Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

"Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Application Note

78K0R/Kx3

Sample Program (I²S Bus Interface)

Interface Between Audio Codec and I²S Bus

This document summarizes the operations of the sample program and describes how to use the sample program and how to set and use the I²S bus interface in order to use an audio codec connected to the microcontroller. This sample program is used for transferring audio data between the microcontroller and audio codec as well as recording and playing back voices input from a microphone via the I²S bus interface. The I²C bus interface is used for setting the registers in the audio codec while the SPI interface is used for writing data to or reading data from EEPROM.

Target devices

78K0R/KE3 microcontroller 78K0R/KF3 microcontroller 78K0R/KG3 microcontroller 78K0R/KH3 microcontroller 78K0R/KJ3 microcontroller

CONTENTS

CHAPI	ER I OVERVIEW	3
CHAPT	ER 2 CIRCUIT DIAGRAM	6
2.1	Circuit Diagram	6
2.2	Peripheral Hardware	7
CHAPT	ER 3 SOFTWARE	8
3.1	File Structure	
3.2	On-Chip Peripheral Functions to Be Used	9
3.3	Initial Settings and Operational Overview of Peripheral Hardware to Be	
	Used	11
3.4	Flowcharts	
3.5	I ² S Bus Interface Format	21
CHAPT	ER 4 SETTING METHODS	23
4.1	Settings for Using I ² S Bus Interface	24
4.2	Definitions of Variables and Constants	41
4.3	Initial Settings of Peripheral Hardware to Be Used	45
4.4	Main Processing	63
4.5	INTTM00 Interrupt Servicing	71
4.6	INTCSI00 Interrupt Servicing	74
4.7	INTCSI10 Interrupt Servicing	81
4.8	INTDMA0 Interrupt Servicing	
4.9	INTDMA1 Interrupt Servicing	
4.10	I ² C Bus Interface Write Processing	
CHAPT	ER 5 RELATED DOCUMENTS	. 101
APPEN	IDIX A PROGRAM LIST	. 102
ADDEN	IDIV B BEVICION HICTORY	400

Document No. U19514EJ1V0AN00 (1st edition)
Date Published February 2009 N

- The information in this document is current as of February, 2009. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
 appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of a customer's equipment shall be done under the full
 responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
 customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
 - The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M8E 02.11-1

CHAPTER 1 OVERVIEW

This sample program uses the I²S bus interface to transfer audio data between the microcontroller and an audio codec. The LR clock (LRCLK) for selecting whether to use channel L or channel R of the I²S bus interface is used in the interval timer mode of the timer array unit (TAU) and is output from TO00. CSI00 of channel 0 of serial array unit 0 (SAU0) is used for outputting the clock used for transferring data (BCLK) and for receiving data (SDOUT), and transmitting data (SDIN).

ML2612 made by OKI Semiconductor is used as the audio codec. The I²C bus interface is used for setting the registers in the audio codec and the I²S bus interface is used for transferring audio data. When the record key is pressed, the audio codec receives the voice data input from a microphone and saves the data to EEPROM. When the playback key is pressed, the recorded data is transmitted to the audio codec and the output as sound from the speakers. The SPI interface between the microcontroller and EEPROM uses CSI10 of channel 2 of serial array unit 0 (SAU0) to continuously perform CSI transmission or reception by using the DMA controller. Whether recording or playback is in progress is indicated by an LED (operation-in-progress indicator) to which a signal is output from P72.

In this sample program, voices are recorded and played back by using an audio codec IC applied to the I²S bus interface. Note, however, that voices can also be recorded and played back solely by the microcontroller by using the ADPCM-SP library.

[Operational overview]

Sample program operations are summarized below.

The sample program processing is summarized below.

(1) Main initial settings for peripheral hardware

The main initial settings for the peripheral hardware to be used are described below.

- Disabling interrupts
- Setting the CPU or peripheral hardware clock frequency to the X1 oscillation clock (when used at 20 MHz)
- Setting ports
- Setting the audio codec
 - Supplying a clock to the audio codec
 - Setting a timer for inserting waits in the program
 - Outputting a reset signal to the audio codec
 - Setting the I²C interface used for setting registers
 - Turning on the system by setting the registers in the audio codec
- Setting the I²S bus interface used for the audio data of the audio codec
 - Using TO00 output (16 kHz) for setting the output of LRCLK
 - Setting CSI00
- Setting the SPI interface of EEPROM
 - Setting CSI10 for transmitting and receiving data
 - Setting DMA0 for reception and DMA1 for transmission
 - Erasing all EEPROMs (all 0FFH)
- Starting key data retrieval
- Enabling interrupts

(2) Main processing

The main processing is described below.

- Key processing
- · Setting start of recording
- Setting start of playback
- Setting termination of recording
- Setting termination of playback

(3) Main INTTM00 interrupt servicing (using INTTM00 for synchronizing LRCLK, BCLK, SDOUT, and SDIN)

In INTTM00 interrupt servicing, the I²S bus interface is started to synchronize LRCLK, BCLK, SDOUT, and SDIN.

(4) Main INTCSI00 interrupt servicing (using INTCSI00 for CSI transmission or reception)

The main INTCSI00 interrupt servicing is described below.

- Transmitting or receiving data via the I²S bus interface
- Saving the received data
- Starting writing to EEPROM
- Starting reading from EEPROM

Application Note U19514EJ1V0AN

(5) Main INTCSI10 interrupt servicing (using INTCSI10 for CSI transmission or reception)

The main INTCSI10 interrupt servicing is described below.

- Transmitting instruction bytes to EEPROM
- Transmitting 24-bit addresses to EEPROM
- Starting receiving data from EEPROM by using DMA0 or DMA1
- Starting transmitting data to EEPROM by using DMA1

(6) Main INTDMA0 interrupt servicing (using INTDMA0 for CSI reception)

The main INTDMA0 interrupt servicing is described below.

- Starting reading from EEPROM
- Starting the I2S bus interface
- Selecting EEPROM
- Stopping the I²S bus interface

(7) Main INTDMA1 interrupt servicing (using INTDMA1 for CSI transmission)

The main INTDMA1 interrupt servicing is described below.

- Selecting EEPROM
- Stopping the I2S bus interface

CHAPTER 2 CIRCUIT DIAGRAM

This chapter describes the circuit diagram when using this sample program as well as the peripheral hardware.

2.1 Circuit Diagram

The circuit diagram is shown below.

Notes 1. This is EVDD0 and EVDD1 in the 78K0R/KG3, 78K0R/KH3, and 78K0R/KJ3 microcontrollers.

- 2. This is AVREF0 and AVREF1 in the 78K0R/KF3, 78K0R/KG3, 78K0R/KH3, and 78K0R/KJ3 microcontrollers.
- 3. This is EVsso and EVss1 in the 78K0R/KG3, 78K0R/KH3, and 78K0R/KJ3 microcontrollers.

Cautions 1. Use the microcontroller within a voltage range of 2.7 V \leq VDD \leq 3.6 V.

- 2. Make the potential of the AVss pin the same as that of EVss and Vss, and directly connect the pin to GND.
- 3. Make the potential of EVDD the same as that of VDD.
- 4. Connect REGC to Vss via a capacitor (0.47 to 1 μ F).
- 5. Leave all unused port pins other than those shown in the circuit open, because they function as output ports.

2.2 Peripheral Hardware

The following peripheral hardware is used.

(1) ML2612 audio codec made by OKI Semiconductor

This audio codec is used for inputting voice data input from a microphone and outputting voice data to be output from the speakers.

(2) 25LC1024 EEPROMs (EEPROM1, EEPROM2, EEPROM3, EEPROM4)

These EEPROMs are used for saving voice data.

(3) Keys (key 1, key 2)

The keys are used as inputs for controlling the starting of recording and playback.

(4) LED

An LED is used to indicate the status when key input is disabled during recording and playback.

The following pin functions are used.

	Shared Pin						
Name	Name Function						
P73	Resets the ML2612 audio codec.	KR3					
TO02	Supplies the master clock to the ML2612 audio codec.	P17/TI02					
SCL0	Outputs the I ² C bus interface clock to the registers of the ML2612 audio codec.	P60					
SDA0	Outputs or inputs data for the I ² C bus interface from or to the registers of the ML2612 audio codec.	P61					
TO00	Outputs the LR clock for the I ² S bus interface of the ML2612 audio codec.	P01					
SCK00	Outputs the bit clock for the I ² S bus interface of the ML2612 audio codec.	P10/SCL10					
SI00	Inputs the data for the I ² S bus interface of the ML2612 audio codec.	P11/RxD0					
SO00	Outputs the data for the I ² S bus interface of the ML2612 audio codec.	P12/TxD0					
P74 to P77	Output a chip select signal from the 25LC1024 EEPROMs. (4 EEPROMs are used.)	P74 to P77					
SCK10	Outputs the clock for the SPI interface from the 25LC1024 EEPROMs.	P04/SCL10					
SI10	Inputs the data for the SPI interface to the 25LC1024 EEPROMs.	P03/RxD1/SDA10					
SO10	Outputs the data for the SPI interface to the 25LC1024 EEPROMs.	P02/TxD1					
P72	Outputs the data for indicating the operating status to the LED.	KR2					
KR0	Functions as input from the playback key.	P70					
KR1	Functions as input from the record key.	P71					

CHAPTER 3 SOFTWARE

This chapter describes the structure of the compressed files to be downloaded, the peripheral functions of the microcontroller to be used, the initial settings and an operational overview of the peripheral hardware to be used in the sample program, and flowcharts.

3.1 File Structure

The structure of the compressed files to be downloaded is described below.

File Name	Description	Compressed Files (zip)		
		Included		
		210	PM 1101 11-32	
main.asm (assembly language version) main.c (C language version)	Source file for the hardware initialization processing, main processing, and interrupt servicing of the microcontroller	Note	Note	
I2sApplication.prw	Workspace file for the integrated development environment PM+		•	
I2sApplication.prj	Project file for the integrated development environment PM+		•	

Note The assembly language version includes main.asm and the C language version includes main.c.

Remark

: Only the source file is included.

: The files to be used in the integrated development environment PM+ are included.

3.2 On-Chip Peripheral Functions to Be Used

In this sample program, the following peripheral functions incorporated in the microcontroller are used.

• TO00 output of channel 0 of timer array unit 0 (TAU0):

This output is used at 16 kHz for outputting the LR clock for the l²S bus interface from the ML2612 audio codec.

• Interval timer of channel 1 of timer array unit 0 (TAU0):

This timer is used in the 5 ms interval timer mode for creating wait time in the program.

• TO02 output of channel 2 of timer array unit 0 (TAU0):

This output is used at 10 MHz for supplying the master clock to the ML2612 audio codec.

• CSI00 of channel 0 of serial array unit 0 (SAU0)

This is used at an 833 kHz transfer speed for inputting or outputting the bit data for the I²S bus interface to or from the ML2612 audio codec.

• CSI10 of channel 2 of serial array unit 0 (SAU0)

This is used at a 2.5 MHz transfer speed for inputting or outputting the data for the SPI interface to or from the 25LC1024 EEPROMs.

• Channels 0 (DMA0) and 1 (DMA1) of DMA controller:

These channels are used for transmission and reception via CSI10, which is used as the SPI interface for the 25LC1024 EEPROMs.

· Serial interface IIC0:

This interface is used for setting the registers of the ML2612 audio codec. It is used at a 208 kHz transfer speed for inputting and outputting data via the I²C bus interface.

• Key interrupts:

Key interrupts are used as interrupts for inputs from the record and playback start keys.

• Pin functions:

The following pin functions are used.

	Shared Pin	
Name	Function	
P73	Resets the ML2612 audio codec.	KR3
TO02	Supplies the master clock to the ML2612 audio codec.	P17/TI02
SCL0	Outputs the I ² C bus interface clock to the registers of the ML2612 audio codec.	P60
SDA0	Outputs or inputs data for the I ² C bus interface from or to the registers of the ML2612 audio codec.	P61
TO00	Outputs the LR clock for the I ² S bus interface of the ML2612 audio codec.	P01
SCK00	Outputs the bit clock for the I ² S bus interface of the ML2612 audio codec.	P10/SCL10
SI00	Inputs the data for the I ² S bus interface of the ML2612 audio codec.	P11/RxD0
SO00	Outputs the data for the I ² S bus interface of the ML2612 audio codec.	P12/TxD0
P74 to P77	Output a chip select signal from the 25LC1024 EEPROMs. (4 EEPROMs are used.)	P74 to P77
SCK10	Outputs the clock for the SPI interface from the 25LC1024 EEPROMs.	P04/SCL10
SI10	Inputs the data for the SPI interface to the 25LC1024 EEPROMs.	P03/RxD1/SDA10
SO10	Outputs the data for the SPI interface to the 25LC1024 EEPROMs.	P02/TxD1
P72	Outputs the data for indicating the operating status to the LED.	KR2
KR0	Functions as input from the playback key.	P70
KR1	Functions as input from the record key.	P71

3.3 Initial Settings and Operational Overview of Peripheral Hardware to Be Used

In this sample program, the clock frequency is selected, the timer array unit and serial array unit to be used for the I²S bus interface are set, serial interface IIC0 to be used for the I²C bus interface is set, the serial array unit used for the SPI interface is set, the timer array unit used for wait operations in the program is set, and the key interrupts to be used as record and playback key inputs are set as part of the initial settings of the peripheral hardware to be used.

When the initial settings of the peripheral hardware to be used are complete, the processing shifts to the main processing.

If there is an input from the record key, recording will start. Before starting recording, the audio codec registers must be set via the I²C interface. The voices input from a microphone can then be received from the audio codec via the I²S bus interface as audio data. Every time data equivalent to one page^{Note} is received, that data is transmitted to an EEPROM via the SPI interface. When the four EEPROMs are filled with data transmitted to EEPROM, transmission ends and the audio codec registers are set via the I²C interface to stop recording using the audio codec.

If there is an input from the playback key, playing back the recorded data is started. Before starting playback, the audio codec registers must be set via the I²C interface. Recorded data equivalent to two pages is received from an EEPROM via the SPI interface, which is transmitted as audio data to the audio codec via the I²S bus interface, and then output from the speakers as playback data. Every time data equivalent to one page^{Note} is transmitted, playback data is received from an EEPROM via the SPI interface. Once all the data in the four EEPROMs is received, reception ends and the audio codec registers are set via the I²C interface to stop playback using the audio codec.

The operation-in-progress indicator (LED) connected to P72 is lit to indicate that the microcontroller is operating during recording or playback.

See the status transition diagram shown on the next page for details.

Note A total of six bytes of audio data is transmitted or received in one LR clock, because 24 bits of audio data is included in the range of half the LR clock. The size of one EEPROM page is 256 bytes; but in this sample program, 252 bytes, which is audio data of 42 LR clocks, is assumed to be one page.

Initial settings of peripheral hardware to be used

- Disabling interrupts
- Setting the CPU or peripheral hardware clock frequency to the X1 oscillation clock (when used at 20 MHz)
- Setting ports
- Enabling interrupts
- For the audio codec registers
- Setting TO02 as the output (10 MHz) for supplying the clock to the audio
- Setting IIC0 as the interface for transmitting the values set to the audio codec reaisters
- Transmitting the values set to the audio codec registers
- For the I2S bus interface between the microcontroller and the audio codec
- Using TO00 for outputting LRCLK (16 kHz)
- Setting CSI00 as the interface for BCLK, SDOUT, and SDIN
- For the SPI bus interface between the microcontroller and the EEPROMs
- Setting CSI10
- Setting DMA0 and DMA1 to be used for transmitting and receiving data (not used when transmitting commands)
- Erasing all EEPROMs (when not using interrupt servicing)
- Enabling KR0 and KR1 key interrupts as the record and playback keys

Application Note U19514EJ1V0AN

· Setting the addresses to be written

During playback

and DMA1

interrupts)

Starting transmitting data by using

DMA1 (disabling INTCSI10 interrupts)

• Setting the command for reading data

• Starting receiving data by using DMA0

(disabling INTCSI10

· Setting the addresses to be read

selected.

used

Selecting the EEPROM to be

Stopping I²S operation

Stopping DMA operation

monitored. Which of the four

EEPROMs is to be used is

Acquiring two pages of data

Selecting the EEPROM to be

before starting I²S

Starting I²S operation

 Stopping I²S operation Stopping DMA operation SPI interface --

selected.

used

3.4 Flowcharts

The flowcharts of this sample program are shown below.

<Initial settings of the peripheral hardware to be used after releasing reset>

Caution Set the option byte by using the linker options of the RA78K0R. See the RA78K0R Assembler Package User's Manual for information about how to set the option byte.

The option byte is used to set the following.

- Watchdog timer operation
- Setting of LVI when releasing reset (when starting the power supply)
- On-chip debug operations

<Main processing> [Processing overview] Start The inputs from the record and playback keys are retrieved by using the key interrupt function. When the record key is pressed, the audio codec registers are set and reception of the audio data input from a microphone via the I2S bus interface is started. When the playback key is pressed, the audio codec registers are set and the recorded data saved to the EEPROMs is read to the internal RAM. Other settings of the audio codec registers are made according to the operation status. No Key input? Yes **INTKR** interrupt request cleared No Operation status Stopped? Yes No Key enabled? Yes No eration status Recording erminated? No No peration status Record key Yes Playback pressed? erminated2 (Recording (Playback Yes starts) starts) Audio codec registers Operation-in-progress Operation-in-progress Audio codec set to end recording indicator turned on indicator turned on registers set to end (I2C bus) playback (I2C bus) Key input disabled Key input disabled Operation status: Operation status: Preparation for playback Key input enabled Recording started Audio codec registers Audio codec registers Operation status: set to start recording Key input is enabled set to start playback Stopped only when the (I2C bus) (I²C bus) operation status is Operation-in-progress stopped. The I2S bus interface ready I2S bus interface ready indicator turned off operation-in-progress to receive data to transmit data indicator is set to be turned off when key Writing to EEPROMs Reading from input is enabled. **EEPROMs** set set Reading from I2S bus interface EEPROMs starts operation starts (SPI starts) When recording starts, one page of audio data received via the I2S bus interface is written to an EEPROM. When playback starts, two pages of audio data read from the EEPROMs are set to be transmitted via the I2S bus interface.

<INTTM00 interrupt servicing for LRCLK synchronization>

<INTCSI00 interrupt servicing for I2S bus interface>

<INTCSI10 interrupt servicing for SPI interface>

<INTDMA0 interrupt servicing>

<INTDMA1 interrupt servicing>

<I2C bus interface write processing for setting audio codec registers>

3.5 I'S Bus Interface Format

The format of the I2S bus interface is described below.

[Waveform transmitted to or received from the audio codec]

The waveform transmitted to or received from the audio codec is shown below.

LRCLK:

This is the audio data sampling frequency.

In the program, TO00 output is performed at 16×2 kHz intervals by using the interval timer mode of channel 0 of the timer array unit (TAU). Channel 0 of the timer array unit (TAU) can also generate INTTM00 interrupts and synchronized with BCLK, SDOUT, and SDIN.

BCLK/SDOUT/SDIN:

These are used to input and output audio data.

In the program, successive master transmission or reception is performed by using CSI00 of channel 0 of serial array unit 0 (SAU0). The transfer speed is set to 833 kHz so that three bytes of data can be transferred within half the LRCLK clock. Channel 0 of serial array unit 0 (SAU0) can also generate buffer empty interrupts (INTCSI00) and perform successive transmission and reception.

[Timing in the program]

The timing in the program is described below.

<1> INTTM00 interrupt timing

- During transmission, the data of the nth byte is written to the transmission and reception buffer register (SIO00) (lower eight bits of the SDR00 register) and successive master transmission of CSI00 is restarted.
- During reception, the transmission and reception buffer register (SIO00) is read and the data of byte (n 1) is saved. Dummy data is set to the transmission and reception buffer register (SIO00) and successive master reception of CSI00 is restarted.

<2> Timing of first INTCSI00 buffer empty interrupt

- During transmission, data of byte (n + 1) is written to the transmission and reception buffer register (SIO00).
- During reception, the transmission and reception buffer register (SIO00) is not read because it contains no valid data. Dummy data is set to the transmission and reception buffer register (SIO00) to continue successive reception.

<3> Timing of second INTCSI00 buffer empty interrupt

- During transmission, the data of byte (n + 2) is written to the transmission and reception buffer register (SIO00).
- During reception, the transmission and reception buffer register (SIO00) is read and the data of the nth byte is saved. Dummy data is set to the transmission and reception buffer register (SIO00) to continue successive reception.

<4> Timing of third INTCSI00 buffer empty interrupt

- During transmission, restart of the operation at <5> is awaited without data being transmitted.
- During reception, only the transmission and reception buffer register (SIO00) is read and the data of byte (n + 1) is saved. Restart of the operation at <5> is awaited without dummy data being set.

Application Note U19514EJ1V0AN

CHAPTER 4 SETTING METHODS

This chapter describes the settings for using the I²S bus interface and the initial settings of the peripheral hardware to be used. It also describes the main processing, each interrupt servicing, and the subroutines.

See the 78K0R/Kx3 Sample Program (Initial Settings of Peripheral Hardware to Be Used) LED Lighting Switch Control Application Note for details of how to perform the initial settings.

See each product user's manual (78K0R/KE3, 78K0R/KF3, 78K0R/KG3, 78K0R/KH3, 78K0R/KJ3) for details of how to set the registers.

See the 78K0R Microcontrollers Instructions User's Manual for details about assembler instructions.

4.1 Settings for Using I²S Bus Interface

In this sample program, the I²S bus interface is connected, the TO00 output of channel 0 of the timer array unit (TAU) is set to output the LR clock so that the audio data can be transmitted or received, and CSI00 of channel 0 of serial array unit 0 (SAU0) is set for transmitting or receiving the data.

[Setting of timer array unit (TAU)]

(1) Controlling the input clock of the timer array unit (TAU)

Peripheral enable register 0 (PER0), which enables the use of peripheral hardware macros, is set so that the timer array unit (TAU) can be used. Power consumption and noise can be reduced by stopping clock supply to unused hardware.

Figure 4-1. Format of Peripheral Enable Register 0 (PER0)

Address: F00F0I	1							_
RTCEN DACEN	ADCEN	IIC0EN	SAU1EN	SAU0EN	TAU1EN	TAU	0EN	
						1	ime	r array unit input clock control (TAU0EN)
							_	top supplying the input clock.
							•	The SFRs used by the timer array unit cannot be
							١,	written.
							•	The timer array unit is in the reset status.
							1 S	upply the input clock.
							•	The SFRs used by the timer array unit can be read or
							,	written.

- Cautions 1. Be sure to set TAU0EN = 1 before setting the timer array unit. If TAU0EN = 0, writing to the timer array unit control register is ignored and only the initial values are read (except timer input select register 0 (TIS0), input switch control register (ISC), noise filter enable register 1 (NFEN1), port mode registers 0, 1, 3, 4, 13, 14 (PM0, PM1, PM3, PM4, PM13, PM14), and port registers 0, 1, 3, 4, 13, 14 (P0, P1, P3, P4, P13, P14)).
 - 2. TAU1EN is provided only in the 78K0R/KJ3 and 78K0R/KH3. DACEN is provided only in the 78K0R/KJ3, 78K0R/KH3, 78K0R/KG3, and 78K0R/KF3. Be sure to set non existent bits to "0".

(2) Selecting the operation clock (CK00)

Timer clock select register 0 (TPS0) is set to select which of the two operation clocks (CK00 or CK01) will be supplied to channels 0, 1, and 2 of the timer array unit (TAU). CK01 is selected by using bits 7 to 4 and CK00 is selected by using bits 3 to 0 of TPS0.

In this sample program, the operation clock CK00 is used by channels 0 and 2 and the operation clock CK01 is used by channel 1. CK00 is used by channel 0 as the LR clock of the I²S bus interface.

Figure 4-2. Format of Timer Clock Select Register 0 (TPS0)

Caution Be sure to set bits 15 to 8 to "0".

Remark folk: CPU or peripheral hardware clock frequency

(3) Operation mode and other settings

Timer mode register 00 (TMR00) is used to select the operation clock (MCK) to be used for the timer array unit (TAU), whether to use the input of the timer clock (TCLK), the valid edge of the timer input pin, and the operation mode for the LR clock of the l^2S bus interface.

Figure 4-3. Format of Timer Mode Register 00 (TMR00)

Address: F0190H, F0191H

CKS00 0 0 CCS00 MASTER00 STS002 STS001 STS000 CIS001 CIS000 0 0 MD003 MD002

CKS00 0 0 CCS00 MASTER00 STS002 STS001 STS000	CIS001	CI	S00	00 0	0 MD003 MD002 MD00	01 MD000	
		0					
				inei 03 t	0 operation mode setting Channel 0 operation	TCR count	Stand-
				000		operation	alone
					3		operation
		0	0	0 1/	0 Interval timer mode	Down-count	Possible
		0	1 (0 1/	0 Capture mode	Up-count	Possible
		0	1	1 0	Event counter mode	Down-count	Not
							possible
					0 One-count mode	Down-count	Possible
		1	1 (0 0	· ·	Up-count	Possible
		Ш			mode		
					valid edge selection alling edge		1
		0	+	_	ising edge		
		1	4	_	oth edges (when measurii	na low-level wic	lth)
		l .	`		Start trigger: Falling edge	ig ion lovel me	
					Capture trigger: Rising ed	ge	
		1	1	1 B	oth edges (when measuri	ng high-level wi	dth)
					Start trigger: Rising edge		
				-	Capture trigger: Falling ed	ge	
					0 start trigger and capture		
		0	0		Only software trigger start	is valid (other t	rigger
		_	0	-	sources are deselected).	TIOO nin innut fo	ar both tho
		ľ	U		Use the valid edge of the start and capture triggers.	rioo piir iriput it	or bour trie
		0	1	0	Jse the rising and falling e	edges of the TIC	00 pin
		input separately for the start and capture triggers.					
		1	0		Jse the master channel in		
		L	Ш	-	slave channel is used in a	successive ope	eration).
		_			Setting prohibited		
		m	ode	e ar	n of whether channel n nd whether channel n is t ve operation mode		
		0			ate in standalone mode or		cessive
			_		ation mode as the slave ch		
		1		•	ate as the master channel	in the success	ive
		L		•	ation mode.		
		Cl			0 count clock (TCLK) sele		14000 1 11
		10	_	-	ation clock MCK specified		
		1			edge of the signal input fr		ı
		Cl			0 operation clock (MCK) s		
		L		•	ation clock CK00 set by us		_
		1	U	per	ation clock CK01 set by us	sing the PRS re	egister

Caution Be sure to set bits 14, 13, 5, and 4 to "0".

(4) Enabling timer output

Timer output is enabled for each channel by using timer output enable register 0 (TOE0). For the LR clock of the I²S bus interface, timer output is enabled by using the TOE00 bit of channel 0.

Figure 4-4. Format of Timer Output Enable Register 0 (TOE0)

- Cautions 1. Be sure to set bits 15 to 8 of TOE0 to "0".
 - 2. TOE07 is provided only in the 78K0R/KJ3, 78K0R/KH3, 78K0R/KG3, and 78K0R/KF3. Be sure to set non existent bits to "0".

Remark n: Channel number (n = 0 to 7)

(5) Enabling start of count operations

Starting timer count operations is enabled for each channel by using timer channel start register 0 (TS0). Timer channel start register 0 (TS0) will be cleared when a timer count operation is enabled, because it is a trigger register.

When the operation of the LR clock of the I2S bus interface is started, the TS00 bit of channel 0 is set to 1.

Figure 4-5. Format of Timer Channel Start Register 0 (TS0)

Caution Be sure to set bits 15 to 8 of TS0 to "0".

Remark n: Channel number (n = 0 to 3)

(6) Enabling stopping of count operations

Timer count operations are stopped for each channel by using timer channel stop register 0 (TT0). Timer channel stop register 0 (TT0) will be cleared when a timer count operation is stopped, because it is a trigger register.

When the operation of the LR clock of the I2S bus interface is stopped, the TT00 bit of channel 0 is set to 1.

Figure 4-6. Format of Timer Channel Stop Register 0 (TT0)

[Setting of serial array unit 0 (SAU0)]

(1) Controlling the input clock of serial array unit 0 (SAU0)

Peripheral enable register 0 (PER0), which enables the use of peripheral hardware macros, is set so that serial array unit 0 (SAU0) can be used. Power consumption and noise can be reduced by stopping clock supply to unused hardware.

Figure 4-7. Format of Peripheral Enable Register 0 (PER0)

Address: F00F0H

RTCEN DACEN ADCEN IIC0EN SAU1EN SAU0EN TAU1EN TAU0EN

Serial array unit 0 input clock control (SAU0EN)

O Stop supplying the input clock.

• The SFRs used by serial array unit 0 is in the reset status.

Serial array unit 0 is in the reset status.

1 Supply the input clock.

• The SFRs used by serial array unit 0 can be read or written.

- Cautions 1. Be sure to set SAUmEN = 1 before setting serial array unit m. If SAUmEN = 0, writing to the serial array unit m control register is ignored and only the initial values are read (except input switch control register (ISC), noise filter enable register (NFEN0), port input mode register (PIM0), port output mode register (POM0), port mode registers (PM0, PM1), and port registers (P0, P1)).
 - 2. Set the SPSm register at least four clocks after setting the PER0 register to "1".
 - 3. TAU1EN is provided only in the 78K0R/KJ3 and 78K0R/KH3. DACEN is provided only in the 78K0R/KJ3, 78K0R/KH3, 78K0R/KG3, and 78K0R/KF3. Be sure to set non existent bits to "0".

Remark m: Unit number (m = 0, 1)

(2) Selecting the operation clock (CK00)

Serial clock select register 0 (SPS0) is set to select which of the two operation clocks (CK00 or CK01) will be supplied to both channels 0 and 2 of serial array unit 0 (SAU0). CK01 is selected by using bits 7 to 4 and CK00 is selected by using bits 3 to 0 of SPS0.

In this sample program, the operation clock CK00 is used both by channels 0 and 2. CK00 is used by channel 0 for the I²S bus interface.

Address: F0126H, F0127H 0 0 0 0 0 0 0 0 PRS013 PRS012 PRS011 PRS010 PRS003 PRS002 PRS001 PRS000 Operation clock (CK00) selection 0 0 fclk 0 0 0 0 1 fcьк/2 0 1 0 fclk/2² 0 1 1 fclк/2³ 0 1 0 0 fclк/2⁴ 0 0 1 0 1 fclk/2⁵ 0 1 0 fclк/2⁶ 1 0 1 1 1 fclk/27 fclk/28 0 0 0 0 fclk/2^s 0 1 0 1 0 fclk/2¹⁰ 1 1 0 1 1 fclk/2¹¹ 1 1 1 INTTM02 Other than Setting prohibited above Operation clock (CK01) selection (not used in this sample program) 0 0 0 fclk 0 0 0 1 fclk/2 1 0 fclk/2² 0 0 0 fclk/23 0 1 1 0 1 0 0 fclk/2⁴ 1 0 1 fclк/2⁵ 0 0 1 1 0 fclк/2⁶ 1 1 fclk/2⁷ 0 1 0 0 fclk/2⁸ 1 0 0 0 1 fclk/29 1 0 fclk/2¹⁰ 0 fclk/2¹¹ 0 1 1 INTTM02 1 1 1 Other than Setting prohibited above

Figure 4-8. Format of Serial Clock Select Register 0 (SPS0)

Cautions 1. Be sure to set bits 15 to 8 to "0".

2. Set the SPS0 register at least four clocks after setting the PER0 register to "1".

Remark folk: CPU or peripheral hardware clock frequency

(3) Operation mode and other settings

Serial mode register 00 (SMR00) is used to select the operation clock (MCK) to be used for CSI00 of serial array unit 0 (SAU0), whether to use the input of the serial clock (SCK), the start trigger, the operation mode (CSI, UART, I²C), and the interrupt source for data transmission and reception via the I²S bus interface.

Address: F0110H, F0111H CKC00 CCS00 0 0 0 0 0 STS00 0 SIS000 1 0 0 MD002 MD001 MD000 Channel 0 interrupt source selection Transfer completion interrupt Buffer empty interrupt Channel 0 operation mode setting CSI mode 0 1 UART mode 1 0 Simplified I²C mode 1 Setting prohibited Control of inverting the level of data received in channel 0 in UART mode (not used) O Detect the falling edge as the start bit. The input communication data is retrieved as is. Detect the rising edge as the start bit. The input communication data is inverted and then retrieved. Start trigger source selection Only the software trigger is valid (selected in CSI, UART transmission, or simplified I2C mode). 1 Valid edge of the RxD pin (selected during UART reception) Channel 0 transfer clock (TCLK) selection Operation clock MCK is divided according to the ratio specified by using the CKS00 bit. 1 Clock input from the SCK pin (slave transfer in CSI mode) Channel 0 operation clock (MCK) selection O Prescaler output clock CK00 set by using the PRS register Prescaler output clock CK01 set by using the PRS register

Figure 4-9. Format of Serial Mode Register 00 (SMR00)

Caution Be sure to set bits 13 to 9, 7, 4, and 3 to "0" and bit 5 to "1".

(4) Setting division of the operation clock

Division of the operation clock (MCK) to be used for CSI00 of serial array unit 0 (SAU0) is set by using the higher seven bits of serial data register 00 (SDR00), a 16-bit register. Note that the lower eight bits of serial data register 00 (SDR00) function as the transmission and reception data register (SIO00).

Address: FFF10H, FFF11H (SDR00), FFF12H, FFF13H (SDR01)

Operation clock (MCK) division setting (SDR00[15:9], SDR01[15:9])

O 0 0 0 0 0 0 0 0 MCK/2

0 0 0 0 0 0 1 MCK/4

0 0 0 0 0 1 MCK/8

0 0 0 0 1 MCK/8

0 0 0 1 MCK/2

1 1 1 1 1 1 0 MCK/254

1 1 1 1 1 1 1 MCK/256

Figure 4-10. Format of Serial Data Register 00 (SDR00)

Caution Be sure to set bit 8 to "0".

(5) Setting communication operations

Communication operations are set by using serial communication setting register 00 (SCR00). SCR00 is used to specify settings such as the data transmission and reception mode, the data and clock phases, and the data length.

Figure 4-11. Format of Serial Communication Setting Register 00 (SCR00)

Caution Be sure to set bits 11, 6, and 3 to "0" and bit 2 to "1".

(6) Setting the initial output level

The initial output level of serial array unit 0 (SAU0) in CSI transmission and reception is set by using serial output register 0 (SO0).

For data transmission and reception via the I²S bus interface, both the CK00 and SO00 bits of channel 0 are set to 1 in the initial settings of the peripheral hardware to be used.

Figure 4-12. Format of Serial Output Register 0 (SO0)

Caution Be sure to set bits 15 to 12 and 7 to 4 of SO0 to "0". CKO03 and SO03 are provided only in the 78K0R/KJ3 and 78K0R/KH3 microcontrollers. CKO01 and SO01 are provided only in the 78K0R/KJ3, 78K0R/KH3, 78K0R/KG3, and 78K0R/KF3 microcontrollers. When they are not provided, be sure to set CKO01, CKO03, SO01, and SO03 to "1".

(7) Enabling or stopping the output of serial communication

Serial communication by CSI00 of serial array unit 0 (SAU0) is enabled or stopped by using serial output enable register 0 (SOE0). The value reflected as a result of communication is output from the serial data output pin for channels for which serial output has been enabled.

For data transmission via the I²S bus interface, the SOE00 bit of channel 0 is set to 1 when the output of CSI00 transmission is enabled in the initial settings of the peripheral hardware to be used.

Figure 4-13. Format of Serial Output Enable Register 0 (SOE0)

Caution Be sure to set bits 15 to 4 of SOE0 to "0". SOE03 is provided only in the 78K0R/KJ3 and 78K0R/KH3 microcontrollers. SOE01 is provided only in the 78K0R/KJ3, 78K0R/KH3, 78K0R/KG3, and 78K0R/KF3 microcontrollers. Be sure to set non existent bits to "0".

Application Note U19514EJ1V0AN

(8) Enabling start of serial communication and counting

Starting serial communication and counting by CSI00 of serial array unit 0 (SAU0) is enabled for each channel by using serial channel start register 0 (SS0). Serial channel start register 0 (SS0) will be cleared when serial transmission or reception is enabled, because it is a trigger register.

When data transmission or reception via the I²S bus interface starts, the SS00 bit of channel 0 (CSI00) is set to 1.

Figure 4-14. Format of Serial Channel Start Register 0 (SS0)

Caution Be sure to set bits 15 to 4 of SS0 to "0".

(9) Enabling stopping of serial communication and counting

Stopping communication and counting is enabled for each channel by using serial channel stop register 0 (ST0). Serial channel stop register 0 (ST0) will be cleared when serial transmission or reception is stopped, because it is a trigger register.

When data transmission or reception via the I²S bus interface stops, the ST00 bit of channel 0 (CSI00) is set to 1.

Address: F0124H, F0125H (ST0)

0 0 0 0 0 0 0 0 0 0 0 0 0 ST03 ST02 ST01 ST00

Channel 0 operation stop trigger

Do not operate as a trigger.

Stop communication.
(Communication stops by retaining the values of the control and shift registers and the statuses of the serial clock I/O pins, serial data output pin, and error flags FEF, PEF, and OVF.)

Figure 4-15. Format of Serial Channel Stop Register 0 (ST0)

Caution Be sure to set bits 15 to 4 of ST0 to "0".

[Example] Enabling support of an I²S bus interface, such as the one shown below (same description as in the sample program)

Successive master transmission and reception is executed by using LRCLK in the interval timer mode of channel 0 of the timer array unit (TAU), outputting TO00 at 16 \times 2 kHz intervals, and using CSI00 of channel 0 of serial array unit 0 (SAU0) for inputting and outputting the audio data of BCLK, SDOUT, and SDIN.

Setting procedure

- <1> Performing initial setting of the port output latch for timer array unit 0 (setting P01 to 1)
- <2> Setting the port mode for timer array unit 0 (setting PM01 to 0)
- <3> Supplying the input clock to timer array unit 0 (setting TAU0EN to 1)
- <4> Selecting the operation clock of timer array unit 0 (TPS0)
- <5> Setting the operation mode of channel 0 of timer array unit 0 (TMR00)
- <6> Setting the timer counter of channel 0 of timer array unit 0 (TDR00)
- <7> Supplying the input clock to serial array unit 0 (setting SAU0EN to 1)
- <8> Selecting the operation clock of channel 0 of serial array unit 0 (SPS0)
- <9> Setting the transfer clock of channel 0 of serial array unit 0 (SDR00)
- <10> Setting the operation mode of channel 0 of serial array unit 0 (SMR00)
- <11> Setting the initial data output of channel 0 of serial array unit 0 (SO00)
- <12> Enabling the output of channel 0 of serial array unit 0 (SOE0)
- <13> Performing initial setting of the port output latch for channel 0 of serial array unit 0 (P10, P12)
- <14> Setting the port mode for channel 0 of serial array unit 0 (PM10, PM11, PM12)
- <15> Starting the operation of channel 0 of serial array unit 0 (setting SS00 to 1)
- <16> Clearing the interrupt request flag corresponding to INTCSI00 (setting CSIIF00 to 0)
- <17> Clearing the interrupt mask flag corresponding to INTCSI00 (CSIMK00)
- <18> Executing the EI instruction and enabling interrupts
- <19> Setting the serial data register of serial array unit 0 (SDR00)
- <20> Setting the communication format of channel 0 of serial array unit 0 (SCR00)
- <21> Enabling the timer output of channel 0 of timer array unit 0 (setting TOE00 to 1)
- <22> Clearing the interrupt request flag corresponding to INTTM00 (setting PIF0 to 0)
- <23> Clearing the interrupt mask flag corresponding to INTTM00 (PMK0)
- <24> Starting the operation of CSI00 of channel 0 of serial array unit 0 (setting SS00 to 1)
- <25> Setting the initial output of the port output latch of channel 0 for timer array unit 0 (setting P01 to 0)
- <26> Starting the operation of channel 0 of timer array unit 0 (setting TS00 to 1)
- <27> Setting dummy data to SIO00 of channel 0 of serial array unit 0

Steps <1> to <27> above correspond to steps <1> to <27> on the next page.

