
All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Technology Corp.
website (http://www.renesas.com).

www.renesas.com

78K0R/Kx3-L
(on-chip USB controller)

16-bit Single-Chip Microcontroller
USB CDC (Communication Device Class) Driver

R01AN0008ED0100, Rev. 1.00
July 20, 2010

A
pplication N

ote

R01AN0008ED0100 Rev. 1.00 2
July 20, 2010

Table of Contents

Chapter 1 Overview .. 4
1.1 Overview ...4

1.1.1 Features of the USB function controller ..4
1.1.2 Features of sample driver..5
1.1.3 Files included in the sample driver ..5

1.2 Overview of 78K0R/Kx3-L ...6
1.2.1 Applicable products ...6
1.2.2 Features...6

Chapter 2 Overview of USB .. 8
2.1 Transfer Format...8
2.2 Endpoints ..8
2.3 Device Class..9
2.4 Requests ...9

2.4.1 Types ...9
2.4.2 Format ...10

2.5 Descriptor ..10
2.5.1 Types ...10
2.5.2 Format ...11

Chapter 3 Sample Driver Specification ... 13
3.1 Overview ...13

3.1.1 Features...13
3.1.2 Supported requests ...13
3.1.3 Descriptor settings...14

3.2 Operation of Each Section...18
3.2.1 CPU Initialization ...18
3.2.2 USB function controller initialization processing..19
3.2.3 INTUSB interrupt process..22

3.3 Function Specification ...23
3.3.1 Functions ...23
3.3.2 Correlation of the functions..24
3.3.3 Function features...28

Chapter 4 Sample Application Specification ... 41
4.1 Overview ...41
4.2 Operation...41
4.3 Using functions ..42

Chapter 5 Development Environment ... 44
5.1 Development environment overview..44

5.1.1 Program development ...44
5.1.2 Debugging ...44

R01AN0008ED0100 Rev. 1.00 3
July 20, 2010

5.2 Setting up the Environment ...44
5.2.1 Preparing Host Environment ...44
5.2.2 Setting up the target environment ...47

5.3 On-Chip Debugging...48
5.3.1 Generating the debug files ..48
5.3.2 Download and Debug ..48

5.4 Checking the Operation...53

Chapter 6 Using the Sample Driver... 56
6.1 Overview ...56
6.2 Customizing the sample driver ..56

6.2.1 Application section...56
6.2.2 Setting up the device registers ..57
6.2.3 Descriptor information ...57
6.2.4 Setting up the virtual COM port host driver ...57

6.3 Using functions ..61

Chapter 7 Starter Kit ... 62
7.1 Overview ...62

7.1.1 Features...62
7.2 Specification ..62

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 4
July 20, 2010

Chapter 1 Overview

This application note describes the USB CDC (communication device class) sample
driver created for the USB function controller incorporated in the 78K0R/KC3-L,
78K0R/KE3-L (78K0R/Kx3-L) microcontrollers. This application note provides the
following information:

• The specifications for the sample driver

• Information about the environment used to develop an application program by
using the sample driver

• The reference information provided for using the sample driver

This chapter provides an overview of the sample driver and describes the
microcontrollers for what the sample driver can be used.

1.1 Overview

1.1.1 Features of the USB function controller

The USB function controller that is incorporated in the 78K0R/Kx3-L and is controlled by
the sample driver has the following features:

• Conforms to the Universal Serial Bus Rev. 2.0 Specification

• Operates as a full-speed (12 Mbps) device.

• Includes the following endpoints:

Configuration of the Endpoints of the 78K0R/Kx3-L

Endpoint Name FIFO Size
(Bytes) Transfer Type Remark

Endpoint0 Read 64 Control transfer (IN) Single buffer configuration
Endpoint0 Write 64 Control transfer (OUT) Single buffer configuration
Endpoint1 64x2 Bulk transfer 1 (IN) Dual-buffer configuration
Endpoint2 64x2 Bulk transfer 1 (OUT) Dual-buffer configuration
Endpoint3 64x2 Bulk transfer 2 (IN) Dual-buffer configuration
Endpoint4 64x2 Bulk transfer 2 (OUT) Dual-buffer configuration
Endpoint7 64 Interrupt transfer 1 (IN) Single buffer configuration
Endpoint8 64 Interrupt transfer 2 (IN) Single buffer configuration

• Automatically responds to standard USB requests (except some requests).

• Can operate as a bus-powered device or self-powered device1

• The internal or external clock can be selected2

1 The sample driver selects bus power

2 The sample driver selects the internal clock

Table 1-1

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 5
July 20, 2010

1.1.2 Features of sample driver

The USB communication device class sample driver for the 78K0R/Kx3-L has the
features below. For details about the features and operations, see Chapter 3 Sample
Driver Specifications.

• Conforms to the USB communication device class Ver.1.1 Abstract Control
Model

• Operates as a virtual COM device

• Exclusively uses the following amounts of memory (excluding the vector table):

o ROM: About 3.0 KB

o RAM: About 0.4 KB

1.1.3 Files included in the sample driver

The sample driver includes the following files:

Files included in the sample driver

Folder File Overview
main.c Main routine, initialization, sample application
usbf78k0r.c USB initialization, endpoint control, bulk transfer,

control transfer

src

usbf78k0r_communication.c Communication device class specific processing
main.h main.c function prototype declarations
usbf78k0r.h usbf78k0r. function prototype declarations
usbf78k0r_communication.h usbf78k0r_communication.c function prototype

declarations
usbf78k0r_desc.h Descriptor definitions
usbf78k0r_errno.h Error code definitions

include

usbf78k0r_types.h User declarations
Inf file K0R_CDC_XP.inf INF file for Windows XP

In addition, the project-related files generated when creating a development environment
by using the IAR Embedded Workbench (an integrated development tool made by IAR
Systems) are also included. For details see 5.2.1 Preparing the host environment.

Table 1-2

Remark

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 6
July 20, 2010

1.2 Overview of 78K0R/Kx3-L

This section describes the 78K0R/KC3-L, 78K0R/KE3-L which are controlled by using the
sample driver.

The 78K0R/KC3-L and 78K0R/KE3-L are products in the low-power series of single chip
78K0R microcontroller, made by Renesas Electronics. They use 78K0R CPU core and
have peripheral functions such as ROM/RAM，timers/counters, POC/LVI, a serial
interface, A/D converter, DMA controller, USB function controller. For details, see the
78K0R/KC3-L, 78K0R/KE3-L USB controller built-in products Hardware User’s
manual.

1.2.1 Applicable products

The sample driver can be used for the following products.

78K0R/Kx3-L Products

Internal Memory Interrupt Generic
Name Part Number Flash

Memory RAM
Incorporated
USB Function Internal External

78K0R/KC3-L μ PD78F1022 64 KB 6 KB Function controller 36 7
(48pin) μ PD78F1023 96KB 8 KB Function controller 36 7
 μ PD78F1024 128KB 8 KB Function controller 36 7
78K0R/KE3-L μ PD78F1025 96KB 8 KB Function controller 41 11
(64pin) μ PD78F1026 128KB 8 KB Function controller 41 11

In this application note, all target microcontrollers are collectively indicated as the
78K0R/Kx3-L, unless distinguishing between them is necessary.

1.2.2 Features

The main features of 78K0R/Kx3-L are as follows. For details, see 78K0R/Kx3-L user’s
manual.

Memory space:

• 1M byte linear address space (for programs and data)

Internal memory

• RAM: 6K/ 8K byte

• Flash memory : 64K/ 96K/ 128K byte

Multiplication/division function

• 16 bit x16 bit = 32 bit(multiplication)

• 32 bit ÷ 32 bit = 32 bit (division)

Key interrupt

• 4 channels

• 8 channels

Table 1-3

Caution:

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 7
July 20, 2010

DMA controller

• 2 channels

Serial interface

• CSI: 1 channel/ UART: 1 channel

• CSI: 1 channel/UART: 1 channel/simple I2C: 1channel

• CSI: 1 channel note/UART: 1 channel note/simple I2C: 1channel note

• UART(for LIN-bus): 1 channel

• I2C: 1 channel

USB controller

• USB function (full speed): 1 channel

A/D converter

• 10 bit resolution A/D converter(AVREF = 1.8~3.6 V): 8 channel

Power supply voltage

• VDD = 1.8~3.6 V(when USB is not used)

• VDD = 3.0~3.6 V(when USB is used)

Clock output/buzzer output

• 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz(peripheral
hardware clock:at fMAIN = 20 MHz operation)

• 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz,
32.768 kHz

• (Subsystem clock: at fSUB = 32.768 kHz operation)

With built-in on chip debugging function

Above mentioned information based on 78K0R/KE3-L Note:

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 8
July 20, 2010

Chapter 2 Overview of USB

This chapter provides an overview of the USB standard, which the sample driver
conforms to.

USB (Universal Serial Bus) is an interface standard for connecting various peripherals to
a host system by using the same type of connector. The USB interface is more flexible
and easier to use than older interfaces in that it can connect up to 127 devices by adding
a branching point known as a hub and supports the hot-plug feature, which enables
devices to be recognized by Plug & Play. The USB interface is provided in most current
computers and has become the standard for connecting peripherals to a computer.

The USB standard is formulated and managed by the USB Implementers Forum (USB-
IF). For details about the USB standard, see the official USB-IF website (www.usb.org).

2.1 Transfer Format

Four types of transfer formats (control, bulk, interrupt and isochronous) are defined in the
USB standard. Table 2-1 shows the features of each transfer format.

