reduced because
frequently used and versatile types of processing are provided as defined functions. For
details about each function, see 3.3 Function Specifications. The following sections of the
sample application shown in List can be reused as application examples for various types
of defined processing.

(1)

(2)

()

Verifying FIFO state for user data

FIFO state notification function (usbf78k0r_get_bufinit_flg) for user data is called and
FIFQ initialization flag “usbf78kO0r_bufinit_flg” for user data is monitored on line 27 in
List 6-1. This flag is uniquely defined by the sample driver and if FIFO is initialized in
the Bus Reset process reported by sample driver INTUSB interrupt and Set Line
Coding request process of class request, “1” is set.

“0” is set to clear the error state of transmission/reception process of user data at the
FIFO initialization in the sample application.

User data reception processing

For the sample driver, separate functions that define retrieval processing for the
received data, one for acquiring the data length and another for copying the data,
are provided.

Received data size can be verified before the reception process by calling the
acquisition function (usbf78k0r_rdata_length) of reception data length at the
reception process based on length of the actually received data. Reception process
can also be called on the basis of buffer size when buffer size for user data is
determined. However, take care that maximum data length for one time reception
should be less than the data size that is received in 1 packet.

In the sample application, data received from used endpoint at the received data in
the user data reception function (usbf78k0r_recv_buf) on the line 29 in List 6-1 is
read as a usage example when buffer size is determined.

User data transmission processing

Used endpoint FIFO state is verified at the transmitted data in the user data
transmission function (usbf78k0r_send_buf) on line 32 in List 6-1 and if it is FIFO
Empty, data is written. In case of FIFO Full, it is error end. When size of the data of
the packet transmitted at the earlier and not the transmitted data is Max Packet Size,
NULL packet is transmitted. Since this is characteristic of communication device
class, NULL packet is transmitted to report that it is last data to host when last
packet of data is Max Packet Size.

In the sample application, when process is terminated with the generation of error,
reception process is stopped and transmission process is repeated until the normal
termination of writing of transmission wait data to FIFO. Initialization of FIFO for user
data is the only exception. Transmitted/received data and transmission wait data in
FIFO are discarded when FIFO is initialized by the request from user or host.

ROTANOOOSEDO0100 Rev. 1.00 RENESAS 61

July 20, 2010

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

Chapter 7

71

Figure 7-1

711

7.2

Starter Kit

This chapter describes the TK-78KOR/KE3L+USB starter kit for the 78 KOR/Kx3-L, made
by Tessera Technology, Inc.

Overview

TK-78KOR/KE3L+USB is a kit to develop applications that use the 78KOR/KE3-L. The
entire development sequence from creating a program to building, debugging, and
checking operation can be performed simply by installing development tools and USB
drivers and then connecting either board to the host. This kit uses a monitoring program
that enables debugging without connecting an emulator (on-chip debugging).

Connections of TK-78KOR/KE3L+USB

_— T

USB2: Debugging port

USB1: 78KORUSB port

Features

TK-78KOR/KE3L+USB has the following features.
e A USB miniB connector for the internal USBF
e As small as a business card

o Efficient development by using the board with the integrated development
environment (IAR Embedded Workbench for 78K)

Specification

The main specifications of the TK-78KOR/KE3L+USB are as follows.

e CPU uPD78F 1026 (78KOR/KE3-L)

e Operating frequency 20 MHz (USB:48 MHz)

e Interface USB connector (miniB) x 2
MINICUBE2 connector
Peripheral board connector x 2 (only the pad)

e Supported platform Host: DOS/V computer that has a USB interface
OS: Windows XP

e Operating voltage 5.0 V (internal operation at 3.3 V)

e Package dimensions W89 x D52(mm)

ROTANOOOSEDO0100 Rev. 1.00 RENESAS 62

July 20, 2010

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however,
is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed
herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas Electronics such as that
disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property
rights of third parties by or arising from the use of Renesas Electronics products or technical information described in
this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other
intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or
in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the
operation of semiconductor products and application examples. You are fully responsible for the incorporation of these
circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for
any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export
control laws and regulations and follow the procedures required by such laws and regulations. You should not use
Renesas Electronics products or the technology described in this document for any purpose relating to military
applications or use by the military, including but not limited to the development of weapons of mass destruction.
Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas
Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever
for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality",
and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality
grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a
particular application. You may not use any Renesas Electronics product for any application categorized as "Specific"
without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for
any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas
Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use
of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended
where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a
Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio
and visual equipment; home electronic appliances; machine tools; personal electronic equipment;
and industrial robots.

“High Quality™: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster
systems; anti- crime systems; safety equipment; and medical equipment not specifically designed
for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems;medical
equipment or systems for life support (e.g. artificial life support devices or systems), surgical
implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes
that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas
Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage
range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no
liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety
measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the
failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate
measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final
products or system manufactured by you.

RO1ANO00BEDO100 Rev. 1.00 ENESAS 63
July 20, 2010 -2

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all
applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the
EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your
noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of
Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its
majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas
Electronics.

RO1ANO00BEDO100 Rev. 1.00 ENESAS 64
July 20, 2010 -2

78KOR/Kx3-L (on-chip USB controller) USB CDC driver

[MEMO]

RO1ANOOOSEDO100 Rev. 1.00 -
July 20, 2010 RENESAS

ENESAS

Sales Offices Renesas Electronics Corporation wWww.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C.
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya,
Selangor Darul Ehsan, Malaysia

Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

RO1ANOOOSEDO0100

	Chapter 1 Overview
	1.1 Overview
	1.1.1 Features of the USB function controller
	1.1.2 Features of sample driver
	1.1.3 Files included in the sample driver

	1.2 Overview of 78K0R/Kx3-L
	1.2.1 Applicable products
	1.2.2 Features

	Chapter 2 Overview of USB
	2.1 Transfer Format
	2.2 Endpoints
	2.3 Device Class
	2.4 Requests
	2.4.1 Types
	2.4.2 Format

	2.5 Descriptor
	2.5.1 Types
	2.5.2 Format

	Chapter 3 Sample Driver Specification
	3.1 Overview
	3.1.1 Features
	3.1.2 Supported requests
	3.1.3 Descriptor settings

	3.2 Operation of Each Section
	3.2.1 CPU Initialization
	3.2.2 USB function controller initialization processing
	3.2.3 INTUSB interrupt process

	3.3 Function Specification
	3.3.1 Functions
	3.3.2 Correlation of the functions
	3.3.3 Function features

	Chapter 4 Sample Application Specification
	4.1 Overview
	4.2 Operation
	4.3 Using functions

	Chapter 5 Development Environment
	5.1 Development environment overview
	5.1.1 Program development
	5.1.2 Debugging

	5.2 Setting up the Environment
	5.2.1 Preparing Host Environment
	5.2.2 Setting up the target environment

	5.3 On-Chip Debugging
	5.3.1 Generating the debug files
	5.3.2 Download and Debug

	5.4 Checking the Operation

	Chapter 6 Using the Sample Driver
	6.1 Overview
	6.2 Customizing the sample driver
	6.2.1 Application section
	6.2.2 Setting up the device registers
	6.2.3 Descriptor information
	6.2.4 Setting up the virtual COM port host driver

	6.3 Using functions

	Chapter 7 Starter Kit
	7.1 Overview
	7.1.1 Features

	7.2 Specification