Program example in assembly language (same description as in the sample program)

```
···(omitted)···
       ; Port 0 settings
 <1>
          MOV
                          #00011010B
                                             ;Output latches of POO, PO2, PO5, and PO6 set
                                             ;to low level and those of PO1, PO3, and PO4 set
                                             ;to high level
 <2>
                                             ;P00 to P06 set as output ports
          VOM -
                PMO,
                          #10000000B
       ···(omitted)···
          ; Timer array unit timer clock selection
 <3>
          SET1 ! TAUOEN
                                            ;Input clock supplied to the timer array unit
 <4>-
         --- MOV! TPSOL,
                          #10010000B
                                            ;Operation clock selection
                          ; | | | | ++++---- CK00: fCLK
                          ;++++---- CK01: fCLK/2^9
       ···(omitted)···
 <5>
          MOVW AX,
                          #0000000000000000B ;Operation mode setting
                              ||||||||+++- MD003 to MD000: Interval timer mode
                                 ||||++---- <Fixed to 00>
                               |||||++---- CIS001 and CIS000: Unused
                          ;
                                +++---- STS002 to STS000: Only software trigger start
                          ;
                          ; |
                                                              enabled
                          ;
                                  ----- MASTER00: Standalone operation
                                  ----- CSS00: Macro clock MCK specified by using the
                          ;
                          ;
                                                    CKS00 bit
                                     ----- <Fixed to 00>
                          ;+----- CKS00: Operating clock CK00 set by using the
                                                    PRS register
          MVVOM
                !TMR00,
                         AX
          WV/OM.
                TDR00.
                          #625-1
                                            ;Interval set: 16 kHz output (32 kHz)
 <6>
       ···(omitted)···
          -SET1
                !SAUOEN
                                             ; Input clock of the serial array unit supplied
 <7>
                                             ;Waiting
          NOP
          NOP
          NOP
          NOP
                          #0000000B
                                            ;Operation clock selection: fCLK
 <8>
          -MOV
                 !SPSOL,
                          ; | | | | ++++----- PRS003 to PRS000: fCLK
                          ;++++----- PRS013 to PRS010: Unused
          WVOM-
                SDR00,
                                            ;Bits 15 to 7: Transfer clock set (833 kHz)
 <9>
                          #(12-1) shl 9
<10>
                          #0000000000100001B;Operation mode selected: CSI mode
          MOVW AX,
                          ;|||||||||+- MD000: Buffer empty interrupt
                                 ||||||++-- MD002 and MD001: CSI mode
                                 ||||+++--- <Fixed to 100>
                               |||||+---- SIS000: Unused
                          ;
                          ;
                                 ||+---- <Fixed to 0>
                                     ----- STS00: Only software trigger enabled (fixed
                          ;
                          ;
                                                    in CSI mode)
                          ; [
                                     ----- <Fixed to 00000>
                            +----- CSS00: Transfer clock set to a clock obtained
                          ;
                                                    by dividing operation clock MCK as
                          ;
                                                    specified by using the CKS00 bit
                          ; |
                               ----- CKS00: Operation clock set to prescaler
                                                    output clock CK00 set by using the
                                                    PRS register
          MOVW
               !SMR00,
                          AΧ
       ···(omitted)···
```

```
;Initial data output
<11>
             ; MOVW AX,
                             #0000000100000001B
                                                 ;Setting of initial outputs of the SO and SCK pins
                             ;|||||||++++++---- S00n to S000: Used for transmission
                                  ++++---- CKOn to CKOO: Serial clock output of channels
                                                                  n to 0
             ; MOVW ! SOO,
                             AX
          ···(omitted)···
<12>
            SET1 SOEOL. 0
                                                   ;Output enabled
<13>
             SET1
                  P_SCK00
                                                   ;SCK00 latch: High level
<14>
             CLR1
                   PM_SCK00
                                                   ;SCK00 pin output set
<14>-
             SET1
                   PM_SI00
                                                   ;SI00 pin input set
<13> ··· <14> ···
             SET1
                   P S000
                                                   ;SO00 latch: High level
             CLR1
                   PM_SO00
                                                   ;SO00 pin output set
<15>.
             SET1
                   SSOL.0
                                                   ;CSI00 operation starts (trigger bit)
<16>
                   CSIIF00
                                                   ;INTCSI00 interrupt request cleared
             CLR1
<17>
             CLR1
                   CSIMK00
                                                   ;INTCSI00 interrupt servicing enabled
          ···(omitted)···
<18>....
                                                   ; Enabling interrupts
            ...RT
          ···(omitted)···
          ···(omitted)···
             ;Preparation of the I2S bus interface
                                                   ;CSI00 transmission counter
             MOV
                   RCSI00CNT,#0
                             #(12-1) shl 9
                                                   ;Bits 15 to 7: Transfer clock set (833 kHz)
             MOVW
                  SDR00,
<19>
                             #010000000000111B
             MOVW
                  AX,
                                                 ;Communication format setting
<20>
                                |||||||||+++---- DLS002 to DLS000: 8-bit data length
                                    |||||+----<Fixed to 0>
                                       | ++---- SLC001 and SLC000: Unused (fixed to 0)
                                         ----- <Fixed to 0>
                                      +----- DIR00: Input and output performed MSB first
                                        ----- PTC001 and PTC000: Unused (fixed to 00)
                                                  -- EOC00: Unused (fixed to 0)
                             ;
                                      ----- <Fixed to 0>
                                                    CKP00/DAP00: Phases of data and clock in CSI
                             ;
                             ;
                                                                  mode selected
                                                     [00 selected]
                                           ----- TXE00/RXE00: Only transmission performed
                             ;++
             MOVW
                   !SCR00,
                             #0000000B
             MOV
                   TOOL,
                                                   ;Initial output set to low level
<21>....
                                                   ;Operation of TOOO enabled by a count operation
             SET1
                   TOEOL.O
                                                   ; (LRCLK)
<22>
             CLR1
                   TMIF00
                                                   ;INTTM00 interrupt request cleared
<23>
            -CLR1
                   TMMK00
                                                   ;INTTM00 interrupt servicing enabled
          ···(omitted)···
             ;Starting I2S operation
<24>
                                                   ;CSI00 operation starts (trigger bit)
             SET1 SSOL.0
<25>
             CLR1
                   P_LRCLK
                                                   ;LRCLK operation starts
<26>
            -SET1 TSOL.0
                                                   ;TO00 output operation starts (trigger bit)
<27>
                   SIO00, #0FFH
                                                   ;Dummy data set (INTCSI00 occurs)
             MOV
          ···(omitted)···
```

Remark <1> to <27> above correspond to steps <1> to <27> in the setting procedure.

Program example in C language (same description as in the sample program)

```
....(omitted)....(Before processing the program).... #pragma directive enabling description of the name of a special function register (SFR)
        #pragma SFR
                                             /* Enable description of special function
                                                register (SFR) names */
        #pragma EI
                                             /* Enable description of EI instructions */
        ···(omitted)···(Before processing the program)···
                                      #pragma directive enabling description of the interrupt enable (EI) instruction
          Port 0 settings
<1> ...
                                      /* Output latches of P00, P02, P05, and P06 set to
         ---P0 = 0b00011010;
                                         low level and those of PO1, PO3, and PO4 set to
                                         high level */
          --PM0 = 0b10000000;
                                      /* P00 to P06 set as output ports */
<2>
        ···(omitted)···
           /* Timer array unit timer clock selection */
                                 /* Input clock supplied to the timer array unit */
<3>
           TAU0EN = 1;
<4>
          TPSOL = 0b10010000;
                                      /* Operation clock selection */
                     ||||++++---- CK00: fCLK */
                     ||||++++----- CK01: fCLK/2^9 */
           /*
        ···(omitted)···
           TMR00 = 0b0000000000000000; /* Operation mode setting */
<5>
                     |||||||||||+++---- MD003 to MD000: Interval timer mode */
                         |||||++----- <Fixed to 00> */
                      |||||||++----- CIS001 and CIS000: Unused */
                         | +++---- STS002 to STS000: Only software trigger start
                                                           enabled */
                             ----- MASTER00: Standalone operation */
                            ----- CSS00: Macro clock MCK specified by using
                                                the CKS00 bit */
                          ------<Fixed to 00> */
                     +----- CKS00: Operating clock CK00 set by using
                                                the PRS register */
<6>
          -TDR00 = 625-1;
                                      /* Interval set: 16 kHz output (32 kHz) */
        ···(omitted)···
<7>
          SAUOEN = 1;
                                      /* Input clock of the serial array unit supplied */
          NOP();
                                      /* Waiting */
          NOP();
          NOP();
          NOP();
           SPSOL = 0b0000000;
                                   /* Operation clock selection: fCLK */
<8>
                     ||||++++----- PRS003 to PRS000: fCLK */
                     ++++----- PRS013 to PRS010: Unused */
<9> -
           SDR00 = (12-1) << 9; /* Bits 15 to 7: Transfer clock set (833 kHz) */
<10>
           SMR00 = 0b0000000000100001; /* Operation mode selected: CSI mode */
                      |||||||||||||+--- MD000: Buffer empty interrupt */
                              ||||++--- MD002 and MD001: CSI mode */
                         ||||||+++----- <Fixed to 100> */
                      |||||||+---- SIS000: Unused */
                         ||||+-----<Fixed to 0> */
                           +----- STS00: Only software trigger enabled
                                                (fixed in CSI mode) */
                      ----- CSS00: Transfer clock set to a clock
                                                obtained by dividing operation clock
                                                MCK as specified by using the CKS00
                                                bit */
                                ----- CKS00: Operation clock set to prescaler
                                                output clock CK00 set by using
                                                the PRS register */
```

```
···(omitted)···
          /* Initial data output (at the same time as setting CSI10) */
          SOO = 0b0000000100000001; /* Setting of initial outputs of the SO and SCK pins */
                  |||||||+++++++----- SOOn to SOOO: Used for transmission */
                  ++++++++ CKOn to CKOO: Serial clock output of channels n
                                                       to 0 */
<12>
          SOE0L.0 = 1;
                                      /* Output enabled */
<13> -
       ----P SCK00 = 1;
                                      /* SCK00 latch: High level */
         ---PM_SCK00 = 0;
                                      /* SCK00 pin output set */
<14> -
<14>
         -PM_SI00 = 1;
                                      /* SI00 pin input set */
                                      /* SO00 latch: High level */
        ---P_SO00 = 1;
<13>
         -PM_SO00 = 0;
                                      /* S000 pin output set */
<14>
                                      /* CSI00 operation starts (trigger bit) */
<15>
         -SS0L.0 = 1;
         -CSIIF00 = 0;
                                      /* INTCSI00 interrupt request cleared */
<16>
                                      /* INTCSI00 interrupt servicing enabled */
         CSIMK00 = 0;
<17>
       ···(omitted)···
<18>
        ---- EI
                                      /* Enabling interrupts */
       ···(omitted)···
          /* Preparation of the I2S bus interface */
                                /* CSI00 reception counter */
/* Bits 15 to 7: Transfer clock set (833 kHz) */
          ucI2sByteCouter = 0;
<19>
          SDR00 = (12-1) << 9;
<20>
          SCR00 = 0b010000000000111; /* Communication format setting */
                    |||||||||||+++--- DLS002 to DLS000: 8-bit data length */
                           |||||+----- <Fixed to 0> */
                          |||||++---- SLC001 and SLC000: Unused (fixed to 0) */
                        |||||+-----<Fixed to 0> */
                        ||||+----- DIR00: Input and output performed MSB first */
                        | | ++---- PTC001 and PTC000: Unused (fixed to 00) */
                          ----- EOC00: Unused (fixed to 0) */
                           ------<Fixed to 0> */
                          ----- CKP00/DAP00: Phases of data and clock in
                                                      CSI mode selected */
                                         [00 selected] */
                        ----- TXE00/RXE00: Only reception performed */
                                      /* Operation of TOOO enabled by a count operation
<21>
         TOE0L.0 = 1;
                                         (LRCLK) */
                                      /* INTTM00 interrupt request cleared */
<22>
         -TMIF00 = 0;
         -TMMK00 = 0;
                                      /* INTTM00 interrupt servicing enabled */
<23>
       ···(omitted)···
          /* Starting I2S operation */
                                      /* CSI00 operation starts (trigger bit) */
<24>
          -SS0L.0 = 1;
<25>
         P_LRCLK = 0;
                                      /* LRCLK operation starts */
                                      /* T000 output operation starts (trigger bit) */
<26>
         -TSOL.0 = 1;
<27>
         -SIO00 = 0x0FF;
                                      /* Dummy data set (INTCSI00 occurs) */
       ···(omitted)···
```

Remark <1> to <27> above correspond to steps <1> to <27> in the setting procedure.

4.2 Definitions of Variables and Constants

The variables and constants used in assembly language are defined below.

Port definitions

Port definitions are used to clarify the ports to be used in the program and make it easier to understand the functions of the port and port mode settings.

```
:-----
 Port definitions
;Audio codec reset
        EQU
P RESETB
                    P7.3
                                 ;Reset
                    P7.3
PM7.3
PM_RESETB
            EQU
                                 Reset output
;I2C interface used for setting the registers in the audio codec
P_SCL EQU P6.0 ;SCL0 latch
                                 ;SCL0 output
PM SCL
            EOU
                    PM6.0
                                ;SDA0 latch
P_SDA
           EQU
                    P6.1
                                ;SDA0 I/O
PM_SDA
           EQU
                   PM6.1
; Audio codec I2S bus interface
                               ;LRCLK
P LRCLK
          EQU P0.1
                                ;LRCLK output ;SCK00
            EQU
                    PM0.1
PM_LRCLK
P SCK00
            EQU
                    P1.0
PM_SCK00
           EQU
                   PM1.0
                                ;SCK00 output
                                ;SI00 input
           EQU PM1.1
EOU P1.2
PM_SI00
P_S000
            EQU
                    P1.2
                                 ;S000
           EQU
                                ;SO00 output
                   PM1.2
PM SO00
;Key inputs (used: 2)
        EQU
                               ;KR (P70 and P71 used)
;KR input (PM70 and PM71 used)
                   P7
P KEY
                   PM7
PM_KEY
            EQU
                                ;Playback key input
P_PLAYKY
           EQU
                    P7.0
PM_PLAYKY
            EQU
                    PM7.0
                                Record key
P_RECKY
           EQU
                    P7.1
PM_RECKY
                    PM7.1
                                Record key input
           EQU
;Output to the LED used as an operation-in-progress indicator (used: 1)
P_LED
       EQU P7.2
                                ;Operation-in-progress indicator (active low)
                                 ;Output to the operation-in-progress indicator
PM LED
            EOU
                    PM7.2
                                 ; (LED)
                                 ;LED lit during operation and turned off when
                                 ; key input is possible.
; EEPROM SPI interfaces (used: 4)
       EQU
                    P7
                                 ;Chip select CS (P73 to P77 used)
P CS
PM_CS
            EQU
                    PM7
                                 ; Chip select CS output (PM73 to PM77 used)
P_CS3
           EQU
                    P7.7
                                 ;CS3
PM_CS3
            EQU
                    PM7.7
                                 ;CS3 output
P CS2
           EQU
                    P7.6
                                 CS2
PM_CS2
           EQU
                    PM7.6
                                 ;CS2 output
P CS1
            EOU
                    P7.5
                                 ;CS1
PM_CS1
            EQU
                    PM7.5
                                 ;CS1 output
P_CS0
            EQU
                    P7.4
                                ;CS0
PM CS0
            EOU
                    PM7.4
                                 ;CS0 output
P_SCK10
            EQU
                    P0.4
                                 ;SCK10
PM SCK10
            EQU
                    PM0.4
                                 ;SCK10 output
PM_SI10
            EQU
                    PM0.3
                                ;SI10 input
P_S010
            EQU
                    P0.2
                                 ;S010
                    PM0.2
PM_SO10
            EOU
                                 ;S010 output
```

Definitions of variables and constants

The definitions of variables and constants are largely classified into those related to the operation of the entire system, those related to the operation of the I²S bus interface between the microcontroller and audio codec, those related to the operation of the SPI between the microcontroller and the EEPROMs, and those of the memory area in the internal RAM used for temporarily saving data during recording or playback.

```
:-----
; RAM definitions
DPLAY DSEG SADDR
;Overall operation
                        1 ;Operation status
0 ; Reset
1 ; Stopped
2 ; Recording under execution
3 ; Recording finished
4 ; Preparing for playback started
5 ; Preparing for playback
6 ; Playback under execution
7 ; Playback finished
RPLAYMOD: DS
CRESET EQU
 CRESET
CSTOP EQU
CREC EQU
CREC_END EQU
CRET_ATT
 CREC_END EQU
CPLAY_START EQU
 CPLAY_SET EQU
               EQU
EQU
 CPLAY
 CPLAY_END EQU
;Definitions related to the operation of the I2S bus interface used between the
;microcontroller and audio codec
RCSI00CNT:
               DS
                                            ;Counter for transmitting and receiving 1-byte
                                            ;I2S data
RPLAYINFO DS
FI2SPAGE EQU
                                            ;Playback information
                         RPLAYINFO.7 ; Page being transmitted or received via the I2S
                                           ; bus: Page 1 (0)/page 2 (1)
;Definitions related to the operation of the SPI interface used between the
;microcontroller and EEPROMs
                                           ; Chip select CS setting value of the EEPROMs
           DS 1
DS 1
RP CS:
                        ; Chip select CS setting value of the EEPROMS
; EEPROM transfer sequence
; Reset status
; Write enable signal transmitted
; Instruction bytes transmitted
; Higher 8 bits of 24-bit addresses transmitted
; Middle 8 bits of 24-bit addresses transmitted
; Lower 8 bits of 24-bit addresses transmitted
; Data transmitted and received by using DMA
REEPSEQ:
CEEPSEQ_RESET EQU
 CEEPSEQ_WREN EQU
 CEEPSEQ_INST EQU
CEEPSEQ_ADDRH EQU
 CEEPSEQ_ADDRM EQU
 CEEPSEQ_ADDRL EQU
 CEEPSEQ_DATA EQU
DPLAYP DSEG SADDRP
; Definitions related to the operation of the I2S bus interface used between the
; microcontroller and audio codec
             DS 2
RI2SADDR:
                                            ; Address to which data is transmitted or
                                            received via I2S saved
;Definitions related to the operation of the SPI interface used between the
;microcontroller and EEPROMs
REEPADDR: DS 2
                                           ; EEPROM read or write address (REEPADDR*100H)
         DSEG UNITP
;Memory area of internal RAM
RRECMEM1:
                                             ;Page 1
                DS 3*2*42
                                            ; 42 LRCLK clocks
RRECMEM1E:
                                            ; Last address + 1
RRECMEM2:
                                            ;Page 2
               DS 3*2*42
                                            ; 42 LRCLK clocks
RRECMEM2E:
                                            ; Last address + 1
```

The variables and constants used in C language are defined below.

Port definitions

As in assembly language, port definitions are used to clarify the ports to be used in the program and make it easier to understand the functions of the port and port mode settings.

```
/*-----
   Port definitions
/* Audio codec reset */
#define P_RESETB P7.3 /* Reset */
#define PM_RESETB PM7.3 /* Reset output */
 ^{\prime \star} 12C interface used for setting the registers in the audio codec ^{\star \prime}
#define P_SCL P6.0 /* SCL0 latch #define P_SDA P6.1 /* SDA0 latch #define PM_SDA PM6.1 /* SDA0 I/O */
                                  /* SCL0 latch */
                                  /* SCLO output */
/* SDAO latch */
/* Audio codec I2S bus interface */
/* Key inputs (used: 2) */
#define P_KEY P7 /* KR (P70 and P71 used) */
#define PM_KEY PM7 /* KR input (PM70 and PM71 used) */
#define P_PLAYKY P7.0 /* Playback key */
#define PM_PLAYKY PM7.0 /* Playback key input */
#define P_RECKY P7.1 /* Record key */
#define PM_RECKY PM7.1 /* Record key input */
/* Output to the LED used as an operation-in-progress indicator (used: 1) */
#define P_LED P7.2 /* Operation-in-progress indicator (active low) */
#define PM_LED PM7.2 /* Output to the operation-in-progress
                                       indicator (LED) */
                                   /* LED lit during operation and turned off when key
                                       input is possible. */
/* EEPROM SPI interfaces (used: 4) */
#define PM_S010 PM0.3 /* SCK10 output */
#define P_S010 P0.2 /* S010 */
#define PM_S010 PM0.2 /* S010 output */
                                   /* S010 output */
```

Definitions of variables and constants

As in assembly language, the definitions of variables and constants are largely classified into those related to the operation of the entire system, those related to the operation of the I²S bus interface between the microcontroller and audio codec, those related to the operation of the SPI between the microcontroller and the EEPROMs, and those of the memory area in the internal RAM used for temporarily saving data during recording or playback.

```
/*-----
      RAM definitions
 /* Overall operation */
/* Overall operation */
unsigned char ucPlayMode; /* Operation status
#define CRESET 0 /* Reset
#define CSTOP 1 /* Stopped
#define CREC 2 /* Recording under execution
#define CREC_END 3 /* Recording finished
#define CPLAY_START 4 /* Preparing for playback started
#define CPLAY_SET 5 /* Preparing for playback
#define CPLAY 6 /* Playback under execution
#define CPLAY_END 7 /* Playback finished
 /* Definitions related to the operation of the I2S bus interface used between the
     microcontroller and audio codec */
unsigned char *ucI2sAddress; /* Address to which data is transmitted or received
                                                                           via I2S */
                                                                   /* Counter for transmitting and receiving 1-byte
unsigned char ucI2sByteCouter;
                                                                          I2S data */
boolean bI2sMemoryPage; /* Page being transmitted or received via the
                                                                          I2S bus: Page 1 (0)/page 2 (1) */
/* Definitions related to the operation of the SPI interface used between the microcontroller and EEPROMs */
unsigned short ushEepromAddress; /* EEPROM read or write address (ushEepromAddress*0x100) */
unsigned char ucEepromCs; /* Chip select CS setting value of the EEPROMs */
unsigned char ucEepromSeq; /* EEPROM transfer sequence */
#define CEEPSEQ_RESET 0 /* Reset status
#define CEEPSEQ_WREN 1 /* Write enable signal transmitted
#define CEEPSEQ_INST 2 /* Instruction bytes transmitted
#define CEEPSEQ_ADDR 3 /* Higher 8 bits of 24-bit addresses
transmitted
#define CEEPSEQ_ADDR 4 /* Middle 8 bits of 24-bit addresses
#define CEEPSEQ_ADDRL 5 /* Lower 8 bits of 24-bit addresses transmitted
#define CEEPSEQ_ADDRL 5 /* Lower 8 bits of 24-bit addresses transmitted
#define CEEPSEQ_ADDRL 5 /* Data transmitted and received by using DMA
 /* Definitions related to the operation of the SPI interface used between the
 /* Memory area of internal RAM */
 unsigned char ucMemoryPage1[3*2*42]; /* Page 1 (42 LRCLK clocks) */
 unsigned char ucMemoryPage2[3*2*42]; /* Page 2 (42 LRCLK clocks) */
```

4.3 Initial Settings of Peripheral Hardware to Be Used

The following operations are performed when the initial settings of the peripheral hardware to be used are specified in assembly language.

- <1> Interrupts are disabled.
- <2> The register bank is set.
- <3> The stack pointer is set.
- <4> The CPU or peripheral hardware clock frequency is set to operate on the X1 oscillation clock (20 MHz).
- <5> The ports are set.
- <6> The registers in the audio codec are set.
 - (a) The TO02 output of channel 2 of the timer array unit (TAU) is set to supply the clock to the audio codec.
 - (b) The interval timer mode of channel 1 of the timer array unit (TAU) is set to insert the wait operations to be used in the program.
 - (c) A wait is inserted until the power supply of the audio codec stabilizes and the audio codec is reset.
 - (d) Serial interface IIC0 is used to enable the registers in the audio codec to be set.
 - (e) The system is turned on by setting the registers in the audio codec.
- <7> The statuses of the operations used in the program are set to "stopped".
- <8> The I²S bus interface for the audio data of the audio codec is set.
 - (a) The TO00 output of channel 0 of the timer array unit (TAU) is set to output LRCLK.
 - (b) CSI00 of channel 0 of serial array unit 0 (SAU0) is set to transmit and receive data.
- <9> The SPI interface of the EEPROMs is set.
 - (a) DMA channel 0 is set to receive data via the CSI used as the SPI interface.
 - (b) DMA channel 1 is set to set dummy data when transmitting or receiving data via the CSI used as the SPI interface.
 - (c) CSI10 of channel 2 of serial array unit 0 (SAU0), which is used as the SPI interface, is set.
 - (d) All EEPROMs are erased (all set to 0FFH).
- <10> Key interrupts are enabled and key retrieval is started.
- <11> The operation-in-progress indicator is turned off.
- <12> Interrupts are enabled.
- <13> The program shifts to the main processing.

```
Initial settings of the peripheral hardware to be used
       XMAIN CSEG UNIT
       RESET_START:
           Disabling interrupts
<1> -----
          ....DI
           Register bank setting
<2> .....
           ----SEL RB0
            Stack pointer setting
<3> -----
          ··········MOVW SP,
                         #LOWW STACKTOP ; Set the stack pointer
            Clock frequency settings
            Setting so that operations can be performed using the 20 MHz X1 oscillator
             MOV CMC,
                           #01000001B
                                          ;Clock operation mode
<4>
                           ;||||||+----- AMPH: 10MHz<fMX\u20MHz
                              | | +++---- <000>
                           ; | | | +----- OSCSELS: P123 and P124 pins set as input ports
                           ; | | +---- <0>
                           ;++---- EXCLK/OSCSEL: X1 oscillation mode (20 MHz)
             VOM
                  CSC,
                           #01000000B
                                          ;Clock operation status control
                                    ----- HIOSTOP: Internal high-speed oscillator
                           ; | | | | | | +-
                                                     operated
                           ; | | ++++---- <00000>
                           ; +---- XTSTOP: XT1 oscillator stopped
                           ;+----- MSTOP: X1 oscillator operated
             MOVO SMC,
                           #0000001B
                                          Operation speed mode
                           ;||||||+---- FSEL: Operated at a frequency exceeding 10 MHz
                           ;++++++-----<00000>
             MOV
                                           Oscillation stabilization time: 2^15/fX
                  OSTS,
                           #00000101B
       HRST300:
             NOP
             BF
                  OSTC.2, $HRST300
                                           ; Waiting for clock oscillation to stabilize
             VOM
                  CKC,
                           #00011000B
                                          ;Clock selection
                           ;|||||+++----- MDIV2-0: CPU/peripheral hardware
                                                    clock (fCLK) = fMX
                                         --- <1>
                           ; | | | | +-
                             ||+---- MCM0: High-speed system clock (fMX)
                                         --- <R>
                             +----- CSS: Main system clock (fMAIN) = fCLK
                                        ---- <R>
<5>
             Port 0 settings
             MOV P0, #00011010B
                                           ;Output latches of POO, PO2, PO5, and PO6 set
                                            ;to low leveland those of P01, P03, and P04 set
                                            ;to high level
             MOV PM0, #1000000B
                                            ;P00 to P06 set as output ports
                                            ;P01: Output LRCLK to the audio codec
                                            ;P02: Output SO10 to the EEPROM
```

```
;P03: Input SI10 from the EEPROM
                                     ;P04: Output SCK10 to the EEPROM
                                     ; P00, P05, and P06: Unused
Port 1 settings
MOV P1, #00000000B ;Output latches of P10 to P17 set to low level MOV PM1, #00000000B ;P10 to P17 set as output ports
                                     ;P10 to P17 set as output ports
                                     ;P10: Output SCK00 to the audio codec
                                     ;P11: Input SI00 from the audio codec
                                     ;P12: Output S000 to the audio codec
                                     ;P13 to P17: Unused
Port 2 settings
 MOV P2, \#00000000B ;Output latches of P20 to P27 set to low level MOV PM2, \#00000000B ;P20 to P27 set as output ports
                                     ;P20 to P27: Unused
Port 3 settings
 MOV P3, \#00000000B ;Output latches of P30 and P31 set to low level MOV PM3, \#11111100B ;P30 and P31 set as output ports
                                     ;P30 and P31: Unused
Port 4 settings
______
 MOV P4, \#00000000B ;Output latches of P40 to P47 set to low level MOV PM4, \#00000000B ;P40 to P47 set as output ports
                                    ;P40 to P47 set as output ports
                                     ;P40 to P47: Unused
Port 5 settings
 MOV P5, \#00000000B ;Output latches of P50 to P57 set to low level MOV PM5, \#00000000B ;P50 to P57 set as output ports
                                     ;P50 to P57 set as output ports
                                     ;P50 to P57: Unused
Port 6 settings
MOV P6, #0000000B
                                    ;Output latches of P60 to P67 set to
                                     ;low level
 MOV PM6,
               #0000000B
                                     ;P60 to P67 set as output ports
                                     ;P60: Output SCLO for setting the
                                     ; registers in the audio codec
                                     ;P61: Input and output SDA0 for
                                     ; setting the registers in the audio codec
                                     ;P62 to P67: Unused
Port 7 settings
 MOV P7, #0000000B
                                     ;Output latches of P70 to P77 set to
                                     ;low level
 MOV PM7, #0000011B
                                     ;P70 and P71 set as input ports and
                                     ;P72 to P77 set as output ports
                                     ;P70: Playback key input
                                     ;P71: Record key input
                                     ;P72: Output a signal to the
                                     ; operation-in-progress indicator (LED)
```

```
;P73: Output a reset signal to the audio codec
                                   ;P74: Output CS0 to the EEPROM
                                  ;P75: Output CS1 to the EEPROM
                                  ;P76: Output CS2 to the EEPROM
                                   ;P77: Output CS3 to the EEPROM
   Port 8 settings
;-----
               #00000000B ;Output latches of P80 to P87 set to low level #00000000B ;P80 to P87 set as output ports
    MOV P8,
    MOV PM8,
                                  ;P80 to P87: Unused
   Port 11 settings
                  #0000000B
    MOV P11,
                                 Output latches of P110 and P111 set
    // ito low level

MOV PM11, #11111100B /P110 and P111 Set as output ports
   Port 12 settings
                #00000000B ;Output latch of P120 set to low level
    MOV P12,
    MOV
         PM12,
                   #11111110B
                                  ;P120 set as an output port
                                  ;P120: Unused
   Port 13 settings
    MOV P13, #00000000B ;Output latches of P130 and P131 set
                                  ;to low level
    MOV PM13, #11111100B ;P131 set as an output port
                                 ;P130 and P131: Unused
    Port 14 settings
    MOV P14, \#00000000B ;Output latches of P140 to P145 set
                                  ;to low level
                               ;P140 to P145 set as output ports
    MOV PM14, #11000000B
                                 ;P140 to P145: Unused
   Port 15 settings
    MOV P15, #0000000B
                                  ;Output latches of P150 to P157 set
                                  ;to low level
    MOV PM15, #00000000B ;P150 to P157 set as output ports
                                  ;P150 to P157: Unused
```

```
<6>
                   Settings of the registers in the audio codec
             The following operations are performed.
              ·Supplying a clock to the audio codec
              ·Setting a timer for inserting waits in the program
              \cdotOutputting a reset signal to the audio codec
              ·Using the I2C interface for setting the registers in the audio codec
   (a)
             MOV
                     RPLAYMOD, #CRESET
                                             ;Reset
              ; Timer array unit timer clock selection
                                          ;Input clock supplied to the timer array unit
              SET1
                     !TAU0EN
                              #10010000B
             VOM
                      TPSOL.
                                            Operation clock selection
                               ; | | | | ++++---- CK00: fCLK
                               ;++++----- CK01: fCLK/2^9
              ; Clock supply to the audio codec
              ; TO02 output (10 MHz)
                               #0000000000000000B;Operation mode setting
              MOVW
                     AX,
                               ;||||||||||+++- MD023 to MD020: Interval timer mode
                                    |||||++---- <Fixed to 00>
                               ; |
                                   ||||++---- CIS021 and CIS020: Unused
                               ;|||||+++---- STS022 to STS020: Only software trigger
                               ; | | | | |
                                                                 start enabled
                                  | | +---- MASTER02: Standalone operation
                               ;
                                  |+---- CSS02: Macro clock MCK specified by using
                               ; | |
                                                       the CKS02 bit
                               ; | ++----- <Fixed to 00>
                               ;+----- CKS02: Operation clock CK00 set by using
                                                       the PRS register
             MVVOM
                     !TMR02, AX
             MVVM
                      TDR02,
                              #0
                                                ;Interval setting: 10 MHz output (20 MHz)
              SET1
                      TOEOL.2
                                                ;TO02 output
                      TSOL.2
                                                ;Operation starts (trigger bit)
              ; Waits used in the program
              ; Using TM01
                            ______
    (b)
                               #1000000000000000B;Operation mode setting
             MOVW
                     AX.
                               ;||||||||||+++- MD013 to MD010: Interval timer mode
                               ;|||||||++---- <Fixed to 00>
                               ; | | | | | | | ++----- CIS011 and CIS010: Unused
                               ; | | | | | +++----- STS012 to STS010: Only software trigger
                               ; | |
                                                                 start enabled
                                      ----- MASTER01: Standalone operation
                               ; | | | | +-
                                  +----- CSS01: Macro clock MCK specified by using
                               ; | |
                                                       the CKS01 bit
                               ; | | |
                               ; | ++----- <Fixed to 00>
                               ;+----- CKS01: Operation clock CK01 set by using
                                                       the PRS register
             ...MOVW
                     !TMR01, AX
    (c)
              ; Waiting for power supply to stabilize
                      TDR01, #195*210/5-1
                                             ;Interval set (210 ms)
                      TSOL. 1
                                                ;Timer operation starts
             SET1
              CLR1
                      TMIF01
                                                ;INTTM00 interrupt request cleared
                      TMIF01, $$
              ;Reset
                      P_RESETB
              CLR1
```

```
;Waiting about 5 us (calculated by 50 ns*5*Breg)
                                  #5000/50/5
                        В,
      HRST550:
               DEC
                                              ;1clk
               BNZ
                        $HRST550
                                              ;4clk(Z=0)
               SET1
                        P_RESETB
               ;Waiting for power supply to stabilize
                        TDR01, #195*160/5-1;Interval set (160 ms)
                                              ;Timer operation starts
               SET1
                        TS01..1
               CLR1
                        TMIF01
                                              ;INTTM00 interrupt request cleared
               BF
                        TMIF01,
                                $$
               SET1
                        TTOL.1
                                              ;Timer operation stopped
               ; Transmission of the values set to the
               ; registers in the audio codec
               ; Using IIC0
 (d)
               SET1
                        !IICOEN
                                             ;Input clock of serial interface IICO supplied
               CLR1
                        IICE0
                                              ;Operation stopped
               CLR1
                        P_SCL
                                              ;SCL0 latch
                        PM_SCL
                                              ;SCL0 pin
               CLR1
               CLR1
                        P_SDA
                                              ;SDA0 pin
               CLR1
                        PM_SDA
                                              ;SDA0 pin
                                  #00000000B ;Transfer clock selection
               MOV
                        IICX0,
                                  ; | | | | | | +---- CLX0
                                  ;++++++---- <0000000>
               MOV
                                  #00001110B
                        IICCLO,
                                  ; | | | | | | ++--- CL01-CL00(+CLX0): fCLK/96(first mode)
                                    ||||+---- DFC0: Turn on the digital filter
                                  ; | | | | +---- SMC0: Specify operation in the first mode
                                    | | +---- DAD0: <R>Detect the SDA0 pin level
                                  ;||+---- CLD0: <R>Detect the SCL0 pin level
                                  ;++---- <00>
               MOV
                        IICF0,
                                  #00000011B ;Communication reservation disable
                                  ;||||||+--- IICRSV: Disable communication reservation
                                    |||||+---- STCEN: Enable initial start
                                    |++++---- <Fixed to 0000>
                                  ; +---- IICBSY: <R>IIC bus status flag
                                    ----- STCF: <R>STTO clear flag
               MOV
                        IICCO,
                                  #00001000B ;Initial settings during master operation
                                  ;||||||+--- SPT0: Stop condition trigger
                                      |||+---- STT0: Start condition trigger
                                      ||----- ACKE0: Control acknowledgment
                                  ;
                                  ;
                                    | | | | +---- WTIM0: Control wait insertion and interrupt
                                                      request issuance: 9 clocks
                                  ;
                                  ;
                                        ----- SPIE0: Disable issuing of interrupt requests
                                  ;
                                                      by detecting a stop condition
                                  ;
                                    |+---- WRELO: Do not cancel waiting
                                  ;
                                    +----- LRELO: Save the communication: Normal
                                  ;
                                                       operation
                                      ----- IICEO: Enable operation of I2C
               SET1
                        SPT0
                                              ;Stop condition set
         iSettings of the registers in the audio codec: Setting to turn on the system
 (e)
                        ES,
                                 #HIGHW TSYSON ; Higher 4 bits of the start address of the
                                                 ; ROM table holding the register setting
                                                  ;values
               MOVW
                        HL,
                                  #LOWW TSYSON
                                                 ;Lower 16 bits
               MOVW
                                  #LOWW TSYSONE
                                                 ;Lower 8 bits of the last address of the ROM
                        DE,
                                                  ;table holding the register setting values
               CALL
                     !!SI2CWRITE
                                                  ;I2C write processing
<7>--
               MOV
                     RPLAYMOD,
                                  #CSTOP
                                                 ;Stopped
```

```
Settings of the I2S bus interface used for the audio data of the
             audio codec
             The following operations are performed.
             ·Setting the TO00 output and INTTM00 interrupt for outputting LRCLK
             \cdotSetting CSI00 for transmitting and receiving data
<8>
             ; LRCLK output settings
             ; TO00 output (16 kHz)
   (a)
             MOVW
                               #0000000000000000B;Operation mode setting
                  AX,
                                    |||||||+++- MD003 to MD000: Interval timer mode
                                      ||||++---- <Fixed to 00>
                                    ||||++---- CIS001 and CIS000: Unused
                               ; |
                               ; | | |
                                   | | +++---- STS002 to STS000: Only software trigger
                               ; [ ] [ ] [
                                                                 start enabled
                                    +---- MASTER00: Standalone operation
                               ;
                                     ----- CSS00: Macro clock MCK specified by using
                               ;
                               ; | |
                                                        the CKS00 bit
                                   ----- <Fixed to 00>
                               ;+----- CKS00: Operating clock CK00 set by using
                                                        the PRS register
             MVVOM
                      !TMR00, AX
                               #625-1
             MVVM
                      TDR00,
                                                ;Interval set: 16 kHz output (32 kHz)
             CLR1
                      TMPR100
                                                ;Priority order set to the highest level
             .CLR1
                      TMPR000
             ; CSI00 settings
   (b)
             SET1
                  !SAUOEN
                                                ;Input clock of the serial array unit
                                                 ;supplied
             NOP
                                                 ;Waiting
             NOP
             NOP
             NOP
             MOV
                      !SPS0L, #0000000B
                                              ;Operation clock selection: fCLK
                               ;||||+++----- PRS003 to PRS000: fCLK
                               ;++++----- PRS013 to PRS010: Unused
             MOVW
                      SDR00,
                              #(12-1) shl 9
                                                ;Bits 15 to 7: Transfer clock set (833 kHz)
             MVVOM
                      AX,
                               #0000000000100001B ;Operation mode selected: CSI mode
                                   ||||||||||+-- MD000: Buffer empty interrupt
                                  |||||||||++--- MD002 and MD001: CSI mode
                               ;
                                  ||||||+----- SIS000: Unused
                               ;
                               ;
                                  |||||+----<Fixed to 0>
                                      |----- STS00: Only software trigger enabled
                               ;
                                                       (fixed in CSI mode)
                                  +++++----- <Fixed to 00000>
                               ;
                                  ----- CSS00: Transfer clock set to a clock
                                                        obtained by dividing operation
                                                        clock specified by using the CKS00
                               ;
                                                        bit
                                   ----- CKS00: Operation clock set to prescaler
                                                        output clock CK00 set by using
                                                        the PRS register
          MOVW !SMR00, AX
```

```
; Initial data output (at the same time as setting CSI10)
                             #000000100000001B ; Setting of initial outputs of the SO and SCK pins
             ; MOVW
                             ;|||||||++++++-- SOOn to SOOO: Used for transmission
             ;
                             ;+++++++ CKOn to CKOO: Serial clock output of channels
                                                           n to 0
             ; MOVW
                     !SO0,
                             AX
             SET1
                     SOEOL.0
                                              ;Output enabled
             SET1
                     P_SCK00
                                              ;SCK00 latch: High level
                     PM SCK00
            CLR1
                                              ;SCK00 pin output set
             SET1
                     PM_SI00
                                              ;SI00 pin input set
            SET1
                     P_S000
                                              ;S000 latch: High level
            CLR1
                    PM_SO00
                                              ;S000 pin output set
            SET1
                    SSOL.0
                                              ;CSI00 operation starts (trigger bit)
                   CSIIF00
                                              ;INTCSI00 interrupt request cleared
             CLR1
                                              ;INTCSI00 interrupt servicing enabled
                    CSIMK00
            CLR1
            CLR1
                    CSIPR100
                                              ;Priority order set to next after INTTM00
            SET1
                    CSIPR000
            Setting of the SPI interface for EEPROM
            The following operations are performed.
            \cdotSetting CSI10 for transmitting and receiving data
             ·Setting DMA0 for successive reception and DMA1 for successive
             transmission
            OR
                   P_CS, #11110000B ;All EEPROMs deactivated
<9>
             ;-----
            ; DMA0 settings (for CSI reception)
   (a)
            SET1
                   DEN0
                                             ;Operation of DMA channel 0 enabled
            VOM
                    DSA0,
                             #044H
                                             ;DMA SFR address: SDR02(SIO10)=0FFF44H
                            #00001000B
                                           ;Setting of transfer mode of DMA channel 0
            VOM
                    DMC0,
                             transfer complete interrupt
                                   ----- DWAITO: DMA transfer suspension: DMA
                             ; |
                                                      transfer performed according to
                             ; | |
                             ; |
                                                      a DMA start request
                                                      (not suspended)
                                   ----- DS0: Transfer data size: 8 bits
                             ; | | +-
                               +----- DRS0: DMA transfer direction selected: SFR
                                                    → Internal RAM
                             ;+----- STGO: Software trigger not operated
             ; DMA1 settings
              (for CSI transmission and setting dummy data
             ; during CSI reception)
   (b)
            SET1 DEN1
                                              ; Operation of DMA channel 1 enabled
            VOM
                    DSA1,
                             #044H
                                             ;DMA SFR address: SDR02(SIO10)=0FFF44H
             VOM
                             #01001000B
                                             ;Setting of transfer mode of DMA channel 0
                     DMC1,
                             transfer complete interrupt
                                      ----- DWAIT1: DMA transfer suspension: DMA
                             ;
                             ;
                                                      transfer performed according to a
                             ;
                                                     DMA start request (not suspended)
                                +----- DS1: Transfer data size: 8 bits
                             ;
                                  ----- DRS1: DMA transfer direction selected:
                                                    Internal RAM →SFR
                             ;
                                ------ STG1: Software trigger not operated
```

```
; CSI10 settings
(c)
          MVVOM
                   SDR02,
                          #(4-1) shl 9 ;Bits 15 to 7: Transfer clock set (2.5 MHz)
                            #0000000000100000B;Operation mode selected: CSI mode
          MOVW
                   AX,
                            ;|||||||||||+-- MD020: Transfer complete interrupt
                                     |||||++--- MD022 and MD021: CSI mode
                               ||||||||+++---- <Fixed to 100>
                            ; |
                            ;||||||+-----<Fixed to 0>
                                   +----- STS02: Only software trigger enabled
                            ; |
                                                    (fixed in CSI mode)
                            ;||++++-----<Fixed to 00000>
                            ;
                              +----- CSS02: Transfer clock set to a clock
                                                      obtained by dividing operation
                                                      clock MCK as specified by using
                            ;
                                                      the CKS00 bit
                                  ----- CKS02: Operation clock set to
                                                      prescaler output clock
                                                      CK00 set by using the PRS register
          MVVOM
                   !SMR02,
                          AX
          MOVW
                            #101100000000111B; Communication format setting
                   AX.
                            ;|||||||||+++-- DLS022 to DLS020: 8-bit data length
                                ||||||||+---- <Fixed to 0>
                                   ||||++----- SLC021 and SLC020: Unused (fixed to 0)
                            ;||||||+-----<Fixed to 0>
                            ;||||||+---- DIR02: Input and output performed MSB
                            ;
                                                     first
                                ||||++---- PTC021 and PTC020: Unused (fixed to 00)
                            ;
                               | | | +---- EOC02: Unused (fixed to 0)
                               ||+-----<Fixed to 0>
                            ;
                            ;
                               ++----- CKP02/DAP02: Phases of data and clock in
                            ;
                                                           CSI mode selected
                            ; | |
                                             [11 selected]
                                   ----- TXE00/RXE00: Only transmission performed
          MOVW
                   !SCR02.
                            AX
          ; Initial data output
          MOVW
                           #000000100000001B; Setting of initial outputs of the SO and SCK pins
                            ;|||||||++++++- SOOn to SOOO: Used for transmission
                            ;++++++ cCKOn to CKOO: Serial clock output of
                                                           channels n to 0
          MOVW
                   !SO0,
                            AX
                  SOE0L.2
                                              ;Output enabled
          SET1
                   P_SCK10
                                              ;SCK00 latch: High level
          SET1
                  PM SCK10
                                             ;SCK00 pin output set
          CLR1
          SET1
                  PM_SI10
                                             ;SI00 pin input set
          SET1
                   P_S010
                                              ;S000 latch: High level
          CLR1
                   PM_SO10
                                              ;S000 pin output set
                   SSOL.2
          SET1
                                              ;CSI10 operation starts (trigger bit)
          ; Erasing all EEPROMs (all OFFH)
(d)
          ;Enabling writing to an EEPROM
          AND
                P_CS,
                           #00001111B
                                             ;All EEPROMs selected
                  CSIIF10
          CLR1
                          #00000110B
                                              ;Write enable (WREN) instruction (INTCSI10
          MOV
                   SIO10,
                                              ;occurs)
          BF
                  CSIIF10,$$
          OR
                  P_CS, #11110000B
                                             ;Setting completed
          ; Erasing all EEPROMs
                  P_CS,
                            #00001111B
                                              ;All EEPROMs set
          AND
                   CSIIF10
          CLR1
                           #11000111B
                                              ;All CEs erased (INTCSI10 occurs)
          MOV
                   SIO10,
          BF
                   CSIIF10,$$
          OR
                  P_CS,
                           #11110000B
                                              ;Setting completed
                   STOL.2
                                              ;CSI10 operation stopped (trigger bit)
          SET1
                   CSIMK10
                                              ;INTCSI10 interrupt servicing disabled
```

```
; Starting key retrieval
<10>
                 MOV
                          KRM,
                                    #0000011B
                                                      ;KR0 and KR1 enabled
                 CLR1
                          KRIF
                                                       ;INTKR interrupt request cleared
                                                       ;INTKR interrupt servicing disabled
                 SET1
                          KRMK
                 SET1
                          P_LED
                                                       ;Operation-in-progress indicator turned off
<11>
                                                       ;(key input possible)
                 ; Enabling interrupts
                    ΕI
<12> ....
                   <13>
```

The operations performed when the initial settings for the peripheral hardware to be used are specified in C language are similar to those performed when the settings are specified in assembly language.