USB Transfer Format
 Transfer Format

Item
Control
Transfer

Bulk Transfer Interrupt
Transfer

Isochronous
Transfer

Feature Transfer format
used to exchange
information
required for
controlling
peripheral devices

Transfer format
used to
aperiodically
handle large
amounts of data

Periodic data
transfer format
that has a low
band width

Transfer format
used for a real-
time transfer

High
speed
480 Mbps

64 bytes 512 bytes 1 to 1,024 bytes 1 to 1,024 bytes

Full speed
12 Mbps

8, 16, 32, or 64
bytes

8, 16, 32, or 64
bytes

1 to 64 bytes 1 to 1,023 bytes

Specifiable
packet
size

Low
speed
1.5 Mbps

8 bytes − 1 to 8 bytes −

Transfer priority 3 3 2 1

2.2 Endpoints

An endpoint is an information unit that is used by the host device to specify a
communicating device and is specified using a number from 0 to 15 and a direction (IN or
OUT). An endpoint must be provided for every data communication path that is used for
a peripheral device and cannot be shared by multiple communication paths3. For
example, a device that can write to and read from an SD card and print out documents
must have a separate endpoint for each purpose. Endpoint 0 is used to control transfers
for any type of device.

During data communication, the host uses a USB device address, which specifies the
device, and an endpoint (a number and direction) to specify the communication
destination in the device.

Peripheral devices have buffer memory that is a physical circuit to be used for the
endpoint and functions as a FIFO that absorbs the difference in speed of the USB and
communication destination (such as memory).

3 An endpoint can be exclusively switched by using the alternative setting

Table 2-1

http://www.usb.org/�

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 9
July 20, 2010

2.3 Device Class

Various device classes, such as the mass storage class (MSC), communication device
class (CDC), and human interface device class (HID) are defined according to the
functions of the peripheral devices connected via USB (the function devices). A common
host driver can be used if the connected devices conform to the standard specifications
of the relevant device class, which is defined by a protocol.

The Communication Device Class (CDC) is intended for communication devices
connected to hosts, such as modems, FAX machines and network cards. The class is
increasingly used for devices that are used for USB-to-serial conversion performing
UART communication with a computer, because recent computers do not have an RS-
232C interface. Note that a different CDC model is defined depending on the device to
connect. The sample driver uses the Abstract Control Model.

2.4 Requests

For the USB standard, communication starts with the host issuing a command, known as
a request, to a function device. A request includes data such as the direction and type of
processing and address of the function device.

2.4.1 Types

There are three types of requests: standard requests, class requests and vendor
requests. The sample driver supports the following requests.

(1) Standard requests

Standard requests are used for all USB-compatible devices.

Standard Requests

Request Name Target Descriptor Overview
Device Reads the settings of the power supply (self or

bus) and remote wakeup.
GET_STATUS

Endpoint Reads the halt status.
Device Clears remote wakeup. CLEAR_FEATURE
Endpoint Cancels the halt status (DATA PID = 0).
Device Specifies remote wakeup or test mode. SET_FEATURE
Endpoint Specifies the halt status.
Device
Configuration

GET_DESCRIPTOR

string

Reads the target descriptor.

Device
Configuration

SET_DESCRIPTOR

string

Changes the target descriptor (optional).

GET_CONFIGURATION Device Reads the currently specified configuration
values

SET_CONFIGURATION Device Specifies the configuration values.
GET_INTERFACE Interface Reads the alternatively specified value among

the currently specified values of the target
interface.

SET_INTERFACE Interface Specifies the alternatively specified value of the
target interface.

SET_ADDRESS Device Specifies the USB address
SYNCH_FRAME Endpoint Reads frame-synchronous data.

(2) Class Requests

Class requests are unique to device classes. For the sample driver, processing to
respond to class requests that support the CDC Abstract Control Model is
implemented. The following requests can be responded to:

Table 2-2

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 10
July 20, 2010

• SendEncapsulatedCommand
This request is used to issue commands in the format of the protocol for
controlling the communication class interface.

• GetEncapsulatedResponse
This request is used to request a response in the format of the protocol for
controlling the communication class interface.

• SetLineCoding
This request is used to specify the serial communication format.

• GetLineCoding
This request is used to acquire the communication format settings on the device
side.

• SetControlLineState
This request is used for RS-232/V.24 format control signals.

2.4.2 Format

USB requests have an 8-byte length and consist of the following fields.

USB Request Format

Offset Field Description
bmRequestType Request attribute

Bit 7 Data transfer direction
Bits 6 and 5 Request type

0

Bits 4 to 0 Target descriptor

1 bRequest Request code
2 Lower Any value used by the request
3

wValue
Higher

4 Lower
5

wIndex
Higher Index or offset used by the request

6 wLength Lower Number of bytes transferred at the data
stage

7 Higher (the data length)

2.5 Descriptor

For the USB standard, a descriptor is information that is specific to a function device and
is encoded in a specified format. A function device transmits a descriptor in response to a
request transmitted from the host.

2.5.1 Types

The following five types of descriptors are defined.

• Device descriptor

This descriptor exists in every device and includes basic information such as the
supported USB specification version, device class, protocol, maximum packet
length that can be used when transferring data to endpoint 0, vendor ID, and
product ID.
This descriptor is transmitted in response to a GET_DESCRIPTOR_Device
request.

• Configuration descriptor

At least one configuration descriptor exists in every device and includes
information such as the device attribute (power supply method) and power

Table 2-3

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 11
July 20, 2010

consumption. This descriptor is transmitted in response to a
GET_DESCRIPTOR_Configuration request.

• Interface descriptor

This descriptor is required for each interface and includes information such as
the interface identification number, interface class, and supported number of
endpoints. This descriptor is transmitted in response to a
GET_DESCRIPTOR_Configuration request.

• Endpoint descriptor

This descriptor is required for each endpoint specified for an interface descriptor
and defines the transfer type (direction), maximum packet length that can be
used for a transfer, and transfer interval. However, endpoint 0 does not have this
descriptor. This descriptor is transmitted in response to a
GET_DESCRIPTOR_Configuration request.

• String descriptor

This descriptor includes any character string. This descriptor is transmitted in
response to a GET_DESCRIPTOR_String request.

2.5.2 Format

The size and fields of each descriptor type vary as described below.

The data sequence of each field is in little endian format.

Device Descriptor Format

Field Size
(Bytes)

Description

bLength 1 Descriptor size
bDescriptorType 1 Descriptor type
bcdUSB 2 USB specification release number
bDeviceClass 1 Class code
bDeviceSubClass 1 Subclass code
bDeviceProtocol 1 Protocol code
bMaxPacketSize0 1 Maximum packet size of endpoint 0
idVendor 2 Vendor ID
idProduct 2 Product ID
bcdDevice 2 Device release number
iManufacturer 1 Index to the string descriptor representing the manufacturer
iProduct 1 Index to the string descriptor representing the product

iSerialNumber 1 Index to the string descriptor representing the device production
number

bNumConfigurations 1 Number of configurations

Vendor ID: The identification number each company that develops a USB device
acquires from USB-IF

Product ID: The identification number each company assigns to a product after acquiring
the vendor ID

Remark

Table 2-4

Remark

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 12
July 20, 2010

Configuration Descriptor Format

Field Size
(Bytes)

Description

bLength 1 Descriptor size
bDescriptorType 1 Descriptor type
wTotalLength 2 Total number of bytes of the configuration, interface, and

endpoint descriptors
bNumInterfaces 1 Number of interfaces in this configuration
bConfigurationValue 1 Identification number of this configuration
iConfiguration 1 Index to the string descriptor specifying the source code for this

configuration
bmAttributes 1 Features of this configuration
bMaxPower 1 Maximum current consumed in this configuration (in 2 μA units)

Interface Descriptor Format

Field Size
(Bytes)

Description

bLength 1 Descriptor size
bDescriptorType 1 Descriptor type
bInterfaceNumber 1 Identification number of this interface
bAlternateSetting 1 Whether the alternative settings are specified for this interface
bNumEndpoints 1 Number of endpoints of this interface
bInterfaceClass 1 Class code
bInterfaceSubClass 1 Subclass code
bInterfaceProtocol 1 Protocol code
iInterface 1 Index to the string descriptor specifying the source code for this

interface

Endpoint Descriptor Format

Field Size
(Bytes)

Description

bLength 1 Descriptor size
bDescriptorType 1 Descriptor type
bEndpointAddress 1 Transfer direction of this endpoint

Address of this endpoint
bmAttributes 1 Transfer type of this endpoint
wMaxPacketSize 2 Maximum packet size of this transfer
bInterval 1 Polling interval of this endpoint

String Descriptor Format

Field Size
(Bytes)

Description

bLength 1 Descriptor size
bDescriptorType 1 Descriptor type
bString Any Any data string

Table 2-5

Table 2-6

Table 2-7

Table 2-8

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 13
July 20, 2010

Chapter 3 Sample Driver Specification

This chapter provides details about the features and processing of the USB
Communication Device Class sample driver for the 78K0R/Kx3-L and the specifications
of the functions provided in the 78K0R/Kx3-L.

3.1 Overview

3.1.1 Features

The sample driver can perform the following processing.

(1) Initialization

The USB function controller is set up to manipulate various special function registers.
This setup includes specifying settings for the CPU registers of the 78K0R/Kx3-L
and specifying settings for the registers of the USB function controller. For details,
see 3.2.1 CPU Initialization, 3.2.2 USB function controller initialization processing.

(2) Monitoring endpoints

The status of transfer endpoints in USB function controller is notified from INTUSB
interrupt. There are CPUDEC interrupts, expressing the request to decode by FW for
the control transfer endpoint (Endpoint0) and BKO1DT interrupt showing the normal
reception of data for bulk-out transfer (reception) endpoint (Endpoint2). During the
processing of Endpoint0, requests are responded too. For details, see 3.2.3 INTUSB
interrupt processing.

(3) Sample application

The data at the endpoint for bulk-out transfer (reception) is read and then the data is
written to the endpoint for bulk-in transfer (transmission). For details, see Chapter 4
Sample Application Specifications.

3.1.2 Supported requests

This section describes the USB requests supported by the sample driver.

(1) Standard requests

The sample driver returns the following responses for requests to which the
78K0R/Kx3-L does not automatically respond.

(a) GET_DESCRIPTOR_string

The host issues this request to acquire the string descriptor of the function device.
If this request is received, the sample driver transmits the requested string
descriptor to the host through a control read transfer.

(b) Other requests

The sample driver returns a STALL.

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 14
July 20, 2010

(2) Class requests

The sample driver responds to class requests of the CDC by using the following
class requests.