In C language, the initial settings can be performed earlier by generating the hdwinit function.

The hdwinit function is a function used to perform the initial settings for peripheral devices (sfr) and be generated by the user as required.

```
/*****************************
     Initial settings of the peripheral hardware to be used
*************************
void hdwinit(void)
    Disabling interrupts
    DI();
    Clock frequency settings
    Setting so that operations can be performed using the 20 MHz X1 oscillator
    CMC = 0b01000001;
                        /* Clock operation mode */
           ||||||+----- AMPH: 10 MHz<fMX\u20 MHz */
     /*
            | | | | +++----- <000> */
           ||+-----<0> */
           ++---- EXCLK/OSCSEL: X1 oscillation mode (20 MHz) */
                        /* Clock operation status control */
     CSC = 0b01000000;
           ||||||+----- HIOSTOP: Internal high-speed oscillator operated */
            | | +++++----- <00000> */
     /*
           |+---- XTSTOP: XT1 oscillator stopped */
           +----- MSTOP: X1 oscillator operated */
     OSMC = 0b00000001;
                        /* Operation speed mode */
            ||||||+---- FSEL: Operated at a frequency exceeding 10 MHz */
            ++++++----- <00000> */
     OSTS = 0b00000101;
                         /* Oscillation stabilization time: 2^15/fX */
     while(!OSTC.2) {}
                         /* Waiting for clock oscillation to stabilize */
     CKC = 0b00011000;
                         /* Clock selection */
                     ----- MDIV2 to MDIV0: CPU/peripheral hardware clock (fCLK) = fMX */
              +----- <1> */
            |||+----- MCM0: High-speed system clock (fMX) */
     /*
            | | +---- <R> */
            +----- CSS: CSS: Main system clock (fMAIN) = fCLK */
              ----- <R> */
    Port 0 settings
    P0 = 0b00011010; /* Output latches of P00, P02, P05, and P06 set to low
                         /* level and those of P01, P03, and P04 set to high
                            level */
    PM0 = 0b10000000;
                          /* P00 to P06 set as output ports */
                          /* P01: Output LRCLK to the audio codec */
                          /* P02: Output S010 to the EEPROM */
                          /* P03: Input SI10 from the EEPROM */
                          /* P04: Output SCK10 to the EEPROM */
                          /* P00, P05, and P06: Unused */
```

```
/*-----
    Port 1 settings
                      /* Output latches of P10 to P17 set to low level */
    P1 = 0b00000000;
                       /* P10 to P17 set as output ports */
    PM1 = 0b00000000;
                       /* P10: Output SCK00 to the audio codec */
                       /* P11: Input SI00 from the audio codec */
                        /* P12: Output S000 to the audio codec */
                        /* P13 to P17: Unused */
    Port 2 settings
                  /* Output latches of P20 to P27 set to low level */
    P2 = 0b00000000;
                      /* P20 to P27 set as output ports */
    PM2 = 0b00000000;
                       /* P20 to P27: Unused */
    Port 3 settings
    /* P30 and P31: Unused */
   Port 4 settings
   /* P40 to P47: Unused */
   Port 5 settings
   /* P50 to P57: Unused */
/*_____
   Port 6 settings
                       /* Output latches of P60 to P67 set to low level */
    P6 = 0b00000000;
    PM6 = 0b00000000;
                       /* P60 to P67 set as output ports */
                       /* P60: Output SCLO for setting the registers in the
                              audio codec */
                       /* P61: Input and output SDAO for setting the registers
                              in the audio codec */
                        /* P62 to P67: Unused */
/*_____
   Port 7 settings
   P7 = 0b00000000;
                   /* Output latches of P70 to P77 set to low level */
                       /* P70 and P71 set as input ports and P72 to P77 set as
    PM7 = 0b00000011;
                         output ports */
                       /* P70: Playback key input */
                        /* P71: Record key input */
                        /* P72: Output a signal to the operation-in-progress
                              Indicator (LED) */
                        /* P73: Output a reset signal to the audio codec */
                        /* P74: Output CS0 to the EEPROM */
                        /* P75: Output CS1 to the EEPROM */
                        /* P76: Output CS2 to the EEPROM */
                       /* P77: Output CS3 to the EEPROM */
   Port 8 settings
                   /* Output latches of P80 to P87 set to low level */
    P8 = 0b00000000;
    PM8 = 0b00000000;
                       /* P80 to P87 set as output ports */
                       /* P80 to P87: Unused */
```

```
Port 11 settings
             ----*/
  Port 12 settings
  Port 13 settings
            -----*/
  ----*/
  Settings of the registers in the audio codec
  The following operations are performed.
   ·Supplying a clock to the audio codec
   \cdot \text{Setting a timer for inserting waits in the program}
   ·Outputting a reset signal to the audio codec
   ·Using the I2C interface for setting the registers in the audio codec
-----*/
   /* Timer array unit timer clock selection */
  TAU0EN = 1; /* Input clock supplied to the timer array unit */
TPS0L = 0b10010000; /* Operation clock selection */
        ||||++++----- CK00: fCLK */
         ++++----- CK01: fCLK/2^9 */
   Clock supply to the audio codec
   _____
   TO02 output (10 MHz)
   ----*/
   TMR02 = 0b0000000000000000;/* Operation mode setting */
         |||||||||++++--- MD023 to MD020: Interval timer mode */
         ||||||||++----- <Fixed to 00> */
         |||||||++----- CIS021 and CIS020: unused */
         | | | | | | +++----- STS022-020: Only software trigger start enabled */
         ||||+---- MASTER02: Standalone operation */
         |||+----- CSS02: Macro clock MCK specified by using
                          the CKS02 bit */
         |++-----<Fixed to 00> */
         +----- CKS02: Operation clock CK00 set by using
                          the PRS register */
   TDR02 = 0;
                  /* Interval setting: 10 MHz output (20 MHz) */
                  /* TO02 output */
  TOE0L.2 = 1;
```

```
TSOL.2 = 1;
                       /* Operation starts (trigger bit) */
Waits used in the program
Using TM01
-----*/
TMR01 = 0b1000000000000000;/* Operation mode setting */
         ||||||||||+++--- MD013 to MD010: Interval timer mode */
         ||||||||++----- <Fixed to 00> */
          |||||||++----- CIS011 and CIS010: Unused */
/*
         |||||+++---- STS012 to STS010: Only software trigger start
                                           enabled */
         ||||+----- MASTER01: Standalone operation */
         |||+----- CSS01: Macro clock MCK specified by using
                                 the CKS01 bit */
/*
         |++-----<Fixed to 00> */
         +----- CKS01: Operation clock CK01 set by using
                                  the PRS register*/
/* Waiting for power supply to stabilize */
/* INTTM00 interrupt request cleared */
TMIF01 = 0;
while(!TMIF01) {}
/* Reset */
P_RESETB = 0;
/* Waiting about 5 us */
                      /* Interval set */
TDR01 = 0;
TSOL.1 = 1;
                      /* Timer operation starts */
TMIF01 = 0;
                     /* INTTM00 interrupt request cleared */
while(!TMIF01) {}
P_RESETB = 1;
/* Waiting for power supply to stabilize */
TDR01 = 195*160/5-1; /* Interval set (160 ms) */
                      /* Timer operation starts */
TSOL.1 = 1;
                      /* INTTM00 interrupt request cleared */
TMIF01 = 0;
while(TMIF01) {}
TT0L.1 = 1;
                      /* Timer operation stopped */
Transmission of the values set to
the registers in the audio codec
Using IIC0
                      /* Input clock of serial interface IICO supplied */
IIC0EN = 1;
IICE0 = 0;
                      /* Operation stopped */
                      /* SCL0 latch */
P SCL = 0;
PM\_SCL = 0;
                      /* SCL0 pin */
                      /* SDA0 pin */
P\_SDA = 0;
PM\_SDA = 0;
                      /* SDA0 pin */
                     /* Transfer clock selection */
IICX0 = 0b00000000;
        ||||||+----- CLX0 */
         ++++++----- <0000000> */
IICCL0 = 0b00001110;
          |||||++---- CL01-CL00(+CLX0): fCLK/96(first mode) */
          |||||+----- DFC0: Turn on the digital filter */
/*
          | | | | +----- SMC0: Specify operation in the first mode */
          |||+----- DAD0: <R>Detect the SDA0 pin level */
/*
          ||+----- CLD0: <R>Detect the SCL0 pin level */
          ++----- <00> */
```

```
IICF0 = 0b00000011;
                  /* Communication reservation disable */
         /*
          |||||+---- STCEN: Enable initial start */
          ++++----- <Fixed to 0000> */
/*
         +----- IICBSY: <R>IIC bus status flag */
         +----- STCF: <R>STT0 clear flag */
/*
         00001000; /* Initial settings during master operation */
IICC0 = 0b00001000;
         |||||||+----- STT0: Start condition trigger */
         |||||+----- ACKEO: Control acknowledgment */
         ||||+----- WTIM0: Control wait insertion and interrupt
                              request issuance: 9 clocks */
              ----- SPIE0: Disable issuing of interrupt requests by
                              detecting a stop condition */
            ----- WRELO: Do not cancel waiting */
         +----- LRELO: Save the communication: Normal operation */
         +----- IICEO: Enable operation of I2C */
SPT0 = 1;
                      /* Stop condition set */
^{\prime \star} Settings of the registers in the audio codec: Setting to turn on the system ^{\star \prime}
fn_I2cWrite(&aSystemOnTbl[0][0], sizeof(aSystemOnTbl));
Settings of the I2S bus interface used for the audio data of the
audio codec
The following operations are performed.
\cdotSetting the T000 output and INTTM00 interrupt for outputting LRCLK
\cdotSetting CSI00 for transmitting and receiving data
/*-----
LRCLK output settings
TO00 output (16 kHz)
----*/
TMR00 = 0b0000000000000000;/* Operation mode setting */
        |||||||||||++++--- MD003 to MD000: Interval timer mode */
         |||||||||++----- <Fixed to 00> */
          ||||||++----- CIS001 and CIS000: Unused */
         |||||+++---- STS002 to STS000: Only software trigger start
                                         enabled */
          | | | | +----- MASTER00: Standalone operation */
             ----- CSS00: Macro clock MCK specified by using
                                the CKS00 bit */
             ----- <Fixed to 00> */
         +----- CKS00: Operating clock CK00 set by using
                                the PRS register */
TDR00 = 625-1;
                     /* Interval set: 16 kHz output (32 kHz) */
TMPR100 = 0;
                     /* Priority order set to the highest level */
TMPR000 = 0;
/*-----
CSI00 settings
----*/
SAUOEN = 1;
                     /* Input clock of the serial array unit supplied */
NOP();
                     /* Waiting */
NOP();
NOP();
NOP();
SPSOL = 0b000000000;
                    /* Operation clock selection: fCLK */
        ||||++++----- PRS003 to PRS000: fCLK */
         ++++----- PRS013 to PRS010: Unused */
SDR00 = (12-1) << 9;
                    /* Bits 15 to 7: Transfer clock set (833 kHz) */
```

```
SMR00 = 0b0000000000000100001;/* Operation mode selected: CSI mode */
          |||||||||||+--- MD000: Buffer empty interrupt */
/*
              ||||||||++--- MD002 and MD001: CSI mode */
/*
           |||||||+++----- <Fixed to 100> */
           |||||||+----- SIS000: Unused */
           |||||+----- STS00: Only software trigger enabled
                                  (fixed in CSI mode) */
          |++++----- <Fixed to 00000> */
          +----- CSS00: Transfer clock set to a clock obtained
                                 by dividing operation clock MCK as
                                  specified by using the CKS00 bit */
             ------ CKS00: Operation clock set to prescaler output
                                  clock CK00 set by using the PRS register */
/* Initial data output (at the same time as setting CSI10) */
/* SOO = 0b0000000100000001;/* Setting of initial outputs of the SO and SCK pins */
          |||||||++++++--- SOOn to SOOO: Used for transmission */
          ++++++++---- CKOn to CKOO: Serial clock output of channels n to 0 */
SOE0L.0 = 1;
                      /* Output enabled */
P_SCK00 = 1;
                      /* SCK00 latch: High level */
                      /* SCK00 pin output set */
PM SCKOO = 0;
                      /* SI00 pin input set */
PM_SI00 = 1;
P_S000 = 1;
                      /* SO00 latch: High level */
PM_SO00 = 0;
                      /* S000 pin output set */
SSOL.0 = 1;
                      /* CSI00 operation starts (trigger bit) */
CSIIF00 = 0;
                      /* INTCSI00 interrupt request cleared */
                      /* INTCSI00 interrupt servicing enabled */
CSIMK00 = 0;
CSIPR100 = 0;
                      /* Priority order set to next after INTTM00 */
CSIPR000 = 1;
Setting of the SPI interface for EEPROM
The following operations are performed.
·Setting CSI10 for transmitting and receiving data
·Setting DMA0 for successive reception and DMA1 for successive transmission
                     /* All EEPROMs deactivated */
P_CS |= 0b011110000;
/*_____
DMA0 settings (for CSI reception)
DEN0 = 1;
                     /* Operation of DMA channel 0 enabled */
|||++++----- IFC03 to IFC00: DMA start source: INTCSI10
                                        transfer complete interrupt */
              ----- DWAIT0: DMA transfer suspension: DMA transfer
                                performed according to a DMA start request
                                 (not suspended) */
            ----- DS0: Transfer data size: 8 bits */
         +----- DRS0: DMA transfer direction selected: SFR \rightarrow
                               Internal RAM */
        +----- STG0: Software trigger not operated */
/*______
DMA1 settings
(for CSI transmission and setting dummy data
 during CSI reception)
DEN1 = 1;
                      /* Operation of DMA channel 1 enabled */
DSA1 = 0x044;
                       /* DMA SFR address: SDR02(SIO10)=0FFF44H */
```

```
DMC1 = 0b01001000;
                    /* Setting of transfer mode of DMA channel 1 */
        transfer complete interrupt */
              ----- DWAIT1: DMA transfer suspension: DMA transfer
                              performed according to a DMA start request
                               (not suspended) */
           ----- DS1: Transfer data size: 8 bits */
           ----- DRS1: DMA transfer direction selected: Internal
                            RAM→ SFR */
              ----- STG1: Software trigger not operated */
/*_____
CSI10 settings
----*/
SDR02 = (4-1) << 9; /* Bits 15 to 7: Transfer clock set (2.5 MHz) */
SMR02 = 0b0000000000100000;/* Operation mode selected: CSI mode */
        ||||||||||||+--- MD020: Transfer complete interrupt */
          |||||||||++--- MD022 and MD021: CSI mode */
         |||||||||+++----- <Fixed to 100> */
         |||||||||+----- SIS020: Unused */
         |||||||+-----<Fixed to 0> */
              +----- STS02: Only software trigger enabled
                               (fixed in CSI mode) */
         +---- CSS02: Transfer clock set to a clock obtained by
                               dividing operation clock MCK as specified \,
                               by using the CKS00 bit */
           ----- CKS02: Operation clock set to prescaler output
/*
                               clock CK00 set by using the PRS register */
SCR02 = 0b1011000000000111;/* Communication format setting */
        ||||||||||||+++--- DLS022 to DLS020: 8-bit data length */
         |||||||||+----- <Fixed to 0> */
          |||||||++----- SLC021 and SLC020: Unused (fixed to 0) */
         ||||++---- PTC021 and PTC020: Unused (fixed to 00) */
          || | +---- EOC02: Unused (fixed to 0) */
         ||||+-----<Fixed to 0> */
            ----- CKP02/DAP02: Phases of data and clock in CSI mode
                                    selected */
                         [11 selected] */
           ----- TXE00/RXE00: Only transmission performed */
/* Initial data output */
SOO = 0b0000000100000001; /* Setting of initial outputs of the SO and SCK pins */
     |||||||+++++++----- SOOn to SOOO: Used for transmission */
      ++++++++ CKOn to CKO0: Serial clock output of channels n to 0 */
                       /* Output enabled */
SOE0L.2 = 1;
P_SCK10 = 1;
                       /* SCK00 latch: High level */
PM_SCK10 = 0;
                       /* SCK00 pin output set */
                       /* SI00 pin input set */
PM_SI10 = 1;
                       /* S000 latch: High level */
P_S010 = 1;
PM_SO10 = 0;
                        /* SO00 pin output set */
                        /* CSI10 operation starts (trigger bit) */
SS0L.2 = 1;
Erasing all EEPROMs (all OFFH)
-----*/
/* Enabling writing to an EEPROM */
P_CS &= 0b00001111; /* All EEPROMs selected */
CSIIF10 = 0;
SIO10 = 0b00000110;
                       /* Transmit data set (Write enable (WREN) instruction
                          INTCSI10 occurs) */
while(!CSIIF10) {}
P_CS |= 0b11110000;
                        /* Setting completed */
/* Erasing all EEPROMs */
P_CS &= 0b00001111;
                        /* All EEPROMs selected */
CSIIF10 = 0;
SIO10 = 0b11000111;
                        /* Transmit data set (All CEs erased INTCSI10 occurs) */
```

4.4 Main Processing

The following operations are performed in the main processing specified in assembly language.

- <1> Key processing
- <2> If the key processing above returns the judgment that the record key was pressed, key input is disabled and recording starts.
- <3> If the key processing above returns the judgment that the playback key was pressed, key input is disabled and playback starts.
- <4> If the operating status indicates that recording has finished, recording is terminated.
- <5> If the operating status indicates that playback has finished, playback is terminated.
- <6> The operating status is set to "stopped" and key input is enabled.
- <7> The processing returns to <1>.

```
Main processing
        MAIN LOOP:
<1>
                   Key processing
                BT
                         KRIF, $LMAIN100 ; Key input? Yes,
                BR
                         LMAINRECE
                                                  ; No,
        T.MATN100:
                 CLR1
                         KRIF
                                                  ;INTKR interrupt request cleared
                 CMP
                         RPLAYMOD, #CSTOP
                                                  ;Stopped?
                 B7
                         $LMAIN200
                                                  ; Yes,
                 BR
                         LMAINRECE
                                                  ; No, (key disabled)
        LMAIN200:
                MOV
                                   P KEY
                 AND
                         Α,
                                   #00000011B
                                                  ; Is key valid?
                 SKNZ
                                                  ; Yes,
                 BR
                         LMAINRECE
                                                  ; No, (key disabled: pressed multiple times)
                 ;Key judged to have been pressed
                 ; Waiting about 10 ms (chattering removed)
                                  #195*10/5-1
                                                 ;Interval set (10 ms)
                 MVVOM
                         TDR01,
                 SET1
                         TSOL.1
                                                  ;Timer operation starts
                         TMIF01
                                                  ;INTTM00 interrupt request cleared
                 CLR1
                 BF
                         TMIF01,
                 SET1
                         TTOL.1
                                                  ;Timer operation stopped
                 MOV
                         Α,
                                  P_KEY
                                                  ;KR port
                                   #00000011B
                 AND
                         Α,
                                   #0000011B
                 CMP
                         Α,
                                                  ; Is key valid?
                         $LMAIN400
                 BNZ
                                                  ; Yes,
                BR
                         LMAINRECE
                                                  ; No, (key disabled: pressed multiple times)
        LMAIN400:
                 BF
                         P_RECKY, $LMAINREC
                                                  ; Was record key pressed? Yes,
                 BF
                         P_PLAYKY, $LMAINPLAY
                                                  ; Was playback key pressed? Yes,
                 BR
                         LMAINRECE
                                                  ; No,
                 ; Starting recording
<2>
        LMAINREC:
                 CLR1
                                                  ;Operation-in-progress indicator turned on
                         P LED
                                                  ;(key input disabled)
                 VOM
                         KRM,
                                   #0000000B
                                                  ;KR0 and KR1 disabled
                 MOV
                         RPLAYMOD, #CREC
                                                  ;Voice data recorded
                 ;Settings of the registers in the audio codec: Recording set
                 MOV
                         ES,
                                  #HIGHW TRECON ; Higher 4 bits of the start address of the
                                                  ;ROM table holding the register
                                                  ;setting values
                         HL,
                MOVW
                                   #LOWW TRECON
                                                  ;Lower 16 bits
                 MOVW
                         DE,
                                   #LOWW TRECONE
                                                  ;Lower 8 bits of the last address of the
                                                  ; ROM table holding the register setting
                                                  ;values
                 CALL
                         !!SI2CWRITE
                                                  ;I2C write processing
                 ;Preparation of the I2S bus interface
                 MOV
                         RCSI00CNT, #0
                                                  ;CSI00 reception counter
                 MOVW
                          SDR00, #(12 to 1) shl 9; Bits 15 to 7: Transfer clock set
                                                  ; (833 kHz)
```

```
MOVW
                           AX,
                                    #010000000000111B; Communication format setting
                                    ;||||||||||+++- DLS002 to DLS000: 8-bit data length
                                             ||||+---- <Fixed to 0>
                                      ||||||||++---- SLC001 and SLC000: Unused (fixed to 0)
                                    ;
                                         |||||+----- <Fixed to 0>
                                       ||||||+---- DIR00: Input and output performed MSB
                                    ;
                                    ;
                                                              first
                                               ----- PTC001 and PTC000: Unused (fixed to 00)
                                          +---- EOC00: Unused (fixed to 0)
                                    ;
                                    ;
                                          --- CKP00/DAP00: Phases of data and clock
                                    ;
                                    ;
                                                                    in CSI mode selected
                                                      [00 selected]
                                    ; | |
                                               ----- TXE00/RXE00: Only reception performed
                  MOVW
                           !SCR00,
                  MOV
                           TOOL,
                                    #0000000B
                                                    ;Initial output set to low level
                           TOEOL.0
                                                    ;Operation of TOOO enabled by a count
                  SET1
                                                    ;operation (LRCLK)
                  CLR1
                           TMIF00
                                                    ;INTTM00 interrupt request cleared
                  CLR1
                           TMMK00
                                                    ;INTTM00 interrupt servicing enabled
                  ;Setting writing to an EEPROM
                  MVVM
                           RI2SADDR, #RRECMEM1
                                                    ; Address to which the data received via
                                                    ; I2S is saved
                  CLR1
                           FI2SPAGE
                  VOM
                           RP_CS,
                                    #11100000B
                                                    ;EEPROM selected
                           REEPSEQ, #CEEPSEQ_RESET ; EEPROM transfer sequence
                  VOM
                                                    ;EEPROM write address (REEPADDR*100H)
                  MOVW
                           REEPADDR, #0
                  MOVW
                           AX,
                                    #101100000000111B; Communication format setting
                                    ;||||||||||+++- DLS022 to DLS020: 8-bit data length
                                          |||||||+---- <Fixed to 0>
                                         ||||||++---- SLC021 and SLC020: Unused (fixed to 0)
                                         |||||+----- <Fixed to 0>
                                    ;
                                      ||||||+---- DIR02: Input and output performed MSB
                                    ;
                                                              first
                                          ++---- PTC021 and PTC020: Unused (fixed to 00)
                                    ;
                                          +---- EOC02: Unused (fixed to 0)
                                    ;
                                       |||+-----<Fixed to 0>
                                            ----- CKP02/DAP02: Phases of data and clock
                                    ;
                                                                    in CSI mode selected
                                    ;
                                                      [11 selected]
                                    ; | |
                                              ----- TXE00/RXE00: Only transmission
                                    : ++
                                                                    performed
                  MOVW
                          !SCR02, AX
                  ;Starting I2S operation
                  SET1
                           SSOL.0
                                                    ;CSI00 operation starts (trigger bit)
                  CLR1
                           P_LRCLK
                                                    ;LRCLK operation starts
                  SET1
                           TSOL.0
                                                    ;T000 output operation starts (trigger bit)
                           SI000,
                                    #0FFH
                  VOM
                                                    ;Dummy data set (INTCSI00 occurs)
                  BR LMAINRET
                  ; Starting playback
<3>
        LMAINPLAY:
                                                    ;Operation-in-progress indicator turned ON
                  CLR1
                           P_LED
                                                    ; (key input disabled)
                                    #0000000B
                                                    ;KRO and KR1 disabled
                  MOV
                           KRM,
                  MOV
                           RPLAYMOD, #CPLAY_START
                                                    ;Preparing for playback started
                  ;Settings of the registers in the audio codec: Playback set
                                    #HIGHW TPLAYON ; Higher 4 bits of the start address of
                  MOV
                           ES,
                                                    ; the ROM table holding the register setting
                                                    ;values
                  MOVW
                           HL.
                                    #LOWW TPLAYON
                                                    ;Lower 16 bits
                  MOVW
                           DE,
                                    #LOWW TPLAYONE
                                                    ;Lower 8 bits of the last address of the
                                                    ; ROM table holding the register setting
                                                    ;values
                  CALL
                           !!SI2CWRITE
                                                    ;I2C write processing
```

```
;Preparation of the I2S bus interface
                                                  ;CSI00 transmission counter
                 MOV
                          RCSIOOCNT,#0
                                   #(12-1) shl 9 ;Bits 15 to 7: Transfer clock set (833 kHz)
                 MOVW
                          SDR00,
                 MVVM
                                   #100000000000111B; Communication format setting
                          AX,
                                   ;||||||||||+++- DLS002 to DLS000: 8-bit data length
                                      ||||||||||+---- <Fixed to 0>
                                     ||||||||++---- SLC001 and SLC000: Unused (fixed to 0)
                                   ;
                                     ||||||+-----<Fixed to 0>
                                       |||||+---- DIR00: Input and output performed MSB
                                   ;
                                   ;
                                                            first
                                   ;
                                     |||||++---- PTC001 and PTC000: Unused (fixed to 00)
                                     ||||+---- EOC00: Unused (fixed to 0)
                                   ;
                                   ;
                                     |||+----<Fixed to 0>
                                      ++---- CKP00/DAP00: Phases of data and clock
                                   ;
                                   ;
                                                                  in CSI mode selected
                                                   [00 selected]
                                   ;
                                        ----- TXE00/RXE00: Only transmission
                                                                  performed
                 MVVOM
                      !SCR00,
                                   AX
                       TOOL,
                                   #0000000B
                 MOV
                                                  ;Initial output set to low level
                 SET1
                      TOEOL.0
                                                  ;Operation of TOOO enabled by a count
                                                  ; operation
                 CLR1
                      TMIF00
                                                  ;INTTM00 interrupt request cleared
                                                  ;INTTM00 interrupt servicing enabled
                      TMMK00
                 CLR1
                 ;Setting reading from an EEPROM (writing set at first)
                 VOM
                                  P_CS
                                                  ;EEPROM selected
                      Α,
                                   #00001111B
                 AND
                      Α,
                                  #11100000B
                 OR
                      Α,
                 MOV
                      P_CS,
                     R P_CS,
                                      #10110000B ; EEPROM selected (enabled after 2 pages are
                 MOV
                                                  ;read)
                 SET1 FI2SPAGE
                                                  ;Data of the EEPROM set to be saved to page 1
                 VOM
                      REEPSEO,
                                   #CEEPSEQ_INST ;Instruction bytes transmitted
                 MOVW REEPADDR.
                                                  ; EEPROM read address (REEPADDR*100H)
                 MOVW AX,
                                   #101100000000111B; Communication format setting
                                     |||||||||||+++- DLS022 to DLS020: 8-bit data length
                                       ||||||||+---- <Fixed to 0>
                                   ;
                                     ||||||||++---- SLC021 and SLC020: Unused (fixed to 0)
                                   ;
                                     |||||||+----- <Fixed to 0>
                                   ;
                                      ||||||+---- DIR02: Input and output performed MSB
                                   ;
                                   ;
                                                            first
                                   ;
                                     |||||++---- PTC021 and PTC020: Unused (fixed to 00)
                                       | | +---- EOC02: Unused (fixed to 0)
                                   ;
                                      |||+-----<Fixed to 0>
                                   ;
                                   ;
                                      ++---- CKP02/DAP02: Phases of data and clock in
                                   ;
                                                                  CSI mode selected
                                   ; | |
                                                     [11 selected]
                                          ----- TXE00/RXE00: Only transmission performed
                 MOVW !SCR02,
                                   AX
                 ;Starting reading from the EEPROM
                 CLR1 CSIIF10
                                                  ;INTCSI10 interrupt request cleared
                 CLR1
                      CSIMK10
                                                  ;INTCSI10 interrupt servicing enabled
                 SET1
                      SSOL.2
                                                  ;CSI10 operation starts (trigger bit)
                 MOV
                       SIO10,
                                   #00000011B
                                                  ;Transmit data (reading specified) (INTCSI10
                                                  ;occurs)
                 BR
                       LMAINRET
                 ; Recording end settings
<4>
        LMAINRECE:
                 CMP
                     RPLAYMOD, #CREC_END
                                                 Recording finished?
                      $LMAINPLAYE
                                                  ; No,
                 ;Settings of the registers in the audio codec: Setting termination of
                 recording
                 MOV
                     ES,
                                   #HIGHW TRECOFF ; Higher 4 bits of the start address of the
                                                  ;ROM table holding the register setting
                                                  ;values
                 MOVW
                      HL,
                                   #LOWW TRECOFF
                                                  ;Lower 16 bits
```

		MOTITI	DE	#I OWN EDECORED	;Lower 8 bits of the last address of the ROM
		MOVW	DE,	#LOWW IRECOFFE	
		CALL	!!SI2CWRITE		<pre>;table holding the register setting values ;I2C write processing</pre>
		BR	LMAINSTOP		/izc write processing
i		DK	LMAINSTOP		
<5>					
	; Playback end settings				
	, Flayback end Settings				
	I.MAINPLAYE:				
		CMP	RPIAYMOD.	#CPLAY END	;Playback finished?
		BNZ	\$LMAINRET	_	; No,
		2112	γ = 1 = 1 = 1 = 1		, 2.6 /
	Settings of the registers in the audio codec: Setting termination of playback				
		MOV			Higher 4 bits of the start address of the
			•		;ROM table holding the register setting
					;values
		MOVW	HL,	#LOWW TPLAYOFF	;Lower 16 bits
		MOVW	DE,	#LOWW TPLAYOFFE	;Lower 8 bits of the last address of the ROM
					;table holding the register setting values
		CALL	!!SI2CWRITE		;I2C write processing
	LMAINSTOP:				
<6>		VOM	KRM,	#00000011B	;KRO and KR1 enabled
		MOV	RPLAYMOD,	#CSTOP	;Stopped
		SET1	P_LED		Operation-in-progress indicator turned off
1					;(key input possible)
<7>	LMAINRET:				
<1>	 	BR	MAIN_LOOP		

Similar operations to those performed in assembly language are performed in the processing specified in C language.

```
/******************************
    Main processing
*************************
void main(void)
  ucPlayMode = CSTOP; /* Stopped */
  while(1){
    /*_____
    Key processing
                 ----*/
    if(KRIF){
    if(ucPlayMode==CSTOP){
       /* Stopped */
         if(P_KEY & 0b0000011){
         /* key valid */
           /* Key judged to have been pressed */
            /* Waiting about 10 ms (chattering removed) */
           TDR01 = 195*10/5-1; /* Interval set (10 ms) */
           TSOL.1 = 1; /* Timer operation starts */
TMIF01 = 0; /* INTTM00 interrupt request cleared */
           while(!TMIF01) {}
           if((P_KEY & 0b00000011)&&!P_RECKY){ /* KR port */
            /* Record key valid */
           /*_____
             Starting recording
            ----*/
               /* Voice data recorded */
               ucPlayMode = CREC;
               /* Settings of the registers in the audio codec: Recording set */
                fn_I2cWrite(&aRecordOnTbl[0][0], sizeof(aRecordOnTbl));
               /* Preparation of the I2S bus interface */
               ucI2sByteCouter = 0; /* CSI00 reception counter */
SDR00 = (12-1) << 9; /* Bits 15 to 7: Transfer clock set (833 kHz) */
               SCR00 = 0b010000000000111;/* Communication format setting */
                        |||||||||||+++--- DLS002 to DLS000: 8-bit data length */
                         |||||||||+----- <Fixed to 0> */
                         ||||||||++---- SLC001 and SLC000: Unused (fixed to 0) */
                         ||||||||+------<Fixed to 0> */
                        |||||||+---- DIR00: Input and output performed
                                              MSB first */
                        ||||||| MSB first */
||||||++---- PTC001 and PTC000: Unused (fixed to 00)*/
                        |||||+---- EOC00: Unused (fixed to 0) */
                         |||+-----<Fixed to 0> */
                           ----- CKP00/DAP00: Phases of data and clock
                                                   in CSI mode selected */
                                        [00 selected] */
                       ++---- TXE00/RXE00: Only reception performed */
               TOEOL.0 = 1; /* Operation of TO00 enabled by a count operation (LRCLK) */
               TMIF00 = 0; /* INTTM00 interrupt request cleared */
               TMMK00 = 0; /* INTTM00 interrupt servicing enabled */
```

```
/* Setting writing to an EEPROM */
    ucI2sAddress = &ucMemoryPagel[0];/* Address to which the data
                                      received via I2S is saved */
    bI2sMemoryPage = 0;
    ucEepromCs = 0b11100000; /* EEPROM selected */
    ucEepromSeq = CEEPSEQ_RESET;/* EEPROM transfer sequence */
    ushEepromAddress = 0; /* EEPROM write address */
                         /* ushEepromAddress*100H) */
    SCR02 = 0b1011000000000111:/* Communication format setting */
/* |||||||||+++-- DLS022 to DLS020: 8-bit data length */
    /*
                  |||||||+----- <Fixed to 0> */
    /*
                  ||||||++---- SLC021 and SLC020: Unused (fixed to 0) */
                  /*
    /*
                |||||+---- DIR02: Input and output
    /*
                                       performed MSB first */
    /*
                      ----- PTC021 and PTC020: Unused (fixed to 00) */
                   +----- EOC02: Unused (fixed to 0) */
    /*
                  +----- <Fixed to 0> */
                     ----- CKP02/DAP02: Phases of data and
                                              clock in CSI mode
                                             selected */
    /*
                                 [11 selected] */
                     ----- TXE00/RXE00: Only transmission
                                            performed */
    /* Starting I2S operation */
    SSOL.0 = 1;
                 /* CSI00 operation starts (trigger bit) */
                  /* LRCLK operation starts */
    P_LRCLK = 0;
                /* TO00 output operation starts (trigger bit) */
    TSOL.0 = 1;
    SIO00 = 0x0FF; /* Dummy data set (INTCSI00 occurs) */
else if((P_KEY & 0b00000011)&&!P_PLAYKY){    /* KR port */
/* Playback key valid */
Starting playback
                 /* Operation-in-progress indicator turned on
   P LED = 0;
                     (key input disabled) */
    /* Settings of the registers in the audio codec: Playback set */
    fn_I2cWrite(&aPlayOnTbl[0][0], sizeof(aPlayOnTbl));
    /* Preparation of the I2S bus interface */
    ucI2sByteCouter = 0; /* CSI00 transmission counter */ SDR00 = (12-1) << 9; /* Bits 15 to 7: Transfer clock set (833 kHz) */
    SCR00 = 0b100000000000111; /* Communication format setting */
                     ||||||+++--- DLS002 to DLS000: 8-bit data Length */
                     ||||+----- <Fixed to 0> */
                   |||||++---- SLC001 and SLC000: Unused (fixed to 0) */
    /*
                    |||+-----<Fixed to 0> */
    /*
    /*
                     +----- DIR00: Input and output
                                        performed MSB first */
                          ----- PTC001 and PTC000: Unused (fixed to 00) */
                      ----- EOC00: Unused (fixed to 0) */
                    ----- CKP00/DAP00: Phases of data and
                                              clock in CSI mode
                                               selected */
                                  [00 selected] */
    /*
                 ----- TXE00/RXE00: Only Transmission
                                              performed */
```

```
TOE0L.0 = 1; /* Operation of TO00 enabled by a count operation */ TMIF00 = 0; /* INTTM00 interrupt request cleared */
                  TMMK00 = 0; /* INTTM00 interrupt servicing enabled */
                  /* Setting reading from an EEPROM (writing set at first) */
                  P_CS = ((P_CS & 0b00001111) | 0b11100000);/* EEPROM selected */
                  ucEepromCs = 0b10110000;/* EEPROM selected (enabled after 2 pages are
                                            read) */
                                          /* Data of the EEPROM set to be saved to
                  bI2sMemoryPage = 1;
                                             page 1 */
                  ucEepromSeq = CEEPSEQ_INST;/* Instruction bytes transmitted */
                                         /* EEPROM read address */
                  ushEepromAddress = 0;
                                               /* (ushEepromAddress*100H) */
                  SCR02 = 0b1011000000000111 ;/* Communication format setting */
                             |||||||||||+++--- DLS022 to DLS020: 8-bit data length */
                                     |||+----- <Fixed to 0> */
                  /*
                                | | | | | | | ++----- SLC021 and SLC020: Unused (fixed to 0) */
                  /*
                                 |||||+-----<Fixed to 0> */
                               ||||+---- DIR02: Input and output
                               performed MSB first */
                                | | | ++---- PTC021 and PTC020: Unused (fixed to 00) */
                                | | +---- EOC02: Unused (fixed to 0) */
                               +----- <Fixed to 0> */
                                  ----- CKP02/DAP02: Phases of data and
                                                              clock in CSI mode
                                                              selected */
                                                  [11 selected] */
                                    ----- TXE00/RXE00: Only transmission
                                                             performed */
                  /* Starting reading from the EEPROM */
                  CSIIF10 = 0; /* INTCSI10 interrupt request cleared */
                  CSIMK10 = 0; /* INTCSI10 interrupt servicing enabled */
                  SSOL.2 = 1; /* CSI10 operation starts (trigger bit) */
                  SIO10 = 0b00000011; /* Transmit data (reading specified)
                                          (INTCSI10 occurs) */
          }
      Recording end settings
      if(ucPlayMode==CREC_END){
      /* Recording finished */
         /* Settings of the registers in the audio codec: Setting termination of recording */
         fn_I2cWrite(&aRecordOffTbl[0][0],sizeof(aRecordOffTbl));
        P\_LED = 1; /* Operation-in-progress indicator turned off (key input possible) */
      Playback end settings
      else if(ucPlayMode==CPLAY_END){
      /* Playback finished */
         /* Settings of the registers in the audio codec: Setting termination of playback */
         fn_I2cWrite(&aPlayOffTbl[0][0], sizeof(aPlayOffTbl));
         KRM =0b00000011;
                                 /* KR0 and KR1 enabled */
                                /* Stopped */
         ucPlayMode = CSTOP;
         P_LED = 1; /* Operation-in-progress indicator turned off (key input possible) */
  }
}
```

4.5 INTTM00 Interrupt Servicing

The following operations are performed in the INTTM00 interrupt servicing in assembly language.

- <1> The register bank is switched.
- <2> Reception performed via CSI00 used for receiving data via the I²S bus interface is restarted and synchronized with LRCLK after the third byte is received during recording.
- <3> Transmission performed via CSI00 used for transmitting data via the I²S bus interface is restarted and synchronized with LRCLK after the first byte is transmitted during playback.
- <4> The address to which the data to be transmitted or received via the I2S bus interface is saved is updated.

_	or synchronizing LRCLK, BCLK, SDOUT, and SDIN)
transmitting operation of	via the I2S bus interface and BCLK, SDOUT, and SDIN used for and receiving data are synchronized by restarting the CSI00, which was stopped by INTCSI00 interrupt servicing,
when LRCLK ch	nanges from high to low level and from low to high level.
LRCLK	
BCLK	
SDOUT/SDIN	
INTTM00	
Bandan land	1
Register bank	
5	. I useu
******	***************************************
-	***************************************
******	**************************************
************* terrupt void fn if(ucPlayMode /*	**************************************
************ terrupt void fn if(ucPlayMode /* During recor	**************************************
************* terrupt void fn if(ucPlayMode /* During recor/* Starting t	**************************************
************ terrupt void fn if(ucPlayMode /* During recor/* Starting t SSOL.0 = 1	**************************************
************ terrupt void fn if (ucPlayMode /* During recor/* Starting t SSOL.0 = 1 *ucI2sAddr	**************************************
************ terrupt void fn if (ucPlayMode /* During recor/* Starting t	**************************************
************ terrupt void fn if (ucPlayMode /* During recor/* Starting t SSOL.0 = 1 *ucI2sAddr	**************************************
************ terrupt void fn if (ucPlayMode /* During recor/* Starting t	**************************************
************ terrupt void fn if (ucPlayMode /* During recor /* Starting t	**************************************
************ terrupt void fn if (ucPlayMode /* During recor /* Starting t	**************************************

4.6 INTCSI00 Interrupt Servicing

The following operations are performed in the INTCSI00 interrupt servicing in assembly language.