(a) SendEncapsulatedCommand

This request is used to issue a command in the format of the CDC interface
control protocol. If this request is received, the sample driver retrieves the data
related to the request and then transmits them through bulk-in transfer.

(b) GetEncapsulatedResponse

This request is used to request a response in the format of the CDC interface
control protocol. Currently, the sample driver does not support this request.

(c) SetLineCoding

This request is used to specify the serial communication format. If this request is
received, the sample driver retrieves the data related to the request to specify
settings such as the communication rate and then transmits a NULL packet
through control read transfer.

(d) GetLineCoding

This request is used to acquire the current communication format settings on the
device side. If this request is received, the sample driver reads settings such as
the communication rate and then transmits them through control read transfer.

(e) SetControlLineState

This request is used for RS-232/V.24 format control signals. If this request is
received the sample driver transmits a NULL packet through control read transfer.

3.1.3 Descriptor settings

The settings of each descriptor specified by the sample driver are shown below. These
settings are included in header file "usbf78k0r_desc.h".

(1) Device descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR_device request.
The settings are stored in the UF0DDn registers (where n = 0 to 17) when the USBF
is initialized, because the hardware automatically responds to a
GET_DESCRIPTOR_device request.

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 15
July 20, 2010

Device Descriptor Settings

Field Size
(Bytes)

Specified
Value

Description

bLength 1 0x12 Descriptor size: 18 bytes
bDescriptorType 1 0x01 Descriptor type: device
bcdUSB 2 0x0200 USB specification release number: USB 2.0
bDeviceClass 1 0x02 Class code: CDC
bDeviceSubClass 1 0x00 Subclass code: none
bDeviceProtocol 1 0x00 Protocol code: No unique protocol is used
bMaxPacketSize0 1 0x40 Maximum packet size of endpoint 0: 64
idVendor 2 0x0409 Vendor ID:NEC
idProduct 2 0x01CD Product ID:78K0R /Kx3-L
bcdDevice 2 0x0001 Device release number:1st version

iManufacturer 1 0x01 Index to the string descriptor representing the
manufacturer: 1

iProduct 1 0x02 Index to the string descriptor representing the
product: 2

iSerialNumber 1 0x03 Index to the string descriptor representing the
device production number:3

bNumConfigurations 1 0x01 Number of configurations:1

(2) Configuration descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR_configuration
request. The settings are stored in the UF0CIEn registers (where n = 0 to 255) when
the USB function controller is initialized, because the hardware automatically
responds to a GET_DESCRIPTOR_configuration request.

Configuration Descriptor Settings

Field Size
(Bytes)

Specified
Value

Description

bLength 1 0x09 Descriptor size: 9 bytes
bDescriptorType 1 0x02 Descriptor type: configuration
wTotalLength 2 0x0030 Total number of bytes of the configuration,

interface, and endpoint descriptors: 48 bytes
bNumInterfaces 1 0x02 Number of interfaces in this configuration: 2
bConfigurationValue 1 0x01 Identification number of this configuration:1
iConfiguration 1 0x00 Index to the string descriptor specifying the

source code for this configuration:0
bmAttributes 1 0x80 Features of this configuration: bus-powered, no

remote wakeup
bMaxPower 1 0x1B Maximum current consumed in this configuration:

54 mA

(3) Interface Descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR_configuration
request. The settings are stored in the UF0CIEn registers (where n = 0 to 255) when
the USB function controller is initialized, because the hardware automatically
responds to a GET_DESCRIPTOR_configuration request. Two types of descriptors
are set p because the sample driver uses two interfaces.

Table 3-1

Table 3-2

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 16
July 20, 2010

Interface Descriptor Settings for Interface 0

Field Size
(Bytes)

Specified
Value

Description

bLength 1 0x09 Descriptor size: 9 bytes
bDescriptorType 1 0x04 Descriptor type: interface
bInterfaceNumber 1 0x00 Identification number of this interface: 0
bAlternateSetting 1 0x00 Whether the alternative settings are specified for

this interface: no
bNumEndpoints 1 0x01 Number of endpoints of this interface: 1
bInterfaceClass 1 0x02 Class code: communications interface class
bInterfaceSubClass 1 0x02 Subclass code: Abstract Control Model
bInterfaceProtocol 1 0x00 Protocol code: No unique protocol is used.
iInterface 1 0x00 Index to the string descriptor specifying the

source code for this interface: 0

Interface Descriptor Settings for Interface 1

Field Size
(Bytes)

Specified
Value

Description

bLength 1 0x09 Descriptor size: 9 bytes
bDescriptorType 1 0x04 Descriptor type: interface
bInterfaceNumber 1 0x01 Identification number of this interface: 1
bAlternateSetting 1 0x00 Whether the alternative settings are specified for

this interface: no
bNumEndpoints 1 0x02 Number of endpoints of this interface: 2
bInterfaceClass 1 0x0A Class code: communications interface class
bInterfaceSubClass 1 0x00 Subclass code: Abstract Control Model
bInterfaceProtocol 1 0x00 Protocol code: No unique protocol is used.
iInterface 1 0x00 Index to the string descriptor specifying the

source code for this interface: 0

(4) Endpoint descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR_configuration
request. The settings are stored in the UF0CIEn registers (where n = 0 to 255) when
the USB function controller is initialized, because the hardware automatically
responds to a GET_DESCRIPTOR_configuration request. Three descriptor types are
specified because the sample driver uses three endpoints.

Endpoint Descriptor Settings for Endpoint 7

Field Size
(Bytes)

Specified
Value

Description

bLength 1 0x07 Descriptor size: 7 bytes
bDescriptorType 1 0x05 Descriptor type: endpoint
bEndpointAddress 1 0x87 Transfer direction of this endpoint: IN

Address of this endpoint: 7
bmAttributes 1 0x03 Transfer type of this endpoint: interrupt
wMaxPacketSize 2 0x0008 Maximum packet size of this transfer: 8 bytes
bInterval 1 0x0A Polling interval of this endpoint: 10 ms

Endpoint Descriptor Settings for Endpoint 1

Field Size
(Bytes)

Specified
Value

Description

bLength 1 0x07 Descriptor size: 7 bytes
bDescriptorType 1 0x05 Descriptor type: endpoint
bEndpointAddress 1 0x81 Transfer direction of this endpoint: OUT

Address of this endpoint: 2
bmAttributes 1 0x02 Transfer type of this endpoint: bulk
wMaxPacketSize 2 0x0040 Maximum packet size of this transfer: 64 bytes
bInterval 1 0x00 Polling interval of this endpoint: 0 ms

Table 3-3

Table 3-4

Table 3-5

Table 3-6

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 17
July 20, 2010

Endpoint Descriptor Settings for Endpoint 2

Field Size
(Bytes)

Specified
Value

Description

bLength 1 0x07 Descriptor size: 7 bytes
bDescriptorType 1 0x05 Descriptor type: endpoint
bEndpointAddress 1 0x02 Transfer direction of this endpoint: IN

Address of this endpoint: 2
bmAttributes 1 0x02 Transfer type of this endpoint: bulk
wMaxPacketSize 2 0x0040 Maximum packet size of this transfer: 64 bytes
bInterval 1 0x00 Polling interval of this endpoint: 0 ms

(5) String descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR_string request. If
a GET_DESCRIPTOR_string request is received, the sample driver stores the
settings of this descriptor into the UF0E0W register of the USB function controller.

String 0 Descriptor Settings

Field Size
(Bytes)

Specified
Value

Description

bLength 1 0x04 Descriptor size: 4 bytes
bDescriptorType 1 0x03 Descriptor type: string
bString 2 0x09, 0x04 Language code: English (U.S.)

String 1 Descriptor Settings

Field Size
(Bytes)

Specified
Value

Description

bLength4 1 0x2A Descriptor size: 42 bytes
bDescriptorType 1 0x03 Descriptor type: string
bString5 40 - Vendor: NEC Electronics Corporation

String 2 Descriptor Settings

Field Size
(Bytes)

Specified
Value

Description

bLength4 1 0x0E Descriptor size: 14 bytes
bDescriptorType 1 0x03 Descriptor type: string
bString5 12 - Product type: CDCDrv (CDC driver)

String 3 Descriptor Settings

Field Size
(Bytes)

Specified
Value

Description

bLength4 1 0x16 Descriptor size: 22 bytes
bDescriptorType 1 0x03 Descriptor type: string
bString5 20 - Serial number: 0_98765432

4 The specified value depends on the size of the bString field.
5 The vendor can freely set up the size and specified value of this field

Table 3-7

Table 3-8

Table 3-9

Table 3-10

Table 3-11

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 18
July 20, 2010

Start of CPU

Setting clock generation

End of CPU
initialization

3.2 Operation of Each Section

The processing sequence below is performed when the sample driver is executed. This
section describes each processing. For details about the sample application, see Chapter
4 Sample Application Specifications.

Sample Driver Processing Flowchart

3.2.1 CPU Initialization

The settings necessary to use the USB function controller are specified.

CPU Initialization Flowchart

(1) Clock generation settings

Operation of internal clock of CPU is set. Here, five registers are set.

(a) “0x41” is written to CMC register to specify X1 oscillation mode, 10MHz < fMX <=
20MHz.

(b) “0” is written to the MSTOP bit of CSC register to start the operation of X1
oscillation circuit.

(c) Oscillation stability time is verified according to OSTC register.

Figure 3-1

Figure 3-2

Start

Initializing the CPU

Initializing the USB function controller

Executing the sample application

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 19
July 20, 2010

Setting up interrupt mask register

Start of USBF
initialization

USB clock supply

D+ signal no connection settings

Setting USB buffer as invalid/ floating

NAK settings of control endpoints

Initialization request of data register area

Settings up interface and endpoints

Cancellation of control endpoints NAK
settings

Setting D+ signal pulling up

Initialization of driver internal flag

End of USB
initialization

Setting USB buffer as valid/floating

(d) “0x01” is written in PLLC register to stop the PLL operation.

(e) “0x38” is written to the CKC register to specify CPU/peripheral hardware clock to
main system clock (fMAIN), main system clock to high speed system clock (fMX)
and ratio of dividing frequency to fMX .

(f) “1” is written to the HIPSTOP bit of CSC register to stop high speed built-in
oscillation circuit.

(g) “1” is written to PLLM bit of PLLC register to multiply the frequency of the clock
provided to PLL by 12.

(h) “0” is written to PLLSTOP bit of PLLC register to stat the operation of PLL.

3.2.2 USB function controller initialization processing

The settings necessary to use the USB function controller are specified.

USB function controller Initialization Processing Flowchart

Figure 3-3

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 20
July 20, 2010

(1) USB clock supply

“0x80” is set in UCKC register so that USB clock is supplied to USB function
controller.

(2) D+ Signal no-connection settings

”0x02” is set to UF0GPR register in order to avoid being detected by the host.

(3) Invalidate USB buffer as and validate the floating measures

“0x00” is set to UF0BC register to disable the operations of USB function controller
set as valid USB buffer and invalid floating measures.

(4) NAK settings of control endpoints

In order to avoid the unintended response, before registering the data which are
used for automatic response by the hardware, 1 is written to the EP0NKA bit of the
UF0E0NA register, so that the hardware responds to all requests, including requests
that are automatically responded to, with a NAK.

(5) Initializing the request data register area

The descriptor data transmitted in auto response to a GET_DESCRIPTOR request is
added to the following registers.

(a) “0x00” is written to the UF0DSTL register to disable remote wakeup and operate
the USB function controller as a bus-powered device.

(b) “0x00” is written to the UF0EnSL registers (where n = 0 to 2) to indicate that
endpoint n operates normally.

(c) The total data length (number of bytes) of the required descriptor is written to the
UF0DSCL register to determine the range of the UF0CIEn registers (where n = 0
to 255).

(d) The device descriptor data is written to the UF0DDn registers (where n = 0 to 7).

(e) The data of the configuration, interface, and endpoint descriptors is written to the
UF0CIEn registers (where n = 0 to 255).

(f) “0x00” is written to the UF0MODC register to enable automatic responses to
GET_DESCRIPTOR_configuration requests.

(6) NAK settings of interface and endpoints

Information such as the number of supported interfaces, whether the alternative
setting is used, and the relationship between the interfaces and endpoints are
specified for various registers. The following registers are accessed.

(a) “0x80” is written to the UF0AIFN register to enable two interfaces.

(b) “0x00” is written to the UF0AAS register to disable the alternative setting.

(c) “0x40” is written to the UF0E1IM register to link endpoint 1 to interface 1.

(d) “0x40” is written to the UF0E2IM register to link endpoint 2 to interface 1.

(e) “0x20” is written to the UF0E7IM register to link endpoint 7 to interface 0.

(7) Disabling NAK settings of control endpoints

The NAK response operations for all requests are cancelled. 0 is written to the
EP0NKA bit of the UF0E0NA register to restart responses corresponding to each
request, including requests that are automatically responded to.

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 21
July 20, 2010

27 Ω }5

27 Ω }5

USBP

USBPUC

UF0GPR

CONNECT

USBM

EVDD

1.5 kΩ }5

D {

D |

IC

K0R/KC3-H
K0R/KE3-H

50 kΩ ¨ ª
i t [e B O h ~ j

(8) Setting up the interrupt mask registers

Masking is specified for each USB function controller interrupt source. The following
registers are accessed:

(a) “0x00” is written to the UF0Icn registers (where n = 0 to 7) to clear all interrupt
sources.

(b) “0x00” is written to the UF0FICn registers (where n = 0 and 1) to clear all transfer
FIFOs.

(c) “0x7B” is written to the UF0IM0 register to mask all interrupt sources other than
BUSRST interrupt and SETRQ interrupt from the interrupt sources indicated by
the UF0IS0 register.

(d) “0x7E” is written to the UF0IM1 register to mask all interrupt sources other than
CPUDEC interrupt from the interrupt sources indicated by the UF0IS1 register.

(e) “0xF3” is written to the UF0IM2 register to mask all interrupt sources indicated by
the UF0IS2 register.

(f) “0xFE” is written to the UF0IM3 register to mask interrupt sources indicated by
the UF0IS3 register other than those of the BKO1DT interrupt.

(g) “0xFF” is written to the UF0IM4 register to mask all interrupt sources indicated by
the UF0IS4 register.

(h) “0” is written to the USBIF bit of CPU to clear INTUSB interrupt.

(i) “0” is written to the USBMK bit of CPU to disable mask of INTUSB interrupt.

(9) Initialization of driver internal flag

A high level signal is output from the D+ pin to report to the host that a device has
been connected. For the sample driver, the connections shown in Figure 3-4 are
assumed and the following registers are accessed.

(10) USB buffer enabled/ floating measures disabled

“0x03” is set to UF0BC register to enable USB buffer, to disable floating measures
and to enable USB function controller operations.

(11) Pulling up the D+ signal

“0x02” is set to UF0GPR register to report to the host that a device has been
connected.

USB function controller Connection Example

Figure 3-4

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 22
July 20, 2010

Start of INTUSB interrupts

BUSRST interrupt process

SETRQ interrupt process

CPUDEC interrupt process

BKO1DT interrupt process

End of NTUSB interrupt

3.2.3 INTUSB interrupt process

Interrupt request (INTUSB) from USB function controller reports only about the interrupts
which are masked. Disable mask at the initialization for the necessary interrupts.
Respective necessary processes are executed for the reported interrupts.

Process flow of Endpoint0 monitoring

(1) BUSRST interrupt process

It is reports when Bus Reset is generated. Process is executed in the following order.

(a) “0x7F” is written to the UF0IC0 to clear BUSRST interrupt.

(b) “1” is written to usbf78k0r_busrst_flg flag.

(c) usbf78k0r_buff_init() function is called.

(2) SETRQ interrupt process

SET_XXXX request for auto process is received and it is reported at auto processing.
Process is executed in the following order.

(a) “0xFB” is written to the UF0IC0 to clear SETRQ interrupt.

(b) Both SETCON bit of UF0SET register and CONF bit of UF0MODS register are
set to “1” is verified. “1” is set to CONFIGURATION by the
SET_CONFIGURATION request is indicated.

(c) “0” is written to the usbf78k0r_busrst_flg flag to report that it is switched from
reset state to normal state.

(3) CPUDEC interrupt process

It is reported when FW process request is received. Process is executed in the
following order.

(a) “0xFD” is written to UF0IC1 register to clear PROT interrupt.

(b) UF0E0ST register is read for 8 times then request data is acquired and decoded.

(c) If request is class request, usbf78k0r_classreq() function is called and class
request process is executed.

Figure 3-5

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 23
July 20, 2010

(d) If request is not class request, usbf78k0r_standardreq() function is called and
standard request process is executed.

(4) BKO1DT interrupt process

It is reported when data is received in UF0BO1 register normally. Process is
executed in the following order.

(a) “0xFE” is written to the UF0IC3 register to clear BKO1DT interrupt.

(b) “1” is set to (usbf78k0r_rdata_flg) flag indicating existence of received data to
indicate that there is received data in bulk out endpoint in the drive. This flag is
originally defined by the sample driver.

3.3 Function Specification

This section describes the functions implemented in the sample driver.

3.3.1 Functions

The functions of each source file included in the sample driver are described below.

Functions in the Sample Driver

Source File Function Name Description
cpu_init Initializes the CPU. main.c

main Main routine
usbf78k0r_init Initializes the USB function controller
usbf78k0r_intusbf0 Processing INTUSB interrupt
usbf78k0r_standardreq Processes standard requests.
usbf78k0r_getdesc Processes GET_DESCRIPTOR(String)
usbf78k0r_send_EP0 Transmits Endpoint0
usbf78k0r_receive_EP0 Receives Endpoint0
usbf78k0r_sendnullEP0 Transmits a NULL packet for endpoint 0.
usbf78k0r_sendstallEP0 Transmit a STALL for endpoint 0.
usbf78k0r_ep_status Notifies FIFO status of bulk/interrupt Inn end point
usbf78k0r_send_null Transmits a NULL packet of bulk/interrupt inn endpoint
usbf78k0r_data_send Transmits bulk/interrupt Inn end point
usbf78k0r_rdata_length Acquires the bulk out endpoint received data length
usbf78k0r_data_receive Receives bulk out endpoint

usbf78k0r.c

usbf78k0r_fifo_clear Clears bulk/interrupt Inn end point and bulk out endpoint
FIFO

usbf78k0r_classreq Processes CDC class/request
usbf78k0r_send_encapsulated_command Processes SendEncapsulatedCommand requests
usbf78k0r_get_encapsulated_response Processes Get Encapsulated Response requests
usbf78k0r_set_line_coding Processes SetLineCoding requests.
usbf78k0r_get_line_coding Processes GetLineCoding requests.
usbf78k0r_set_control_line_state Processes SetControlLineState requests.
usbf78k0r_buff_init Clears FIFO of endpoint for CDC data transfer
usbf78k0r_get_bufinit_flg Notifies execution state of FIFO initialization process
usbf78k0r_send_buf Transmits CDC data

usbf78k0r_communication.c

usbf78k0r_recv_buf Receives CDC data

Table 3-12

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 24
July 20, 2010

main

usbf78k0r_recv_buf

usbf78k0r_data_receive

usbf78k0r_rdata_length usbf78k0r_send_buf

usbf78k0r_send_null

usbf78k0r_ep_status

usbf78k0r_data_send

3.3.2 Correlation of the functions

Some functions call other functions during the processing. The following figures show the
correlation of the functions.