- <1> The register bank is switched.
- <2> Whether the address to which the received data is saved has reached one page is determined. If the address has reached one page, writing recorded data to an EEPROM is started.
- <3> Reception of each byte (first and second bytes) via CSI00 during recording
- <4> Transmission of each byte (second and third bytes) via CSI00 during playback
- <5> Whether the reference address of the transmitted data has reached one page is determined. If the address has reached one page, the selection of the EEPROM is changed and reading data from an EEPROM is started.

```
*************************
                INTCSI00 interrupt servicing
                (using INTCSI00 for CSI transmission or reception)
                Data is transmitted and received via the I2S bus interface between the
                microcontroller and the audio codec.
                During recording, CSI00 is used to save the received data. Normally, data is
                successively received by setting dummy data. To achieve synchronization with
                LRCLK, however, only reception is performed every three bytes and successive
                reception operation is stopped. The stopped operation is restarted by {\tt INTTM00}
                interrupt servicing and can be synchronized with LRCLK. When the received
                data reaches one page, writing to an EEPROM starts. During playback, CSI00 is
                used to successively transmit data, but successive transmission operation is
                stopped every three bytes to achieve synchronization with LRCLK, similarly as
                during recording. The stopped operation is restarted by INTTM00 interrupt
                servicing and can be synchronized with LRCLK. When the transmitted data
                reaches one page, reading data of a different page from the EEPROM starts.
                TIRCTIK
                                       BCLK
                                       12. . . 32. . . 32. . . 37.. .
                SDOUT/SDIN
                                       |____|___|
                INTCSI00
                                               2
                                                        2
                Register bank 1 used
        IINTCSI00:
<1> ......
                           RR1
                SEL
                INC
                            RCSI00CNT
                                             ;CSI00 reception counter updated
                СМР
                            RPLAYMOD, #CREC
                                             ;During recording?
                BNZ
                            $HI2SPLAY
                                             ; No,
                ; During recording
<2>
                ;Determining the last position of the page
                                                ; Address to which the data received via
                MOVW
                           AX,
                                    RI2SADDR
                                                ;I2S is saved
                BT
                            FI2SPAGE, $HI2SR030
                CMPW
                            AX.
                                    #RRECMEM1E
                                                ;End of page 1?
                            $HI2SR100
                BC
                                                ; No.
                           RI2SADDR, #RRECMEM2
                WVVOM
                                                ; Address to which the data received via
                                                ;I2S is saved:Page 2
                SET1
                            FI2SPAGE
                            HI2SR050
                BR
        HI2SR030:
                CMPW
                            AX,
                                    #RRECMEM2E
                                                ;End of page 2?
                            $HI2SR100
                                                ; No,
                MOVW
                            RI2SADDR, #RRECMEM1
                                                ; Address to which the data received via
                                                ;I2S is saved:Page 1
                CLR1
                            FI2SPAGE
        HI2SR050:
                ;Starting writing to the EEPROM
                VOM
                           REEPSEQ, #CEEPSEQ_WREN; Write enable (WREN) signal transmitted
                MOV
                            Α,
                                    P_CS
                                                ; EEPROM CS set
                                    #00001111B
                AND
                            Α,
                OR
                                    RP_CS
                            Α,
                            P_CS,
                MOV
                                    Α
                CLR1
                            CSIIF10
                                                ;INTCSI10 interrupt request cleared
```

MOV SIOL, #00000110s (Norte enable (NERN) instruction (INTCS10 incores) MIZSR1001 MIZSR1001 MIZSR2001 MIXSR2001 MIZSR2001 MIXSR2001 MIZSR2001 MIX MIZSR2002 MIZSR2001 MIZSR2001 MIZSR2001 MIZSR2001 MIZSR2001 MIX MIZSR2002 MIZSR2001 MIZSR2001 MIX			GT D1	GGTNEZ 1 O		ATMERICATION destruction and advantage and a
MOV STO10, #00000110B : Write enable (NREM) instruction (INTCS110 roccurs) roccurs roccu			CLR1	CSIMK10		;INTCSI10 interrupt servicing enabled
HIJSR100:					#00000110D	
### HIZBRIOUS Ruffer empty interrupt immediately after starting operation			MOV	SIUIU,	#000001108	
Suffer empty interrupt immediately after starting operation CMP ROSIDOUNT,#1 Shuffer empty interrupt immediately after		UT20D100				/occurs)
CMP RCSIDOCNT,#1 Sbuffer empty interrupt immediately after statuting reception? Statuting reception of the first byte Statuting reception of the first byte Statuting reception of the second byte MoV A, Stoto Statuting reception only Statuting	,			v interru	nt immediatel	v after starting operation
HNZ SHIZER200 BN HIZER200 HTZER200: IReception of the first byte (ignored because the data is indefined) IRECEPTION BR HIZER200 HOV A. SIDON, HE SHIZER200 HIZER200: MOV A. SIDON BR HIZER200 HIZER200: HIZER200: MOV A. SIDON BR HIZER200 HIZER200: HIZER2	<3>		_	_		
HNZ					, –	
MOV SIGNO, #PLANNED, #CPHAY (Juming playback? HI2SR200: HI2SR200: MW ROSTHOUGHT,#2 (First byte received? MW A SHIZSR300 (FFH JD.) MW RCSTONORT,#0 (FFH JD.) MW RCSTONORT,#0 (FFH JD.) MW RCSTONORT,#0 (FFH JD.) MW RCSTONORT,#0 (FFH JD.) MW RL, RIZSRADR (FFH JD.) MW RIJSRADR (FFH JD.) M			BNZ	\$HI2SR200)	
### ### ##############################			MOV	SI000,	#0FFH	;Dummy data set
H12SR200: (MP RCS100KT, #2			BR	HI2SRET		; Yes, (ignored because the data is
						;undefined)
CMP RCSIOCOT, #2 First byte received?		HI2SR200				
BNZ			_		_	
MOV						_
XCH						·
BR HI2SR500 Reception of the second byte ROW ROSIOCONT, #0 ROSIOCONT, #						-
HIZSR300:					51000	/Dunning data set and data received
### ACCOUNT OF the second byte MOV RESIDENTH HOSPION FOR A, SIDOO FOR A SI		HT2SR300		111251(300		
MOV		1122011300		of the sec	ond byte	
MOV A, SIO00 ;Data reception only ### HIZSR500 #### HIZSR500 ##################################			_		_	CSI00 reception counter initialized
MOVW HL, RIZSADDR ;Address to which the data received via ;12S is saved updated ;12S is saved ;12S is			MOV	Α,	SI000	;Data reception only
MOVN HL, RI2SADDR /Address to which the data received via /RS is saved /Received data saved /Received via /Received data saved /Received via /Received data saved /Received data saved /Received via /Received data saved /Received via /Received via /Received data saved /Received via /Received data saved /Received via /Received via /Received via /Received data saved updated /Received via /Receiv			;BR	HI2SR500		
MOV [HL], A ;Received data saved HI2SR800: INCW RI2SADDR ;Address to which the data received via ;Received data saved ;Received valued ; Internation of the ;received valued saved ;Received valued saved ;Received data saved ;Received valued saved ;Rec		HI2SR500				
MOV [HL], A ;Received data saved HI2SR800: INCW RI2SADDR ;Address to which the data received via FR HI2SRET During playback ;			MOVW	HL,	RI2SADDR	
HI2SR800: INCW RI2SADDR ;Address to which the data received via BR HI2SRET ;				F 3		
INCW RI2SADDR ;Address to which the data received via ;12S is saved updated R				[HL],	A	Received data saved
### ### ##############################		HI2SR800		D1001DDD		
### HI2SPET CMP RPLAYMOD, #CPLAY During playback?			INCW	RIZSADDR		
; During playback ; During playback ; During playback ; During playback ; During playback? ; No, CMP RPLAYMOD, #CPLAY ; During playback? ; No, CMP RCSIOCNT,#3 ; Timing of synchronization with LRCLK? ; (Immediately after transmission of the ; third byte starts?) MOVW HL, RI2SADDR ; Address to which the data transmitted via ; I2s is saved MOV SIOUO, A ; Transmit data (second or third byte) ; Transmit data (second or third byte) ; Transmit data set (INTCSIOU occurs) ; INCW RI2SADDR ; Address to which the data transmitted via ; I2s is ; saved updated H12SP100: MOV RCSIOCNT,#0 ; CSIOU transmission counter initialized H12SP200: MOV AX, RI2SADDR ; Address to which the data transmitted via ; I2s is saved ; Page 2 being transmitted? ; No, ;			RP	тт 29ргт		/125 Is saved updated
### FIZSPAGE ### FIZSPAGE #### FIZSPAGE ####################################			DIC	HIZOKEI		
HI2SPLAY: CMP RCSIOCNT,#3 ; Timing of synchronization with LRCLK? ; (Immediately after transmission of the ;third byte starts?) BNC \$HI2SP100 MOVW HL, RI2SADDR ;Address to which the data transmitted via ;12S is saved MOV A, [HL] ;Transmit data (second or third byte) MOV RI2SADDR ;Address to which the data transmitted via ;12S is ;saved updated BR H12SP200 H12SP200: MOV RCSIOOCNT,#0 ;CSIOO transmission counter initialized in ;12S is saved with the data transmitted via ;12S is saved updated BR H12SP200: MOV RCSIOCCNT,#0 ;CSIOO transmission counter initialized in ;12S is saved in ;12S in ;1			;			
HI2SPLAY: CMP RPLAYMOD, #CPLAY ;During playback? ;No, CMP RCSIOCNT,#3 ;Timing of synchronization with LRCLK? ;(Immediately after transmission of the ;third byte starts?) MOVW HL, RI2SADDR ;Address to which the data transmitted via ;12S is saved MOV SIOOO, A ;Transmit data (second or third byte) ;Address to which the data transmitted via ;12S is ;saved updated BR H12SP200 ;Address to which the data transmitted via ;12S is ;saved updated H12SP200: MOV RCSIOOCNT,#0 ;CSIOO transmission counter initialized H12SP200: MOV RCSIOOCNT,#0 ;CSIOO transmission counter initialized H12SP200: MOV RCSIOCCNT,#0 ;Address to which the data transmitted via ;12S is saved PR H12SP200 ;Address to which the data transmitted via ;12S is saved RE F12SPAGE, \$H12SP300 ;Page 2 being transmitted? ;End of page 1? ;No, MOV R12SADDR, #RRECMEM12 ;End of page 1? ;No, MOV R12SADDR, #RRECMEM22 ;End of page 2? ;No, MOV R12SADDR, #RRECMEM22 ;End of page 2? ;No, MOV R12SADDR, #RRECMEM24 ;End of page 2? ;No, MOV R12SADDR, #RRECMEM25 ;End of page 2? ;No, MOV R12SADDR, #RRECMEM26 ;End of page 2? ;No, MOV R12SADDR, #RRECMEM16 ;Indicate the data transmitted via ;12S is saved: Page 1 CLR1 F12SPAGE H12SP500: // Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected			; During pla	ayback		
CMP RDLAYMOD, #CPLAY ;During playback?; No, CMP RCSIOOCNT,#3 ;Timing of synchronization with LRCLK? ;(Immediately after transmission of the ;third byte starts?) BNC \$HI2SP100 ;Address to which the data transmitted via ;12S is saved MOV A, [HL] ;Transmit data (second or third byte) ;Address to which the data transmitted via ;12S is ;saved updated BR H12SP200 ;Address to which the data transmitted via ;12S is ;saved updated H12SP100: MOV RCSIOOCNT,#0 ;CSIOO transmission counter initialized H12SP200: MOVW AX, RI2SADDR ;Address to which the data transmitted via ;12S is saved ;Page 2 being transmitted? ET F12SPAGE, \$H12SP300 ;Page 2 being transmitted? EC \$H12SPAGE, \$H12SP300 ;Page 2 being transmitted? BC \$H12SPAGE, \$H12SP300 ;Address to which the data transmitted via ;12S is saved ;Page 2 ET F12SPAGE ;No, MOVW R12SADDR, #RRECMEM1 ;Address to which the data transmitted via ;12S is saved: Page 2 ET F12SPAGE ;No, MOVW R12SADDR, #RRECMEM2 ;End of page 2? ;No, MOVW R12SADDR, #RRECMEM1 ;Address to which the data transmitted via ;12S is saved: Page 1 CLR1 F12SPAGE H12SP500: ;Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected			;			
BNZ \$HI2SRET ; No, CMP RCSIOCNT,#3 ; Timing of synchronization with LRCLK? ;(Immediately after transmission of the ;third byte starts?) BNC \$HI2SP100 MOVW HL, RI2SADDR ;Address to which the data transmitted via ;12S is saved MOV A, [HL] ;Transmit data (second or third byte) MOV SIOOO, A ;Transmit data set (INTCSIOO occurs) INCW RI2SADDR ;Address to which the data transmitted via ;12S is ;saved updated BR HI2SP200 HI2SP100: MOV RCSIOOCNT,#0 ;CSIOO transmission counter initialized H12SP200: MOVW AX, RI2SADDR ;Address to which the data transmitted via ;12S is saved BT F12SPAGE,\$HI2SP300 ;Page 2 being transmitted? CMPW AX, #RRECMEM1E ;End of page 1? ;No, MOVW RI2SADDR,#RRECMEM2 ;Address to which the data transmitted via ;12S is saved: Page 2 SET1 F12SPAGE BR H12SP500 H12SP300: CMPW AX, #RRECMEM1 ;No, MOVW RI2SADDR,#RRECMEM1 ;Address to which the data transmitted via ;12S is saved: Page 2 CMPW AX, #RRECMEM1 ;No, MOVW RI2SADDR,#RRECMEM1 ;Address to which the data transmitted via ;12S is saved: Page 1 CLR1 F12SPAGE H12SP500: ;Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected		HI2SPLAY	:			
CMP RCSIOCNT,#3 ;Timing of synchronization with LRCLK? ;(Immediately after transmission of the ;third byte starts?) BNC \$H12SP100 MOVW HL, RI2SADDR ;Address to which the data transmitted via ;12S is saved MOV A, [HL] ;Transmit data (second or third byte) MOV SIOOO, A ;Transmit data set (INTCS100 occurs) ;Address to which the data transmitted via ;12S is ;saved updated BR H12SP200 H12SP100: MOV RCSIOCNT,#0 ;CSIOO transmission counter initialized H12SP200: MOVW AX, RI2SADDR ;Address to which the data transmitted via ;12S is saved BT F12SPAGE, \$H12SP300 ;Page 2 being transmitted? AX, #RRECMEM1E ;No, EC \$H12SRET ;No, MOVW R12SADDR, #RRECMEM2 ;Address to which the data transmitted via ;12S is saved: Page 2 BC \$H12SP300: CMPW AX, #RRECMEM2 ;End of page 2? BC \$H12SP300 H12SP300: CMPW AX, #RRECMEM2 ;No, MOVW R12SADDR, #RRECMEM1 ;No, Address to which the data transmitted via ;12S is saved: Page 1 CLR1 F12SPAGE H12SP500: ;Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected	<4>				#CPLAY	
### SPACE SHI2SP100 MOVW			BNZ	\$HI2SRET		; No,
### SPACE SHI2SP100 MOVW			CMD	DOCT O CONTR	#2	Timing of graphyonigation with IDGIVA
### SHI2SP100 MOVW			CMP	RCSIOCCNI	,#3	
MOVW HL, RI2SADDR ;Address to which the data transmitted via ;12S is saved MOV A, [HL] ;Transmit data (second or third byte) MOV SIO00, A ;Transmit data set (INTCSIO0 occurs) INCW RI2SADDR ;Address to which the data transmitted via ;12S is ;saved updated BR H12SP200 H12SP100: MOV RCSIOOCNT,#0 ;CSIOO transmission counter initialized H12SP200: MOVW AX, RI2SADDR ;Address to which the data transmitted via ;12S is saved BT F12SPAGE, \$H12SP300 ;Page 2 being transmitted? ;End of page 1? ;No, ;Nodress to which the data transmitted via ;12S is saved: Page 2 SET1 F12SPAGE ;RRECMEM2 ;End of page 2? ;No, ;No, ;No, ;No, ;No, ;No, ;No, ;No,						
MOVW HL, RI2SADDR ;Address to which the data transmitted via ;I2S is saved MOV A, [HL] ;Transmit data (second or third byte) MOV SIO00, A ;Transmit data set (INTCSI00 occurs) INCW RI2SADDR ;Address to which the data transmitted via ;I2S is ;saved updated BR H12SP200 H12SP200: MOV RCSI00CNT,#0 ;CSI00 transmission counter initialized H12SP200: MOV AX, RI2SADDR ;Address to which the data transmitted via ;I2S is saved BT FI2SPAGE, \$HI2SP300 ;Page 2 being transmitted? ;End of page 1? ;No, MOVW RI2SADDR, #RRECMEM12 ;End of page 1? ;No, MOVW RI2SADDR, #RRECMEM2 ;Address to which the data transmitted via ;I2S is saved: Page 2 BC \$HI2SP500 H12SP300: CMPW AX, #RRECMEM2 ;End of page 2? ;No, MOVW RI2SADDR, #RRECMEM1 ;Address to which the data transmitted via ;I2S is saved: Page 1 CLR1 FI2SPAGE H12SP500: ;Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected			BNC	\$HI2SP100)	, shirt a zi sa saaras. ,
MOV A, [HL] ;Transmit data (second or third byte) MOV SIO00, A ;Transmit data set (INTCSI00 occurs) ;Address to which the data transmitted via ;I2S is ;saved updated BR HI2SP200 H12SP200: MOV RCSIOOCNT,#0 ;CSI00 transmission counter initialized H12SP200: MOV AX, RI2SADDR ;Address to which the data transmitted via ;I2S is saved BT FI2SPAGE, \$H12SP300 ;Page 2 being transmitted? CMPW AX, #RRECMEM1E ;Ho of page 1? ;No, MOVW RI2SADDR, #RRECMEM2 ;Address to which the data transmitted via ;I2S is saved ;Page 2 being transmitted? ;No, Address to which the data transmitted via ;I2S is saved: Page 1? ;No, SET1 FI2SPAGE BR H12SP500 H12SP300: CMPW AX, #RRECMEM2E ;End of page 2? ;No, MOVW RI2SADDR, #RRECMEM1 ;Address to which the data transmitted via ;I2S is saved: Page 1 CLR1 FI2SPAGE H12SP500: ;Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected						
MOV A, [HL] ;Transmit data (second or third byte) MOV SIO00, A ;Transmit data set (INTCSI00 occurs) INCW RI2SADDR ;Address to which the data transmitted via ;I2S is ;saved updated BR HI2SP200 HI2SP100: MOV RCSI00CNT,#0 ;CSI00 transmission counter initialized HI2SP200: MOVW AX, RI2SADDR ;Address to which the data transmitted via ;I2S is saved BT FI2SPAGE,\$H12SP300 ;Page 2 being transmitted? CMPW AX, #RRECMEM1E ;End of page 1?			MVVM	HL,	RI2SADDR	;Address to which the data transmitted via
MOV SIO00, A 'Transmit data set (INTCSI00 occurs) INCW RI2SADDR 'Address to which the data transmitted via BR HI2SP200 HI2SP100: MOV RCSIOCNT,#0 'CSI00 transmission counter initialized HI2SP200: MOVW AX, RI2SADDR 'Address to which the data transmitted via BT FI2SPAGE, \$HI2SP300 'Page 2 being transmitted? CMPW AX, #RRECMEM1E 'End of page 1? BC \$HI2SRET 'NO, MOVW RI2SADDR, #RRECMEM2 'Address to which the data transmitted via SET1 FI2SPAGE BR H12SP500 HI2SP300: CMPW AX, #RRECMEM2 'Address to which the data transmitted via SET1 FI2SPAGE BR H12SP500 HI2SP300: CMPW AX, #RRECMEM2E 'End of page 2? 'End of page 2? 'NO, MOVW RI2SADDR, #RRECMEM1 'Address to which the data transmitted via CLR1 FI2SPAGE HI2SP500: 'Starting reading from the EEPROM MOV A, P_CS 'EEPROM selected						;I2S is saved
INCW RI2SADDR ;Address to which the data transmitted via ;12S is ;saved updated BR H12SP200 H12SP100: MOV RCSIOOCNT,#0 ;CSIOO transmission counter initialized H12SP200: MOVW AX, RI2SADDR ;Address to which the data transmitted via ;12S is saved BT F12SPAGE,\$H12SP300 ;Page 2 being transmitted? CMPW AX, #RRECMEM1E ;End of page 1? BC \$H12SRET ;No, Address to which the data transmitted via ;12S is saved: Page 2 SET1 F12SPAGE BR H12SP500 H12SP300: CMPW AX, #RRECMEM2 ;End of page 2? BC \$H12SRET ;No Address to which the data transmitted via ;12S is saved: Page 2 CMPW AX, #RRECMEM2 ;End of page 2? BC \$H12SRET ;No MOVW R12SADDR, #RRECMEM1 ;Address to which the data transmitted via ;12S is saved: Page 1 CLR1 F12SPAGE H12SP500: ;Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected					[HL]	
BR HI2SP200 HI2SP100: MOV RCSIOOCNT,#0					A	,
BR HI2SP200 HI2SP100: MOV RCSIOOCNT,#0 ;CSIOO transmission counter initialized HI2SP200: MOVW AX, RI2SADDR ;Address to which the data transmitted via ;12S is saved BT FI2SPAGE, \$H12SP300 ;Page 2 being transmitted? CMPW AX, #RRECMEM1E ;End of page 1? ;No, MOVW RI2SADDR, #RRECMEM2 ;Address to which the data transmitted via ;12S is saved: Page 2 SET1 FI2SPAGE BR HI2SP500 HI2SP300: CMPW AX, #RRECMEM2 ;End of page 2? BC \$H12SRET ;No, MOVW RI2SADDR, #RRECMEM2 ;Find of page 2? ; No, MOVW RI2SADDR, #RRECMEM1 ;12S is saved: Page 1 CLR1 FI2SPAGE HI2SP500: ;Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected			INCW	R12SADDR		
MOV RCSIOOCNT,#0 ;CSIOO transmission counter initialized HI2SP200: MOVW AX, RI2SADDR ;Address to which the data transmitted via ;12S is saved BT FI2SPAGE, \$H12SP300 ;Page 2 being transmitted? CMPW AX, #RRECMEM1E ;End of page 1?; No, MOVW RI2SADDR, #RRECMEM2 ;Address to which the data transmitted via ;12S is saved: Page 2 SET1 F12SPAGE BR H12SP500 H12SP300: CMPW AX, #RRECMEM2E ;End of page 2? SET1 F12SPAGE BR H12SP500 ;No, MOVW R12SADDR, #RRECMEM2E ;End of page 2? ; No, MOVW R12SADDR, #RRECMEM1 ;Address to which the data transmitted via ;12S is saved: Page 1 CLR1 F12SPAGE H12SP500: ;Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected			BB	нтэсрэлл		/125 IS /Saveu upuateu
MOV RCSIOOCNT,#0 ;CSIOO transmission counter initialized HI2SP200: MOVW AX, RI2SADDR ;Address to which the data transmitted via ;I2S is saved BT FI2SPAGE, \$HI2SP300 ;Page 2 being transmitted? CMPW AX, #RRECMEM1E ;End of page 1? BC \$HI2SRET ;NO, MOVW RI2SADDR, #RRECMEM2 ;Address to which the data transmitted via ;I2S is saved: Page 2 SET1 FI2SPAGE BR H12SP500 HI2SP300: CMPW AX, #RRECMEM2E ;End of page 2? BC \$HI2SRET ;NO, MOVW RI2SADDR, #RRECMEM1 ;Address to which the data transmitted via ;I2S is saved: Page 1 CLR1 FI2SPAGE HI2SP500: ;Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected		HI2SP100		111205200		
HI2SP200: MOVW AX, RI2SADDR ;Address to which the data transmitted via ;I2S is saved BT FI2SPAGE, \$HI2SP300 ;Page 2 being transmitted? CMPW AX, #RRECMEM1E ;End of page 1? BC \$HI2SRET ; No, MOVW RI2SADDR, #RRECMEM2 ;Address to which the data transmitted via ;I2S is saved: Page 2 SET1 FI2SPAGE BR HI2SP500 HI2SP300: CMPW AX, #RRECMEM2E ;End of page 2? BC \$HI2SRET ; No, MOVW RI2SADDR, #RRECMEM1 ;Address to which the data transmitted via ;I2S is saved: Page 1 CLR1 FI2SPAGE HI2SP500: ;Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected	<5>			RCSI00CNT	,#0	CSI00 transmission counter initialized
;I2S is saved BT FI2SPAGE, \$HI2SP300 ;Page 2 being transmitted? CMPW AX, #RRECMEM1E ;End of page 1? BC \$HI2SRET ;No, MOVW RI2SADDR, #RRECMEM2 ;Address to which the data transmitted via ;I2S is saved: Page 2 SET1 FI2SPAGE BR HI2SP500 HI2SP300: CMPW AX, #RRECMEM2E ;End of page 2? BC \$HI2SRET ;No, MOVW RI2SADDR, #RRECMEM1 ;Address to which the data transmitted via ;I2S is saved: Page 1 CLR1 FI2SPAGE HI2SP500: ;Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected		HI2SP200				
BT FI2SPAGE, \$H12SP300 ; Page 2 being transmitted? CMPW AX, #RRECMEM1E ; End of page 1? BC \$H12SRET ; No, MOVW RI2SADDR, #RRECMEM2 ; Address to which the data transmitted via ;12S is saved: Page 2 SET1 FI2SPAGE BR HI2SP500 HI2SP300: CMPW AX, #RRECMEM2E ; End of page 2? BC \$H12SRET ; No, MOVW RI2SADDR, #RRECMEM1 ; Address to which the data transmitted via ;12S is saved: Page 1 CLR1 FI2SPAGE HI2SP500: ;Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected			MOVW	AX,	RI2SADDR	;Address to which the data transmitted via
CMPW AX, #RRECMEM1E ;End of page 1? BC \$HI2SRET ; No, MOVW RI2SADDR, #RRECMEM2 ;Address to which the data transmitted via ;12S is saved: Page 2 SET1 FI2SPAGE BR HI2SP500 HI2SP300: CMPW AX, #RRECMEM2E ;End of page 2? BC \$HI2SRET ; No, MOVW RI2SADDR, #RRECMEM1 ;Address to which the data transmitted via ;12S is saved: Page 1 CLR1 FI2SPAGE HI2SP500: ;Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected						
BC \$HI2SRET ; No, MOVW RI2SADDR, #RRECMEM2 ;Address to which the data transmitted via ;I2S is saved: Page 2 SET1 FI2SPAGE BR HI2SP500 HI2SP300: CMPW AX, #RRECMEM2E ;End of page 2? BC \$HI2SRET ; No, MOVW RI2SADDR, #RRECMEM1 ;Address to which the data transmitted via ;I2S is saved: Page 1 CLR1 FI2SPAGE HI2SP500: ;Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected						
MOVW RI2SADDR, #RRECMEM2 ;Address to which the data transmitted via ;12S is saved: Page 2 SET1 F12SPAGE BR H12SP500 H12SP300: CMPW AX, #RRECMEM2E ;End of page 2? BC \$H12SRET ; No, MOVW RI2SADDR, #RRECMEM1 ;Address to which the data transmitted via ;12S is saved: Page 1 CLR1 F12SPAGE H12SP500: ;Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected					#RRECMEM1E	
;I2S is saved: Page 2 SET1 FI2SPAGE BR HI2SP500 HI2SP300: CMPW AX, #RRECMEM2E ;End of page 2? BC \$HI2SRET ; No, MOVW RI2SADDR, #RRECMEM1 ;Address to which the data transmitted via ;I2S is saved: Page 1 CLR1 FI2SPAGE HI2SP500: ;Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected					Дррисмемо	
SET1 F12SPAGE BR H12SP500 H12SP300: CMPW AX, #RRECMEM2E ;End of page 2? BC \$H12SRET ; No, MOVW R12SADDR, #RRECMEM1 ;Address to which the data transmitted via ;12S is saved: Page 1 CLR1 F12SPAGE H12SP500: ;Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected			MOVW	RIZSADDR,	#RRECMEM2	
BR HI2SP500 HI2SP300: CMPW AX, #RRECMEM2E ; End of page 2? BC \$HI2SRET ; No, MOVW RI2SADDR, #RRECMEM1 ; Address to which the data transmitted via ; I2S is saved: Page 1 CLR1 FI2SPAGE HI2SP500: ; Starting reading from the EEPROM MOV A, P_CS ; EEPROM selected			SET1	FI2SPAGE		. 125 15 5avea. 1age 2
HI2SP300: CMPW AX, #RRECMEM2E ;End of page 2? BC \$HI2SRET ; No, MOVW RI2SADDR, #RRECMEM1 ;Address to which the data transmitted via ;12S is saved: Page 1 CLR1 F12SPAGE HI2SP500: ;Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected						
BC \$HI2SRET ; No, MOVW RI2SADDR, #RRECMEM1 ; Address to which the data transmitted via ;12S is saved: Page 1 CLR1 FI2SPAGE HI2SP500: ;Starting reading from the EEPROM MOV A, P_CS ; EEPROM selected		HI2SP300				
MOVW RI2SADDR, #RRECMEM1 ;Address to which the data transmitted via ;12S is saved: Page 1 CLR1 FI2SPAGE HI2SP500: ;Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected			CMPW	AX,	#RRECMEM2E	;End of page 2?
;I2S is saved: Page 1 CLR1 FI2SPAGE HI2SP500: ;Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected						· ·
CLR1 FI2SPAGE HI2SP500: ;Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected			MOVW	RI2SADDR,	#RRECMEM1	
HI2SP500: /Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected			CI D1	ET06536=		;12S is saved: Page 1
;Starting reading from the EEPROM MOV A, P_CS ;EEPROM selected		HIJODEOO		FIZSPAGE		
MOV A, P_CS ; EEPROM selected		HIZSE200		eading fro	m the FFDDOM	
						;EEPROM selected
AND A, #UUUUIIIID			AND	Α,	#00001111B	. LLI Non Bellevica

	OR	Α,	RP_CS	
	MOV	P_CS,	A	
	MOV	REEPSEQ,	#CEEPSEQ_INS	T;Instruction bytes transmitted
	CLR1	CSIIF10		;INTCSI10 interrupt request cleared
	CLR1	CSIMK10		;INTCSI10 interrupt servicing enabled
	SET1	SSOL.2		CSI10 operation starts (trigger bit)
	MOV	SIO10,	#00000011B	<pre>;Transmit data (reading specified) set ;(INTCSI10 occurs)</pre>
HI2SRET:				
	RETI			

```
/***************************
     INTCSI00 interrupt servicing
     (using INTCSI00 for CSI transmission or reception)
       Data is transmitted and received via the I2S bus interface between the
       microcontroller and the audio codec. During recording, CSI00 is used to
       save the received data. Normally, data is successively received by
       setting dummy data.
       To achieve synchronization with LRCLK, however, only reception is
       Performed every three bytes and successive reception operation is stopped.
       The stopped operation is restarted by INTTM00 interrupt servicing and
       can be synchronized with LRCLK. When the received data reaches one page,
       writing to an EEPROM starts. During playback, CSI00 is used to
       successively transmit data, but successive transmission operation is
       stopped every three bytes to achieve synchronization with LRCLK,
       similarly as during recording.
       The stopped operation is restarted by INTTM00 interrupt servicing and
       can be synchronized with LRCLK. When the transmitted data reaches one
       page, reading data of a different page from the EEPROM starts.
       LRCLK
                           BCLK
                           10. . . 00. . . 00. . . 0.70. .
       SDOUT/SDIN
        INTCSI00
                           . | _____ | ____ | ____ | ____ | ____ |
                                 2
                                       3
                           1
       Register bank 1 used
interrupt void fn_intcsi00(void)
  ucI2sByteCouter++; /* CSI00 reception counter updated */
  if(ucPlayMode==CREC){
   During recording
        ._____*/
      /* Determining the last position of the page */
     if(bI2sMemoryPage){
      /* Page 2 being transmitted */
       if(ucI2sAddress>=&ucMemoryPage2[3*2*42]){
       /* End of page 2 */
          ucI2sAddress = &ucMemoryPage1[0];/* Address to which the data
                                          received via I2S is saved: page 1 */
          bI2sMemoryPage = 0;
          /* Starting writing to the EEPROM */
          ucEepromSeq = CEEPSEQ_WREN; /* Write enable (WREN) signal transmitted */
          CSIIF10 = 0;/* INTCSI10 interrupt request cleared */
          CSIMK10 = 0;/* INTCSI10 interrupt servicing enabled */
          SSOL.2 = 1;/* CSI10 operation starts (trigger bit) */
          SIO10 = 0b00000110; /* Transmit data set (Write enable (WREN)
                                instruction (INTCSI10 occurs) */
       }
     }
```

```
else{
    /* Page 1 being transmitted */
      if(ucI2sAddress>=&ucMemoryPage1[3*2*42]){
      /* End of page 1 */
         ucI2sAddress = &ucMemoryPage2[0];/* Address to which the data received via
                                             I2S is saved:Page 2 */
         bI2sMemoryPage = 1;
         /* Starting writing to the EEPROM */
         ucEepromSeq = CEEPSEQ_WREN; /* Write enable (WREN) signal transmitted */
         P_CS = (P_CS \& 0b00001111) | ucEepromCs; /* EEPROM CS set */
         CSIIF10 = 0; /* INTCSI10 interrupt request cleared */
         CSIMK10 = 0; /* INTCSI10 interrupt servicing enabled */
         SSOL.2 = 1; /* CSI10 operation starts (trigger bit) */
         SIO10 = 0b00000110; /* Transmit data set (Write enable (WREN) instruction
                                   INTCSI10 occurs) */
    if(ucI2sByteCouter==1){
    /* Buffer empty interrupt immediately after starting operation */
       SIO00 = 0x0FF; /* Dummy data set */
    else{
         if(ucI2sByteCouter==2){
         /* Reception of the first byte */
             *ucI2sAddress = SI000; /* Data received via I2S received and saved */
                                      /* Dummy data set */
            SIO00 = 0x0FF;
         else/*if(ucI2sByteCouter==3)*/{
         /* Reception of the second byte */
                                     /* Data received via I2S received and saved
            *ucI2sAddress = SI000;
                                        (data reception only) */
            ucI2sByteCouter = 0; /* CSI00 reception counter initialized */
         ucI2sAddress++;
else if(ucPlayMode==CPLAY){
During playback
    if(ucI2sByteCouter<3){</pre>
    /* Transmission of the second or third byte */
         SIO00 = *ucI2sAddress; /* Transmit data set (I2S Transmit
                                     data, INTCSI00 occurs) */
         ucI2sAddress++; /* Address to which the data transmitted via I2S is
                            saved updated */
    else/*if(ucI2sByteCouter==3)*/{
    /* Timing of synchronization with LRCLK? (Immediately after transmission
       of the third byte starts) */
                                /* CSI00 transmission counter initialized */
       ucI2sByteCouter = 0;
    if(bI2sMemoryPage){
    /* Page 2 being transmitted */
       if(ucl2sAddress>=&ucMemoryPage2[3*2*42]){
       /* End of page 2 */
          ucI2sAddress = &ucMemoryPage1[0];
          ^{\prime \star} Address to which the data transmitted via I2S is saved: Page 1 ^{\star \prime}
          bI2sMemoryPage = 0;
          /* Starting reading from the EEPROM */
          P_CS = (P_CS & 0b00001111) | ucEepromCs; /* EEPROM selected */
```

```
ucEepromSeq = CEEPSEQ_INST; /* Instruction bytes transmitted */
               CSIIF10 = 0; /* INTCSI10 interrupt request cleared */
CSIMK10 = 0; /* INTCSI10 interrupt servicing enabled */
SSOL.2 = 1; /* CSI10 operation starts (trigger bit) */
               SIO10 = 0b00000011;/* Transmit data (reading specified) set
                                            (INTCSI10 occurs) */
       else{
       /* Page 1 being transmitted */
           if(ucI2sAddress>=&ucMemoryPage1[3*2*42]){
           /* End of page 1 */
               ucI2sAddress = &ucMemoryPage2[0];
               /* Address to which the data transmitted via I2S is saved: Page 2 */
                  bI2sMemoryPage = 1;
               /* Starting reading from the EEPROM */
               P_CS = (P_CS \& 0b00001111) | ucEepromCs; /* EEPROM selected */
               ucEepromSeq = CEEPSEQ_INST;/* Instruction bytes transmitted */
               CSIIF10 = 0; /* INTCSI10 interrupt request cleared */
CSIMK10 = 0; /* INTCSI10 interrupt servicing enabled */
SSOL.2 = 1; /* CSI10 operation starts (trigger bit) */
               SIO10 = 0b00000011;/* Transmit data (reading specified) set
                                             (INTCSI10 occurs) */
     }
}
```

4.7 INTCSI10 Interrupt Servicing

The following operations are performed in the INTCSI10 interrupt servicing in assembly language.

- <1> Multiple interrupts are enabled and the register bank is switched.
- <2> Section for transmitting instruction bytes used for writing data to the EEPROMs during recording
- <3> Section for transmitting the 24-bit address used for writing data to the EEPROMs during recording. The address is transmitted in three sections of one byte each.
- <4> Timing of starting transmitting the data section used for writing data to the EEPROMs during recording. Transmission using DMA is started.
- <5> Section for transmitting the 24-bit address used for reading data from the EEPROMs during playback. The address is transmitted in three sections of one byte each.
- <6> Timing of starting to receive the data section used for reading data from the EEPROMs during playback. Reception using DMA is started.

```
INTCSI10 interrupt servicing
                   (using INTCSI10 for CSI transmission or reception)
                   During recording, instruction bytes and 24-bit addresses are transmitted
                   to an EEPROM, DMA channel 1 starts when transmitting data to the EEPROM
                   starts, and transmission continues in CSI10 single transmission mode.
                   During playback, 24-bit addresses are transmitted to an EEPROM, DMA
                   channels 0 and 1 start when receiving data from the EEPROM starts, and
                   reception continues in CSI10 single reception mode. However, DMA
                   channel 1 is used for setting dummy data.
                   Register bank 1 used
           IINTCSI10:
<1>
                   ΕI
                                                   ;Multiple interrupts enabled
                            RB2
                   SEL
                            REEPSEO
                                                   ; EEPROM transfer sequence updated
                   INC
                   CMP
                            RPLAYMOD, #CREC
                                                  ;During recording? No, (during playback)
                   BZ
                            $HCSI1REC
                   BR
                            HCSI1PLAY
           HCSI1REC:
                   ;-----
                   ; During recording
                   ;Instruction byte transmission
<2>
                   CMP
                            REEPSEQ, #CEEPSEQ_INST
                                                   ;Instruction byte transmission timing?
                   BNZ
                            $HCSI1100
                                                   ; No,
                                    #11110000B
                   OR
                            P_CS,
                                                   ;Non-active
                   NOP
                   MOV
                                                   ; EEPROM selected
                            Α,
                                    P CS
                                    #00001111B
                   AND
                            Α,
                   OR
                                    RP_CS
                            Α,
                   MOV
                            P_CS,
                                    Α
                                    #00000010B
                                                   ;Writing specified
                   MOV
                            Α,
                            HCSI1650
                                                   ;Data transmitted
                   BR
           HCSI1100:
                   ;Transmission of the higher bits of the 24-bit address
<3>
                            REEPSEQ, #CEEPSEQ_ADDRH ;Transmitting the higher bits of the 24-bit
                   CMP
                                                   ;address?
                   BNZ
                            $HCSI1200
                                                   ; No,
                   MOV
                                    REEPADDR+1
                            Α,
                   BR
                            HCSI1650
                                                   ;Data transmitted
           HCST1200:
                   ;Transmission of the middle bits of the 24-bit address
                   CMP
                            REEPSEQ, #CEEPSEQ_ADDRM ; Transmitting the middle bits of the 24-bit
                                                   ;address?
                   BNZ
                            $HCSI1300
                                                   ; No.
                   MOV
                            Α,
                                    REEPADDR
                   BR
                            HCSI1650
                                                   ;Data transmitted
           HCSI1300:
                   ;Transmission of the lower bits of the 24-bit address
                            REEPSEQ, #CEEPSEQ_ADDRL ;Transmitting the lower bits of the 24-bit
                   CMP
                                                   ;address?
                            $HCSI1400
                   BNZ
                                                   ; No.
                   MOV
                                    #000H
                   BR
                            HCSI1650
                                                   ;Data transmitted
           HCSI1400:
                   ;Starting data transmission
<4>
                   ;Starting DMA transfer
                            FI2SPAGE, $HCSI1430
                                                   ; Is I2S transmitting page 2?
                   MOVW
                            DRA1,
                                    #RRECMEM2+1
                                                   ;Transmit buffer
                   MOV
                                     !RRECMEM2
                                                   ;First transmit data
                   BR
                            HCSI1450
```

```
HCSI1430:
                                       #RRECMEM1+1
                    MOVW
                             DRA1,
                                                      ;Transmit buffer
                    VOM
                                       !RRECMEM1
                                                      ;First transmit data
                             Α,
           HCST1450:
                    MVVOM
                             DBC1,
                                       #3*2*42-1
                                                      ;One page
                             DST1
                                                      ;DMA1 transfer enabled (for CSI10
                    SET1
                                                      ;transmission)
                    CLR1
                             DMAIF1
                                                      ;INTDM1 interrupt request cleared
                    CLR1
                             DMAMK1
                                                      ;INTDM1 interrupt servicing enabled
                    CLR1
                             CSIIF10
                                                      ;INTCSI10 interrupt request cleared
                    SET1
                             CSIMK10
                                                      ;INTCSI10 interrupt servicing disabled
                    SET1
                                                      ;INTDMO interrupt servicing disabled
                             DMAMK 0
           HCST1650:
                    SET1
                             SSOL.2
                                                      ;CSI00 operation starts (trigger bit)
                             SIO10,
                                                      ;Transmit data set (INTCSI00 occurs)
                    MOV
           HCSI1800:
                             HCSI1RET
                    ; During playback
           HCSI1PLAY:
                    ;Transmission of the higher bits of the 24-bit address
                             REEPSEQ, #CEEPSEQ_ADDRH ; Transmitting the higher bits of the
<5>
                                                      ;24-bit address?
                             $HCSI1P200
                                                      ; No.
                                      REEPADDR+1
                    MOV
                             Α.
                    BR
                             HCSI1P350
                                                      ;Data transmitted
           HCSI1P200:
                    ;Transmission of the middle bits of the 24-bit address
                             REEPSEQ, #CEEPSEQ_ADDRM ; Transmitting the middle bits of the
                                                      ;24-bit address?
                             $HCSI1P300
                    BNZ
                                                      ; No.
                    MOV
                                      REEPADDR
                             Α,
                    BR
                             HCSI1P350
                                                      ;Data transmitted
           HCSI1P300:
                    ;Transmission of the lower bits of the 24-bit address
                             REEPSEQ, #CEEPSEQ_ADDRL ;Transmitting the lower bits of the
                                                      ;24-bit address?
                    BNZ
                              $HCSI1P400
                                                      ; No.
                                  #000H
                    MOM
                             Α,
           HCSI1P350:
                    ;Data transmission
                    MOV
                             SIO10, A
                                                      ;Transmit data set (INTCSI10 occurs)
                    BR
                             HCSI1RET
           HCSI1P400:
                    ;Starting data reception
                                       #011100000000111B; Communication format setting
                    MOVW
                             AX.
<6>
                                       ;||||||||||+++- DLS022 to DLS020: 8-bit data length
                                           ||||||||+---- <Fixed to 0>
                                       ;
                                         ||||||||++---- SLC021 and SLC020: Unused (fixed to 0)
                                       ;
                                         ||||||+----- <Fixed to 0>
                                       ;
                                         ||||||+---- DIR02: Input and output performed
                                       ;
                                       ;
                                                                with MSB first
                                            | | ++---- PTC021 and PTC020: Unused (fixed to 00)
                                       ;
                                            | +---- EOC02: Unused (fixed to 0)
                                         |||+-----<Fixed to 0>
                                       ;
                                       ;
                                            ----- CKP02/DAP02: Phases of data and clock
                                                                      in CSI mode selected
                                       ;
                                       ; | |
                                                  [11 selected]
                                                  ----- TXE00/RXE00: Only reception performed
                    MOVW
                              !SCR02,
                                       AX
                    MVVOM
                             DRA1.
                                       #RRECMEM1
                                                        ; Address for setting dummy data
```

	MOVW	DBC1,	#3*2*42-1	;Page size set
	BT MOVW BR		#RRECMEM2	;Is I2S transmitting page 2? ;Receive buffer set to page 1
HCSI1P430		1100111 100		
	MOVW	DRA0,	#RRECMEM1	Receive buffer set to page 2
HCSI1P450): MOVW	DBC0,	#3*2*42	;Page size set
		,		
	;Starting	DMA trans	sfer	
	SET1	DST1		;DMA1 transfer enabled (for CSI10 ;transmission)
	SET1	DST0		;DMA0 transfer enabled (for CSI10 ;reception)
	SET1	DMAMK1		;INTDM1 interrupt servicing disabled
	CLR1	CSIIF10		;INTCSI10 interrupt request cleared
	SET1	CSIMK10		;INTCSI10 interrupt servicing disabled
	CLR1	DMAIF0		;INTDM0 interrupt request cleared
	CLR1	DMAMK0		;INTDM0 interrupt servicing enabled
	SET1	SSOL.2		;CSI10 operation starts (trigger bit)
 	MOV	SIO10,	#0FFH	;Dummy data set (INTCSI00 occurs)
HCSI1RET:				
	RETI			

```
/*************************
  INTCSI10 interrupt servicing
  (using INTCSI10 for CSI transmission or reception)
  During recording, instruction bytes and 24-bit addresses are transmitted
  to an EEPROM, DMA channel 1 starts when transmitting data to the
  EEPROM starts, and transmission continues in CSI10 single transmission mode.
  During playback, 24-bit addresses are transmitted to an EEPROM,
  DMA channels 0 and 1 start when receiving data from the EEPROM starts,
  and reception continues in CSI10 single reception mode. However,
  DMA channel 1 is used for setting dummy data.
  Register bank 1 used
*************************
 _interrupt void fn_intcsi10(void)
  EI();/* Multiple interrupts enabled */
     if(ucPlayMode==CREC){
      During recording
       ucEepromSeq++; /* EEPROM transfer sequence updated */
       /* Instruction byte transmission */
       switch(ucEepromSeq){
        case CEEPSEQ_INST:
           /* Instruction byte transmission timing */
                                 /* Non-active */
           P_CS |= 0b11110000;
           NOP();
           P_CS = (P_CS & 0b00001111) | ucEepromCs;
                                                   /* EEPROM selected */
           SIO10 = 0b00000010; /* Transmission of write specification */
           break;
        case CEEPSEQ_ADDRH:
           /* Transmission of the higher bits of the 24-bit address */
           SIO10 = (unsigned char)(ushEepromAddress>>8);
           break;
        case CEEPSEQ_ADDRM:
           /* Transmission of the middle bits of the 24-bit address */
           SIO10 = (unsigned char)(ushEepromAddress);
           break;
        case CEEPSEO ADDRL:
           /* Transmission of the lower bits of the 24-bit address */
           SIO10 = 0x000;
           break;
        case CEEPSEQ_DATA:
        default:
           /* Starting data transmission */
           /* Starting DMA transfer */
           if(bI2sMemoryPage){
           /* Page 2 being transmitted */
                 DRA1 = (unsigned short)&ucMemoryPage1[1];
                 /* Transmit buffer set to page 1 */
           else{
           /* Page 1 being transmitted */
              DRA1 = (unsigned short)&ucMemoryPage2[1];
              /* Transmit buffer set to page 2 */
           DBC1 = 3*2*42-1;
                              /* One page */
           DST1 = 1; /* DMA1 transfer enabled (for CSI10 transmission) */
```

```
DMAIF1 = 0;
                   /* INTDM1 interrupt request cleared */
      DMAMK1 = 0;
                    /* INTDM1 interrupt servicing enabled */
                    /* INTCSI10 interrupt request cleared */
      CSIIF10 = 0;
      CSIMK10 = 1;
                   /* INTCSI10 interrupt servicing disabled */
                   /* INTDM0 interrupt servicing disabled */
     DMAMK0 = 1;
      SSOL.2 = 1;
                    /* CSI00 operation starts (trigger bit) */
      if(bI2sMemoryPage){
      /* Page 2 being transmitted */
            SIO10 = *ucMemoryPage1; /* Transmit data set (INTCSI00 occurs) */
           SIO10 = *ucMemoryPage2; /* Transmit data set (INTCSI00 occurs) */
      /* Page 1 being transmitted */
     break;
 }
else{
During playback
  ucEepromSeq++; /* EEPROM transfer sequence updated */
  /* Instruction byte transmission */
  switch(ucEepromSeq){
      case CEEPSEQ_ADDRH:
        /* Transmission of the higher bits of the 24-bit address */
        SIO10 = (unsigned char)(ushEepromAddress>>8);
        break;
      case CEEPSEQ_ADDRM:
        /* Transmission of the middle bits of the 24-bit address */
        SIO10 = (unsigned char)(ushEepromAddress);
        break;
      case CEEPSEO ADDRL:
         /* Transmission of the lower bits of the 24-bit address */
        SIO10 = 0x000;
        break;
      case CEEPSEQ_DATA:
      default:
         /* Starting data reception */
        SCR02 = 0b0111000000000111; /* Communication format setting */
                   ||||||||||+++----- DLS022 to DLS020: 8-bit data length */
                    ||||||||||+------<Fixed to 0> */
                     |||||||++----- SLC021 and SLC020: Unused (fixed to 0) */
                       |||||+-----<Fixed to 0> */
                            ----- DIRO2: Input and output performed with MSB
                                                first */
                           ----- PTC021 and PTC020: Unused (fixed to 00) */
                         ----- EOC02: Unused (fixed to 0) */
                         ----- <Fixed to 0> */
                             ----- CKP02/DAP02: Phases of data and clock
                                                      in CSI mode selected */
                                          [11 selected] */
                   ++----- TXE00/RXE00: Only reception performed */
        DRA1 = (unsigned short)&ucMemoryPage1[0];/* Address for setting dummy
        DBC1 = 3*2*42-1;
                             /* Page size set */
        if(bI2sMemoryPage){
         /* Page 2 being transmitted */
           DRA0 = (unsigned short)&ucMemoryPage1[0];/* Receive buffer set to
                                                      page 1 */
        else{
         /* Page 1 being transmitted */
        DRA0 = (unsigned short)&ucMemoryPage2[0];/* Receive buffer set to
                                                    page 2 */
```

4.8 INTDMA0 Interrupt Servicing

The following operations are performed in the INTDMA0 interrupt servicing in assembly language.

- <1> The register bank is switched.
- <2> A wait is inserted until communication via CSI10 ends.
- <3> If the operating status indicates that preparing for playback has started, the operating status is set to "preparation for playback", and reading from the EEPROM of the second page is started.
- <4> If the operating status indicates that playback is ready, because two pages of playback data has been acquired, the operating status is set to "playback under execution", operation of the I²S bus interface is started, and data is transmitted to the audio codec.
- <5> If the operating status indicates that playback is under execution, the EEPROM is selected. When the data of all EEPROM pages has been read, operation of the I²S bus interface is stopped and the operation status is set to "playback stopped".
- <6> DMA operation is stopped.

```
INTDMA0 interrupt servicing
               (using INTDMA0 for CSI reception)
               This interrupt occurs once data of one page has been received from an
               EEPROM during playback. Which of the four EEPROMs is to be used is
               selected and operation of the I2S bus interface is started and stopped.
               Register bank 1 used
       IINTDMA0:
<1> ····
               SELRB1
               ; Waiting for communication completion
       HDMA0100:
<2>
               MOVA,
                        SSR02L
                                                  ;Communication completed?
                                $HDMA0100
                        А.б,
                                                  ; No,
               :Completing receiving data of one page
               OR
                        P_CS,
                                #11110000B
                                                  ;Non-active
                        REEPSEQ, #CEEPSEQ_INST
               MOV
               CMP
                        RPLAYMOD, #CPLAY
                                                  ;During playback?
                        SHDMA0500
               BZ
                                                  ; Yes,
                        RPLAYMOD, #CPLAY_SET
                                                  ;Preparing for playback?
               CMP
                        SHDMA0300
               B7
                                                  ; Yes.
               CMP
                        RPLAYMOD, #CPLAY_START
                                                  ;Starting preparing for playback?
               BNZ
                        $HDMA0RET
                                                  ; No,
               ;Starting reading from an EEPROM
                       RPLAYMOD, #CPLAY_SET
                                                  ;Prepared for playback
               WOM.
<3>
               VOM
                                P_CS
                                                  ;EEPROM selected
                        Α,
               AND
                       Α,
                                #00001111B
               OR
                        Α,
                                #11010000B
               MOV
                        P CS.
               CLR1
                        FI2SPAGE
               CLR1
                        CSIIF10
                                                  ;INTCSI10 interrupt request cleared
                        CSTMK10
                                                  ;INTCSI10 interrupt servicing enabled
               CLR1
                        SSOL.2
                                                  ;CSI10 operation starts (trigger bit)
               SET1
               MOV
                        SIO10,
                                #00000011B
                                                  ;Transmit data (reading specified)
                                                  ;set (INTCSI10 occurs)
               BR
                        HDMA0RET
         ; Starting the operation of the I2S bus interface
      HDMA0300:
               MOV
                    RPLAYMOD,
                                #CPLAY
                                                  ;During playback
               MOVW RI2SADDR,
                                #RRECMEM1+1
                                                 ;Start of the transmit buffer set
<4>
               CLR1 FI2SPAGE
               MOV
                    Α,
                                !RRECMEM1
               ;Starting the operation of the I2S bus interface
                                                 ;CSI00 operation starts (trigger bit)
               SET1 SSOL.0
               CLR1
                    P_LRCLK
                                                  ;LRCLK operation starts
               SET1
                    TSOL.0
                                                  ;TO00 output operation starts
                                                  ;(trigger bit)
               MOV
                     SI000,
                                Α
                                                  ;Transmit data set (INTCSI00 occurs)
               BR
                     HDMA0RET
      HDMA0500:
<5>
               ;EEPROM selection
               VOM
                    Α,
                                RP_CS
               SET1 A.3
               ROLC A,
```

```
$HDMA0700
                 BC
                                                       ; Have all EEPROMs been selected once? No,
                 INCW REEPADDR
                 MOVW AX,
                                    REEPADDR
                 CMPW AX,
                                    #128000/256
                                                       ;Last EEPROM?
                 BNC
                       $HDMA0800
                                                       ; Yes,
                 MOV
                                    #11100000B
        HDMA0700:
                 AND
                                    #11110000B
                       Α,
                 MOV
                       RP_CS,
                                    Α
                 BR
                       HDMA0RET
        :0080AMQH
                 ;Stopping the operation of the I2S bus interface
                 SET1 P_LRCLK
                                                       ;LRCLK output disabled (high level)
                 SET1 TTOL.0
                                                       ;T000 output operation stopped
                                                       ;(trigger bit)
                 SET1 STOL.0
                                                       ;CSI000 output operation stopped
                                                       ;(trigger bit)
                 SET1 STOL.2
                                                       ;CSI010 output operation stopped
                                                       ;(trigger bit)
                 MOV
                                    #CPLAY_END
                       RPLAYMOD,
                                                       ;Playback being terminated
        HDMAORET:
                 CLR1 DST1
                                                       ;DMA1 transfer stopped
<6>
                 CLR1 DST0
                                                       ;DMA0 transfer stopped
                 SET1
                       DMAMK0
                                                       ;INTDMO interrupt servicing disabled
                 RETI
```

```
/*****************************
  INTDMA0 interrupt servicing
  (using INTDMA0 for CSI reception)
  This interrupt occurs once data of one page has been received from an
  EEPROM during playback. Which of the four EEPROMs is to be used is
  selected and operation of the I2S bus interface is started and stopped.
  Register bank 1 used
*******************************
 _interrupt void fn_intdma0(void)
   /* Waiting for completion of waiting for communication completion */
  while(SSR02 & 0b000000001000000) {}
   /* Completing receiving data of one page */
  P_CS |= 0b11110000; /* Non-active */
  ucEepromSeg = CEEPSEQ_INST;
  if(ucPlayMode==CPLAY){
  /* During playback */
   Starting the operation of the I2S bus interface
   _____* /
      /* Selecting EEPROM */
      if((ucEepromCs & 0b10000000)==0b000000000){
      /* Selecting all EEPROMs once */
         ushEepromAddress++;
         if(ushEepromAddress>=128000/256){
            /* Stopping the operation of the I2S bus interface */
            P_LRCLK = 1; /* LRCLK output disabled (high level) */
            TTOL.0 = 1; /* TOOO output operation stopped (trigger bit) */
            STOL.0 = 1; /* CSI000 output operation stopped (trigger bit) */
STOL.2 = 1; /* CSI010 output operation stopped (trigger bit) */
            ucPlayMode = CPLAY_END; /* Playback being terminated */
        else{
            ucEepromCs = 0b11100000;
      else{
            ucEepromCs = (ucEepromCs | 0b00001000) <<1;</pre>
  else if(ucPlayMode==CPLAY_START){
  /* Starting preparing for playback */
   /* Starting reading from an EEPROM */
     ucPlayMode = CPLAY_SET; /* Preparing for playback */
     P_CS = (P_CS & 0b00001111) | 0b11010000; /* EEPROM selected */
     bI2sMemoryPage = 0;
     CSIIF10 = 0;  /* INTCSI10 interrupt request cleared */
CSIMK10 = 0;  /* INTCSI10 interrupt servicing enabled */
     SSOL.2 = 1;/* CSI10 operation starts (trigger bit) */
     SIO10 = 0b00000011;
                          /* Transmit data (reading specified) set (INTCSI10 occurs) */
  else if(ucPlayMode==CPLAY_SET){
  /* Preparing for playback */
     ucPlayMode = CPLAY; /* During playback */
     ucI2sAddress = &ucMemoryPage1[1];/* Start of the transmit buffer set */
     bI2sMemoryPage = 0;/* page 1 transmit */
     /* Starting the operation of the I2S bus interface */
     SSOL.0 = 1;/* CSI00 operation starts (trigger bit) */
     P_LRCLK = 0; /* LRCLK operation starts */
     TSOL.0 = 1;/* TO00 output operation starts (trigger bit) */
```

```
SIO00 = ucMemoryPage1[0];/* Transmit data set (INTCSI00 occurs) */
}

DST1 = 0; /* DMA1 transfer stopped */
DST0 = 0; /* DMA0 transfer stopped */
DMAMK0 = 1; /* INTDM0 interrupt servicing disabled */
}
```

4.9 INTDMA1 Interrupt Servicing

The following operations are performed in the INTDMA1 interrupt servicing in assembly language.

- <1> The register bank is switched.
- <2> A wait is inserted until communication via CSI10 ends.
- <3> The EEPROM is selected. When the data of all EEPROM pages is written, operation of the I²S bus interface is stopped and the operation status is set to "recording stopped".
- <4> DMA operation is stopped.

```
INTDMA1 interrupt servicing
                 (using INTDMA1 for CSI transmission)
                 This interrupt occurs when data of one page has been transmitted to an
                 EEPROM during recording.
                                           Which of the four EEPROMs is to be used is
                 selected and operation of the I2S bus interface is stopped.
                 Register bank 1 used
        IINTDMA1:
<1> .....
                 SEL
                 ; Waiting for communication completion
        HDMA1100:
<2>
                 MOV
                                   SSR02L
                                                     ;Communication completed?
                       Α,
                 вт
                      A.6,
                                   $HDMA1100
                                                     ; No.
<3>
                 ; Completing transmitting data of one page
                                  #11110000B
                 OR
                      P_CS,
                                                     ;Data of one page transmitted
                      REEPSEQ,
                                   #CEEPSEQ_RESET
                 MOV
                 ;EEPROM selection
                 MOV
                                  RP_CS
                      Α,
                 SET1
                      A.3
                 ROLC A, 1
                       $HDMA1300
                 BC
                                                     ; Have all EEPROMs been selected once? No.
                      REEPADDR
                 INCW
                                   REEPADDR
                 MOVW
                      AX,
                 CMPW
                                   #128000/256
                                                     ;Last EEPROM?
                      AX,
                       $HDMA1500
                 BNC
                                                     ; Yes,
                 MOV
                                   #11100000B
                       Α,
        HDMA1300:
                                   #11110000B
                 AND
                       RP_CS,
                 MOV
                                   Α
                      HDMA1RET
                 BR
        HDMA1500:
                 ;Stopping the operation of the I2S bus interface
                      P_LRCLK
                                                     ;LRCLK output disabled (high level)
                                                     ;TO00 output operation stopped
                      TTOL.0
                 SET1
                                                     ;(trigger bit)
                 SET1 STOL.0
                                                     ;CSI000 output operation stopped
                                                     ;(trigger bit)
                 SET1 STOL.2
                                                     ;CSI010 output operation stopped
                                                     ;(trigger bit)
                 MOV
                       RPLAYMOD,
                                   #CREC_END
                                                     ;Recording stopped
        HDMA1RET:
```



```
/*****************************
  INTDMA1 interrupt servicing
  (using INTDMA1 for CSI transmission)
  This interrupt occurs when data of one page has been transmitted to an EEPROM
  during recording. Which of the four EEPROMs is to be used is selected and
  operation of the I2S bus interface is stopped.
  Register bank 1 used
_interrupt void fn_intdmal(void)
  /* Waiting for completion of waiting for communication completion */
  while(SSR02 & 0b000000001000000) {}
  /* Completing transmitting data of one page */
  P_CS |= 0bl1110000; /* Completing transmitting data of one page */
  ucEepromSeg = CEEPSEQ_RESET;
  /* EEPROM selection */
  if((ucEepromCs & 0b10000000)==0b00000000){
      ushEepromAddress++;
      if(ushEepromAddress>=128000/256){
         /* Stopping the operation of the I2S bus interface */
        P_LRCLK = 1; /* LRCLK output disabled (high level) */
        TTOL.0 = 1; /* TO00 output operation stopped (trigger bit) */
        STOL.0 = 1; /* CSI000 output operation stopped (trigger bit) */
        STOL.2 = 1; /* CSI010 output operation stopped (trigger bit) */
        ucPlayMode = CPLAY_END; /* Playback stopped */
      else{
         ucEepromCs = 0b11100000;
  else{
      ucEepromCs = (ucEepromCs | 0b00001000) <<1;
  DST1 = 0; /* DMA1 transfer stopped */
DST0 = 0; /* DMA0 transfer stopped */
  DMAMK1 = 1; /* INTDM1 interrupt servicing disabled */
```

4.10 I²C Bus Interface Write Processing

The following operations are performed in the I²C bus interface write processing for setting the registers in the audio codec specified in assembly language.

- <1> A start condition is issued.
- <2> The slave address is transmitted.
- <3> The addresses of the registers in the audio codec to be written are transmitted.
- <4> The setting data to be written is transmitted.
- <5> A stop condition is issued.
- <6> If a wait is required, a wait is inserted.
- <7> Whether transmission is to be terminated is determined. If it is not to be terminated, the processing returns to <1>, because subsequent data exists.

```
I2C bus interface write processing for setting the registers in the audio
                codec
                The data set to the registers in the audio codec is written by using the
                functions of I2C bus interface IICO.
                [IN] ES
                                  :Higher 4 bits of the start address of the ROM table
                                  holding the register setting values
                                  :Lower 8 bits of the start address of the ROM table
                                  holding the register setting values
                                  :Lower 8 bits of the last address of the ROM table
                      DE
                                  holding the register setting values
                [OUT] -
                     ****************
       SI2CWRITE:
                SET1 IICEO
                                                   ; Operation enabled
       JI2CW100:
                ;Start condition issuance
<1>.....
                SET1 STT0
                ;Slave address transmission
<2>
                    STD0,
                                                    ; Address transmission period? No,
                CLR1
                     IICIF0
                                 #00110100B
                MOV
                      IICO,
                                                    ; Address transmission starts (writing
                                                    ;specified)
                BF
                      IICIF0,
                                  ŚŚ
                                                    ;Transmission completed? No,
                      ACKD0,
                                                    ; ACK detected? Yes,
                BT
                                  $JI2CW200
                SET1 SPT0
                                                    ; No, stop condition issued
                      $JI2CW100
                                                    ;Retransmission
                BR
       JI2CW200:
                ;Write address transmission
<3>
                MOV
                     Α,
                                  ES:[HL]
                                                    ;Set data acquired
                MOV
                      IICO,
                                  Α
                                                    ;Data transmission starts
                      IICIFO,
                                                    ;Transmission completed? No,
                BF
                                  $$
                      ACKD0,
                                  $JI2CW300
                                                    ;ACK detected? Yes,
                SET1
                     SPTO
                                                    ; No, stop condition issued
                BR
                      $JI2CW100
                                                    ;Retransmission
       JI2CW300:
                ;Write data transmission
                                                    ;Reference position updated
                INCW HL
<4>
                                                    ;Set value acquired
                VOM
                     Α,
                                  ES:[HL]
                                                    ;INTIIC10 interrupt request cleared
                CLR1 IICIF0
                MOV
                      IICO,
                                                    ;Data transmission starts
                      IICIFO,
                BF
                                  $$
                                                    ;Transmission completed? No.
                BT
                      ACKD0,
                                  $JI2CW400
                                                    ; ACK detected? Yes,
                SET1
                      SPT0
                                                    ; No, stop condition issued
                DECW HL
                                                    ;Retransmission
                      $JI2CW100
       JI2CW400:
                ;Stop condition issuance
<5> -----
                SET1 SPT0
                ;Wait control
<6>
                INCW HL
                                                    ;Reference position updated
                                                    ;Wait information acquired
                VOM
                     Α,
                                  ES:[HL]
                CMP0
                                                    ; Waiting required?
                     Α
                      $JI2CW600
                BZ
                                                    ; No.
                MOV
                                  #195
                                                    ;5 ms
                      Χ,
                MULU X
                                                    ;A register*5 ms
                DECW AX
                                                    ;AX register: Timer count value
                MOVW TDR01,
                                  AX
                                                    ;Interval set
```



```
/******************************
  I2C bus interface write processing for setting the registers
  in the audio codec
  The data set to the registers in the audio codec is written by using the
  functions of I2C bus interface IICO.
  [I N]*addr :Higher 4 bits of the start address of the ROM table holding
               the register setting values
        size : ROM table size
  [OUT] -
****************************
void fn_I2cWrite(unsigned char *addr, unsigned char size)
  register unsigned char cnt;
  IICE0 = 1; /* Operation enabled */
  for(cnt=0; cnt<=size/3; cnt++){</pre>
     /* Start condition issuance */
     STT0 = 1;
     /* Slave address transmission */
     while(!STD0) {} /* Address transmission period? No, */
     IICIF0 = 0;
     IICO = 0b00110100;  /* Address transmission starts (writing specified) */
     while(!IICIF0) {} /* Transmission completed? No, */
     if(ACKD0){
         /* Write address transmission */
         while(!IICIF0) {} /* Transmission completed? No, */
         if(ACKD0){
           /* Write data transmission */
                     /* Reference position updated */
           addr++;
           IICIF0 = 0;    /* INTIIC10 interrupt request cleared */
IIC0 = *addr;    /* Data transmission starts */
while(!IICIF0) {} /* Transmission completed? No, */
           if(ACKD0){
              /* stop condition issued */
              SPT0 = 1;
              /* Wait control */
              addr++;
                          /* Reference position updated */
              if(*addr!=0){
                 TDR01 = 195*(*addr)-1; /* Interval set (5ms*addr) */
                 TMIF01 = 0; /* INTTM01 interrupt request cleared */
                 TSOL.1 = 1; /* Timer operation starts */
                 while(!TMIF01) {} /* Interval elapsed? No, */
                 TTOL.1 = 1; /* Timer operation stopped */
              addr++;
                           /* Reference position updated */
           else{
              SPT0 = 1;
                        /* Stop condition issuance */
              cnt--;
                         /* Retransmission */
              addr--;
```

CHAPTER 5 RELATED DOCUMENTS

Document Name	Japanese/English	
78K0R/KE3 User's Manual	<u>PDF</u>	
78K0R/KF3 User's Manual	<u>PDF</u>	
78K0R/KG3 User's Manual	PDF	
78K0R/KH3 User's Manual	PDF	
78K0R/KJ3 User's Manual	PDF	
78K0R Microcontrollers Instructions User's Manual	PDF	
RA78K0R Assembler Package	Language	PDF
User's Manual	<u>PDF</u>	
CC78K0R C Compiler	PDF	
User's Manual	PDF	
PM+ Project Manager User's Manual	PDF	

APPENDIX A PROGRAM LIST

The source program used for the 78K0R/KG3 microcontroller is shown below as a program list example.

main.asm (assembly language version) NEC Electronics 78KOR/KG3 Series 78K0R/KG3 Series I2S bus interface between microcontroller and audio codec ; [Overview] ;This sample program uses the I2S bus interface to transfer audio data between ;the microcontroller and an audio codec. The LR clock (LRCLK) for selecting whether to ; use channel L or channel R of the I2S bus interface is used in the interval timer mode of ;the timer array unit (TAU) and is output from TO00. CSI00 of channel 0 of serial array unit ;0 (SAU0) is used for outputting the clock used for transferring data (BCLK) and for ; receiving data (SDOUT), and transmitting data (SDIN). ;ML2612 made by OKI Semiconductor is used as the audio codec. The I2C bus interface is used ; for setting the registers in the audio codec and the I2S bus interface is used for ;transferring audio data. When the record key is pressed, the audio codec receives the ; voice data input from a microphone and saves the data to EEPROM. When the playback key ; is pressed, the recorded data is transmitted to the audio codec and the output as sound ;from the speakers. The SPI interface between the microcontroller and EEPROM uses CSI10 ;of channel 2 of serial array unit 0 (SAU0) to continuously perform CSI transmission ; or reception by using the DMA controller. Whether recording or playback is in progress ; is indicated by an LED (operation-in-progress indicator) to which a signal is output from P72. ;The following are used to execute the sample program. ; I2C bus interface for setting the registers in the audio codec ; •Serial interface IIC0 ; I2S bus interface used for transferring audio data between the microcontroller and ; audio codec ; •Using the output from TO00 of the timer array unit (TAU) as LRCLK ; •Using CSI00 of channel 0 of serial array unit 0 (SAU0) for transmitting and receiving data ; SPI interface used between the microcontroller and EEPROMs •Using P74 to P77 as chip select pins because four EEPROMs are used •Using CSI10 of channel 2 of serial array unit 0 (SAU0) •Using DMA0 and DMA1 of the DMA controller for performing successive transmission or reception ; Wait timer ; •Using the interval timer mode of channel 1 of the timer array unit (TAU) to insert waits of at least 5 ms in the program ; Record and playback keys •Key interrupt input pins KRO and KR1 ; Operation-in-progress indicator (LED) ; •Outputting a signal from P72 to light the LED used as an operation-in-progress indicator ; < Main initial settings for the peripheral hardware to be used> ; •Disabling interrupts ; •Setting the CPU or peripheral hardware clock frequency to the X1 oscillation clock (when ; used at 20 MHz)

; •Setting ports

; •Setting the audio codec

; •Supplying a clock to the audio codec

```
; •Setting a timer for inserting waits in the program
; •Outputting a reset signal to the audio codec
; •Setting the I2C interface used for setting registers
; •Turning on the system by setting the registers in the audio codec
; •Setting the I2S bus interface used for the audio data of the audio codec
; •Using T000 output (16 kHz) for setting the output of LRCLK
; •Setting CSI00
; •Setting the SPI interface of EEPROM
  •Setting CSI10 for transmitting and receiving data
  •Setting DMA0 for successive reception and DMA1 for successive transmission
; •Erasing all EEPROMs (all OFFH)
; •Starting key data retrieval
; •Enabling interrupts
; < Main processing>
; •Key processing
; •Setting start of recording
; •Setting start of playback
; •Setting termination of recording
; •Setting termination of playback
;<Main INTTM00 interrupt servicing (using INTTM00 for synchronizing LRCLK, BCLK, SDOUT, and
;SDIN)>
; •Starting the I2S bus interface
;<Main INTCSI00 interrupt servicing (using INTCSI00 for CSI transmission or reception)>
; •Transmitting or receiving data via the I2S bus interface
; •Saving the received data
; •Starting writing to EEPROM
; •Starting reading from EEPROM
;<Main INTCSI10 interrupt servicing (using INTCSI10 for CSI transmission or reception)>
; •Transmitting instruction bytes to EEPROM
; •Transmitting 24-bit addresses to EEPROM
; •Starting receiving data from EEPROM by using DMAO or DMA1
; •Starting transmitting data to EEPROM by using DMA1 \,
;<Main INTDMA0 interrupt servicing (using INTDMA0 for CSI reception)>
; •Starting reading from EEPROM
; •Starting the I2S bus interface
; •Selecting EEPROM
; •Stopping the I2S bus interface
;<Main INTDMA1 interrupt servicing (using INTDMA1 for CSI transmission)>
; •Selecting EEPROM
; •Stopping the I2S bus interface
    Vector table settings
TVCT1CSEG AT 000000H
    DW RESET_START
                                       ;(00) Reset input, POC, LVI, WDT, TRAP
TVCT2CSEG AT
                  000004H
    DW
           RESET_START
                                        ;(04) INTWDTI
                                        ;(06) INTLVI
    DW
           RESET_START
                                        ;(08) INTPO
    DW
           RESET_START
```

```
RESET_START
   DW
                                ;(0A) INTP1
         RESET START
                                ;(0C) INTP2
   DW
   DW
         RESET_START
                                ;(0E) INTP3
         RESET_START
                                ;(10) INTP4
   DW
                                ;(12) INTP5
   DW
       RESET_START
         RESET_START
   DW
                               ;(14) INTST3
         RESET_START
                                     INTSR3
   DW
                                ;(16)
   DW
         RESET_START
                                ;(18)
                                      INTSRE3
   DW
         IINTDMA0
                                ;(1A)
                                      INTDMA0
   DW
         IINTDMA1
                                ;(1C)
                                      INTDMA1
                                ;(1E) INTST0/INTCSI00
   DW
         IINTCSI00
         RESET_START
                                ;(20) INTSR0/INTCSI01
   DW
   DW
        RESET_START
                                ;(22) INTSRE0
   DW
         IINTCSI10
                                ;(24) INTST1/INTCSI10/INTIIC10
         RESET_START
                                ;(26) INTSR1
   DW
         RESET_START
                                ;(28) INTSRE1
   DW
   DW
         RESET START
                                ;(2A)
                                      INTIIC0
         IINTTM00
                                ;(2C)
                                      INTTM00
   DW
   DW
         RESET_START
                                ;(2E)
                                      INTTM01
                                ;(30) INTTM02
         RESET_START
   DW
         RESET_START
                                ;(32) INTTM03
   DW
   DW
         RESET START
                                ;(34) INTAD
   DW
        RESET_START
                                ; (36) INTRTC
   DW
       RESET_START
                                ;(38) INTRTCI
       RESET_START
   DW
                                ;(3A) INTKR
   DW
         RESET_START
                                ;(3C)
                                      INTST2/INTCSI20/INTIIC20
         RESET_START
   DW
                                ;(3E)
                                      TNTSR2
   DW
         RESET_START
                                ; (40)
                                      INTSRE2
                                ;(42) INTTM04
   DW
         RESET_START
                                ;(44) INTTM05
         RESET_START
   DW
         RESET START
                               ;(46) INTTM06
   DW
   DW
         RESET_START
                               ;(48) INTTM07
   DW
         RESET_START
                               ;(4A) INTP6
   DW
         RESET_START
                               ;(4C) INTP7
         RESET_START
                                ;(4E) INTP8
   DW
   DW
         RESET_START
                                ; (50)
                                      INTP9
         RESET_START
                                ; (52)
                                      INTP10
   DW
                                ;(54) INTP11
   DW
         RESET_START
TBRK CSEG AT
              00007EH
         RESET_START
                                ; (7E) BRK
Securing a stack area
DSTK DSEG AT OFFECOH
STACKEND:
         DS
               20H
                                ;32-byte stack area secured
STACKTOP:
                                ;Stack area start address = FFEEOH
Port definitions
;Audio codec reset
               EOU
                    P7.3
P RESETB
                               ;Reset
               EQU PM7.3
PM_RESETB
                               Reset output
;I2C interface used for setting the registers in the audio codec
P_SCL
       EQU P6.0 ;SCL0 latch
PM SCL
               EQU
                    PM6.0
                                ;SCL0 output
P_SDA
               EQU
                    P6.1
                                ;SDA0 latch
              EQU
-∠v
                              ;SDA0 I/O
PM_SDA
                    PM6.1
```

;

```
;Audio codec I2S bus interface
P LRCLK
                 EOU
                         P0.1
                                       ; LRCLK
PM_LRCLK
                  EQU
                         PM0.1
                                       ;LRCLK output
P_SCK00
                  EQU
                         P1.0
                                       ;SCK00
PM_SCK00
                  EQU
                         PM1.0
                                       ;SCK00 input
PM_SI00
                  EOU
                         PM1.1
                                       ;SI00 input
                         P1.2
                                       ;S000
P SO00
                  EQU
PM_S000
                  EQU
                         PM1.2
                                       ;S000 output
;Key inputs (used: 2)
                                       ;KR (P70 and P71 used)
                         Р7
P KEY
                  EOU
PM_KEY
                         PM7
                                       ;KR input (PM70 and PM71 used)
                  EOU
P_PLAYKY
                  EQU
                         P7.0
                                       ;Playback key
PM_PLAYKY
                  EQU
                         PM7.0
                                       ;Playback key input
                  EQU
                         P7.1
P RECKY
                                       ;Record key
PM_RECKY
                  EQU
                         PM7.1
                                       ;Record key input
;Output to the LED used as an operation-in-progress indicator (used: 1)
                  EQU
                         P7.2
                                       ;Operation-in-progress indicator (active low)
PM_LED
                  EOU
                         PM7.2
                                       ;Output to the operation-in-progress indicator (LED)
                                       ;LED lit during operation and turned off when key
                                       ; input is possible.
; EEPROM SPI interfaces (used: 4)
P_CS
                  EQU
                         P7
                                       ; Chip select CS (P73 to P77 used)
                         PM7
PM_CS
                  EQU
                                       ; Chip select CS output (PM73 to PM77 used)
P CS3
                  EOU
                         P7.7
                                       ;CS3
                         PM7.7
PM_CS3
                  EQU
                                       ;CS3 output
P_CS2
                  EOU
                         P7.6
                                       ;CS2
                         PM7.6
PM_CS2
                  EOU
                                       ;CS2 output
                         P7.5
P CS1
                  EOU
                                       ;CS1
PM CS1
                  EOU
                         PM7.5
                                       ;CS1 output
P_CS0
                  EQU
                         P7.4
                                       ;CSO
PM_CS0
                  EQU
                         PM7.4
                                       ;CSO output
P_SCK10
                  EQU
                         P0.4
                                       ;SCK10
                                       ;SCK10 output
PM_SCK10
                  EQU
                         PM0.4
PM_SI10
                  EQU
                         PM0.3
                                       ;SI10 input
P_S010
                  EQU
                         P0.2
                                       ;SO10
                         PM0.2
PM_SO10
                  EQU
                                       ;S010 output
RAM definitions
DPLAYDSEG
          SADDR
;Overall operation
RPLAYMOD:
                  DS
                         1
                                       ;Operation status
CRESET
                  EOU
                         Ω
                                       ; Reset
CSTOP
                  EOU
                         1
                                       ; Stopped
CREC
                  EOU
                         2
                                       ; Recording under execution
CREC_END
                         3
                                       ; Recording finished
                  EQU
CPLAY_START
                  EQU
                         4
                                       ; Preparing for playback started
                         5
                  EQU
                                       ; Preparing for playback
CPLAY_SET
CPLAY
                  EOU
                         6
                                       ; Playback under execution
CPLAY END
                  EOU
                                       ; Playback finished
;Definitions related to the operation of the I2S bus interface used between the microcontroller
; and audio codec
RCSI00CNT:
                  DS
                                       ; Counter for transmitting and receiving 1-byte I2S
RPLAYINFO:
                  DS
                         1
                                       ;Playback information
FT2SPAGE
                  EQU
                                       ; Page being transmitted or received via the I2S
                         RPLAYINFO.7
                                       ; bus: Page 1 (0)/page 2 (1)
;Definitions related to the operation of the SPI interface used between the microcontroller and
```

; EEPROMS

```
RP_CS:
                DS
                       1
                                    ; Chip select CS setting value of the EEPROMs
                                   ;EEPROM transfer sequence
REEPSEO:
                DS
                      1
CEEPSEQ_RESET
                EQU 0
                                   ; Reset status
CEEPSEQ_WREN
                EQU 1
                                   ; Write enable signal transmitted
                                   ; Instruction bytes transmitted
CEEPSEQ_INST
                EQU 2
               EQU 3
                                   ; Higher 8 bits of 24-bit addresses transmitted
CEEPSEO ADDRH
CEEPSEQ_ADDRM
                EQU 4
                                   ; Middle 8 bits of 24-bit addresses transmitted
                      5
CEEPSEQ_ADDRL
                EQU
                                   ; Lower 8 bits of 24-bit addresses transmitted
CEEPSEQ_DATA
                EQU
                       6
                                    ; Data transmitted and received by using DMA
DPLAYP
         DSEG SADDRP
;Definitions related to the operation of the I2S bus interface used between the
;microcontroller and audio codec
RI2SADDR:
                DS 2
                                   ; Address to which data is transmitted or received
                                    ;via I2S saved
;Definitions related to the operation of the SPI interface used between the microcontroller and
REEPADDR:
               DS
                                   ; EEPROM read or write address (REEPADDR*100H)
DMEM DSEG UNITE
;Memory area of internal RAM
RRECMEM1:
                                   ;Page 1
                DS
                     3*2*42
                                   ; 42 LRCLK clocks
RRECMEM1E:
                                    ; Last address + 1
RRECMEM2:
                                   ;Page 2
                DS
                    3*2*42
                                   ; 42 LRCLK clocks
RRECMEM2E:
                                    ; Last address + 1
ROM definitions
CREGACC CSEG UNITP
    These are the ROM tables that hold the values to be used for setting the registers
    in the audio codec used to transition the status of the ML2612 audio codec made by OKI
;
   Semiconductor.
   These tables are used in the write processing performed via the I2C bus interface.
   [Example]
                DB
                       0E5H, 00000111B, 0
                                               Trimming 1
                DB
                       0Е9H, 00000001B,
                                         0
                                               Trimming 2
                             ~~~~~| ~|
                                          +---- Wait information (Note)
                                     +----- Write data
                           .
+----- Write address
          Note: Indicates the wait time after data is written.
               A wait of (5 ms * (described value)) is inserted.
               No wait is inserted if the value is 0.
;
    \mbox{\ensuremath{\star}} The setting data shown in this sample program is simply an example
;
;
     of the settings that can be used to execute recording or playback.
      See the data sheet and other materials for details.
TSYSON:
  Power off → System on
    ;-----
    ; Trimming
                                 ;Trimming 1
         0E5H, 00000111B, 0
          0E9H, 00000001B,
                                   Trimming 2
    DB
                             0
```

```
;-----
     ; Digital Block ON
     ;-----
    DB
           001H, 003H, 0 ;Sampling Rate
         003H, 001H, 0 ;PLLNL
005H, 000H, 0 ;PLLNH
007H, 000H, 0 ;PLLML
009H, 002H, 0 ;PLLMH
00BH, 002H, 0 ;PLLDIV
00FH, 00000001B, 0 ;CLK Input/Output control
00DH, 00000001B, 0 ;Clock Enable
    DB
    DB
    DB
    DB
    DB
    DB
    DB
          00DH, 00000101B, 150/5 ;Clock Enable
    DB
TSYSONE:
TRECON:
      _____
    System on → Recording start
;-----
    ;-----
    ; Record Function Setting
    ; Volume settings
          033H, 03FH, 0 ;Mic Input Volume
039H, 00000000B, 0 ;Mic Boost Volume
049H, 00000001B, 0 ;AMP Volume Control Function Enable
04BH, 00000000B, 0 ;Amplifier Volume Fader Control
069H, 00011110B, 0 ;Volume Control Func Enable
06BH, 00000010B, 0 ;Mixer & Volume Control
06DH, 0FFH, 0 ;Record Digital Volume Control
    DB
          033H, 03FH,
    DB
    DB
    DB
    DB
    DB
    DB
    ;HPF1 ON
    DB 067H, 00000001B,
                                0
                                       ;Filter Func Enable
     ;HPF2 ON
     ;DB
         067H, 00000000B,
                                 0
                                        ;Filter Func Enable
           07FH, 00000000B,
     ; DB
                                 0
                                        ;HPF2 CutOff
     ;Programmable Equalizer settings
     ;DB 06DH, 11111111B, 0
                                       Record Digital Volume
     ; DB
           067H, 00000001B,
                                0
                                       ;Filter Func Enable
         067H, 0000000B, 0
                                       ;Filter Func Enable
     ; DB
     ;DB 07FH, 0000000B, 0
                                       ;HPF2 CutOff
                                      ;Filter Func Enable
;EQ gain1 Band0
;EQ gain1 Band1
;EQ gain1 Band2
                  00000000B, 0
         067н,
    ; DB
         077H, 00000000B,
077H, 00000000B,
079H, 00000000B,
07BH, 00000000B,
                                0
     ;DB
                                0
     ;DB
     ;DB
                                 0
                                       ;EQ gain1 Band3
                                0
    ; DB
                                       ;EQ gain1 Band4
                                0
    ; DB
         083H, 0000000B,
                                       ;EQ Band0 Coef0H
                                0
    ; DB
         085H, 00000000B,
                                0
                                       ;EQ Band0 Coef1L
    ; DB
                                      ;EQ Band0 Coef1H
;EQ Band1 Coef0L
;EQ Band1 Coef0H
     ;DB
         087H, 0000000B, 0
           089H, 0000000B, 0
     ;DB
                  00000000B,
           08BH,
                                0
     ; DB
                  00000000в,
                                0
                                       ;EQ Bandl CoeflL
           08DH,
     ; DB
           08FH,
                   0000000B,
                                 0
                                        ;EQ Band1 Coef1H
     ;DB
           091Н,
                                       ;EQ Band2 Coef0L
     ;DB
                   0000000B,
                                 0
                                       ;EQ Band2 Coef0H
           093Н,
                   0000000B,
     ;DB
                                 0
                   0000000B,
                                0
                                       ;EO Band2 Coef1L
    ; DB
         095Н.
                               ; DB
         097H, 00000000B,
         099Н, 0000000В,
     ;DB
    ; DB
         09BH, 0000000B,
           09DH, 0000000B,
    ; DB
           09FH, 00000000B,
     ;DB
           0A1H, 00000000B,
0A3H, 00000000B,
     ; DB
    ;DB
           OA5H, 00000000B,
                                       ;EQ Band4 Coef1L
    ; DB
                                 0
```

```
0A7H, 00000000B,
     ;DB
                                  0
                                        ;EQ Band4 Coef1H
    ;ALC settings
          069Н,
                   00000010B,
                                0
                                       ; Volume Control Func Enable
    0
     ;DB
         02FH, 00000000B,
                                        ;ZC-CMP Power Management
     ;-----
     ; Record Analog Block ON
     ;Turning on the VMID generator
        021H, 00000001B, 5/5 ;Reference Power Management 021H, 00000010B, 5/5 ;Reference Power Management
     ;Turning on the microphone bias circuit
    DB 021H, 00000110B, 0
                                        Reference Power Management
     ;Minimum input setting (differential input)
         05BH, 00000010B, 0
                                     ;Mic IF Control
     ;Power Management Register
         023H, 00001000B, 0 ;Input Power Management 023H, 00001010B, 0 ;Input Power Management
    DB
     ;-----
     ; Record start
        069H, 00010000B, 0 ;Volume Control Func Enable 069H, 00010000B, 0 ;Volume Control Func Enable 013H, 00000001B, 5/5 ;Record/Playback Run 06BH, 00110010B, 0 ;Mixer & Volume Control 069H, 00011000B, 0 ;Volume Control Func Enable 069H, 00001000B, 0 ;Volume Control Func Enable
    DB
    DB
    DB
TRECONE:
TRECOFF:
;------
    Recording → System on
     :-----
    ; Record stop
    ;-----
    DB 06BH, 00000010B, 0 ;Mixer & Volume Control
DB 069H, 00001000B, 0 ;Volume Control Func Enable
DB 069H, 00011000B, 200/5 ;Volume Control Func Enable
    DB
          013H, 00000000B,
                                 10/5 ;Record/Playback Run
     ; Record Analog Block OFF
     ;-----
    DB 023H, 00001000B, 0 ;Input Power Management
DB 023H, 0000000B, 0 ;Input Power Management
DB 021H, 00000001B, 0 ;Reference Power Management
DB 021H, 00000000B, 0 ;Reference Power Management
TRECOFFE:
TPLAYON:
    System on → Playback start
```