Calling Functions in the Main Routine

Figure 3-6

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 25
July 20, 2010

usbf78k0r_intusb

usbf78k0r_buff_init

usbf78k0r_fifo_clear

usbf78k0r_sendstallEP0

usbf78k0r_send_encapsulated_command

usbf78k0r_classreq

usbf78k0r_get_encapsulated_response

usbf78k0r_set_line_coding

usbf78k0r_set_line_coding

usbf78k0r_standardreq

usbf78k0r_sendstallEP0

usbf78k0r_getdesc

usbf78k0r_send_EP0

usbf78k0r_sendstallEP0

usbf78k0r_sendstallEP0

usbf78k0r_get_line_coding

usbf78k0r_set_control_line_state

usbf78k0r_sendstallEP0

Calling Functions during the Processing for the USB function controller

Figure 3-7

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 26
July 20, 2010

usbf78k0r_send_encapsulated_command

usbf78k0r_classreq

usbf78k0r_get_encapsulated_response

usbf78k0r_set_line_coding

usbf78k0r_get_line_coding

usbf78k0r_set_control_line_state

usbf78k0r_sendstallEP0

usbf78k0r_sendstallEP0

usbf78k0r_receive_EP0

usbf78k0r_data_send

usbf78k0r_receive_EP0

usbf78k0r_buff_init

usbf78k0r_sendnullEP0

usbf78k0r_send_EP0

usbf78k0r_sendnullEP0

usbf78k0r_sendstallEP0

usbf78k0r_sendstallEP0

usbf78k0r_fifo_clear

usbf78k0r_sendnullEP0

usbf78k0r_sendnullEP0

Calling Functions during the Processing for the USB Communication Class 1

Figure 3-8

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 27
July 20, 2010

usbf78k0r_send_buf

usbf78k0r_send_null

usbf78k0r_ep_status

usbf78k0r_data_send

usbf78k0r_recv_buf

usbf78k0r_ep_status

usbf78k0r_data_receive

usbf78k0r_rdata_length

Calling Functions during the Processing for the USB Communication Class 2

Figure 3-9

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 28
July 20, 2010

3.3.3 Function features

This section describes the features of the functions implemented in the sample driver.

(1) Function description format

The functions are described in the following format.

Function name

[Overview]
 An overview of the function is provided

[C description format]
 The format in which the function is written in C is provided.

[Parameters]
 The parameters (arguments) of the function are described.

Parameter Description

Parameter type and
name

Parameter summary

[Return values]
 The values returned by the function are described.

Symbol Description

Return value type
and name

Return value summary

[Description]
 The feature of the function is described

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 29
July 20, 2010

(2) Functions for the main routine

main

[Overview]

 Main processing

[C description format]
 void main(void)

[Parameters]
 None

[Return value]
 None

[Description]

This function is called first when the sample driver is executed. This function calls
the initialization function of CPU, initialization function of USB function controller
and then the sample application processing function sequentially.

cpu_init

[Overview]

 Initializes the CPU.

[C description format]
 void cpu_init(void)

[Parameters]
 None

[Return value]
 None

[Description]

This function is called in the main processing.
The settings those are necessary to use the USB function controller in the
78K0R/Kx3, such as the clock frequency, and operation mode.

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 30
July 20, 2010

(3) Functions for the USB function controller

usbf78k0r_init

[Overview]
 Initializes the USB function controller

[C description format]
 void usbf78k0r_init(void)

[Parameters]
 None

[Return value]
 None

[Description]
 This function is called during initialization processing.

This function specifies the settings required for using the USBF, such as allocating
and specifying the data area and masking interrupt requests.

usbf78k0r_intusbf0

[Overview]

 INTUSB interrupt processing

[C description format]
 __interrupt void usbf78k0r_intusbf0 (void)

[Parameters]
 None

[Return value]
 None

[Description]

This function is an interrupt service routine called from INTUSBF0 interrupt.
Generated interrupt processing is done while verifying about the interrupt requests
about the interrupt which are not masked of USB function controller.

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 31
July 20, 2010

usbf78k0r_standardreq

[Overview]
 Processes standard requests to which the USB function controller does not

automatically respond
[C description format]
 void usbf78k0r_standardreq (USB_SETUP *req_data)

[Parameters]
 Parameter Description

USB_SETUP *req_data Request data storage pointer address
[Return value]
 None

[Description]
 This function is called from the CPUDEC interrupt cause process of INTUSB

interrupt process.
If a GET_DESCRIPTOR request is decoded, this function calls the
GET_DESCRIPTOR request processing function (usbf78k0r_getdesc). For other
requests, this function calls the function for returning STALL responses for endpoint
0 (usbf78k0r_sendstallEP0).

usbf78k0r_getdesc

[Overview]
 Processes GET_DESCRIPTOR requests

[C description format]
 void usbf78k0r_getdesc (USB_SETUP *req_data)

[Parameters]
 Parameter Description

USB_SETUP *req_data Request data storage pointer address
[Return value]
 None

[Description]
 This function is called during the processing of standard requests to which the USB

function controller does not automatically respond. If a decoded request requests a
string descriptor, this function calls the USB data transmission function
(usbf78k0r_send_EP0) for endpoint 0 and transmits a string descriptor from
endpoint 0. If a decoded request requests any other descriptor, this function calls
the function for processing STALL responses (usbf78k0r_sendstallEP0) for
endpoint 0.

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 32
July 20, 2010

usbf78k0r_send_EP0

[Overview]
 Transmits USB data for Endpoint0

[C description format]
 INT32 usbf78k0r_send_EP0(UINT8* data, INT32 len)

[Parameters]
 Parameter Description

UINT8* data Transmission data buffer pointer
INT32 len Transmission data length

[Return value]
 Symbol Description

DEV_OK Normal completion
DEV_ERROR Abnormal termination

[Description]
 This function stores the data stored in the transmission data buffer into the FIFO for

the specified Endpoint0, byte by byte.

usbf78k0r_receive_EP0

[Overview]
 Receives USB data for Endpoint0

[C description format]
 INT32 usbf78k0r_receive_EP0(UINT8* data, INT32 len)

[Parameters]
 Parameter Description

UINT8* data Reception data buffer pointer
INT32 len Reception data length

[Return value]
 Symbol Description

DEV_OK Normal completion
DEV_ERROR Abnormal termination

[Description]
 This function reads data from the FIFO for the specified endpoint byte by byte and

stores the data into the reception data buffer.

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 33
July 20, 2010

usbf78k0r_sendnullEP0

[Overview]
 Transmits a NULL packet for endpoint 0

[C description format]
 void usbf78k0r_sendnullEP0(void)

[Parameters]
 None

[Return value]
 None

[Description]
 This function clears the FIFO for endpoint 0 and transmits a NULL packet from the

USBF by setting the bit that indicates the end of data to 1.

usbf78k0r_ep_status

[Overview]
 Notifies FIFO status for bulk/interrupt in endpoint

[C description format]
 INT32 usbf78k0r_ep_status(INT8 ep)

[Parameters]
 Parameter Description

INT8 ep Data transmission endpoint number
[Return value]
 Symbol Description

DEV_OK Normal completion (FIFO empty)
DEV_ERROR Abnormal termination (FIFO full)
DEV_RESET During Bus Reset processing

[Description]
 This function notifies the FIFO status of specified endpoint (for transmission).

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 34
July 20, 2010

usbf78k0r_send_null

[Overview]
 Transmits a NULL packet for bulk/interrupt in endpoint

[C description format]
 INT32 usbf78k0r_send_null(INT8 ep)

[Parameters]
 Parameter Description

INT8 ep Data transmission end point number
[Return value]
 Symbol Description

DEV_OK Normal completion
DEV_ERROR Abnormal termination

[Description]
 This function transmits a NULL packet from USB function controller by clearing the

FIFO of specified Endpoint (for transmission) and setting the bit that indicates the
end of data to 1.

usbf78k0r_data _send

[Overview]
 Transmits USB data for bulk/interrupt in endpoint

[C description format]
 INT32 usbf78k0r_data_send(UINT8* data, INT32 len, INT8 ep)

[Parameters]
 Parameter Description

UINT8* data Transmission data buffer pointer
INT32 len Transmission data length
INT8 ep Data transmission end point number

[Return value]
 Symbol Description

len (>= 0) Normal transmission data size
DEV_ERROR Abnormal termination

[Description]
 This function stores the data stored in the transmission data buffer into the FIFO for

the specified endpoint, byte by byte.

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 35
July 20, 2010

usbf78k0r_rdata _length

[Overview]
 Acquires the USB reception data length

[C description format]
 void usbf78k0r_rdata_length(INT32 *len , INT8 ep)

[Parameters]
 Parameter Description

INT32* len Pointer to the storage address of the
received data length

INT8 ep Data reception endpoint number
[Return value]
 None

[Description]
 This function reads the received data length of the specified endpoint. (For

reception).

usbf78k0r_data _receive

[Overview]
 Receives USB data for bulk end point

[C description format]
 INT32 usbf78k0r_data_receive(UINT8* data, INT32 len, INT8 ep)

[Parameters]
 Parameter Description

UINT8* data Reception data buffer pointer
INT32 len Reception data length
INT8 ep Data reception endpoint number

[Return value]
 Symbol Description

len (>= 0) Normal transmission data size
DEV_ERROR Abnormal termination

[Description]
 This function reads data from the FIFO for the specified endpoint byte by byte and

stores the data into the reception data buffer.

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 36
July 20, 2010

usbf78k0r_fifo_clear

[Overview]
 Clears the FIFO for bulk/interrupt Endpoint

[C description format]
 void usbf78k0r_fifo_clear(INT8 in_ep, INT8 out_ep)

[Parameters]
 Parameter Description

INT8 in_ep Data transmission end point number
INT8 out_ep Data reception end point number

[Return value]
 None

[Description]
 This function clears the FIFO of Endpoint specified in bulk/interrupt Endpoint and

clears (0) data reception flag (usbf78k0r_rdata_flg).

usbf78k0r_classreq

[Overview]
 Processes class request

[C description format]
 void usbf78k0r_classreq(USB_SETUP *req_data)

[Parameters]
 Parameter Description

USB_SETUP *req_data Request data storage pointer address

[Return value]
 None

[Description]
 This function is called from the CPUDEC interrupt cause process of INTUSB

interrupt process.
If a decoded request is communication class request, this function calls the each
request processing function. For other requests, this function calls the function for
returning a STALL for Endpoint0 (usbf78k0r_sendstallEP0).