;------

```
; Playback Function Setting
 ;-----
 ; Volume settings
       03BH, 00000000B, 0 ;Speaker AMP Volume
0C9H, 0000000B, 0 ;Boost Volume
049H, 0000000B, 0 ;AMP Volume Control Function Enable
04BH, 00000000B, 0 ;Amplifier Volume Fader Control
069H, 0000000B, 0 ;Volume Control
06BH, 0000010B, 0 ;Mixer & Volume
 DB
 DB
          049H, 00000000B,
04BH, 00000000B,
069H, 00000000B,
06BH, 00000010B,
071H, 11111111B,
 DB
 DB
 DB
 DB
                                                 0
                                                               ;Playback Digital Volume Control
 DB
 ;Programmable Equalizer settings
                                                               ;Filter Func Enable
 ; DB
            067H, 0000000B, 0
            075H, 0000000B, 0
 ; DB
                                                              ;EQ gain1 Band0
            077H, 00000000B, 0
079H, 00000000B, 0
07bH, 00000000B, 0
07dH, 00000000B, 0
 ; DB
                                                                ;EO gain1 Band1
                                                                ;EQ gain1 Band2
 ; DB
 ;DB
                                                                 ;EQ gain1 Band3
                                                               ;EQ gain1 Band4
 ;DB
         083H, 00000000B,
                                                 0
                                                              ;EO Band0 Coef0H

        iDB
        083H, 00000000B, 0
        ;EQ BandU CoetUH

        iDB
        085H, 00000000B, 0
        ;EQ BandO CoeflL

        iDB
        087H, 00000000B, 0
        ;EQ BandO CoeflH

        iDB
        089H, 00000000B, 0
        ;EQ Bandl Coef0L

        iDB
        08BH, 00000000B, 0
        ;EQ Bandl Coef0H

        iDB
        08BH, 00000000B, 0
        ;EQ Bandl CoeflL

        iDB
        08FH, 00000000B, 0
        ;EQ Bandl CoeflH

        iDB
        091H, 00000000B, 0
        ;EQ Band2 Coef0L

        iDB
        093H, 00000000B, 0
        ;EQ Band2 Coef1L

        iDB
        095H, 00000000B, 0
        ;EQ Band2 Coef1L

        iDB
        099H, 00000000B, 0
        ;EQ Band3 Coef0L

        iDB
        09BH, 00000000B, 0
        ;EQ Band3 Coef0L

        iDB
        09BH, 00000000B, 0
        ;EQ Band3 Coef1L

        iDB
        09FH, 00000000B, 0
        ;EQ Band3 Coef1L

        iDB
        09FH, 00000000B, 0
        ;EQ Band4 Coef1L

        iDB
        0A1H, 0000000B, 0
        ;EQ Band4 Coef0L

        iDB
        0A3H, 0000000B, 0
        ;EQ Band4 Coef1L

        iDB
        0A5H, 0000000B, 0
        ;EQ Band4 Coef1L

 ; DB
            0A7H, 00000000B,
                                                  0
                                                              ;EQ Band4 Coef1H
 ;Playback Limiter settings
                                                            ;Volume Control Func Enable
;Attack Time
;Decay Time
 DB 069H, 00011001B, 0
          OC1H, 00000000B,
 ;DB
                                                 0
        OC3H, 0000000B,
                                                  0
 ; DB
 ;DB
            0С5Н, 00000000В,
                                                   0
                                                               ;Target Level
             0С7Н, 00000000В,
 ; DB
                                                  0
                                                                ;Max/Min Gain
 :-----
 ; Playback Analog Block ON
 ;Turning on the VMID generator
 DB 021H, 00000001B, 5/5 ;Reference Power Management
                                                  5/5 ;Reference Power Management
 DB
            021H, 00000010B,
 ; Mute settings
                                                            ;AMP Volume Control Function Enable
            049H, 0000000B, 0
 DB
             049H, 00000010B,
 DB
                                                   0
                                                                 ;AMP Volume Control Function Enable
 ;DAC settings
       025H, 00000010B, 0
                                                              ;DAC Power
 DB
             055H, 00000010B,
                                                               ;Speaker AMP Output Control
 ;Turning on the speaker amplifier
       027H, 013H, 0
 DB
                                                                ;Power Management
                                                               Reference Power Management
 DB
             027H,
                         01FH,
                                                    0
            03вн, 033н,
 DB
                                                    0
                                                                ;Speaker AMP Volume
             04BH, 0000000B,
                                                  0
 DB
                                                                ;Amplifier Volume Fader Control
```

```
DB
          049H, 00000011B,
                             0
                                   ;AMP Volume Control Function Enable
                            500/5 ;AMP Volume Control Function Enable
          049H, 00000001B,
    DB
    ;-----
    ; Playback start
    ;------
    DB 069H, 00011101B, 0 ;Volume Control Func Enable DB 069H, 00010101B, 0 ;Volume Control Func Enable DB 013H, 00000010B, 5/5 ;Record/Playback Run DB 069H, 00110010B, 0 ;Mixer & Volume Control DB 069H, 0001101B, 0 ;Volume Control Func Enable DB 069H, 00001101B, 0 ;Volume Control Func Enable
TPLAYONE:
TPLAYOFF:
;-----
   Playback → System on
    ; Playback Stop
    ;-----
        06BH, 00000010B, 0 ;Mixer & Volume Control 069H, 00001000B, 0 ;Volume Control Func Enable
        069H, 00011000B, 100/5 ; Volume Control Func Enable
    DB
    DB 013H, 0000000B,
                            0
                                   ;Record/Playback Run
    ; Playback Analog Block OFF
    ;-----
    ; Turning off the speaker amplifier BTL mode
       04BH, 00000000B, 0 ;Amplifier Volume Fader Control 049H, 00000001B, 0 ;AMP Volume Control Function Enable
        049H, 00000001B, 0 7AMP Volume Control Function Enable 049H, 0000001B, 100/5 ;AMP Volume Control Function Enable 027H, 013H, 0 ;AMP Power Management 027H, 000H, 0 ;AMP Power Management 025H, 00000000B, 0 ;DAC Power Management 021H, 00000000B, 0 ;Reference Power Management
    DB
    DB
    DB
    DB
    DB
TPLAYOFFE:
Initial settings of the peripheral hardware to be used
XMAINCSEG UNIT
RESET START:
; Disabling interrupts
;______
    DΤ
  Register bank setting
    SEL
        RB0
  Stack pointer setting
;-----
   MOVW SP,
                #LOWW STACKTOP
                                   ; Set the stack pointer
  Clock frequency settings
   ______
    Setting so that operations can be performed using the 20 MHz X1 oscillator
```

```
;-----
   MOV
         CMC,
              #01000001B
                              ;Clock operation mode
              ;|||||||+----- AMPH: 10MHz<fMX\u20MHz
               ; | | | | +++---- <000>
               ; | | +----- <0>
               ;++---- EXCLK/OSCSEL: X1 oscillation mode (20 MHz)
   VOM
         CSC,
              #0100000B
                              ;Clock operation status control
              ;||||||+----- HIOSTOP: Internal high-speed oscillator operated
               ; | | ++++----- <00000>
               ; | +----- XTSTOP: XT1 oscillator stopped
               ;+---- MSTOP: X1 oscillator operated
   MOV
         OSMC.
              #0000001B
                              Operation speed mode
              ;||||||+-----FSEL: Operated at a frequency exceeding 10 MHz
               ;++++++-----<00000>
   MOV
         OSTS, #00000101B
                              ;Oscillation stabilization time: 2^15/fX
HRST300:
   NOP
         OSTC.2,$HRST300
   BF
                               ; Waiting for clock oscillation to stabilize
                              ;Clock selection
   VOM
         CKC,
              #00011000B
               ;|||||+++----- MDIV2-0: CPU/peripheral hardware clock (fCLK) = fMX
              ; | | | | +----- <1>
               ;|||+----- MCM0: High-speed system clock (fMX)
               ; | | +----- <R>
               ;|+----- CSS: Main system clock (fMAIN) = fCLK
               ;+---- <R>
;-----
  Port 0 settings
                               ;Output latches of POO, PO2, PO5, and PO6 set to low
       PO, #00011010B
                               ; level and those of PO1, PO3, and PO4 set to high
                               ;level
       PM0, #1000000B
                               ;P00 to P06 set as output ports
   MOV
                               ;P01: Output LRCLK to the audio codec
                               ;P02: Output S010 to the EEPROM
                               ;P03: Input SI10 from the EEPROM
                               ;P04: Output SCK10 to the EEPROM
                               ;P00, P05, and P06: Unused
   Port 1 settings
   MOV P1, #00000000B ;Output latches of P10 to P17 set to low level
       PM1, #0000000B
   MOV
                               ;P10 to P17 set as output ports
                               ;P10: Output SCK00 to the audio codec
                               ;P11: Input SI00 from the audio codec
                               ;P12: Output S000 to the audio codec
                               ;P13 to P17: Unused
   Port 2 settings
  ______
   MOV P2, #00000000B ;Output latches of P20 to P27 set to low level
       PM2, #0000000B
                              ;P20 to P27 set as output ports
                              ;P20 to P27: Unused
   Port 3 settings
;-----
   MOV P3, #0000000B
                              ;Output latches of P30 and P31 set to low level
```

APPENDIX A PROGRAM LIST

```
MOV PM3, #11111100B
                             ;P30 and P31 set as output ports
                             ;P30 and P31: Unused
;-----
  Port 4 settings
;-----
   MOV
      P4, #0000000B
                            ;Output latches of P40 to P47 set to low level
   MOV
      PM4, #0000000B
                           ;P40 to P47 set as output ports
                            ;P40 to P47: Unused
;-----
  Port 5 settings
  MOV P5, #00000000B ;Output latches of P50 to P57 set to low level
   MOV PM5, #0000000B
                            ;P50 to P57 set as output ports
                            ;P50 to P57: Unused
  Port 6 settings
;-----
  MOV P6, #0000000B
                            ;Output latches of P60 to P67 set to low level
   MOV PM6, #0000000B
                            ;P60 to P67 set as output ports
                             ;P60: Output SCLO for setting the registers in the
                             ;audio codec
                             ;P61: Input and output SDAO for setting the
                             registers in the audio codec
                             ;P62 to P67: Unused
;-----
 Port 7 settings
  MOV P7, #0000000B
                            ;Output latches of P70 to P77 set to low level
   MOV PM7, #0000011B
                            ;P70 and P71 set as input ports and P72 to P77 set
                            ;as output ports
                             ;P70: Playback key input
                             ;P71: Record key input
                             ;P72: Output a signal to the operation-in-progress
                             ;indicator (LED)
                             ;P73: Output a reset signal to the audio codec
                             ;P74: Output CSO to the EEPROM
                             ;P75: Output CS1 to the EEPROM
                             ;P76: Output CS2 to the EEPROM
                             ;P77: Output CS3 to the EEPROM
;------
 Port 8 settings
  ______
   MOV P8, #0000000B
MOV PM8, #0000000B
                            ;Output latches of P80 to P87 set to low level
                            ;P80 to P87 set as output ports
                            ;P80 to P87: Unused
;______
 Port 11 settings
;-----
      P11, #00000000B
PM11, #11111100B
   MOV
                             ;Output latches of P110 and P111 set to low level
                             ;P110 and P111 set as output ports
   MOV
                             ;P110 and P111: Unused
 Port 12 settings
;-----
  MOV P12, #00000000B ;Output latch of P120 set to low level MOV PM12, #11111110B ;P120 set as an output port
                            ;P120: Unused
```

```
;-----
  Port 13 settings
       P13, #0000000B
                                ;Output latches of P130 and P131 set to low level
       PM13, #11111100B
   MOV
                                ;P131 set as an output port
                                ;P130 and P131: Unused
   Port 14 settings
   MOV
       P14, #0000000B
                                ;Output latches of P140 to P145 set to low level
       PM14, #11000000B
                                ;P140 to P145 set as output ports
   VOM
                                ;P140 to P145: Unused
;______
 Port 15 settings
;______
        P15, #0000000B
PM15, #0000000B
                                 ;Output latches of P150 to P157 set to low level
   VOM
                                 ;P150 to P157 set as output ports
   VOM
                                 ;P150 to P157: Unused
;-----
  Settings of the registers in the audio codec
   The following operations are performed.
    ·Supplying a clock to the audio codec
    .Setting a timer for inserting waits in the program
    •Outputting a reset signal to the audio codec
    •Using the I2C interface for setting the registers in the audio codec
   VOM
       RPLAYMOD, #CRESET
   ; Timer array unit timer clock selection
   SET1 !TAU0EN
                                      ; Input clock supplied to the timer array unit
   MOV
         !TPSOL,
                     #10010000B
                                      Operation clock selection
                     ;||||++++---- CK00: fCLK
                     ;++++---- CK01: fCLK/2^9
   ; Clock supply to the audio codec
   ;-----
   ; TO02 output (10 MHz)
   ;-----
                     \#00000000000000000 ;Operation mode setting ;||||||||++++----- MD023 to MD020: Interval timer mode
   MOVW AX,
                     #0000000000000000B
                     ;|||||||++------<Fixed to 00>
                     ;|||||||++----- CIS021 and CIS020: Unused
                     ;||||+++---- STS022 to STS020: Only software trigger
                     ; | | | | |
                                                      start enabled
                     ; | | | | +----- MASTER02: Standalone operation
                     ; | | | +----- CSS02: Macro clock MCK specified by using t
                                             the CKS02 bit
                     ; | | |
                     ; | ++---- <Fixed to 00>
                     ;+---- CKS02: Operation clock CK00 set by using
                                              the PRS register
        !TMR02,
   MOVW
                     ΑX
   MOVW
        TDR02,#0
                                       ;Interval setting: 10 MHz output (20 MHz)
        TOEOL.2
                                       ;TO02 output
   SET1
        TSOL.2
                                       ;Operation starts (trigger bit)
   ; Waits used in the program
   ;-----
   ; Using TM01
```

```
;-----
    MOVW AX,
                      #1000000000000000B
                                     Operation mode setting
                      ;|||||||||++++---- MD013 to MD010: Interval timer mode
                      ;||||||||++-----<Fixed to 00>
                      ; | | | | | | | ++----- CIS011 and CIS010: Unused
                      ; | | | | |
                                                       start enabled
                      ; | | | | +---- MASTER01: Standalone operation
                      ; | | | +---- CSS01: Macro clock MCK specified by using
                                           the CKS01 bit
                      ; | ++----- <Fixed to 00>
                      ;+----- CKS01: Operation clock CK01 set by using
                                               the PRS register
    WVOM
         !TMR01, AX
    ; Waiting for power supply to stabilize
         TDR01,
                 #195*210/5-1
                                        ;Interval set (210 ms)
    SET1
         TSOL.1
                                        ;Timer operation starts
    CLR1
         TMIF01
                                        ;INTTM00 interrupt request cleared
    BF
         TMIF01,
                    $$
    ;Reset
    CLR1 P_RESETB
    ;Waiting about 5 us (calculated by 50 ns*5*Breg)
    MOV
                    #5000/50/5
HRST550:
    DEC
    BNZ
         $HRST550
                                        ;4clk(Z=0)
    SET1 P_RESETB
    ;Waiting for power supply to stabilize
    MOVW TDR01, #195*160/5-1
                                        ;Interval set (160 ms)
    SET1
        TSOL.1
                                        ;Timer operation starts
                                        ;INTTM00 interrupt request cleared
    CLR1
         TMIF01
         TMIF01,
                    $$
    SET1
         TTOL.1
                                        ;Timer operation stopped
    ;-----
    ; Transmission of the values set to the
    ; registers in the audio codec
    ; Using IIC0
    ;-----
    SET1 !IICOEN
                                        ;Input clock of serial interface IIC0
                                        ;supplied
    CLR1
        IICE0
                                        ;Operation stopped
                                        ;SCL0 latch
    CLR1
         P SCL
         PM_SCL
                                        ;SCL0 pin
    CLR1
    CLR1
         P_SDA
                                        ;SDA0 pin
    CLR1
                                        ;SDA0 pin
         PM_SDA
    MOV
         IICXO,
                      #0000000B
                                             ;Transfer clock selection
                      ; | | | | | | +----- CLX0
                      ;+++++-----<0000000>
    MOV
         IICCL0,
                      #00001110B
                      ;|||||++-----CL01-CL00(+CLX0): fCLK/96(first
                      ; | | | | | |
                      ;|||||+----- DFCO: Turn on the digital filter
                      ;||||+----- SMCO: Specify operation in the first
                      ; | | | |
                                                   mode
                      ;|||+----- DAD0: <R>Detect the SDA0 pin level
                      ;||+----- CLD0: <R>Detect the SCL0 pin level
                      ;++-----<00>
```

```
IICF0, #00000011B
   MOV
                                       ;Communication reservation disable
               ;||||||+-----IICRSV: Disable communication reservation
               ; | | | | | | +----- STCEN: Enable initial start
               ; | | ++++----- <Fixed to 0000>
               ; | +----- IICBSY: <R>IIC bus status flag
               ;+----- STCF: <R>STTO clear flag
   MOV
         IICC0, #00001000B
                                       ; Initial settings during master operation
               ;|||||+----STTO: Start condition trigger
               ;||||+----- ACKEO: Control acknowledgment
               ;||||+---- WTIMO: Control wait insertion and interrupt
                                          request issuance: 9 clocks
               by detecting a stop condition
                    ----- WRELO: Do not cancel waiting
               ; | +----- LRELO: Save the communication: Normal
                                             operation
               ;+----- IICEO: Enable operation of I2C
   SET1
         SPT0
                                       ;Stop condition set
   ;Settings of the registers in the audio codec: Setting to turn on the system
   MOV
         ES,
               #HIGHW TSYSON
                                       ; Higher 4 bits of the start address of the
                                       ; ROM table holding the register setting
                                       ;values
   MOVW
         HL,
               #LOWW TSYSON
                                       ;Lower 16 bits
               #LOWW TSYSONE
                                       ;Lower 8 bits of the last address of the ROM
   MVVOM
         DE,
                                       ;table holding the register setting values
        !!SI2CWRITE
   CALL
                                       ;I2C write processing
   VOM
         RPLAYMOD, #CSTOP
                                       ;Stopped
   Settings of the I2S bus interface used for the audio data of the
   audio codec
;______
   The following operations are performed.
    •Setting the TO00 output and INTTM00 interrupt for outputting LRCLK
    •Setting CSI00 for transmitting and receiving data
   ;-----
   ; LRCLK output settings
   ;-----
   ; TO00 output (16 kHz)
   ;-----
                                     Operation mode setting
   MOVW AX,
                     #00000000000000000B
                     ;|||||||||++++---- MD003 to MD000: Interval timer mode
                     ;|||||||++-----<Fixed to 00>
                     ; | | | | | | | | ++----- CIS001 and CIS000: Unused
                     ;|||||+++---- STS002 to STS000: Only software trigger
                     ; | | | | |
                                                      start enabled
                     ; | | | | +---- MASTER00: Standalone operation
                     ; | \ | \ | \ | + - - - - - - - CSS00: Macro clock MCK specified by using
                     ; | | |
                                              the CKS00 bit
                     ; | ++---- <Fixed to 00>
                     ;+---- CKS00: Operating clock CK00 set by using
                                              the PRS register
   MVVM
         !TMR00,
                     ΑX
         TDR00,#625-1
                                       ;Interval set: 16 kHz output (32 kHz)
   MOVW
   CLR1
         TMPR100
                                       ;Priority order set to the highest level
   CLR1
         TMPR000
```

```
;-----
; CSI00 settings
;-----
SET1 !SAU0EN
                                        ; Input clock of the serial array unit
                                        ;supplied
NOP
                                        ;Waiting
NOP
NOP
NOP
                    #0000000B
MOV
      !SPSOL,
                                        ;Operation clock selection: fCLK
                    ;++++----- PRS013 to PRS010: Unused
MOVW
      SDR00,
                    #(12-1) shl 9
                                               ;Bits 15 to 7: Transfer clock set
                                               ;(833 kHz)
MOVW
      AX.
                    #0000000000100001B
                                       ;Operation mode selected: CSI mode
                    ;||||||||||||+----- MD000: Buffer empty interrupt
                    ; | | | | | | | | | | | | ++----- MD002 and MD001: CSI mode
                    ;|||||||+++--------- <Fixed to 100>
                    ;|||||||+---- SIS000: Unused
                    ;||||||+-----<Fixed to 0>
                    ;||||||+---- STS00: Only software trigger enabled (fixed
                    ; | | | | | | |
                                                in CSI mode)
                    ;||++++-----<Fixed to 00000>
                    ; | +----- CSS00: Transfer clock set to a clock
                    ; |
                                                obtained by dividing operation clock
                    ; |
                                                MCK as specified by using the CKS00
                    ; |
                                               bit
                    ;+----- CKS00: Operation clock set to prescaler
                                                output clock CK00 set by using the
                    ;
                                                PRS register
MVVOM
      !SMR00,
                    AX
; Initial data output (at the same time as setting CSI10) \,
                   #0000000100000001B ;Setting of initial outputs of the SO and SCK pins
; MOVW AX,
                    ;|||||||++++++----- SOOn to SOOO: Used for transmission
                    ;+++++++ CKOn to CKOO: Serial clock output of
                                                      channels n to 0
                    ;
; MOVW
      !SO0,
                   AX
SET1
      SOE0L.0
                                        ;Output enabled
SET1
      P SCK00
                                        ;SCK00 latch: High level
CLR1
      PM SCK00
                                        ;SCK00 pin output set
SET1
      PM_SI00
                                        ;SI00 pin input set
SET1
      P_S000
                                        ;SO00 latch: High level
CLR1
      PM_SO00
                                        ;SO00 pin output set
SET1
      SSOL.0
                                        ;CSI00 operation starts (trigger bit)
CLR1
      CSIIF00
                                        ;INTCSI00 interrupt request cleared
CLR1
      CSIMK00
                                        ;INTCSI00 interrupt servicing enabled
CLR1
      CSIPR100
                                        ;Priority order set to next after INTTM00
      CSIPR000
SET1
```

```
Setting of the SPI interface for EEPROM
   The following operations are performed.
   •Setting CSI10 for transmitting and receiving data
   •Setting DMA0 for successive reception and DMA1 for successive
    transmission
;-----
       P_CS, #11110000B
                                   ;All EEPROMs deactivated
   ; DMA0 settings (for CSI reception)
   SET1 DENO
                                   ;Operation of DMA channel 0 enabled
   VOM
        DSA0, #044H
                                    ;DMA SFR address: SDR02(SIO10)=0FFF44H
        DMC0, #00001000B
   VOM
                                   ;Setting of transfer mode of DMA channel 0
              ; | | | |
                                              transfer complete interrupt
              ;|||+---- DWAITO: DMA transfer suspension: DMA
              ; | | |
                                          transfer performed according to a
                                          DMA start request (not suspended)
              ;||+---- DSO: Transfer data size: 8 bits
              ;|+----- DRS0: DMA transfer direction selected: SFR \rightarrow
                                         Internal RAM
              ;+---- STG0: Software trigger not operated
   ;-----
   ; DMA1 settings
   ; (for CSI transmission and setting dummy data
   ; during CSI reception)
   ;-----
   SET1 DEN1
                                   ; Operation of DMA channel 1 enabled
        DSA1, #044H
                                   ;DMA SFR address: SDR02(SIO10)=0FFF44H
   MOV
                                  ;Setting of transfer mode of DMA channel 1
        DMC1,
              #01001000B
   VOM
              ; | | | |
                                             transfer complete interrupt
              ;|||+----- DWAIT1: DMA transfer suspension: DMA
              ; | | |
                                    transfer performed according to a DMA start
                                    request (not suspended)
              ;||+----- DS1: Transfer data size: 8 bits
              ; | +----- DRS1: DMA transfer direction selected:
                                         Internal RAM →SFR
              ;+----- STG1: Software trigger not operated
   ;-----
   ; CSI10 settings
   MOVW SDR02, #(4-1) shl 9 ;Bits 15 to 7: Transfer clock set (2.5 MHz)
```

```
#000000000100000B
MOVW
      AX,
                                     ;Operation mode selected: CSI mode
            ;|||||||||||+----- MD020: Transfer complete interrupt
            ;|||||||||||++---- MD022 and MD021: CSI mode
            ;||||||||+---- SIS020: Unused
            ;||||||+----<Fixed to 0>
            ;||||||+---- STS02: Only software trigger enabled
            ; | | | | | | |
                                           (fixed in CSI mode)
            ;||++++----<Fixed to 00000>
            ; +----- CSS02: Transfer clock set to a clock
                                            obtained by dividing operation clock
            ; |
            ; |
                                            MCK as specified by using the CKS00
            ; |
                   ----- CKS02: Operation clock set to prescaler
                                            output clock CK00 set by using
                                            the PRS register
      !SMR02, AX
MVVOM
MOVW
      AX,
            #101100000000111B
                                     ; Communication format setting
            ;||||||||||+++----- DLS022 to DLS020: 8-bit data length
            ;||||||+----<-Fixed to 0>
            ;|||||||++---- SLC021 and SLC020: Unused (fixed to 0)
            ;||||||+-----<Fixed to 0>
            ;|||||||+---- DIR02: Input and output performed MSB first
            ;|||||++----- PTC021 and PTC020: Unused (fixed to 00)
            ; | | | | | +---- EOC02: Unused (fixed to 0)
            ;||||+----<Fixed to 0>
            ;||++----- CKP02/DAP02: Phases of data and clock in
                                                  CSI mode selected
            ; | |
            ;
                                       [11 selected]
            ; | |
                                       SCK02___| | | | | | | | | | | | | | |
            ; | |
            ; | |
                                              D7 D6 D5 D4 D3 D2 D1 D0
            ; | |
            ; | |
                           SI02 input timing ___
                                             _|__|__
                 ----- TXE00/RXE00: Only transmission performed
            ;++-
MVVOM
      !SCR02, AX
; Initial data output
            #000000100000001B
                                     ; Setting of initial outputs of the SO and SCK pins
            ;|||||||++++++---------- SOOn to SOOO: Used for transmission
            ;+++++++ CKOn to CKO0: Serial clock output of
                                                  channels n to 0
MOVW
      !SO0, AX
SET1
      SOEOL.2
                                      ;Output enabled
SET1
      P SCK10
                                      ;SCK00 latch: High level
CLR1
     PM SCK10
                                      ;SCK00 pin output set
SET1
    PM_SI10
                                      ;SI00 pin input set
SET1
     P_S010
                                      ;SO00 latch: High level
CLR1
     PM_S010
                                      ;SO00 pin output set
SET1
      SSOL.2
                                      ;CSI10 operation starts (trigger bit)
; Erasing all EEPROMs (all OFFH)
; Enabling writing to an EEPROM
AND P_CS, #00001111B
                                      ;All EEPROMs selected
CLR1 CSIIF10
MOV SIO10, #00000110B
                                      ;Write enable (WREN) instruction (INTCSI10
                                      ;occurs)
     CSIIF10,$$
OR
     P_CS, #11110000B
                                      ;Setting completed
```

```
; Erasing all EEPROMs
   AND P_CS, #00001111B
                                       ;All EEPROMs set
   CLR1 CSIIF10
   MOV
       SIO10, #11000111B
                                      ;All CEs erased (INTCSI10 occurs)
   BF
        CSIIF10,$$
        P_CS, #11110000B
                                       ;Setting completed
   OR
        STOL.2
   SET1
                                       ;CSI10 operation stopped (trigger bit)
   SET1
         CSIMK10
                                       ;INTCSI10 interrupt servicing disabled
;-----
   Starting key retrieval
   MOV
       KRM, #0000011B
                                      ;KR0 and KR1 enabled
   CLR1 KRIF
                                       ;INTKR interrupt request cleared
   SET1 KRMK
                                       ;INTKR interrupt servicing disabled
   SET1 P_LED
                                       ;Operation-in-progress indicator turned off
                                       ;(key input possible)
;-----
  Enabling interrupts
Main processing
MAIN_LOOP:
   ;-----
   ; Key processing
   BT
         KRIF, $LMAIN100
                                       ;Key input? Yes,
   BR
         LMAINRECE
                                       ; No,
LMAIN100:
   CLR1 KRIF
                                       ;INTKR interrupt request cleared
   CMP
         RPLAYMOD, #CSTOP
                                       ;Stopped?
   BZ
        $LMAIN200
                                       ; Yes,
   BR
         LMAINRECE
                                       ; No, (key disabled)
LMAIN200:
   VOM
         Α,
               P_KEY
   AND
               #00000011B
                                       ; Is key valid?
         Α,
   SKNZ
                                       ; Yes,
   BR
         LMAINRECE
                                       ; No, (key disabled: pressed multiple times)
   ; Key judged to have been pressed
    ; Waiting about 10 ms (chattering removed)
   MOVW TDR01, #195*10/5-1
                                       ;Interval set (10 ms)
        TSOL.1
   SET1
                                       ;Timer operation starts
        TMIF01
   CLR1
                                       ;INTTM00 interrupt request cleared
         TMIF01, $$
   SET1 TTOL.1
                                       ;Timer operation stopped
   MOV
              P KEY
                                       ;KR port
         Α,
   AND
         Α,
              #00000011B
   CMP
         Α,
              #00000011B
                                       ; Is key valid?
         $LMAIN400
   BNZ
                                       ; Yes,
   BR
         LMAINRECE
                                       ; No, (key disabled: pressed multiple times)
LMAIN400:
   BF
         P_RECKY, $LMAINREC
                                       ; Was record key pressed? Yes,
   BF
         P_PLAYKY,$LMAINPLAY
                                       ; Was playback key pressed? Yes,
   BR
         LMAINRECE
                                       ; No,
```

```
;-----
    ; Starting recording
LMAINREC:
    CLR1 P_LED
                                            ;Operation-in-progress indicator turned on
                                            ;(key input disabled)
    MOV
          KRM,
                 #00000000B
                                            ;KR0 and KR1 disabled
    MOV
          RPLAYMOD, #CREC
                                            ¿Voice data recorded
    ;Settings of the registers in the audio codec: Recording set
    MOV
                 #HIGHW TRECON
                                            ; Higher 4 bits of the start address of the
                                            ; ROM table holding the register setting
                                            ;values
    MOVW
          HL.
                 #LOWW TRECON
                                            ;Lower 16 bits
                                            ;Lower 8 bits of the last address of the ROM
    MVVOM
          DE,
                 #LOWW TRECONE
                                            ;table holding the register setting values
    CALL
           !!SI2CWRITE
                                            ;I2C write processing
    ;Preparation of the I2S bus interface
           RCSI00CNT,#0
                                            ;CSI00 reception counter
    MVVOM
           SDR00, #(12 to 1) shl 9
                                            ;Bits 15 to 7: Transfer clock set (833 kHz)
                 #010000000000111B
    MOVW
         AX,
                                           ;Communication format setting
                 ;|||||||||+++----- DLS002 to DLS000: 8-bit data length
                 ;|||||||+-----<Fixed to 0>
                 ;||||||+----<Fixed to 0>
                 ;||||||+----- DIR00: Input and output performed MSB first
                 ;|||||++-----PTC001 and PTC000: Unused (fixed to 00)
                 ;|||||+---- EOC00: Unused (fixed to 0)
                 ;||||+-----<Fixed to 0>
                 ;||++----- CKP00/DAP00: Phases of data and clock in CSI
                                                        mode selected
                 ; | |
                                             [00 selected]
                 ; | |
                                             SCK00 | | | | | | | | | | | | | | | | | |
                 ; | |
                 ; | |
                 ; | |
                                                     D7 D6 D5 D4 D3 D2 D1 D0
                 ; | |
                                 SI00 input timing ___
                 ; | |
                 ;++----- TXE00/RXE00: Only reception performed
    MVVOM
           !SCR00, AX
    MOV
           TOOL, #00000000B
                                            ;Initial output set to low level
          TOEOL. 0
                                            ;Operation of TOOO enabled by a count
    SET1
                                            ;operation (LRCLK)
    CLR1
          TMIF00
                                            ;INTTM00 interrupt request cleared
          TMMK00
                                            ;INTTM00 interrupt servicing enabled
    CLR1
    ;Setting writing to an EEPROM
    MOVW RI2SADDR, #RRECMEM1
                                            ;Address to which the data received via I2S
                                            ;is saved
    CLR1
          FI2SPAGE
                                            ;EEPROM selected
    MOV
          RP_CS, #11100000B
          REEPSEQ, #CEEPSEQ_RESET
    MOV
                                            ; EEPROM transfer sequence
    MOVW
          REEPADDR,#0
                                            ;EEPROM write address (REEPADDR*100H)
```

```
#101100000000111B
    MVVOM
          AX,
                                            ;Communication format setting
                  ;||||||||||+++----- DLS022 to DLS020: 8-bit data length
                  ;||||||||+-----<Fixed to 0>
                  ;||||||||++----- SLC021 and SLC020: Unused (fixed to 0)
                  ;||||||+----<Fixed to 0>
                  ;|||||||+---- DIR02: Input and output performed MSB first
                  ;|||||++-----PTC021 and PTC020: Unused (fixed to 00)
                  ; | | | | | +---- EOC02: Unused (fixed to 0)
                  ; | | | | +----- <Fixed to 0>
                  ;||++----- CKP02/DAP02: Phases of data and clock in CSI
                  ; | |
                                                         mode selected
                  ; | |
                                             [11 selected]
                  ; | |
                                             SCK02 ____| |_| |_| |_| |_| |_| |
                  ; | |
                  ; | |
                  ; | |
                  ; | |
                                                     D7 D6 D5 D4 D3 D2 D1 D0
                                  SI02 input timing ____|__|__|__|__|___|___
                  ; | |
                  ; | |
                  ;++---- TXE00/RXE00: Only transmission performed
    MOVW
          !SCR02, AX
    ;Starting I2S operation
    SET1 SS0L.0
                                            ;CSI00 operation starts (trigger bit)
          P_LRCLK
    CLR1
                                            ;LRCLK operation starts
    SET1
          TSOL.0
                                            ;TO00 output operation starts (trigger bit)
           SIO00, #0FFH
    MOV
                                            ;Dummy data set (INTCSI00 occurs)
    BR
           LMAINRET
    ; Starting playback
    ;-----
LMAINPLAY:
    CLR1
         P_LED
                                             ;Operation-in-progress indicator turned on
                                             ;(key input disabled)
    MOV
           KRM,
                 #0000000B
                                             ;KR0 and KR1 disabled
    VOM
           RPLAYMOD, #CPLAY_START
                                             ;Preparing for playback started
    ;Settings of the registers in the audio codec: Playback set
    VOM
          ES,
               #HIGHW TPLAYON
                                            ; Higher 4 bits of the start address of the
                                             ; ROM table holding the register setting
                                            ;values
          HL,
                 #LOWW TPLAYON
                                            ;Lower 16 bits
    MVVM
    MVVOM
          DE,
                 #LOWW TPLAYONE
                                            ;Lower 8 bits of the last address of the ROM
                                             ;table holding the register setting values
    CALL
          !!SI2CWRITE
                                             ;I2C write processing
    ;Preparation of the I2S bus interface
          RCSI00CNT,#0
                                            ;CSI00 transmission counter
    MVVOM
           SDR00, #(12-1) shl 9
                                            ;Bits 15 to 7: Transfer clock set (833 kHz)
```

```
#100000000000111B
MOVW
      AX,
                                      ;Communication format setting
             ;|||||||||+++----- DLS002 to DLS000: 8-bit data length
             ;||||||||+-----<-----<Fixed to 0>
             ;||||||||++-----SLC001 and SLC000: Unused (fixed to 0)
             ;|||||||+-----<Fixed to 0>
             ;||||||+----- DIR00: Input and output performed MSB first
             ;|||||++-----PTC001 and PTC000: Unused (fixed to 00)
             ;|||||+---- EOC00: Unused (fixed to 0)
             ;||||+----<Fixed to 0>
             ;||++----- CKP00/DAP00: Phases of data and clock in CSI
                                                   mode selected
             ; | |
             ; | |
                                        [00 selected]
             ; | |
                                        SCK00 | | | | | | | | | | | | | | | |
             ; | |
             ; | |
             ; | |
             ; | |
                                              D7 D6 D5 D4 D3 D2 D1 D0
                            SI00 input timing ____|__|__|__|__|__
             ; | |
                    ----- TXE00/RXE00: Only transmission performed
MOVW
      !SCR00, AX
MOV
      TOOL, #0000000B
                                       ; Initial output set to low level
      TOEOL.0
SET1
                                       ;Operation of TOOO enabled by a count
                                       ;operation
CLR1
      TMIF00
                                       ;INTTM00 interrupt request cleared
      TMMK00
CLR1
                                       ;INTTM00 interrupt servicing enabled
;Setting reading from an EEPROM (writing set at first)
            P CS
                                       ;EEPROM selected
MOV
      Α,
AND
            #00001111B
      Α,
OR
      Α,
            #11100000B
MOV
      P_CS, A
      RP_CS, #10110000B
MOV
                                       ; EEPROM selected (enabled after 2 pages are
                                       ;read)
SET1
      FI2SPAGE
                                       ;Data of the EEPROM set to be saved to page 1
      REEPSEQ, #CEEPSEQ_INST
                                       ;Instruction bytes transmitted
MOV
MOVW
      REEPADDR,#0
                                       ; EEPROM read address (REEPADDR*100H)
            #1011000000000111B
MVVOM
                                      ;Communication format setting
      AX,
             ;||||||||||+++----- DLS022 to DLS020: 8-bit data length
             ;||||||||+-----<-----<Fixed to 0>
             ;||||||||++----- SLC021 and SLC020: Unused (fixed to 0)
             ;|||||||+---- DIR02: Input and output performed MSB first
             ;|||||++-----PTC021 and PTC020: Unused (fixed to 00)
             ;|||||+---- EOC02: Unused (fixed to 0)
             ;||||+----<Fixed to 0>
             ;||++-----CKP02/DAP02: Phases of data and clock in CSI
             ; | |
                                                   mode selected
             ; | |
                                        [11 selected]
             ; | |
                                        SCK02___| |_| |_| |_| |_| |_| |
             ; | |
             ; | |
             ; | |
                                               D7 D6 D5 D4 D3 D2 D1 D0
                             SI02 input timing___|__|__|__|___|___|___
             ; | |
             ; | |
                      ----- TXE00/RXE00: Only transmission performed
MOVW
      !SCR02,AX
;Starting reading from the EEPROM
                                       ;INTCSI10 interrupt request cleared
CLR1 CSIIF10
CLR1
      CSTMK10
                                       ;INTCSI10 interrupt servicing enabled
SET1
      SSOL.2
                                       ;CSI10 operation starts (trigger bit)
      SIO10, #00000011B
                                       ;Transmit data (reading specified) (INTCSI10
                                       ;occurs)
BR
      LMAINRET
```

```
; Recording end settings
LMAINRECE:
          RPLAYMOD, #CREC_END
                                             ;Recording finished?
    CMP
    BNZ
          $LMAINPLAYE
                                             ; No,
    ;Settings of the registers in the audio codec: Setting termination of recording
    VOM
          ES.
                 #HIGHW TRECOFF
                                             ; Higher 4 bits of the start address of the
                                             ; ROM table holding the register setting
                                             ;values
                 #LOWW TRECOFF
    MOVW
          HL,
                                             ;Lower 16 bits
    MVVOM
          DE,
                  #LOWW TRECOFFE
                                             ;Lower 8 bits of the last address of the ROM
                                             ;table holding the register setting values
    CALL
          !!SI2CWRITE
                                             ;I2C write processing
    BR
           LMAINSTOP
    ; Playback end settings
    ;-----
LMAINPLAYE:
           RPLAYMOD, #CPLAY_END
                                             ;Playback finished?
    CMP
    BNZ
           $LMAINRET
                                             ; No,
    ;Settings of the registers in the audio codec: Setting termination of playback
                                             ; Higher 4 bits of the start address of the
    MOV
                  #HIGHW TPLAYOFF
                                             ; ROM table holding the register setting
                                             ;values
                  #LOWW TPLAYOFF
                                             ;Lower 16 bits
    MVVOM
           HL.
                  #LOWW TPLAYOFFE
                                             ;Lower 8 bits of the last address of the ROM
    MOVW
           DE.
                                             ;table holding the register setting values
    CALL
          !!SI2CWRITE
                                             ;I2C write processing
LMAINSTOP:
                 #00000011B
    MOV
           KRM.
                                             ;KR0 and KR1 enabled
    VOM
           RPLAYMOD, #CSTOP
                                             ;Stopped
    SET1
           P_LED
                                             ;Operation-in-progress indicator turned off
                                             ; (key input possible)
LMAINRET:
    BR
           MAIN LOOP
;
    INTTM00 interrupt servicing
    (using INTTM00 for synchronizing LRCLK, BCLK, SDOUT, and SDIN)
;
    LRCLK output via the I2S bus interface and BCLK, SDOUT, and SDIN used for
    transmitting and receiving data are synchronized by restarting the
    operation of CSI00, which was stopped by INTCSI00 interrupt servicing,
    When LRCLK changes from high to low level and from low to high level .
    LRCLK
                          BCLK
                          SDOUT/SDIN
    INTTM00
    Register bank 1 used
```

```
IINTTM00:
    SEL
         RB1
                                       ;During recording? No, (during playback)
    CMP
        RPLAYMOD, #CREC
       $HTM00PLAY
    BNZ
    ; During recording
    ;-----
    ;Starting the operation of the I2S bus interface
       A, #OFFH
    MOV
                                       ;Dummy data
    SET1 SSOL.0
                                       ;CSI00 operation starts (trigger bit)
                                       ;Third byte received and dummy data set
    XCH
       A, SI000
                                       ;(INTCSI00 occurs)
    MOVW HL, RI2SADDR
                                       ;Address to which the data received via I2S
                                       is saved
         [HL], A
                                       ;Data saved
    MOV
    BR
         HTM00RET
HTM00PLAY:
   ;-----
    ; During playback
    ;-----
    ;Starting the operation of the I2S bus interface
    MOVW HL, RI2SADDR
                                       ; Address to which the data transmitted via
                                       ;I2S is saved
    MOV
                                       ;Transmit data (first byte)
         A, [HL]
    SET1
         SSOL.0
                                       ;CSI00 operation starts (trigger bit)
    VOM
         SI000, A
                                       ;Transmit data set (INTCSI00 occurs)
HTM00RET:
   INCW RI2SADDR
                                       ; Address to which the data transmitted or
                                       ;received via I2S is saved updated
    RETI
```

```
INTCSI00 interrupt servicing
    (using INTCSI00 for CSI transmission or reception)
    Data is transmitted and received via the I2S bus interface between the
    microcontroller and the audio codec.
    During recording, CSI00 is used to save the received data. Normally, data is
    successively received by setting dummy data. To achieve synchronization with
    LRCLK, however, only reception is performed every three bytes and successive
    reception operation is stopped. The stopped operation is restarted by INTTM00
    interrupt servicing and can be synchronized with LRCLK. When the received data
    reaches one page, writing to an EEPROM starts. During playback, CSI00 is used
    to successively transmit data, but successive transmission operation is
    stopped every three bytes to achieve synchronization with LRCLK, similarly as
    during recording. The stopped operation is restarted by INTTM00 interrupt
    servicing and can be synchronized with LRCLK. When the transmitted data
    reaches one page, reading data of a different page from the EEPROM starts.
    LRCLK
                         BCLK
                         12. . . 212. . . 212. . . 21712. .
    SDOUT/SDIN
    INTCSI00
                           ____|___|___|
                         1
                                 2
                                         3
                                                  1
    Register bank 1 used
IINTCSI00:
    SEL
          RB1
    INC
          RCSI00CNT
                                            ;CSI00 reception counter updated
    CMP
          RPLAYMOD, #CREC
                                            ;During recording?
    BNZ
           SHI2SPLAY
                                            ; No,
    ; During recording
    ;Determining the last position of the page
               RI2SADDR
                                            ; Address to which the data received via I2S
    MOVW
         AX,
                                            ;is saved
          FI2SPAGE, $HI2SR030
    CMPW
          AX, #RRECMEM1E
                                            ;End of page 1?
    BC
           $HI2SR100
                                            ; No.
    MVVOM
          RI2SADDR, #RRECMEM2
                                            ; Address to which the data received via I2S
                                            ;is saved: Page 2
    SET1
          FI2SPAGE
    BR
          HI2SR050
HI2SR030:
    CMPW
          AX,
                 #RRECMEM2E
                                           ;End of page 2?
           $HI2SR100
    MVVOM
          RI2SADDR, #RRECMEM1
                                            ; Address to which the data received via I2S
                                            ;is saved: Page 1
    CLR1
          FI2SPAGE
HI2SR050:
    ;Starting writing to the EEPROM
    VOM
          REEPSEQ, #CEEPSEQ_WREN
                                            ;Write enable (WREN) signal transmitted
```