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 37
July 20, 2010

usbf78k0r_send_encapsulated_command

[Overview]
 Processes SendEncapsulatedCommand requests

[C description format]
 void usbf78k0r_send_encapsulated_command(USB_SETUP *req_data)

[Parameters]
 Parameter Description

USB_SETUP *req_data Request data storage pointer address
[Return value]
 None

[Description]
 If request decoded in the class request process is Send Encapsulated Command,

this function is called. This function calls the data reception function
(usbf78k0r_receive_EP0) to retrieve the data received at endpoint 0, and then calls
the data transmission function (usbf78k0r_data_send) to transmit data from
endpoint 2 via bulk-in transfer (transmission) and calls the NULL packet
transmission function (usbf78k0r_sendnullEP0) for Endpoint0.

usbf78k0r_set_line_coding

[Overview]
 Processes SetLineCoding requests

[C description format]
 void usbf78k0r_set_line_coding(USB_SETUP *req_data)

[Parameters]
 Parameter Description

USB_SETUP *req_data Request data storage pointer address
[Return value]
 None

[Description]
 This function is called if request decoded at class request process is Set Line

Coding. This function calls the data reception function (usbf78k0r_receive_EP0) to
retrieve the data received at endpoint 0, and then writes the data to the
UART_MODE_INFO structure. This function calls the FIFO initialization function
(usbf78k0r_buff_init) for user data and then calls the NULL packet transmission
function for endpoint 0 (usbf78k0r_sendnullEP0).

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 38
July 20, 2010

usbf78k0r_get_control_line_coding

[Overview]
 Processes GetLineCoding requests

[C description format]
 void usbf78k0r_get_line_coding(USB_SETUP *req_data)

[Parameters]
 Parameter Description

USB_SETUP *req_data Request data storage pointer address
[Return value]
 None

[Description]
 This function is called if request decoded at class request process is Get Line

Coding. This function transmits the UART_MODE_INFO structure value from
Endpoint0 by calling USB data transmission function (usbf78k0r_send_EP0) for
Endpoint0.

usbf78k0r_set_control_line_state

[Overview]
 Processes SetControlLineState requests.

[C description format]
 void usbf78k0r_set_control_line_state(USB_SETUP *req_data)

[Parameters]
 Parameter Description

USB_SETUP *req_data Request data storage pointer address
[Return value]
 None

[Description]
 This function is called if request decoded in the class request process is “Set

Control Line State”. This function calls the NULL packet transmission function for
endpoint 0 (usbf78k0r_sendnullEP0).

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 39
July 20, 2010

usbf78k0r_buff_init

[Overview]
 Initializes the FIFO for user data

[C description format]
 void usbf78k0r_buff_init(void)

[Parameters]
 None

[Return value]
 None

[Description]
 This function initializes the FIFO for communication class user data by calling FIFO

clear function (usbf78k0r_fifo_clear) for bulk/interrupt Endpoint and sets the flag
(usbf78k0r_bufinit_flg) that indicates transmission packet size of internal driver as
clear (0) and FIFO initialization to 1.

usbf78k0r_get_bufinit_flg

[Overview]
 Notifies FIFO status for user data

[C description format]
 INT32 usbf78k0r_get_bufinit_flg(void)

[Parameters]
 None

[Return value]
 Symbol Description

DEV_OK Normal status
DEV_ERROR FIFO initialization status

[Description]
 This function notifies the internal driver flag (usbf78k0r_bufinit_flg) status that

indicates the initialization of FIFO. If flag is set as 1, it indicates that FIFO is
initialized and then it notifies the initialization status and clears flag to 0.

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 40
July 20, 2010

usbf78k0r_send_buf

[Overview]
 Transmits user data for communication class

[C description format]
 INT32 usbf78k0r_send_buf(UINT8* data, INT32 len)

[Parameters]
 Parameter Description

UINT8* data Transmission data buffer pointer
INT32 len Transmission data length

[Return value]
 Symbol Description

len (>= 0) Normal transmission data length
DEV_ERROR Abnormal termination

[Description]
 This function transmits NULL packet that calls the NULL packet transmission

function (usbf78k0r_send_null) for bulk/interrupt inn Endpoint, if transmission data
size (Parameter:len) is 0 and size of the packet transmitted earlier (g_send_size) is
Max Packet Size. If transmission data size (Parameter:len) is greater than 0 and
transmission FIFO has null status (return value of usbf78k0r_ep_status is
DEV_OK), this function calls the USB data transmission function
(usbf78k0r_data_send). If data transmission is completed normally, it stores the
size of the data transmitted to transmission completion packet size (g_send_size)
defined in the driver.

usbf78k0r_recv_buf

[Overview]
 Receives user data for communication class

[C description format]
 INT32 usbf78k0r_recv_buf(UINT8* data, INT32 len)

[Parameters]
 Parameter Description

UINT8* data Reception data buffer pointer
INT32 len Reception data length

[Return value]
 Symbol Description

len (>= 0) Normal transmission data length
DEV_ERROR Abnormal termination

[Description]
 This function calls USB data reception function (usbf78k0r_data_receive).

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 41
July 20, 2010

Start of sample application processing

Initialization of FIFO?

Reception process of user data for communication class

Transmission process of user data for communication
class

Normal termination
of transmission

Normal termination of
reception process

Clearing transmitted/received

YES

YES

YES

NO
NO

NO

Chapter 4 Sample Application Specification

This chapter describes the sample application included with the sample driver.

4.1 Overview

The sample application is provided as a simple example of using the USB
communication device class driver and is incorporated in the main routine of the sample
driver. It reads the data received by the USB function controller and then transmits the
read data. Various functions of the sample driver are used during this processing.

4.2 Operation

The sample application performs the processing shown in the following flowchart.

Flowchart for the Sample Application Processing

(1) Verifying FIFO initialization for user data

FIFO status notification function (usbf78k0r_get_bufinit_flg) for user data is called
and if it is in normal state, verification process of transmission processing result is
executed and if it is in the initialization state, transmission/reception result clear
process (clearing transmission/reception process result of user data for
communication class to 0) is executed.

Figure 4-1

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 42
July 20, 2010

(2) Verifying transmission process result of user data for communication class

If the transmission process result of user data for communication class is Normal
completion (and initial state), control shifts over to reception process of user data for
communication class and if it is abnormal termination state, shifts to reception
process result confirmation process.

(3) Reception process of user data for communication class

Buffer address and buffer size storing reception data are specified and the reception
function (usbf78k0r_recv_buf) of user data for communication class is called.

(4) Verifying reception process result of user data for communication class

If reception process result of user data for communication class is Normal
completion (and initial state), control shifts over to transmission process of user data
for communication class and if it is abnormal termination state, shifts to FIFO
initialization confirmation process for user data.

(5) Transmission process of user data for communication class

Buffer size, where data to be transmitted is stored, the transmission data size is
specified and transmission function (usbf78k0r_send_buf) of user data for
communication class is called.

4.3 Using functions

The main.c source file that includes this sample application is coded as follows in order to
call sample driver functions. For details about the functions, see 3. 3 Specifications of
Functions.

(1) Definitions and declarations

2 header files “usbf78k0r.h” and “usbf78k0r_communication.h” are included in order
to use the sample driver functions. User buffer (UserBuf) of a size sufficient to
process the 1 packet data for user data is set. (Maximum packet size of bulk
endpoint in Full Speed USB is set to 64Byte)

(2) Initialization processing of CPU

Initialization processing of CPU function (cpu_init) is called.

(3) Initialization process of USB function controller

USB function controller initialization function (usbf78k0r_init) is called.

(4) Verification of FIFO status for user data

FIFO state notification function (usbf78k0r_get_bufinit_flg) for user data is called and
FIFO status is verified.

(5) Reception process of user data

User data reception function (usbf78k0r_recv_buf) for communication class is called
and result is stored.

(6) Transmitting user data

User data transmission function (usbf78k0r_send_buf) for communication class is
called and result is stored.

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 43
July 20, 2010

(7) Clearing process of transmission/reception process result

If FIFO for user data is initialized, transmission/reception process result stored in (5),
(6) is cleared to 0.

Sample Application Code (Portion)

List 4-1

1 void main(void)
2 {
3 INT32 rcv_ret = 0;
4 INT32 snd_ret = 0;
5
6 cpu_init();
7
8 DI();
9 usbf78k0r_init(); /* initial setting of the USB Function */
10 EI();
11
12 while(1)
13 {
14 if (usbf78k0r_get_bufinit_flg() != DEV_ERROR) {
15 if (snd_ret >= 0) {
16 rcv_ret = usbf78k0r_recv_buf(&UserBuf[0], USERBUF_SIZE);
17 }
18 if (rcv_ret >= 0) {
19 snd_ret = usbf78k0r_send_buf(&UserBuf[0], rcv_ret);
20 }
21 }
22 else {
23 snd_ret = 0;
24 rcv_ret = 0;
25 }
26 }
27 }

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 44
July 20, 2010

Chapter 5 Development Environment

This chapter provides an example of creating an environment for developing an
application program that uses the USB communication device class sample driver for the
78K0R/Kx3-L and the procedure for debugging the application.

5.1 Development environment overview

This section describes the used hardware and software tool products.

5.1.1 Program development

The following hardware and software are necessary to develop a system that uses the
sample driver.

Example of the Components Used in a Program Development Environment

Components Product Example Remark
Hardware Host machine - PC/AT compatible computer

(OS : Windows XP)

Integrated development tool IAR Embedded
Workbench for 78K V4.70

Compiler ICC78K0R V4.70.1 Software

Assembler A78K0R V4.70.1

5.1.2 Debugging

The following hardware and software are necessary to debug a system that uses the
sample driver.

Example of the Components Used in a Debugging Environment

Components Product Example Remark
Host machine - PC/AT compatible computer

(OS : Windows XP)
Target device TK-78K0R/KE3L+USB
In circuit emulator MINICUBE2

Hardware

USB cables - 2 x miniB-to-A connector cable
Integrated development
environment

IAR Embedded
Workbench for 78K V4.70

Software
Debugger IAR C-SPY debugger V4.70.1

5.2 Setting up the Environment

This section describes the preparations required for developing and debugging a system
by using the products described in 5.1 Development Environment.