APPENDIX A PROGRAM LIST

```
MOV
            Α,
                   P CS
                                                  ; EEPROM CS set
                   #00001111B
    AND
           Α,
    OR
                   RP_CS
           Α,
           P_CS, A
    MOV
    CLR1 CSIIF10
                                                  ;INTCSI10 interrupt request cleared
    CLR1
           CSIMK10
                                                  ;INTCSI10 interrupt servicing enabled
    SET1
           SSOL.2
                                                  ;CSI10 operation starts (trigger bit)
            SIO10, #00000110B
    MOV
                                                  ;Write enable (WREN) instruction (INTCSI10
                                                  ;occurs)
HI2SR100:
    ;Buffer empty interrupt immediately after starting operation
          RCSI00CNT,#1
                                                  ;Buffer empty interrupt immediately after
    CMP
                                                  ;starting reception?
    BNZ
          $HI2SR200
                                                  ; No,
           SIO00, #0FFH
    MOV
                                                  ;Dummy data set
            HI2SRET
                                                  ; Yes, (ignored because the data is
    BR
                                                  ;undefined)
HI2SR200:
    Reception of the first byte
           RCSI00CNT,#2
                                                  ;First byte received?
    CMP
    BNZ
            $HI2SR300
                                                  ; No.
    MOV
          Α.
                   #0FFH
                                                  ;Dummy data
    XCH
                   SI000
                                                  ;Dummy data set and data received
           Α,
           HI2SR500
    BR
HI2SR300:
    ;Reception of the second byte
            RCSI00CNT,#0
                                                  ;CSI00 reception counter initialized
    MOV
            Α,
                   SI000
                                                  ;Data reception only
    ;BR
           HI2SR500
HI2SR500:
                                                  ;Address to which the data received via I2S
    MOVW
          HL. RI2SADDR
                                                  is saved
    MOV
           [HL], A
                                                  ;Received data saved
HI2SR800:
    INCW
           RI2SADDR
                                                  ;Address to which the data received via I2S
                                                  ; is saved updated
            HI2SRET
     ; During playback
HI2SPLAY:
    CMP
           RPLAYMOD, #CPLAY
                                                  ;During playback?
           $HI2SRET
    BNZ
                                                  ; No,
    CMP
            RCSI00CNT,#3
                                                  ;Timing of synchronization with LRCLK?
                                                  ;(Immediately after transmission of the third
                                                  ;byte starts?)
    BNC
            $HI2SP100
                   RI2SADDR
                                                  ; Address to which the data transmitted via
    MOVW
            HL,
                                                  ;I2S is saved
    MOM
                   [HL]
                                                  ;Transmit data (second or third byte)
            Α,
    VOM
            SI000, A
                                                  ;Transmit data set (INTCSI00 occurs)
    INCW
            RI2SADDR
                                                  ; Address to which the data transmitted via
                                                  ;I2S is saved updated
            HI2SP200
    BR
HI2SP100:
    MOV
            RCSI00CNT,#0
                                                 ;CSI00 transmission counter initialized
HI2SP200:
    MOVW
            AX,
                   RI2SADDR
                                                  ; Address to which the data transmitted via
                                                  ;I2S is saved
    ВТ
            FI2SPAGE, $HI2SP300
                                                  ;Page 2 being transmitted?
            AX,
                   #RRECMEM1E
                                                  ; End of page 1?
    CMPW
            $HI2SRET
    BC.
                                                  ; No,
    MVVOM
            RI2SADDR, #RRECMEM2
                                                  ; Address to which the data transmitted via
                                                  ;I2S is saved: Page 2
```

```
SET1 FI2SPAGE
    BR
          HI2SP500
HI2SP300:
    CMPW AX, #RRECMEM2E
                                          ;End of page 2?
    BC.
          $HI2SRET
                                          ; No,
    MOVW RI2SADDR, #RRECMEM1
                                           ; Address to which the data transmitted via
                                           ;I2S is saved: Page 1
    CLR1
          FI2SPAGE
HI2SP500:
    ;Starting reading from the EEPROM
               P CS
                                           ;EEPROM selected
    VOM
          Α,
    AND
          Α,
                #00001111B
    OR
          Α,
               RP_CS
    MOV
         P_CS, A
          REEPSEQ, #CEEPSEQ_INST
                                           ;Instruction bytes transmitted
    MOV
    CLR1 CSIIF10
                                           ;INTCSI10 interrupt request cleared
    CLR1
          CSIMK10
                                           ;INTCSI10 interrupt servicing enabled
          SSOL.2
                                           ;CSI10 operation starts (trigger bit)
    SET1
          SIO10, #00000011B
    MOV
                                           ;Transmit data (reading specified) set
                                           ;(INTCSI10 occurs)
HI2SRET:
    RETI
INTCSI10 interrupt servicing
    (using INTCSI10 for CSI transmission or reception)
    During recording, instruction bytes and 24-bit addresses are transmitted
    to an EEPROM, DMA channel 1 starts when transmitting data to the EEPROM
    starts, and transmission continues in CSI10 single transmission mode.
;
;
    During playback, 24-bit addresses are transmitted to an EEPROM, DMA
    channels 0 and 1 start when receiving data from the EEPROM starts, and
    reception continues in CSI10 single reception mode. However, DMA
    channel 1 is used for setting dummy data.
    Register bank 1 used
IINTCSI10:
    EΙ
                                           ;Multiple interrupts enabled
    SEL
        RB2
    INC
        REEPSEQ
                                          ; EEPROM transfer sequence updated
    CMP
          RPLAYMOD, #CREC
                                          ;During recording? No, (during playback)
    BZ
          SHCSI1REC
    BR
          HCSI1PLAY
HCSI1REC:
    ;-----
    ; During recording
    ;Instruction byte transmission
    CMP
         REEPSEQ, #CEEPSEQ_INST
                                           ;Instruction byte transmission timing?
    BNZ
          $HCSI1100
                                           ; No,
          P_CS, #11110000B
    OR
                                           ;Non-active
    NOP
    MOV
          Α,
               P CS
                                          ;EEPROM selected
    AND
        A, #00001111B
    OR
                RP_CS
          Α,
    MOV
          P_CS, A
    VOM
          Α,
                #00000010B
                                           ;Writing specified
    BR
          HCSI1650
                                           ;Data transmitted
HCSI1100:
```

```
;Transmission of the higher bits of the 24-bit address
          REEPSEQ,#CEEPSEQ_ADDRH
                                               ;Transmitting the higher bits of the 24-bit
                                               ;address?
    BNZ
         $HCSI1200
                                                ; No,
                  REEPADDR+1
    MOV
         Α,
    BR
           HCSI1650
                                               ;Data transmitted
HCSI1200:
    ;Transmission of the middle bits of the 24-bit address
           REEPSEQ, #CEEPSEQ_ADDRM
                                                ;Transmitting the middle bits of the 24-bit
                                                ;address?
           $HCSI1300
    BNZ
                                                ; No,
    MOV
         A, REEPADDR
    BR
           HCSI1650
                                                ;Data transmitted
HCSI1300:
    ;Transmission of the lower bits of the 24-bit address
         REEPSEQ, #CEEPSEQ_ADDRL
                                               ;Transmitting the lower bits of the 24-bit
                                                ;address?
           $HCSI1400
                                                ; No,
    MOV
           A, #000H
           HCSI1650
    BR
                                                ;Data transmitted
HCST1400:
    ;Starting data transmission
    ;Starting DMA transfer
    BT
           FI2SPAGE, $HCSI1430
                                               ; Is I2S using page 2?
    MOVW
          DRA1, #RRECMEM2+1
                                                ;Transmit buffer
                  !RRECMEM2
                                                ;First transmit data
    MOV
           Α.
           HCSI1450
    BR
HCSI1430:
    MOVW DRA1, #RRECMEM1+1
                                                ;Transmit buffer
                                                ;First transmit data
    VOM
                  !RRECMEM1
           Α,
HCSI1450:
    MOVW DBC1, #3*2*42-1
                                                ;One page
    SET1
           DST1
                                                ;DMA1 transfer enabled (for CSI10
                                                ;transmission)
    CLR1
           DMAIF1
                                                ;INTDM1 interrupt request cleared
    CLR1
           DMAMK1
                                                ;INTDM1 interrupt servicing enabled
    CLR1
           CSIIF10
                                                ;INTCSI10 interrupt request cleared
           CSIMK10
                                                ;INTCSI10 interrupt servicing disabled
    SET1
    SET1
          DMAMK0
                                                ;INTDMO interrupt servicing disabled
HCSI1650:
           SSOL.2
    SET1
                                                ;CSI00 operation starts (trigger bit)
    MOV
           SI010, A
                                                ;Transmit data set (INTCSI00 occurs)
HCSI1800:
           HCSI1RET
    BR
    ;-----
    ; During playback
HCSI1PLAY:
    ;Transmission of the higher bits of the 24-bit address
          REEPSEQ,#CEEPSEQ_ADDRH
                                               ;Transmitting the higher bits of the 24-bit
                                                ;address?
    BNZ
           $HCSI1P200
                                                ; No,
    MOV
           A, REEPADDR+1
    BR
           HCSI1P350
                                               ;Data transmitted
HCSI1P200:
    ;Transmission of the middle bits of the 24-bit address
         REEPSEQ, #CEEPSEQ_ADDRM
                                               ;Transmitting the middle bits of the 24-bit
                                                ;address?
           $HCSI1P300
    BNZ
                                                ; No.
    MOV
           A, REEPADDR
    BR
           HCSI1P350
                                                ;Data transmitted
HCSI1P300:
    ;Transmission of the lower bits of the 24-bit address
```

```
;Transmitting the lower bits of the 24-bit
    CMP
           REEPSEQ, #CEEPSEQ_ADDRL
                                            ;address?
    BNZ
           $HCSI1P400
                                            ; No,
    MOV
          A, #000H
HCSI1P350:
    ;Data transmission
           SIO10, A
    MOV
                                            ;Transmit data set (INTCSI10 occurs)
    BR
           HCSI1RET
HCSI1P400:
    ;Starting data reception
                                          ;Communication format setting
    MVVOM
                 #0111000000000111B
          AX,
                  ;||||||||||+++---- DLS022 to DLS020: 8-bit data length
                  ;||||||+-----<Fixed to 0>
                  ;|||||||++----- SLC021 and SLC020: Unused (fixed to 0)
                  ;|||||||+-----<-Fixed to 0>
                  ;||||||+-----DIR02: Input and output performed with MSB
                  ; | | | | | | | | |
                                                   first
                  ;|||||+---- EOC02: Unused (fixed to 0)
                  ;||||+----<Fixed to 0>
                  ;||++-----CKP02/DAP02: Phases of data and clock in CSI
                  ; | |
                                                         mode selected
                  ; | |
                                             [11 selected]
                  ; | |
                                             SCK02 ____| |_| |_| |_| |_| |_| |
                  ;
                  ; | |
                  ; | |
                                                      D7 D6 D5 D4 D3 D2 D1 D0
                  ; | |
                  ; | |
                                 SI02 input timing ___
                                                     _|__|__|_
                                                                __|_
                                                                    _|_
                  ; | |
                  ;++---- TXE00/RXE00: Only reception performed
    MOVW
          !SCR02, AX
    MOVW
           DRA1, #RRECMEM1
                                            ; Address for setting dummy data
    MVVOM
           DBC1, #3*2*42-1
                                            ;Page size set
           FI2SPAGE, $HCSI1P430
                                            ; Is I2S using page 2?
    BT
          DRA0, #RRECMEM2
                                            ;Receive buffer set to page 1
    MVVOM
          HCSI1P450
    BR
HCSI1P430:
    MOVW
          DRA0, #RRECMEM1
                                            ; Receive buffer set to page 2
HCSI1P450:
    MVVOM
          DBC0, #3*2*42
                                            ;Page size set
    ;Starting DMA transfer
    SET1
          DST1
                                            ;DMA1 transfer enabled (for CSI10
                                            ;transmission)
          DST0
    SET1
                                            ;DMA0 transfer enabled (for CSI10 reception)
    SET1
          DMAMK1
                                            ;INTDM1 interrupt servicing disabled
    CLR1
          CSIIF10
                                            ;INTCSI10 interrupt request cleared
          CSIMK10
                                            ;INTCSI10 interrupt servicing disabled
    SET1
          DMAIF0
    CLR1
                                            ;INTDMO interrupt request cleared
    CLR1
          DMAMK0
                                            ;INTDMO interrupt servicing enabled
    SET1
           SSOL.2
                                            ;CSI10 operation starts (trigger bit)
    MOV
           SIO10, #0FFH
                                            ;Dummy data set (INTCSI00 occurs)
HCSI1RET:
    RETI
```

```
;
    INTDMA0 interrupt servicing
    (using INTDMA0 for CSI reception)
;-----
    This interrupt occurs once data of one page has been received from an
    EEPROM during playback. Which of the four EEPROMs is to be used is
    selected and operation of the I2S bus interface is started and stopped.
    Register bank 1 used
TINTDMA0:
    SEL
        RB1
    ;Waiting for communication completion
HDMA0100:
                SSR02L
                                          ;Communication completed?
   MOV
          Α,
    ВT
         A.6, $HDMA0100
                                          ; No.
    ;Completing receiving data of one page
        P_CS, #11110000B
                                          ;Non-active
    MOV
          REEPSEQ, #CEEPSEQ_INST
    CMP
         RPLAYMOD, #CPLAY
                                          ;During playback?
          $HDMA0500
                                          ; Yes,
    CMP
         RPLAYMOD, #CPLAY_SET
                                         ;Preparing for playback?
    B7.
         $HDMA0300
                                          ; Yes,
        RPLAYMOD, #CPLAY_START
    CMP
                                         ;Starting preparing for playback?
         $HDMA0RET
                                          ; No,
    ;Starting reading from an EEPROM
    MOV RPLAYMOD, #CPLAY_SET
                                          ;Prepared for playback
    MOV
             P_CS
                                          ; EEPROM selected
         Α,
                #00001111B
    AND
         Α,
    OR
          Α,
                #11010000B
         P_CS, A
    MOV
    CLR1 FI2SPAGE
    CLR1 CSIIF10
                                          ;INTCSI10 interrupt request cleared
    CLR1 CSIMK10
                                          ;INTCSI10 interrupt servicing enabled
    SET1 SSOL.2
                                          ;CSI10 operation starts (trigger bit)
    MOV SIO10, #0000011B
                                          ;Transmit data (reading specified) set
                                          ;(INTCSI10 occurs)
          HDMA0RET
    ; Starting the operation of the I2S bus interface
HDMA0300:
    MOV
        RPLAYMOD,#CPLAY
                                          ;During playback
    MOVW RI2SADDR, #RRECMEM1+1
                                          ;Start of the transmit buffer set
    CLR1 FI2SPAGE
    MOV
          Α.
               !RRECMEM1
    ;Starting the operation of the I2S bus interface
    SET1
         SSOL.0
                                          ;CSI00 operation starts (trigger bit)
    CLR1
         P_LRCLK
                                          ;LRCLK operation starts
    SET1 TSOL.0
                                          ;T000 output operation starts (trigger bit)
    MOV SIO00, A
                                         ;Transmit data set (INTCSI00 occurs)
        HDMA0RET
    BR
HDMA0500:
    ;EEPROM selection
        A, RP_CS
    MOV
    SET1
          A.3
    ROLC A, 1
```

```
$HDMA0700
    BC
                                            ; Have all EEPROMs been selected once? No,
          REEPADDR
    INCW
    MOVW
         AX,
               REEPADDR
    CMPW
         AX,
                #128000/256
                                           ;Last EEPROM?
          $HDMA0800
    BNC
                                           ; Yes,
          A, #11100000B
    VOM
HDMA0700:
    AND
               #11110000B
          Α,
          RP_CS, A
    VOM
    BR
          HDMA0RET
HDMA0800:
    ;Stopping the operation of the I2S bus interface
          P_LRCLK
                                            ;LRCLK output disabled (high level)
    SET1
          TTOL.0
                                            ;TO00 output operation stopped (trigger bit)
    SET1
         STOL.0
                                            ;CSI000 output operation stopped (trigger
                                            ;bit.)
    SET1
          STOL.2
                                            ;CSI010 output operation stopped (trigger
                                            ;bit)
    MOV
          RPLAYMOD, #CPLAY_END
                                            ;Playback being terminated
HDMAORET:
    CLR1
          DST1
                                           ;DMA1 transfer stopped
    CLR1
         DST0
                                            ;DMA0 transfer stopped
    SET1
          DMAMK 0
                                            ;INTDMO interrupt servicing disabled
    RETI
INTDMA1 interrupt servicing
    (using INTDMA1 for CSI transmission)
    This interrupt occurs when data of one page has been transmitted to an
    EEPROM during recording. Which of the four EEPROMs is to be used is
    selected and operation of the I2S bus interface is stopped.
    Register bank 1 used
IINTDMA1:
    SEL
         RB1
    ;Waiting for communication completion
HDMA1100:
                 SSR02L
                                           ;Communication completed?
    VOM
          Α,
          A.6, $HDMA1100
    ВТ
                                            ; No,
    ;Completing transmitting data of one page
    OR
          P CS. #11110000B
                                           ;Data of one page transmitted
          REEPSEO, #CEEPSEO RESET
    VOM
    ; EEPROM selection
    VOM
          Α,
               RP CS
    SET1
          Α.3
    ROLC
          Α.
                 1
    ВC
          $HDMA1300
                                           ; Have all EEPROMs been selected once? No,
    INCW
          REEPADDR
    MVVOM
          AX, REEPADDR
    CMPW AX,
                #128000/256
                                           ;Last EEPROM?
          $HDMA1500
    BNC
                                           ; Yes,
    MOV
          Α,
                #11100000B
HDMA1300:
    AND
               #11110000B
          Α,
    MOV
          RP CS, A
    BR
          HDMA1RET
HDMA1500:
    ;Stopping the operation of the I2S bus interface
```

```
SET1
         P_LRCLK
                                             ;LRCLK output disabled (high level)
    SET1
          TTOL.0
                                             ;TO00 output operation stopped (trigger bit)
    SET1
          STOL.0
                                             ;CSI000 output operation stopped (trigger
          STOL.2
    SET1
                                             ;CSI010 output operation stopped (trigger
                                             ;bit)
    MOV
          RPLAYMOD, #CREC_END
                                             ;Recording stopped
HDMA1RET:
          DST1
                                             ;DMA1 transfer stopped
    CLR1
    CLR1
          DST0
                                             ;DMA0 transfer stopped
    SET1
          DMAMK1
                                             ;INTDM1 interrupt servicing disabled
    RETI
;
   I2C bus interface write processing for setting the registers in the audio
   codec
   The data set to the registers in the audio codec is written by using the
;
   functions of I2C bus interface IICO.
;
   [I N] ES :Higher 4 bits of the start address of the ROM table
                  holding the register setting values
                 :Lower 8 bits of the start address of the ROM table
                  holding the register setting values
                :Lower 8 bits of the last address of the ROM table
          DF:
                  holding the register setting values
SI2CWRITE:
   SET1
         IICE0
                                             ; Operation enabled
JI2CW100:
    ;Start condition issuance
    SET1 STT0
    ;Slave address transmission
         STD0, $$
                                             ; Address transmission period? No,
    CLR1 IICIF0
    MOV IICO, #00110100B
                                             ; Address transmission starts (writing
                                             ; specified)
    BF
          IICIFO, $$
                                             ;Transmission completed? No,
    BT
          ACKD0, $JI2CW200
                                             ;ACK detected? Yes,
    SET1 SPT0
                                             ; No, stop condition issued
    BR
          $JI2CW100
                                             ;Retransmission
JI2CW200:
    ;Write address transmission
    MOV A,
                 ES:[HL]
                                             ;Set data acquired
    CLR1 IICIF0
                                             ;INTIIC10 interrupt request cleared
    MOV
          IICO, A
                                             ;Data transmission starts
          IICIFO, $$
                                             ;Transmission completed? No,
    BT
          ACKD0, $JI2CW300
                                             ;ACK detected? Yes,
    SET1
          SPT0
                                             ; No, stop condition issued
          $JI2CW100
                                             ;Retransmission
    BR
JI2CW300:
    ;Write data transmission
    INCW HL
                                             ;Reference position updated
         Α,
    MOV
                ES:[HL]
                                             ;Set value acquired
         IICIF0
    CLR1
                                             ;INTIIC10 interrupt request cleared
          IICO, A
    MOV
                                             ;Data transmission starts
    BF
          IICIFO, $$
                                             ;Transmission completed? No,
```

APPENDIX A PROGRAM LIST

	BT SET1 DECW	ACKD0, SPT0 HL	\$JI2CW400	<pre>;ACK detected? Yes, ; No, stop condition issued ;Retransmission</pre>
	BR	\$JI2CW1	.00	
JI2CW400:				
	_		n issuance	
	SET1	SPT0		
	;Wait o	control		
	INCW	$^{ m HL}$		Reference position updated
	VOM	Α,	ES:[HL]	;Wait information acquired
	CMP0	A		;Waiting required?
	BZ \$JI2CW600		500	; No,
	VOM	Х,	#195	;5 ms
	MULU	X		;A register*5 ms
	DECW	AX		;AX register: Timer count value
	MVVM	TDR01,	AX	;Interval set
	CLR1	TMIF01		;INTTM01 interrupt request cleared
	SET1	TSOL.1		Timer operation starts
	BF	TMIF01,	\$\$;Interval elapsed? No,
	SET1	TTOL.1		:Timer operation stopped
JI2CW600:				
	INCW	HL		Reference position updated
	MOVW	AX,	HL	
	CMPW	AX,	DE	Register setting completed?
	BC	\$JI2CW1	.00	; No,
JI2CWRET:				
	RET			

end

125 Dus interface between microcontroller and addio codec

[Overview]

This sample program uses the I2S bus interface to transfer audio data between the microcontroller and an audio codec. The LR clock (LRCLK) for selecting whether to use channel L or channel R of the I2S bus interface is used in the interval timer mode of the timer array unit (TAU) and is output from TO00. CSI00 of channel 0 of serial array unit 0 (SAU0) is used for outputting the clock used for transferring data (BCLK) and for receiving data (SDOUT), and transmitting data (SDIN).

ML2612 made by OKI Semiconductor is used as the audio codec. The I2C bus interface is used for setting the registers in the audio codec and the I2S bus interface is used for transferring audio data. When the record key is pressed, the audio codec receives the voice data input from a microphone and saves the data to EEPROM. When the playback key is pressed, the recorded data is transmitted to the audio codec and the output as sound from the speakers. The SPI interface between the microcontroller and EEPROM uses CSI10 of channel 2 of serial array unit 0 (SAU0) to continuously perform CSI transmission or reception by using the DMA controller. Whether recording or playback is in progress is indicated by an LED (operation-in-progress indicator) to which a signal is output from P72.

The following are used to execute the sample program.

I2C bus interface for setting the registers in the audio codec

•Serial interface IIC0

I2S bus interface used for transferring audio data between the microcontroller and audio codec

- •Using the output from TO00 of the timer array unit (TAU) as LRCLK
- •Using CSI00 of channel 0 of serial array unit 0 (SAU0) for transmitting and receiving data

 ${\tt SPI}$ interface used between the microcontroller and ${\tt EEPROMs}$

- $\bullet \textsc{Using P74}$ to P77 as chip select pins because four EEPROMs are used
- •Using CSI10 of channel 2 of serial array unit 0 (SAU0)
- •Using DMA0 and DMA1 of the DMA controller for performing successive transmission or reception

Wait timer

•Using the interval timer mode of channel 1 of the timer array unit (TAU) to insert waits of at least 5 ms in the program

Record and playback keys

•Key interrupt input pins KRO and KR1

Operation-in-progress indicator (LED)

•Outputting a signal from P72 to light the LED used as an operation-in-progress indicator

<Main initial settings for the peripheral hardware to be used>

- •Disabling interrupts
- •Setting the CPU or peripheral hardware clock frequency to the X1 oscillation clock (when used at 20 MHz)
- ullet Setting ports
- ullet Setting the audio codec
- ·Supplying a clock to the audio codec
- •Setting a timer for inserting waits in the program
- •Outputting a reset signal to the audio codec
- •Setting the I2C interface used for setting registers
- •Turning on the system by setting the registers in the audio codec
- •Setting the I2S bus interface used for the audio data of the audio codec
- \bullet Using T000 output (16 kHz) for setting the output of LRCLK

```
•Setting CSI00
•Setting the SPI interface of EEPROM
•Setting CSI10 for transmitting and receiving data
•Setting DMA0 for successive reception and DMA1 for successive transmission
•Erasing all EEPROMs (all OFFH)
•Starting key data retrieval
•Enabling interrupts
<Main processing>
•Key processing
.Setting start of recording
•Setting start of playback
•Setting termination of recording
·Setting termination of playback
<Main INTTM00 interrupt servicing (using INTTM00 for synchronizing LRCLK, BCLK, SDOUT, and</pre>
SDIN)>
•Starting the I2S bus interface
<Main INTCSI00 interrupt servicing (using INTCSI00 for CSI transmission or reception)>
•Transmitting or receiving data via the I2S bus interface
•Saving the received data
•Starting writing to EEPROM
·Starting reading from EEPROM
<Main INTCSI10 interrupt servicing (using INTCSI10 for CSI transmission or reception)>
•Transmitting instruction bytes to EEPROM
•Transmitting 24-bit addresses to EEPROM
•Starting receiving data from EEPROM by using DMAO or DMA1
•Starting transmitting data to EEPROM by using DMA1
<Main INTDMA0 interrupt servicing (using INTDMA0 for CSI reception)>
•Starting reading from EEPROM
·Starting the I2S bus interface
•Selecting EEPROM
•Stopping the I2S bus interface
<Main INTDMA1 interrupt servicing (using INTDMA1 for CSI transmission)>
•Selecting EEPROM
•Stopping the I2S bus interface
*************************
Preprocessing directives (#pragma directives)
_____*/
#pragma SFR
                                            /* Enable description of special function
                                               register (SFR) names */
#pragma DI
                                            /\,{}^\star Enable description of DI instructions ^\star/
                                            /* Enable description of EI instructions */
#pragma EI
                                            /* Enable description of NOP instructions */
#pragma NOP
#pragma interrupt INTTM00 fn_inttm00
                                     RB1
                                            /* Interrupt function declaration:INTTM00 */
#pragma interrupt INTCSI00 fn_intcsi00
                                     RB1
                                            /* Interrupt function declaration:INTCSI00 */
                                     RB2
                                            /* Interrupt function declaration:INTCSI10 */
#pragma interrupt INTCSI10 fn_intcsi10
                                     RB1
#pragma interrupt INTDMA0 fn_intdma0
                                            /* Interrupt function declaration:INTDMA0 */
#pragma interrupt INTDMA1 fn_intdma1
                                     RB1
                                            /* Interrupt function declaration:INTDMA1 */
```

```
Function prototype declaration
-----*/
void fn_I2cWrite(unsigned char *addr, unsigned char size);
/*-----
    Port definitions
_____*/
/* Audio codec reset */
        #define P_RESETB
#define
                                 /* Reset output */
^{\prime \star} I2C interface used for setting the registers in the audio codec ^{\star \prime}
             P6.0
                            /* SCL0 latch */
#define P SCL
                  PM6.0
P6.1
                                 /* SCL0 output */
/* SDA0 latch */
#define PM_SCL
#define P_SDA
                     PM6.1
                                  /* SDA0 I/O */
#define PM_SDA
/* Audio codec I2S bus interface */
#define P_LRCLK P0.1
                                 /* LRCLK */
                                 /* LRCLK output */
#define PM_LRCLK
                     PM0.1
                  P1.0
PM1.0
PM1.1
                                 /* SCK00 */
#define P_SCK00
                               /* SCK00 output */
/* SI00 input */
#define PM SCK00
                                 /* SI00 input */
#define PM_SI00
#define P_SO00
                     P1.2
                                  /* SO00 */
                     PM1.2
                                  /* S000 output */
#define PM_SO00
/* Key inputs (used: 2) */
#define P_KEY
                     P7
                                  /* KR (P70 and P71 used) */
                   P7
PM7
P7.0
PM7.0
#define PM_KEY
                                  /* KR input (PM70 and PM71 used) */
#define P_PLAYKY
                                  /* Playback key */
#define PM_PLAYKY
                                  /* Playback key input */
#define P_RECKY
                     P7.1
                                  /* Record key */
#define PM_RECKY
                      PM7.1
                                  /* Record key input */
/* Output to the LED used as an operation-in-progress indicator (used: 1) */
             P7.2
#define P LED
                                 /* Operation-in-progress indicator (active low) */
                                  /* Output to the operation-in-progress indicator
#define PM_LED
                     PM7.2
                                    (LED) */
                                   /* LED lit during operation and turned off when key
                                     input is possible. */
/* EEPROM SPI interfaces (used: 4) */
             P7
PM7
#define P_CS
                                  /* Chip select CS (P73 to P77 used) */
                                  /* Chip select CS output (PM73 to PM77 used) */
#define PM_CS
                  PM7.7
PM7.7
P7.6
PM7.6
P7.5
#define P_CS3
                                  /* CS3 */
#define PM CS3
                                  /* CS3 output */
#define P_CS2
                                  /* CS2 */
                                 /* CS2 output */
#define PM_CS2
                                  /* CS1 */
#define P_CS1
                    PM7.5
                                  /* CS1 output */
#define PM_CS1
                                  /* CS0 */
#define P_CS0
#define PM_CS0
                      PM7.4
                                  /* CS0 output */
                    P0.4
                                  /* SCK10 */
#define P_SCK10
                                  /* SCK10 output */
                     PM0.4
#define PM_SCK10
#define PM SI10
                     PM0.3
                                  /* SI10 input */
                                  /* SO10 */
#define P_SO10
                     P0.2
                                  /* SO10 output */
#define PM SO10
                     PM0.2
/*-----
    RAM definitions
```

_____*/

```
/* Overall operation */
unsigned char ucPlayMode;
                                     /* Operation status */
#define CRESET
                                     /* Reset */
                                     /* Stopped */
#define CSTOP
                       1
#define CREC
                      2
                                     /* Recording under execution */
#define CREC_END
                      3
4
                                     /* Recording finished */
#define CPLAY_START
                                     /* Preparing for playback started */
#define CPLAY_SET
                                     /*
                       5
                                         Preparing for playback */
#define CPLAY
                        6
                                     /*
                                          Playback under execution */
#define CPLAY_END
                       7
                                         Playback finished */
/* Definitions related to the operation of the I2S bus interface used between the
 microcontroller and audio codec */
unsigned char *ucI2sAddress;
                                     /* Address to which data is transmitted or received
                                        via I2S */
                                     /* Counter for transmitting and receiving 1-byte I2S
unsigned char ucI2sByteCouter;
                                        data */
boolean bI2sMemoryPage;
                                     /* Page being transmitted or received via the I2S
                                        bus: Page 1 (0)/page 2 (1) */
/* Definitions related to the operation of the SPI interface used between the microcontroller
 and EEPROMs */
unsigned short ushEepromAddress;
                                    /* EEPROM read or write address
                                        (ushEepromAddress*0x100) */
                                     /* Chip select CS setting value of the EEPROMs */
unsigned char ucEepromCs;
unsigned char ucEepromSeq;
                                     /* EEPROM transfer sequence */
#define CEEPSEQ_RESET 0
                                     /* Reset status */
                        1
#define CEEPSEO WREN
                                     /* Write enable signal transmitted */
#define CEEPSEQ_INST
                      2
                                     /* Instruction bytes transmitted */
                                    /* Higher 8 bits of 24-bit addresses transmitted */
#define CEEPSEQ_ADDR
                                    /* Middle 8 bits of 24-bit addresses transmitted */
#define CEEPSEO ADDR
                      4
#define CEEPSEQ_ADDRL
                                    /* Lower 8 bits of 24-bit addresses transmitted */
                                    /* Data transmitted and received by using DMA */
#define CEEPSEQ_DATA
/* Memory area of internal RAM */
unsigned char ucMemoryPage1[3*2*42];
                                    /* Page 1 (42 LRCLK clocks) */
unsigned char ucMemoryPage2[3*2*42];
                                     /* Page 2 (42 LRCLK clocks) */
/*-----
    ROM definitions
_____*/
```

These are the ROM tables that hold the values to be used for setting the registers in the audio codec used to transition the status of the ML2612 audio codec made by OKI Semiconductor.

These tables are used in the write processing performed via the I2C bus interface.

```
[Example]
                            , 0
                 ,00000111B
           OE5H
                                  }
      {
                                             ;Trimming 1
                            , 0
           0E9H
                 ,0000001B,
                                  }
                                             Trimming 2
     , {
                             +---- Wait information (Note)
                        +----- Write data
              +----- Write address
```

Note: Indicates the wait time after data is written.

A wait of (5 ms * (described value)) is inserted.

No wait is inserted if the value is 0.