5.2.1 Preparing Host Environment

Open the dedicated workspace on the host for debugging the sample application.

Table 5-1

Table 5-2

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 45
July 20, 2010

Folder containing INF f iles

Folder containing include files

Folder containing IAR sample projects

Folder containing source files

inf

src

Any folder EW 78K projec t

include

xcl Folder containing Linker command file

(1) Installing the Integrated development environment

Install the IAR Embedded Workbench for 78K. For details, see the IAR Embedded
Workbench for 78K User’s Manual.

(2) Copying drivers

Store the set of files, provided with the sample driver, in any directory without
changing the folder structure. You can store it in any directory on your host system
hard drive.

Folder Structure of the Sample Driver

(3) Loading the CDC driver Workspace

The procedure for using project files included with the sample driver is described
below.

(a) Start the IAR Embedded Workbench for 78K, and then select “Open
Workspace” in the “File” menu.

IAR Embedded Workbench open workspace (1)

(b) In the Open Workspace dialog box, specify the workspace file
(78K0R_Kx3L(CDC).eww) in the EW78K_project folder, which is the sample
driver installation directory.

Figure 5-1

Figure 5-2

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 46
July 20, 2010

IAR Embedded Workbench open workspace (2)

(4) Verify that the correct device is selected

To make sure that the correct device is selected in this project open the Project
options by clicking “Project” “Options” and check that the “78K0R –
uPD78F1026_64” is chosen as Device.

IAR Embedded Workbench General (Project) Options

Figure 5-3

Figure 5-4

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 47
July 20, 2010

USB1: 78K0R USB port
USB2: Debugging port

(5) Verify that the correct debugger is selected

To make sure that the correct Debugger is selected, switch to the Debugger menu in
the Project Options and verify that MINICUBE is selected as Driver.

IAR Embedded Workbench Debugger Options

Do not close the IAR Embedded Workbench for 78K now, you will need it later.

5.2.2 Setting up the target environment

Connect the target device to use for debugging.

(1) Connecting the target device

Connect the two USB ports on the TK-78K0R/KE3L+USB to the USB ports of the
host by using USB cables.

Connecting the TK-78K0R/KE3L+USB

(2) Installing the host driver

The procedure for using the virtual COM port host driver included with the sample
driver is described in the starter kit User’s manual
(R20UT0010ED0100_78k0rkx3l.pdf) chapter USB Driver installation. This
document is also available on the Starter Kit CD-ROM

Figure 5-5

Note

Figure 5-6

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 48
July 20, 2010

5.3 On-Chip Debugging

This section describes the procedure for debugging an application program that was
developed using the workspace described in 5.2 Setting Up the Environment.

For the 78K0R/Kx3-L, a program can be written to its internal flash memory and the
program operation can be checked by directly executing the program using a debugger
(on-chip debugging).

5.3.1 Generating the debug files

To write a program to the target device, you need to generate a machine code file
including debug information from the given CDC sample project. To do so return to the
IAR Embedded Workbench for 78K and generate the output files by clicking “Project”
“Make” or pressing the Make button ().

5.3.2 Download and Debug

After the output files are correctly generated they can be downloaded to the target device
using the IAR C-SPY debugger. To do so just click on “Project” “Download and
Debug” or use the Download and Debug button (). When starting the first debug
session the communication interface has to be configured. The following message will
occur. Press OK to get to the configuration window.

IAR C-SPY debug interface configuration (1)

The Hardware setup window will occur. As the default hardware configuration can be
used for this all settings can be left untouched and only the OK button has to be pressed.

Figure 5-7

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 49
July 20, 2010

IAR C-SPY debug interface configuration (2)

When the download of the program is finished, the IAR C-SPY debugger window will
open up, the CDC sample project will run to the beginning of the main function and will
break at this point.

To start the application, click “Debug” “Go” or press the Go button (). When
running the CDC sample application the first time the Windows new Hardware detection
will recognize the device and the windows driver has to be installed properly.

(1) On the first page of the Found New Hardware Wizard dialog box, select No, not
this time, and then click the Next button.

Figure 5-8

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 50
July 20, 2010

Windows New Hardware Wizard (1)

(2) Select Install from a list or specific location (Advanced) and then click the Next
button.

Windows New Hardware Wizard (2)

(3) Select Search for the best driver in these locations and check the Include this
location in the search. Click the Browse button to locate the driver location.

Figure 5-9

Figure 5-10

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 51
July 20, 2010

Windows New Hardware Wizard (2)

(4) You will find the driver in the Inf folder of the CDC sample project

(5) Press the Next > button.

Windows New Hardware Wizard (3)

(6) The driver installation starts

(7) In the Hardware Installation dialog box, click the Continue Anyway button.

Figure 5-10

Figure 5-11

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 52
July 20, 2010

Windows New Hardware Wizard (4)

(8) The driver will be installed. This might take a while depending on the environment.

(9) On the next page, click the Finish button.

Windows New Hardware Wizard (5)

(10) Open the Windows Device Manager window. In the Ports category, make sure that
NEC Electronics K0R Virtual UART is displayed and check the assigned COM port
number.

Figure 5-12

Figure 5-13

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 53
July 20, 2010

Windows Device Manager

5.4 Checking the Operation

If the target device that has loaded the sample driver is connected to the host via USB,
the result of executing the sample application in the driver can be checked. Start terminal
software (such as Microsoft Hyper Terminal) on the host.

(1) Start Microsoft HyperTerminal™ and select a Connection name and press OK.

Microsoft HyperTerminal™ Connection Description

Figure 5-14

Figure 5-15

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 54
July 20, 2010

(2) Select the connection interface.

Microsoft HyperTerminal™ Connected To

You can check the actual COM port in the Windows Device Manager

(3) Please select the Port settings shown below.

Microsoft HyperTerminal™ COM Properties

Figure 5-16

Note

Figure 5-16

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 55
July 20, 2010

(4) Now the connection is set up and you will see the echoed keyboard inputs in the
Microsoft HyperTerminal™ window.

Microsoft HyperTerminal™ showing echoed keyboard inputs

Figure 5-17

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 56
July 20, 2010

Chapter 6 Using the Sample Driver

This chapter describes information that you should know when further using the USB
Communication Device Class sample driver for the 78K0R/Kx3-L.

6.1 Overview

The sample software can be used in the following two ways.

(1) Customizing the sample driver

Rewrite the following sections of the sample driver as required.

• The sample application section in “main.c”

• The values specified for the various registers in “usbf78k0r.h” file

• The descriptor information in “usbf78k0r_desc.h” file

• Device names and provider information included in the virtual COM port host
driver (inf file)

For the list of files included in the sample driver, see 1.1.3 Files included in the sample
driver.

(2) Using functions

Call functions from within the application program as required. For details about the
provided functions see 3.3 Function Specifications.

6.2 Customizing the sample driver

This section describes the sections to rewrite as required when using the sample driver.

6.2.1 Application section

The code in main.c file below includes a simple example of processing using the sample
driver. The initialization before and after the processing and endpoint monitoring can be
used by including the processing to actually use for the application in this section.

Sample Application Code

1 /*==
2 Main function
3 void main(void)
4
5 Arguments:
6 N/A
7 Return values:
8 N/A
9 Overview:
10 main routine.
11 ==*/
12 void main(void)
13 {
14 INT32 rcv_ret = 0;
15 INT32 snd_ret = 0;
16
17 cpu_init();
18

Remark

List 6-1

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 57
July 20, 2010

19 DI();
20
21 usbf78k0r_init(); /* initial setting of the USB Function */
22
23 EI();
24
25 while(1)
26 {
27 if (usbf78k0r_get_bufinit_flg() != DEV_ERROR) {
28 if (snd_ret >= 0) {
29 rcv_ret = usbf78k0r_recv_buf(&UserBuf[0], USERBUF_SIZE);
30 }
31 if (rcv_ret >= 0) {
32 snd_ret = usbf78k0r_send_buf(&UserBuf[0], rcv_ret);
33 }
34 }
35 else {
36 snd_ret = 0;
37 rcv_ret = 0;
38 }
39 }
40 }

6.2.2 Setting up the device registers

The registers the sample driver uses (writes to) and the values specified for them are
defined in “usbf78k0r.h” file. By rewriting the values in this file according to the actual use
case for the application, the operation of the target device can be specified by using the
sample driver.

6.2.3 Descriptor information

The data the sample driver adds to the USBF during initialization processing (described
in 3.1.3 Descriptor settings) is defined in "usbf78k0r_desc.h" file. Information such as the
attributes of the target device can be specified by using the sample driver by rewriting the
values in this file according to the use in an actual application.

If the vendor ID and product ID of the device descriptor are rewritten, the vendor ID and
product ID must also be rewritten in the host driver to install (the INF file) when
connecting the target device. (For details, see 6.2.4 (3) Changing the vendor and product
IDs).

Any information can be specified for the string descriptor. The sample driver defines
manufacturer and product information, so rewrite the information as required.

6.2.4 Setting up the virtual COM port host driver

The driver that was installed in 5.3.2 Download and Debug can be customized as follows.

(1) Changing the COM port number

When the connection of a USB device is recognized by the host, the host
automatically assigns the COM port number of the device, but the number can be
changed to any number. To change the COM port number by using the host,
perform the following procedure.

(a) Open the Windows Device Manager window and display the “Port” tree in the
device list display.

(b) Select “NEC Electronics K0R Virtual UART (COMn)” (where n is a number
assigned by the host) to display its properties.

(c) Click the “Advanced” button on the “Port Settings” tab.

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 58
July 20, 2010

Virtual UART port settings

(d) In the “Advanced Settings for COMn” dialog box (where n is a number
assigned by the host), select any port number from the “COM Port Number”
drop-down list.

Advanced Virtual UART settings

Make sure not to select a port number that is used for a different device.

Immediately after applying this change, the new port number becomes valid but might not
be reflected immediately in the Device Manager.

(2) Properties

Some information, such as the attributes of the device used by the Windows Device
Manager, can be changed. The information that can be changed is shown below.

 (a) The device name (in the list of devices)

Figure 6-1

Figure 6-2

Remark 1

Remark 2

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 59
July 20, 2010

Windows Device Manager

(c) The device name, manufacturer name, and version (in the device properties)

Virtual UART driver properties

Figure 6-3

Figure 6-4

<1>

<1>

<2>

<3>

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 60
July 20, 2010

Because this information is displayed based on the information included in the host driver
(the INF file), it can be changed by rewriting the INF file. The sections in the INF file,
which correspond to the numbers in the example on the previous page, are shown below.

INF file "K0R_CDC_XP.inf" code

1 ; .inf file (Win2000,XP):
2 [Version]
3 Signature="$Windows NT$"
4 Class=Ports
5 ClassGuid={4D36E978-E325-11CE-BFC1-08002BE10318}
6
7 Provider=%NEC%
8 LayoutFile=layout.inf
9 DriverVer=10/15/1999,5.0.2153.1 <3>
10
11 [Manufacturer]
12 %NEC%=NEC
13
14 [NEC]
15 %NEC78K0RKx3L%=Reader, USB¥VID_0409&PID_01D9
16
17 [Reader_Install.NTx86]
18 ;Windows2000
19
20 [DestinationDirs]
21 DefaultDestDir=12
22 Reader.NT.Copy=12
23
24 [Reader.NT]
25 CopyFiles=Reader.NT.Copy
26 AddReg=Reader.NT.AddReg
27
28 [Reader.NT.Copy]
29 usbser.sys
30
31 [Reader.NT.AddReg]
32 HKR,,DevLoader,,*ntkern
33 HKR,,NTMPDriver,,usbser.sys
34 HKR,,EnumPropPages32,,"MsPorts.dll,SerialPortPropPageProvider"
35
36 [Reader.NT.Services]
37 AddService = usbser, 0x00000002, Service_Inst
38
39 [Service_Inst]
40 DisplayName = %Serial.SvcDesc%
41 ServiceType = 1 ; SERVICE_KERNEL_DRIVER
42 StartType = 3 ; SERVICE_DEMAND_START
43 ErrorControl = 1 ; SERVICE_ERROR_NORMAL
44 ServiceBinary = %12%¥usbser.sys
45 LoadOrde/rGroup = Base
46
47 [Strings]
48 NEC = "NEC Electronics Corporation" <2>
49 NEC78K0RKx3L = "NEC Electronics K0R Virtual UART" <1>
50 Serial.SvcDesc = "USB Serial emulation driver"

(3) Changing the vendor and product IDs

If the vendor and product IDs in the device descriptor are changed, the same
changes must be specified in the host driver (the INF file). Include the vendor and
product IDs in the INF file as shown on line 15 in List 6-2.

Vendor ID: Represented by four digits in hexadecimal format following “VID_”

Product ID: Represented by four digits in hexadecimal format following “PID_”

List 6-2

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 61
July 20, 2010

6.3 Using functions

The code for applications can be simplified and the code size can be reduced because
frequently used and versatile types of processing are provided as defined functions. For
details about each function, see 3.3 Function Specifications. The following sections of the
sample application shown in List can be reused as application examples for various types
of defined processing.

(1) Verifying FIFO state for user data

FIFO state notification function (usbf78k0r_get_bufinit_flg) for user data is called and
FIFO initialization flag “usbf78k0r_bufinit_flg” for user data is monitored on line 27 in
List 6-1. This flag is uniquely defined by the sample driver and if FIFO is initialized in
the Bus Reset process reported by sample driver INTUSB interrupt and Set Line
Coding request process of class request, “1” is set.

“0” is set to clear the error state of transmission/reception process of user data at the
FIFO initialization in the sample application.

(2) User data reception processing

For the sample driver, separate functions that define retrieval processing for the
received data, one for acquiring the data length and another for copying the data,
are provided.

Received data size can be verified before the reception process by calling the
acquisition function (usbf78k0r_rdata_length) of reception data length at the
reception process based on length of the actually received data. Reception process
can also be called on the basis of buffer size when buffer size for user data is
determined. However, take care that maximum data length for one time reception
should be less than the data size that is received in 1 packet.

In the sample application, data received from used endpoint at the received data in
the user data reception function (usbf78k0r_recv_buf) on the line 29 in List 6-1 is
read as a usage example when buffer size is determined.

(3) User data transmission processing

Used endpoint FIFO state is verified at the transmitted data in the user data
transmission function (usbf78k0r_send_buf) on line 32 in List 6-1 and if it is FIFO
Empty, data is written. In case of FIFO Full, it is error end. When size of the data of
the packet transmitted at the earlier and not the transmitted data is Max Packet Size,
NULL packet is transmitted. Since this is characteristic of communication device
class, NULL packet is transmitted to report that it is last data to host when last
packet of data is Max Packet Size.

In the sample application, when process is terminated with the generation of error,
reception process is stopped and transmission process is repeated until the normal
termination of writing of transmission wait data to FIFO. Initialization of FIFO for user
data is the only exception. Transmitted/received data and transmission wait data in
FIFO are discarded when FIFO is initialized by the request from user or host.

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 62
July 20, 2010

Chapter 7 Starter Kit

This chapter describes the TK-78K0R/KE3L+USB starter kit for the 78K0R/Kx3-L, made
by Tessera Technology, Inc.

7.1 Overview

TK-78K0R/KE3L+USB is a kit to develop applications that use the 78K0R/KE3-L. The
entire development sequence from creating a program to building, debugging, and
checking operation can be performed simply by installing development tools and USB
drivers and then connecting either board to the host. This kit uses a monitoring program
that enables debugging without connecting an emulator (on-chip debugging).

Connections of TK-78K0R/KE3L+USB

7.1.1 Features

TK-78K0R/KE3L+USB has the following features.

• A USB miniB connector for the internal USBF

• As small as a business card

• Efficient development by using the board with the integrated development
environment (IAR Embedded Workbench for 78K)

7.2 Specification

The main specifications of the TK-78K0R/KE3L+USB are as follows.

• CPU μPD78F1026 (78K0R/KE3-L)

• Operating frequency 20 MHz (USB:48 MHz)

• Interface USB connector (miniB) x 2

MINICUBE2 connector

Peripheral board connector x 2 (only the pad)

• Supported platform Host: DOS/V computer that has a USB interface

OS: Windows XP

• Operating voltage 5.0 V (internal operation at 3.3 V)

• Package dimensions W89 x D52(mm)

Figure 7-1

USB1: 78K0RUSB port
USB2: Debugging port

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 63
July 20, 2010

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however,

is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed
herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular
and careful attention to additional and different information to be disclosed by Renesas Electronics such as that
disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property
rights of third parties by or arising from the use of Renesas Electronics products or technical information described in
this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other
intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or
in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the
operation of semiconductor products and application examples. You are fully responsible for the incorporation of these
circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for
any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export
control laws and regulations and follow the procedures required by such laws and regulations. You should not use
Renesas Electronics products or the technology described in this document for any purpose relating to military
applications or use by the military, including but not limited to the development of weapons of mass destruction.
Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas
Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever
for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality",
and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality
grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a
particular application. You may not use any Renesas Electronics product for any application categorized as "Specific"
without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for
any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas
Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use
of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended
where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a
Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio
and visual equipment; home electronic appliances; machine tools; personal electronic equipment;
and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster
systems; anti- crime systems; safety equipment; and medical equipment not specifically designed
for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems;medical
equipment or systems for life support (e.g. artificial life support devices or systems), surgical
implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes
that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas
Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage
range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no
liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.
Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety
measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the
failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate
measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final
products or system manufactured by you.

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 64
July 20, 2010

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all
applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the
EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your
noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of
Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its
majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas
Electronics.

78K0R/Kx3-L (on-chip USB controller) USB CDC driver

R01AN0008ED0100 Rev. 1.00 65
July 20, 2010

[MEMO]

Sales Offices www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C.
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya,
Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

R01AN0008ED0100

	Chapter 1 Overview
	1.1 Overview
	1.1.1 Features of the USB function controller
	1.1.2 Features of sample driver
	1.1.3 Files included in the sample driver

	1.2 Overview of 78K0R/Kx3-L
	1.2.1 Applicable products
	1.2.2 Features

	Chapter 2 Overview of USB
	2.1 Transfer Format
	2.2 Endpoints
	2.3 Device Class
	2.4 Requests
	2.4.1 Types
	2.4.2 Format

	2.5 Descriptor
	2.5.1 Types
	2.5.2 Format

	Chapter 3 Sample Driver Specification
	3.1 Overview
	3.1.1 Features
	3.1.2 Supported requests
	3.1.3 Descriptor settings

	3.2 Operation of Each Section
	3.2.1 CPU Initialization
	3.2.2 USB function controller initialization processing
	3.2.3 INTUSB interrupt process

	3.3 Function Specification
	3.3.1 Functions
	3.3.2 Correlation of the functions
	3.3.3 Function features

	Chapter 4 Sample Application Specification
	4.1 Overview
	4.2 Operation
	4.3 Using functions

	Chapter 5 Development Environment
	5.1 Development environment overview
	5.1.1 Program development
	5.1.2 Debugging

	5.2 Setting up the Environment
	5.2.1 Preparing Host Environment
	5.2.2 Setting up the target environment

	5.3 On-Chip Debugging
	5.3.1 Generating the debug files
	5.3.2 Download and Debug

	5.4 Checking the Operation

	Chapter 6 Using the Sample Driver
	6.1 Overview
	6.2 Customizing the sample driver
	6.2.1 Application section
	6.2.2 Setting up the device registers
	6.2.3 Descriptor information
	6.2.4 Setting up the virtual COM port host driver

	6.3 Using functions

	Chapter 7 Starter Kit
	7.1 Overview
	7.1.1 Features

	7.2 Specification