^{*} The setting data shown in this sample program is simply an example of the settings that can be used to execute recording or playback. See the data sheet and other materials for details.

```
static const unsigned char aSystemOnTbl[][3]=
    Power off → System on
-----*/
     Trimming
     Digital Block ON
    -----*/
         0x001 ,0x003 ,0 }
0x003 ,0x001 ,0 }
0x005 ,0x000 ,0 }
0x007 ,0x000 ,0 }
0x009 ,0x002 ,0 }
0x00B ,0x002 ,0 }
                                          /* Sampling Rate */
                                           /* PLLNL */
/* PLLNH */
/* PLLMH */
/* PLLMH */
/* PLLMH */
                               , 0 } , 0 , 0 , 0 , 0 , 0 , 0 }
    , {
    , {
    , {
    , {
    , {
                               , 0 }
, 0 }
         0x00F ,0b00000001
                                             /* CLK Input/Output control */
    , {
                                             /* Clock Enable */
         0x00D ,0b00000001
    , {
         0x00D ,0b00000101 ,150/5 }
                                             /* Clock Enable */
    , {
};
static const unsigned char aRecordOnTbl[][3]=
    System on → Recording start
     Record Function Setting
    ----*/
    /* Volume settings */
                                            /* Mic Input Volume */
                               , 0
        0x033 ,0x03F
                                       }
                                            /* Mic Boost Volume */
                              , 0
          0x039 ,0b00000000
0x049 ,0b00000001
                                       }
    , {
                              , 0
    , {
                                              /* AMP Volume Control Function Enable */
          0x04B ,0b00000000
                                             /* Amplifier Volume Fader Control */
     , {
                                , 0
         0x069 ,0b00011010
                                , 0
                                             /* Volume Control Func Enable */
     , {
                               , 0
                                             /* Mixer & Volume Control */
         0x06B ,0b00000010
    , {
         0x06D ,0x0FF
                               , 0
                                             /* Playback Digital Volume Control */
    , {
    /* HPF1 ON */
       0x067
                  ,0b00000001
                              , 0
                                      }
                                            /* Filter Func Enable */
    /* HPF2 ON */
    ,{ 0x067 ,0b00000000
                                             /* Filter Func Enable */
//
                                , 0
                                       }
//
          0x07F ,0b00000000
                                , 0
                                              /* HPF2 CutOff */
    /* Programmable Equalizer settings */
//
    ,{ 0x06D ,0b11111111 ,0
                                       }
                                            /* Record Digital Volume */
         0 \times 067
                 ,0b00000001 ,0
                                             /* Filter Func Enable */
//
                                       }
                                             /* Filter Func Enable */
//
         0x067 ,0b00000000 ,0
                 ,0b00000000
                              , 0
                                             /* HPF2 CutOff */
//
          0 \times 07 F
    , {
                              , 0
           0 \times 067
                                              /* Filter Func Enable */
//
                  ,0b00000000
    , {
          0 \times 075
                                              /* EQ gain1 Band0 */
//
                  ,0b00000000
                               , 0
    , {
                                              /* EQ gain1 Band1 */
         0 \times 077
//
                  ,0b00000000
                                , 0
    , {
         0x079 ,0b00000000
                                             /* EQ gain1 Band2 */
                                , 0
11
                                , 0
                                             /* EQ gain1 Band3 */
//
         0x07B ,0b00000000
    , {
//
         0x07D ,0b00000000
                               , 0
                                             /* EQ gain1 Band4 */
    , {
                                             /* EQ Band0 Coef0H */
//
         0x083 ,0b00000000
                              , 0
    , {
          0x085 ,0b00000000
                              , 0
                                             /* EQ Band0 Coef1L */
//
    , {
                 ,0b00000000
                              , 0
                                             /* EQ Band0 Coef1H */
          0x087
//
    , {
                  ,0b00000000
                               , 0
//
          0x089
                                              /* EQ Band1 Coef0L */
    , {
                                , 0
//
          0x08B
                  ,0b00000000
                                              /* EQ Band1 Coef0H */
    , {
//
    , {
           0x08D ,0b00000000
                                , 0
                                              /* EQ Band1 Coef1L */
```

```
/* EQ Band1 Coef1H */
//
             0x08F ,0b00000000
                                       , 0
          0x091 ,0b00000000 ,0
0x093 ,0b00000000 ,0
                                                         /* EQ Band2 Coef0L */
11
                                                        /* EQ Band2 Coef0H */
11
     , {
                                                 }
//
           0x095 ,0b00000000 ,0
                                                        /* EQ Band2 Coef1L */
                                                 }
                                                       /* EQ Band2 Coef1H */
           0x097 ,0b00000000 ,0
//
                                                       /* EQ Band3 Coef0L */
           0x099 ,0b00000000 ,0
//
                                               }
           0x09B ,0b00000000 ,0
0x09D ,0b00000000 ,0
0x09F ,0b0000000 ,0
0x0Al ,0b0000000 ,0
                                                       /* EQ Band3 Coef0H */
//
                                               }
            0x09D ,0b00000000 ,0
0x09F ,0b00000000 ,0
0x0Al ,0b00000000 ,0
0x0A3 ,0b00000000 ,0
                                                       /* EQ Band3 Coef1L */
//
                                                 }
     , {
                                                       /* EQ Band3 Coef1H */
/* EQ Band4 Coef0L */
//
     , {
                                                 }
11
     , {
            0x0A5 ,0b00000000 ,0
0x0A7 ,0b00000000 ,0
                                                        /* EQ Band4 Coef0H */
//
//
                                                        /* EQ Band4 Coef1L */
     , {
                                                         /* EQ Band4 Coef1H */
//
     , {
     /* ALC settings */
     ,{ 0x069 ,0b00000010 ,0
                                                         /* Volume Control Func Enable */
          0x0B1
                                                         /* ALC Mode */
//
                      ,0b00000000 ,0
                                                 }
     , {
                                                       /* ALC Attack Time */
/* ALC Decay Time */
/* ALC Hold Time */
/* ALC Target Level */
/* ALC Max/Min Gain */
/* Noise Gate Threshold */
           0x0B3 ,0b00000000 ,0
0x0B5 ,0b00000000 ,0
0x0B7 ,0b00000000 ,0
                                     , 0
//
                                                 }
     , {
//
                                                 }
     , {
         0x0B7 ,0b00000000 ,0 }
0x0B9 ,0b00000000 ,0 }
0x0BB ,0b00000000 ,0 }
0x0BD ,0b00000000 ,0 }
0x0BF ,0b00000000 ,0 }
//
     , {
//
     , {
//
     , {
//
     , {
                                                        /* ALC Zero Cross Time OutPlayback Limiter
//
     , {
                                                           Control Register */
            0x02F ,0b00000000 ,0 }
                                                       /* ZC-CMP Power Management
11
     , {
      Record Analog Block ON
      ----*/
      /* Turning on the VMID generator */
                                                      /* Reference Power Management */
      ,{ 0x021 ,0b00000001 ,5/5 }
            0x021 ,0b00000010 ,5/5 }
                                                        /* Reference Power Management */
      , {
      /* Turning on the microphone bias circuit */
      ,{ 0x021 ,0b00000110 ,0 }
                                                         /* Reference Power Management */
      /* Minimum input setting (differential input) */
      ,{    0x05B    ,0b00000010     ,0    }    /* Mic IF Control */
      /* Power Management Register */
      ,{ 0x023 ,0b00001000 ,0 }
,{ 0x023 ,0b00001010 ,0 }
                                                       /* Input Power Management */
                                                        /* Input Power Management */
      /*-----
      Record start
          0x069 ,0b00010000 ,0 } /* Volume Control Func Enable */
0x069 ,0b00010000 ,0 } /* Volume Control Func Enable */
0x013 ,0b00000001 ,5/5 } /* Record/Playback Run */
0x06B ,0b00110010 ,0 } /* Mixer & Volume Control */
0x069 ,0b00011000 ,0 } /* Volume Control Func Enable */
      , {
      , {
      , {
                                                        /* Volume Control Func Enable */
            0x069 ,0b00001000 ,0
};
static const unsigned char aRecordOffTbl[][3]=
     Recording → System on
     /*----
      Record stop
      ----*/
         0x06B ,0b00000010 ,0 } /* Mixer & Volume Control */
0x069 ,0b00011000 ,0 } /* Volume Control Func Enable */
0x069 ,0b00011000 ,200/5 } /* Volume Control Func Enable */
0x013 ,0b00000000 ,10/5 } /* Record/Playback Run */
      , {
      , {
      , {
```

```
Record Analog Block OFF
     _____*/
         0x023 ,0b00001000 ,0 } /* Input Power Management */
0x023 ,0b00000000 ,0 } /* Input Power Management */
0x021 ,0b00000001 ,0 } /* Reference Power Management */
0x021 ,0b00000000 ,0 } /* Reference Power Management */
     , {
};
static const unsigned char aPlayOnTbl[][3]=
    System on → Playback start
_____*/
    /*______
     Playback Function Setting
         /* Volume settings */
                                               /* AMP Volume Control Function Enable */
     , {
     , {
     , {
                                               /* Playback Digital Volume Control */
     /* Programmable Equalizer settings */
        0x067 ,0b00000000 ,0
0x075 ,0b0000000 ,0
0x077 ,0b00000000 ,0
                                               /* Filter Func Enable */
//
     , {
                                                /* EQ gain1 Band0 */
//
//
                                 , 0
                                               /* EQ gain1 Band1 */
          0x079 ,0b00000000 ,0
//
                                               /* EQ gain1 Band2 */
    , {
         0x07b ,0b00000000 ,0 }
                                               /* EQ gain1 Band3 */
//
     , {
//
         0x07d ,0b00000000 ,0
                                               /* EQ gainl Band4 */
//
                                               /* EQ Band0 Coef0H */
                               , 0
          0x083 ,0b00000000
                                       }
                  ,0b00000000
                               , 0
                                               /* EQ Band0 Coef1L */
//
           0 \times 085
                                       }
     , {
                  ,0b00000000
                               , 0
                                               /* EQ Band0 Coef1H */
//
           0 \times 087
     , {
                                , 0
                  ,0b00000000
//
     , {
           0x089
                                                /* EQ Band1 Coef0L */
          0x08B ,0b00000000
                                               /* EQ Band1 Coef0H */
//
    , {
                                 , 0
          0x08D ,0b00000000
                                 , 0
                                               /* EQ Band1 Coef1L */
//
                                 , 0
                                               /* EQ Bandl CoeflH */
//
          0x08F ,0b0000000
    , {
          0x091 ,0b00000000
                               , 0
                                               /* EQ Band2 Coef0L */
11
    , {
                                               /* EQ Band2 Coef0H */
//
          0x093 ,0b00000000
                               , 0
                                              /* EQ Band2 Coef1L */
                               , 0
//
         0x095 ,0b00000000
                                              /* EQ Band2 Coef1H */
         0x097
                  ,0b00000000
                               , 0
11
    , {
         0x099 ,0b00000000
0x09B ,0b00000000
0x09D ,0b00000000
                                              /* EQ Band3 Coef0L */
                               , 0
//
    , {
                               , 0
//
                                               /* EQ Band3 Coef0H */
    , {
                                               /* EQ Band3 Coef1L */
                                 , 0
//
                                             /* EQ Band3 Coef1L */
/* EQ Band3 Coef1H */
/* EQ Band4 Coef0L */
/* EQ Band4 Coef0H */
/* EQ Band4 Coef1L */
    , {
         0x09F ,0b00000000
//
                                 , 0
         0x0A1 ,0b00000000
                                 , 0
//
    , {
          0x0A3 ,0b00000000 ,0
//
    , {
                               , 0
//
          0x0A5 ,0b00000000
    , {
                                               /* EQ Band4 Coef1H */
//
           0x0A7 ,0b00000000
                               , 0
     /* Playback Limiter settings */
        0x069 ,0b00011001 ,0
                                               /* Volume Control Func Enable */
     , {
                               , 0
                  ,0b00000000
                                                /* Attack Time */
//
           0 \times 0 C1
    , {
                               , 0
         0x0C3 ,0b00000000
                                               /* Decay Time */
//
    , {
                                               /* Target Level */
//
          0x0C5 ,0b00000000
                                 , 0
     , {
                               , 0
                                               /* Max/Min Gain */
//
          0x0C7 ,0b00000000
                                       }
     , {
     /*_____
     Playback Analog Block ON
     /* Turning on the VMID generator */
     ,{ 0x021 ,0b00000001 ,5/5 ,{ 0x021 ,0b00000010 ,5/5
                                             /* Reference Power Management */
/* Reference Power Management */
                                         }
```

```
/* Mute settings */
                                                          /* AMP Volume Control Function Enable */
/* AMP Volume Control Function Enable */
               0x049 ,0b00000000 ,0 }
0x049 ,0b00000010 ,0 }
      ,{ 0x049 ,0b00000000
      , {
      /* DAC settings */
      ,{ 0x025 ,0b00000010
                                        , 0
                                                            /* DAC Power */
              0x055
                                        , 0
                       ,0b00000010
                                                            /* Speaker AMP Output Control */
      , {
      /* Turning on the speaker amplifier */
          0x027 ,0x013 ,0 }
0x027 ,0x015 ,0 }
0x027 ,0x01F ,0 }
0x03B ,0x033 ,0 }
0x04B ,0b00000000 ,0 }
0x049 ,0b00000011 ,0 }
                                                           /* Power Management */
                                                           /* Reference Power Management */
      , {
                                                           /* Speaker AMP Volume */
      , {
                                                           /* Amplifier Volume Fader Control */
      , {
                                                           /* AMP Volume Control Function Enable */
             0x049 ,0b00000001 ,500/5 }
      , {
                                                            /* AMP Volume Control Function Enable */
      Playback start
            0x069 ,0b00011101 ,0 } /* Volume Control Func Enable */
0x069 ,0b00010001 ,0 } /* Volume Control Func Enable */
0x013 ,0b0000010 ,5/5 } /* Record/Playback Run */
      , {
      , {
            0x06B ,0b00110010 ,0 } /* Mixer & Volume Control */
0x069 ,0b00011001 ,0 } /* Volume Control Func Enable */
0x069 ,0b00001001 ,0 } /* Volume Control Func Enable */
      , {
};
static const unsigned char aPlayOffTbl[][3]=
      Playback → System on
          _____*/
      /*______
      Playback Stop
           0x06B ,0b00000010 ,0 } /* Mixer & Volume Control */
0x069 ,0b00001000 ,0 } /* Volume Control Func Enable */
0x069 ,0b00011000 ,100/5 } /* Volume Control Func Enable */
      , {
                                                           /* Record/Playback Run */
            0x013 ,0b00000000
                                         , 0 }
      , {
       Playback Analog Block OFF
      _____*/
          Turning off the speaker amplifier BTL mode */
           0x04B ,0b00000000 ,0 } /* Amplifier Volume Fader Control */
0x049 ,0b00000001 ,0 } /* AMP Volume Control Function Enable */
0x049 ,0b00000011 ,100/5 } /* AMP Volume Control Function Enable */
0x027 ,0x013 ,0 } /* AMP Power Management */
0x027 ,0x000 ,0 } /* AMP Power Management */
0x025 ,0b00000000 ,0 } /* DAC Power Management */
      , {
      , {
      , {
      , {
      , {
            0x021 ,0b00000000 ,0
                                                           /* Reference Power Management */
      , {
};
/***********************
      Initial settings of the peripheral hardware to be used
******************************
void hdwinit(void)
{
      Disabling interrupts
```

```
_____*/
  DI();
  Clock frequency settings
______
  Setting so that operations can be performed using the 20 MHz \rm X1 oscillator
                        /* Clock operation mode */
  CMC = 0b01000001;
      ||||||+-----AMPH: 10 MHz<fMX\u20 MHz */
       | | | | +++----- <000> */
       | | +----- <0> */
       ++----- EXCLK/OSCSEL: X1 oscillation mode (20 MHz) */
  CSC = 0b01000000;
                        /* Clock operation status control */
      ||||||+----- HIOSTOP: Internal high-speed oscillator operated */
       |+----- XTSTOP: XT1 oscillator stopped */
       +----- MSTOP: X1 oscillator operated */
  OSMC = 0b00000001;
                        /* Operation speed mode */
      OSTS = 0b00000101;
                        /* Oscillation stabilization time: 2^15/fX */
                        /* Waiting for clock oscillation to stabilize */
  while(!OSTC.2) {}
  CKC = 0b00011000;
                        /* Clock selection */
      |||||+++---- hardware clock
       /*
       |||+---- MCM0: High-speed system clock (fMX) */
       /*
       +----- <R> */
/*_____
  Port 0 settings
 -----*/
  P0 = 0b00011010;
                        /* Output latches of P00, P02, P05, and P06 set to
                          low level and those of PO1, PO3, and PO4 set to
                          high level */
  PM0 = 0b10000000;
                         /* P00 to P06 set as output ports */
                         /* P01: Output LRCLK to the audio codec */
                         /* P02: Output S010 to the EEPROM */
                         /* P03: Input SI10 from the EEPROM */
                         /\! * P04: Output SCK10 to the EEPROM */
                         /* P00, P05, and P06: Unused */
  Port 1 settings
_____*/
  P1 = 0b00000000;
                        /* Output latches of P10 to P17 set to low level */
  PM1 = 0b00000000;
                         /* P10 to P17 set as output ports */
                         /* P10: Output SCK00 to the audio codec */
                         /* P11: Input SI00 from the audio codec */
                         /\,{}^\star P12: Output S000 to the audio codec ^\star/
                         /* P13 to P17: Unused */
/*----
  Port 2 settings
-----*/
  P2 = 0b0000000;
                        /* Output latches of P20 to P27 set to low level */
  PM2 = 0b00000000;
                         /* P20 to P27 set as output ports */
                         /* P20 to P27: Unused */
```

```
/*-----
  Port 3 settings
  P3 = 0b00000000;
                            /* Output latches of P30 and P31 set to low level */
                            /* P30 and P31 set as output ports */
   PM3 = 0b111111100;
                             /* P30 and P31: Unused */
   Port 4 settings
-----*/
  P4 = 0b00000000;
                            /* Output latches of P40 to P47 set to low level */
   PM4 = 0b00000000;
                            /* P40 to P47 set as output ports */
                            /* P40 to P47: Unused */
/*_____
  Port 5 settings
  P5 = 0b00000000i
                            /* Output latches of P50 to P57 set to low level */
   PM5 = 0b00000000;
                            /* P50 to P57 set as output ports */
                            /* P50 to P57: Unused */
/*-----
  Port 6 settings
  -----*/
  P6 = 0b00000000;
                             /* Output latches of P60 to P67 set to low level */
   PM6 = 0b00000000;
                             /* P60 to P67 set as output ports */
                             /* P60: Output SCLO for setting the registers in the
                                   audio codec */
                             /* P61: Input and output SDAO for setting the
                                  registers in the audio codec */
                             /* P62 to P67: Unused */
/*-----
  Port 7 settings
  P7 = 0b00000000;
                             /* Output latches of P70 to P77 set to low level */
   PM7 = 0b00000011;
                            /* P70 and P71 set as input ports and P72 to P77 set
                               as output ports */
                             /* P70: Playback key input */
                             /* P71: Record key input */
                             /* P72: Output a signal to the operation-in-progress
                                  indicator (LED) */
                             /* P73: Output a reset signal to the audio codec */
                             /* P74: Output CS0 to the EEPROM */
                             /* P75: Output CS1 to the EEPROM */
                             /* P76: Output CS2 to the EEPROM */
                             /* P77: Output CS3 to the EEPROM */
/*-----
  P8 = 0b0000000;
                            /* Output latches of P80 to P87 set to low level */
   PM8 = 0b00000000;
                            /* P80 to P87 set as output ports */
                             /* P80 to P87: Unused */
/*_____
   Port 11 settings
-----*/
  P11 = 0b00000000;
                            /* Output latches of P110 and P111 set to low level */
                            /* P110 and P111 set as output ports */
   PM11 = 0b111111100;
                            /* P110 and P111: Unused */
/*______
   Port 12 settings
._____*/
  P12 = 0b00000000;
                            /* Output latch of P120 set to low level */
   PM12 = 0b111111110;
                            /* P120 set as an output port */
```

```
/* P120: Unused */
  Port 13 settings
_____*/
   P13 = 0b00000000;
                              /* Output latches of P130 and P131 set to low level */
                              /* P131 set as an output port */
   PM13 = 0b111111100;
                              /* P130 and P131: Unused */
/*_____
   P14 = 0b00000000;
                              /* Output latches of P140 to P145 set to low level */
   PM14 = 0b11000000;
                              /* P140 to P145 set as output ports */
                              /* P140 to P145: Unused */
   Port 15 settings
   P15 = 0b00000000;
                             /* Output latches of P150 to P157 set to low level */
                            /* P150 to P157 set as output ports */
   PM15 = 0b00000000;
                             /* P150 to P157: Unused */
   Settings of the registers in the audio codec
   The following operations are performed.
    ·Supplying a clock to the audio codec
    •Setting a timer for inserting waits in the program
    •Outputting a reset signal to the audio codec
    •Using the I2C interface for setting the registers in the audio codec
-----*/
   /* Timer array unit timer clock selection */
                  /* Input clock supplied to the timer array unit */
/* Operation clock selection */
   TAU0EN = 1;
   TPSOL = 0b10010000;
   ++++----- CK01: fCLK/2^9 */
   /*-----
   Clock supply to the audio codec
   ______
   TO02 output (10 MHz)
   TMR02 = 0b0000000000000000;
                             /* Operation mode setting */
          |||||||||++++----- MD023 to MD020: Interval timer mode */
          /*
          /*
   /*
          |||||+++-----STS022-020: Only software trigger start enabled */
   /*
          ||||+----- MASTER02: Standalone operation */
   /*
          |||+----- CSS02: Macro clock MCK specified by using
   /*
                                    the CKS02 bit */
          /*
          |++-----<Fixed to 00> */
          +---- CKS02: Operation clock CK00 set by using
                                     the PRS register */
   TDR02 = 0;
                              /* Interval setting: 10 MHz output (20 MHz) */
                              /* T002 output */
   TOE0L.2 = 1;
   TSOL.2 = 1;
                              /* Operation starts (trigger bit) */
   /*_____
   Waits used in the program
   _____
   Using TM01
   _____*/
```

```
/* Operation mode setting */
TMR01 = 0b100000000000000;
/*
       ||||||||||+++----- MD013 to MD010: Interval timer mode */
/*
       ||||||||++------<Fixed to 00> */
       /*
/*
       |||||+++----- STS012 to STS010: Only software trigger start
/*
                                           enabled */
       ||||+----- MASTER01: Standalone operation */
       |||+----- CSS01: Macro clock MCK specified by using
/*
                                   the CKS01 bit */
/*
       |++-----<Fixed to 00> */
/*
       +----- CKS01: Operation clock CK01 set by using
/*
                                   the PRS register*/
/* Waiting for power supply to stabilize */
TDR01 = 195*210/5-1; /* Interval set (210 ms) */
TSOL.1 = 1;
                            /* Timer operation starts */
TMIF01 = 0;
                            /* INTTM00 interrupt request cleared */
while(!TMIF01) {}
/* Reset */
P RESETB = 0;
/* Waiting about 5 us */
                            /* Interval set */
TDR01 = 0;
TSOL.1 = 1;
                            /* Timer operation starts */
TMIF01 = 0;
                            /* INTTM00 interrupt request cleared */
while(!TMIF01) {}
P RESETB = 1;
/* Waiting for power supply to stabilize */
TSOL.1 = 1;
                           /* Timer operation starts */
                           /* INTTM00 interrupt request cleared */
TMIF01 = 0;
while(TMIF01) {}
TT0L.1 = 1;
                           /* Timer operation stopped */
Transmission of the values set to
the registers in the audio codec
_____
Using IIC0
----*/
IICOEN = 1;
                           /* Input clock of serial interface IICO supplied */
IICE0 = 0;
                           /* Operation stopped */
P\_SCL = 0;
                            /* SCL0 latch */
PM\_SCL = 0;
                            /* SCL0 pin */
                            /* SDA0 pin */
P SDA = 0;
                            /* SDA0 pin */
PM SDA = 0;
IICX0 = 0b00000000;
                           /* Transfer clock selection */
     ||||||+---- CLX0 */
/*
       ++++++*
IICCL0 = 0b00001110;
        |||||++---- CL01-CL00(+CLX0): fCLK/96(first mode) */
        |||||+----- DFC0: Turn on the digital filter */
/*
        ||\cdot||+----- SMCO: Specify operation in the first mode */
/*
/*
        |||+----- DADO: <R>Detect the SDAO pin level */
/*
        ++----- <00> */
```

```
IICF0 = 0b00000011;
                         /* Communication reservation disable */
     |||||+---- STCEN: Enable initial start */
/*
      ||++++-----<Fixed to 0000> */
/*
       \mid+----- IICBSY: <R>IIC bus status flag */
      +----- STCF: <R>STT0 clear flag */
IICC0 = 0b00001000;
                          /* Initial settings during master operation */
       ||||||+----- STT0: Start condition trigger */
/*
       |||||+----- ACKE0: Control acknowledgment */
/*
       ||||+----- WTIMO: Control wait insertion and interrupt
/*
                                request issuance: 9 clocks */
/*
       |||+----- SPIE0: Disable issuing of interrupt requests by
/*
                                detecting a stop condition */
      /*
          ----- WRELO: Do not cancel waiting */
/*
       |+---- LRELO: Save the communication: Normal operation */
       +----- IICE0: Enable operation of I2C */
/*
SPT0 = 1;
                          /* Stop condition set */
/* Settings of the registers in the audio codec: Setting to turn on the system */
fn_I2cWrite(&aSystemOnTbl[0][0], sizeof(aSystemOnTbl));
Settings of the I2S bus interface used for the audio data of the
audio codec
The following operations are performed.
•Setting the TO00 output and INTTM00 interrupt for outputting LRCLK
•Setting CSI00 for transmitting and receiving data
LRCLK output settings
_____
TO00 output (16 kHz)
TMR00 = 0b00000000000000000; /* Operation mode setting */
      |||||||||++++----- MD003 to MD000: Interval timer mode */
       /*
      /*
       enabled */
       ||||+---- MASTER00: Standalone operation */
/*
       |||+----- CSS00: Macro clock MCK specified by using
/*
/*
                                the CKS00 bit */
         ------<Fixed to 00> */
/*
/*
       +----- CKS00: Operating clock CK00 set by using
/*
                                the PRS register */
TDR00 = 625-1;
                          /* Interval set: 16 kHz output (32 kHz) */
TMPR100 = 0;
                          /* Priority order set to the highest level */
TMPR000 = 0;
/*_____
CSI00 settings
----*/
SAU0EN = 1;
                         /* Input clock of the serial array unit supplied */
NOP();
                          /* Waiting */
NOP();
NOP();
NOP();
```

```
SPS0L = 0b00000000;
                          /* Operation clock selection: fCLK */
   ++++----- PRS013 to PRS010: Unused */
                           /* Bits 15 to 7: Transfer clock set (833 kHz) */
   SDR00 = (12-1) << 9;
         SMR00 = 0b000000000100001;
         /*
         /*
   /*
         ||||||||+----- SIS000: Unused */
         ||||||+-----<Fixed to 0> */
   /*
   /*
         ||||||+----- STS00: Only software trigger enabled
   /*
         (fixed in CSI mode) */
         /*
         |----- CSS00: Transfer clock set to a clock obtained by
   /*
   /*
                                 dividing operation clock MCK as specified y
   /*
                                 by using the CKS00 bit */
         +----- CKS00: Operation clock set to prescaler output
   /*
                                 clock CK00 set by using the PRS register */
   /* Initial data output (at the same time as setting CSI10) */
   /*
        SOE0L.0 = 1;
                           /* Output enabled */
   P_SCK00 = 1;
                           /* SCK00 latch: High level */
   PM SCK00 = 0;
                           /* SCK00 pin output set */
   PM_SI00 = 1;
                           /* SI00 pin input set */
                           /* S000 latch: High level */
   P_S000 = 1;
   PM_SO00 = 0;
                           /* S000 pin output set */
   SSOL.0 = 1;
                           /* CSI00 operation starts (trigger bit) */
   CSIIF00 = 0;
                           /* INTCSI00 interrupt request cleared */
   CSIMK00 = 0;
                           /* INTCSI00 interrupt servicing enabled */
   CSIPR100 = 0;
                           /* Priority order set to next after INTTM00 */
   CSIPR000 = 1;
/*_____
   Setting of the SPI interface for EEPROM
   The following operations are performed.
   •Setting CSI10 for transmitting and receiving data
   •Setting DMA0 for successive reception and DMA1 for successive transmission
-----*/
   P_CS |= 0b011110000;
                          /* All EEPROMs deactivated */
   /*-----
   DMA0 settings (for CSI reception)
   DEN0 = 1;
                           /* Operation of DMA channel 0 enabled */
   DSA0 = 0x044;
                           /* DMA SFR address: SDR02(SIO10)=0FFF44H */
```

```
/* Setting of transfer mode of DMA channel 0 */
DMC0 = 0b00001000;
    transfer complete interrupt */
      /*
          ----- DMA transfer suspension: DMA transfer performed
/*
      according to a DMA start
/*
                                           request (not suspended) */
      ||+----- DS0: Transfer data size: 8 bits */
/*
/*
      \mid+----- DRS0: DMA transfer direction selected: SFR \rightarrow
                              Internal RAM */
        ----- STG0: Software trigger not operated */
/*_____
DMA1 settings
(for CSI transmission and setting dummy data
during CSI reception)
DEN1 = 1;
                        /* Operation of DMA channel 1 enabled */
DSA1 = 0x044;
                         /* DMA SFR address: SDR02(SIO10)=0FFF44H */
                        /* Setting of transfer mode of DMA channel 1 */
DMC1 = 0b01001000;
     transfer complete interrupt */
/*
          ----- DMA transfer suspension: DMA transfer performed
/*
     according to a DMA start
                                           request(not suspended) */
         ----- DS1: Transfer data size: 8 bits */
      |+----- DRS1: DMA transfer direction selected: Internal
/*
                              RAM→ SFR */
        ----- STG1: Software trigger not operated ^{*}/
/*_____
CSI10 settings
_____*/
                        /* Bits 15 to 7: Transfer clock set (2.5 MHz) */
SDR02 = (4-1) << 9;
      0000000000100000; /* Operation mode selected: CSI mode */
SMR02 = 0b000000000100000;
      /*
      /*
      |||||||||+----- SIS020: Unused */
/*
/*
      ||||||+----<Fixed to 0> */
/*
      ||||||+----- STS02: Only software trigger enabled
/*
      (fixed in CSI mode) */
      /*
         /*
                               dividing operation clock MCK as specified
                               by using the CKS00 bit */
      +----- CKS02: Operation clock set to prescaler output
/*
                               clock CK00 set by using the PRS register */
```

```
/* Communication format setting */
   SCR02 = 0b1011000000000111;
           |||||||||+++----- DLS022 to DLS020: 8-bit data length */
   /*
   /*
            ||||||||||+-----<-----<Fixed to 0> */
   /*
            |||||||||++----- SLC021 and SLC020: Unused (fixed to 0) */
   /*
            |||||||+-----<Fixed to 0> */
   /*
            |||||||+---- DIR02: Input and output performed MSB first */
            ||||||++-----PTC021 and PTC020: Unused (fixed to 00) */
   /*
            ||||||+---- EOC02: Unused (fixed to 0) */
            ||||+-----<Fixed to 0> */
    /*
            ||++-----CKP02/DAP02: Phases of data and clock in CSI mode
                                              selected */
                                   [11 selected] */
   /*
    /*
                                   SCK02 ____| |_| |_| |_| |_| |_| |
    /*
   /*
                                                                     * /
   /*
                                          D7 D6 D5 D4 D3 D2 D1 D0
                                                                      * /
   /*
                                                                     * /
                          SI02 input timing___|__|__|__|__|___|___|___
                                                                      */
            ++---- TXE00/RXE00: Only transmission performed */
   /* Initial data output */
   SOO = 0b0000000100000001;
                                /* Setting of initial outputs of the SO and SCK pins */
          /*
          /*
   /*
                                              to 0 */
   SOE0L.2 = 1;
                                 /* Output enabled */
                                 /* SCK00 latch: High level */
   P SCK10 = 1;
   PM\_SCK10 = 0;
                                 /* SCK00 pin output set */
                                 /* SI00 pin input set */
   PM SI10 = 1;
   P_S010 = 1;
                                 /* S000 latch: High level */
                                 /* S000 pin output set */
   PM_SO10 = 0;
   SSOL.2 = 1;
                                 /* CSI10 operation starts (trigger bit) */
    Erasing all EEPROMs (all OFFH)
    ----*/
   /* Enabling writing to an EEPROM */
   P_CS &= 0b00001111;
                                 /* All EEPROMs selected */
   CSIIF10 = 0;
   SIO10 = 0b00000110;
                                /* Transmit data set (Write enable (WREN)
                                  instruction INTCSI10 occurs) */
   while(!CSIIF10)
                     {}
   P_CS |= 0b11110000;
                                 /* Setting completed */
   /* Erasing all EEPROMs */
   P CS &= 0b00001111;
                                 /* All EEPROMs selected */
   CSIIF10 = 0;
   SIO10 = 0b11000111;
                                 /* Transmit data set (All CEs erased INTCSI10
                                  occurs) */
   while(!CSIIF10)
                     {}
   P_CS |= 0b11110000;
                                 /* Setting completed */
   ST0L.2 = 1;
                                 /* CSI10 operation stopped (trigger bit) */
   CSIMK10 = 1;
                                 /* INTCSI10 interrupt servicing disabled */
/*_____
   Starting key retrieval
*-----*/
   KRM = 0b00000011;
                                 /* KR0 and KR1 enabled */
   KRIF = 0;
                                 /* INTKR interrupt request cleared */
   KRMK = 1;
                                 /* INTKR interrupt servicing disabled */
   P_{LED} = 1;
                                 /* Operation-in-progress indicator turned off (key
                                    input possible) */
```

```
/*-----
  Enabling interrupts
-----*/
  EI();
}
Main processing
*******************************
void main(void)
   ucPlayMode = CSTOP;
                    /* Stopped */
   while(1){
        /*----
        Key processing
        if(KRIF){
        /* Key input */
         KRIF = 0; /* INTKR interrupt request cleared */
         if(ucPlayMode==CSTOP){
         /* Stopped */
          if(P_KEY & 0b00000011){
          /* key valid */
            /* Key judged to have been pressed */
            /* Waiting about 10 ms (chattering removed) */
            TDR01 = 195*10/5-1; /* Interval set (10 ms) */
            /* INTTM00 interrupt request cleared */
            TMIF01 = 0;
            while(!TMIF01) {}
            if((P_KEY & 0b00000011)&&!P_RECKY){ /* KR port */
            /* Record key valid */
            /*_____
            Starting recording
            -----*/
              P_LED = 0; /* Operation-in-progress indicator turned on (key input
                       disabled) */
              /* Settings of the registers in the audio codec: Recording set */
              fn_I2cWrite(&aRecordOnTbl[0][0], sizeof(aRecordOnTbl));
              /* Preparation of the I2S bus interface */
              SDR00 = (12-1) << 9;
                                   /* Bits 15 to 7: Transfer clock set
                                     (833 kHz) */
```

```
/* Communication format setting */
    SCR00 = 0b010000000000111;
            ||||||||||+++----- DLS002 to DLS000: 8-bit data length */
            ||||||||||++----- SLC001 and SLC000: Unused (fixed
    /*
    /*
            |||||||+-----<Fixed to 0> */
    /*
            ||||||||+----- DIR00: Input and output
    /*
    /*
                                       performed MSB first */
    /*
            |||||++----- PTC001 and PTC000: Unused (fixed
    /*
            to 00) */
            |||||+----- EOC00: Unused (fixed to 0) */
    /*
    /*
            ||||+-----<Fixed to 0> */
               +----- CKP00/DAP00: Phases of data and
    /*
    /*
                                            clock in CSI mode
    /*
                                            selected */
                         [00 selected] */
    /*
    /*
                                 /*
                         SCK00
    /*
    /*
                         SONO
    /*
                                   D7 D6 D5 D4 D3 D2 D1 D0 */
    /*
                  SI00 input timing_
                                  __|__|__|__
    /*
    /*
                    ----- TXE00/RXE00: Only reception
                                            performed */
TOOL = Ob00000000;
                    /* Initial output set to low level */
TOEOL.0 = 1;
                    /* Operation of TO00 enabled by a count operation
                      (LRCLK) */
                    /* INTTM00 interrupt request cleared */
TMTF00 = 0;
TMMK00 = 0;
                   /* INTTM00 interrupt servicing enabled */
/* Setting writing to an EEPROM */
ucI2sAddress = &ucMemoryPage1[0];
                                /* Address to which the data received
                                  via I2S is saved */
bI2sMemoryPage = 0;
ucEepromCs = 0b11100000; /* EEPROM selected */
ucEepromSeq = CEEPSEQ_RESET; /* EEPROM transfer sec
                         /* EEPROM transfer sequence */
                         /* EEPROM write address
ushEepromAddress = 0;
                          (ushEepromAddress*100H) */
SCR02 = 0b1011000000000111;
                        /* Communication format setting */
        ||||||||||+++---- DLS022 to DLS020: 8-bit data length */
/*
        |||||||||||+-----<Fixed to 0> */
        /*
        |||||||+-----<Fixed to 0> */
        |||||||+---- DIR02: Input and output performed
        MSB first */
        ||||||++----- PTC021 and PTC020: Unused (fixed to
        /*
        |||||+---- EOC02: Unused (fixed to 0) */
        ||||+----<Fixed to 0> */
/*
        ||++-----CKP02/DAP02: Phases of data and clock in
/*
                                       CSI mode selected */
                     [11 selected]
/*
        /*
                     SCK02
        /*
                     SO02
                               D7 D6 D5 D4 D3 D2 D1 D0 */
/*
             SI02 input timing __
                              __|___|___|___|___|___|__
/*
        ++----- TXE00/RXE00: Only transmission
                                        performed */
```

```
/* Starting I2S operation */
  SSOL.0 = 1; /* CSI00 operation starts (trigger bit) */
                 /* LRCLK operation starts */
  P_LRCLK = 0;
  TS0L.0 = 1;
                /* T000 output operation starts (trigger bit) */
                /* Dummy data set (INTCSI00 occurs) */
  SIO00 = 0x0FF;
/* Playback key valid */
/*_____
Starting playback
_____*/
  P_LED = 0; /* Operation-in-progress indicator turned on (key input
             disabled) */
  KRM = 0b00000000;
                             /* KR0 and KR1 disabled */
  ucPlayMode = CPLAY START;
                             /* Preparing for playback started */
  /* Settings of the registers in the audio codec: Playback set */
  fn_I2cWrite(&aPlayOnTbl[0][0], sizeof(aPlayOnTbl));
  /* Preparation of the I2S bus interface */
  SDR00 = (12-1) << 9;
                             /* Bits 15 to 7: Transfer clock set
                               (833 kHz) */
  SCR00 = 0b100000000000111;
                           /* Communication format setting */
          |||||||||||+++----- DLS002 to DLS000: 8-bit data
          /*
          |||||||||++----- SLC001 and SLC000: Unused (fixed to
  /*
          ||||||||+-----<Fixed to 0> */
          |||||||+---- DIR00: Input and output performed
  /*
                              MSB first */
          |||||++----- PTC001 and PTC000: Unused (fixed to
  /*
                                              00) */
          /*
          |||||+---- EOC00: Unused (fixed to 0) */
  /*
          ||||+----<Fixed to 0> */
          ||++----- CKP00/DAP00: Phases of data and
  /*
  /*
                                         clock in CSI mode
                                         selected */
          [00 selected]
          SCK00 |_| |_| |_| |_| |_| |_|
          D7 D6 D5 D4 D3 D2 D1 D0 */
             SI00 input timing ___
                               _|__|__|__
  /*
            ----- TXE00/RXE00: Only transmission
  TOOL = Ob00000000; /* Initial output set to low level */
  TOE0L.0 = 1; /* Operation of TO00 enabled by a count operation */
                 /* INTTM00 interrupt request cleared */
  TMIF00 = 0;
  TMMK00 = 0;
                 /* INTTM00 interrupt servicing enabled */
  /* Setting reading from an EEPROM (writing set at first) */
  P_CS = ((P_CS & 0b00001111) | 0b11100000);/* EEPROM selected */
  ucEepromCs = 0b10110000; /* EEPROM selected (enabled after 2 pages are
                read) */
                       /* Data of the EEPROM set to be saved to page
  bI2sMemoryPage = 1;
                1 */
  ucEepromSeq = CEEPSEQ_INST;/* Instruction bytes transmitted */
  ushEepromAddress = 0;  /* EEPROM read address
                          (ushEepromAddress*100H) */
```

SCR02 = 0b1011000000000111;

/* Communication format setting */

```
|||||||||||+++---- DLS022 to DLS020: 8-bit data
               /*
                       length */
               /*
                       |||||||||+-----<Fixed to 0> */
                       |||||||||++----- SLC021 and SLC020: Unused (fixed to
               /*
               /*
                       /*
                       |||||||+---- DIR02: Input and output performed
               /*
               /*
                                                    MSB first */
                       /*
                       /*
                                                              00) */
                       /*
                       |||||+---- EOC02: Unused (fixed to 0) */
               /*
                       ||||+-----<Fixed to 0> */
               /*
                           ----- CKP02/DAP02: Phases of data and
               /*
                                                         clock in CSI mode
               /*
                                                         selected */
               /*
                              [11 selected]
               /*
                                              .| |_| |_| |_| |_| |_| |_| |
               /*
                                     SCK02
               /*
               /*
                       /*
                                              D7 D6 D5 D4 D3 D2 D1 D0
               /*
                          SI02 input timing _
               /*
                       /*
                           ----- TXE00/RXE00: Only transmission
                                                         performed */
               /* Starting reading from the EEPROM */
                                     /* INTCSI10 interrupt request cleared */
               CSIIF10 = 0;
                                     /* INTCSI10 interrupt servicing enabled */
               CSIMK10 = 0;
                                     /* CSI10 operation starts (trigger bit) */
               SS0L.2 = 1;
               SIO10 = 0b00000011;
                                     /*Transmit data (reading specified) (INTCSI10
                                       occurs) */
            }
         }
        }
      }
       Recording end settings
      ----*/
      if(ucPlayMode==CREC_END){
      /* Recording finished */
            /* Settings of the registers in the audio codec: Setting termination of
               recording */
            fn_I2cWrite(&aRecordOffTbl[0][0],sizeof(aRecordOffTbl));
            KRM = 0b00000011;
                               /* KR0 and KR1 enabled */
                               /* Stopped */
            ucPlayMode = CSTOP;
            P LED = 1;
                               /* Operation-in-progress indicator turned off (key
                                 input possible) */
      /*_____
       Playback end settings
      else if(ucPlayMode==CPLAY_END){
      /* Playback finished */
            /* Settings of the registers in the audio codec: Setting termination of
               playback */
            fn_I2cWrite(&aPlayOffTbl[0][0],sizeof(aPlayOffTbl));
                               /* KR0 and KR1 enabled */
            KRM =0b00000011;
            ucPlayMode = CSTOP;
                               /* Stopped */
                               /* Operation-in-progress indicator turned off (key
            P_{LED} = 1;
                                  input possible) */
      }
}
```

```
INTTM00 interrupt servicing
    (using INTTM00 for synchronizing LRCLK, BCLK, SDOUT, and SDIN)
    LRCLK output via the I2S bus interface and BCLK, SDOUT, and SDIN used for
    transmitting and receiving data are synchronized by restarting the
    operation of CSI00, which was stopped by INTCSI00 interrupt servicing,
    when LRCLK changes from high to low level and from low to high level .
    LRCLK
                       BCLK
                       `|_|_. . . _|_|_|_|_|. . . . _|_|
    SDOUT/SDIN
    INTTM00
    Register bank 1 used
******************************
 _interrupt void fn_inttm00(void)
{
    if(ucPlayMode==CREC){
    /*-----
    During recording
    /* Starting the operation of the I2S bus interface */
          SSOL.0 = 1;
                              /* CSI00 operation starts (trigger bit) */
          *ucI2sAddress = SIO00;
                                 /* Third byte received and dummy data set (data
                                    saved to address) */
         SIO00 = 0x0FF;
                                 /* Dummy data set (INTCSI00 occurs) */
    }
    else{
    /*-----
    During playback
    ----*/
    /* Starting the operation of the I2S bus interface */
          SSOL.0 = 1;
                                 /* CSI00 operation starts (trigger bit) */
                                 /* Transmit data (first byte) set (INTCSI00 occurs) */
          SIO00 = *ucI2sAddress;
    ucI2sAddress++;
                                  /* Address to which the data transmitted or received
                                    via I2S is saved updated */
}
```

Data is transmitted and received via the I2S bus interface between the microcontroller and the audio codec.

During recording, CSI00 is used to save the received data. Normally, data is successively received by setting dummy data. To achieve synchronization with LRCLK, however, only reception is performed every three bytes and successive reception operation is stopped. The stopped operation is restarted by INTTM00 interrupt servicing and can be synchronized with LRCLK. When the received data reaches one page, writing to an EEPROM starts. During playback, CSI00 is used to successively transmit data, but successive transmission operation is stopped every three bytes to achieve synchronization with LRCLK, similarly as during recording. The stopped operation is restarted by INTTM00 interrupt servicing and can be synchronized with LRCLK. When the transmitted data reaches one page, reading data of a different page from the EEPROM starts.

```
LRCLK
                           BCLK
    SDOUT/SDIN
    INTCSI00
                          1
                                   2
                                           3
    Register bank 1 used
******************************
 _interrupt void fn_intcsi00(void)
    ucI2sByteCouter++;
                                /* CSI00 reception counter updated */
    if(ucPlayMode==CREC){
     During recording
           /* Determining the last position of the page */
           if(bI2sMemoryPage){
           /* Page 2 being transmitted */
                  if(ucI2sAddress>=&ucMemoryPage2[3*2*42]){
                  /* End of page 2 */
                         ucI2sAddress = &ucMemoryPage1[0];
                                                            /* Address to which the data
                                                              received via I2S is
                                                               saved: page 1 */
                         bI2sMemoryPage = 0;
                         /* Starting writing to the EEPROM */
                         ucEepromSeq = CEEPSEQ_WREN;
                                                            /* Write enable (WREN) signal
                                                              transmitted */
                         P_CS = (P_CS \& 0b00001111) | ucEepromCs; /* EEPROM CS set */
                         CSIIF10 = 0;
                                             /* INTCSI10 interrupt request cleared */
                                             /* INTCSI10 interrupt servicing enabled */
                         CSIMK10 = 0;
                         SS0L.2 = 1;
                                             /* CSI10 operation starts (trigger bit) */
                         SIO10 = 0b00000110;
                                            /* Transmit data set (Write enable (WREN)
                                                 instruction (INTCSI10 occurs) */
                  }
           }
```

```
else{
       /* Page 1 being transmitted */
              if(ucI2sAddress>=&ucMemoryPage1[3*2*42]){
              /* End of page 1 */
                                                         /* Address to which the data
                     ucI2sAddress = &ucMemoryPage2[0];
                                                            received via I2S is
                                                            saved: Page 2 */
                     bI2sMemoryPage = 1;
                     /* Starting writing to the EEPROM */
                     ucEepromSeq = CEEPSEQ_WREN;
                                                          /* Write enable (WREN) signal
                                                            transmitted */
                     P_CS = (P_CS & 0b00001111) | ucEepromCs; /* EEPROM CS set */
                     CSIIF10 = 0;
                                          /* INTCSI10 interrupt request cleared */
                     CSIMK10 = 0;
                                          /* INTCSI10 interrupt servicing enabled */
                                          /* CSI10 operation starts (trigger bit) */
                     SS0L.2 = 1;
                     SIO10 = 0b00000110; /* Transmit data set (Write enable (WREN)
                                              instruction INTCSI10 occurs) */
              }
       if(ucI2sByteCouter==1){
       /* Buffer empty interrupt immediately after starting operation */
              SIO00 = 0x0FF; /* Dummy data set */
       }
       else{
              if(ucI2sByteCouter==2){
              /* Reception of the first byte */
                     *ucI2sAddress = SI000; /* Data received via I2S received and saved */
                     SIO00 = 0x0FF; /* Dummy data set */
              else/*if(ucI2sByteCouter==3)*/{
              /* Reception of the second byte */
                     *ucI2sAddress = SI000; /* Data received via I2S received and saved
                                 (data reception only) */
                     ucI2sByteCouter = 0; /* CSI00 reception counter initialized */
              ucI2sAddress++;
else if(ucPlayMode==CPLAY){
/*-----
During playback
----*/
       if(ucI2sBvteCouter<3){
       /* Transmission of the second or third byte */
              SIO00 = *ucI2sAddress; /* Transmit data set (I2S Transmit data, INTCSI00
                                      occurs) */
              ucI2sAddress++;
                                    /\,{}^{\star} Address to which the data transmitted via I2S is
                                      saved updated */
       else/*if(ucI2sByteCouter==3)*/{
       /* Timing of synchronization with LRCLK? (Immediately after transmission of the
         third byte starts) */
              ucI2sByteCouter = 0; /* CSI00 transmission counter initialized */
       if(bI2sMemoryPage){
       /* Page 2 being transmitted */
              if(ucI2sAddress>=&ucMemoryPage2[3*2*42]){
              /* End of page 2 */
                     ucI2sAddress = &ucMemoryPage1[0];
                     /* Address to which the data transmitted via I2S is saved: Page 1 */
                     bI2sMemoryPage = 0;
                     /* Starting reading from the EEPROM */
                                                            /* EEPROM selected */
                     P_CS = (P_CS & 0b00001111) | ucEepromCs;
```

```
ucEepromSeq = CEEPSEQ_INST; /* Instruction bytes
                                                         transmitted */
                          CSTTF10 = 0;
                                              /* INTCSI10 interrupt request cleared */
                          CSIMK10 = 0;
                                               /* INTCSI10 interrupt servicing enabled */
                          SSOL.2 = 1;
                                              /* CSI10 operation starts (trigger bit) */
                          SIO10 = 0b00000011; /* Transmit data (reading specified) set
                                                 (INTCSI10 occurs) */
                   }
            else{
            /* Page 1 being transmitted */
                   if(ucI2sAddress>=&ucMemoryPage1[3*2*42]){
                   /* End of page 1 */
                          ucI2sAddress = &ucMemoryPage2[0];
                          /* Address to which the data transmitted via I2S is saved: Page 2 */
                          bI2sMemorvPage = 1;
                          /* Starting reading from the EEPROM */
                          P_CS = (P_CS & 0b00001111) | ucEepromCs;/* EEPROM selected */
                          ucEepromSeq = CEEPSEQ_INST;
                                                       /* Instruction bytes
                                                                transmitted */
                          CSIIF10 = 0;
                                               /* INTCSI10 interrupt request cleared */
                                              /* INTCSI10 interrupt servicing enabled */
                          CSIMK10 = 0;
                          SSOL.2 = 1;
                                              /* CSI10 operation starts (trigger bit) */
                          SIO10 = 0b00000011; /* Transmit data (reading specified) set
                                                 (INTCSI10 occurs) */
                  }
           }
    }
}
    INTCSI10 interrupt servicing
    (using INTCSI10 for CSI transmission or reception)
    During recording, instruction bytes and 24-bit addresses are transmitted
    to an EEPROM, DMA channel 1 starts when transmitting data to the \,
    EEPROM starts, and transmission continues in CSI10 single transmission
    mode.
    During playback, 24-bit addresses are transmitted to an EEPROM,
    DMA channels 0 and 1 start when receiving data from the EEPROM starts,
    and reception continues in CSI10 single reception mode. However, DMA
    channel 1 is used for setting dummy data.
    Register bank 1 used
******************************
 interrupt void fn_intcsi10(void)
    EI();
                  /* Multiple interrupts enabled */
    if(ucPlayMode==CREC){
     During recording
     _____*/
      ucEepromSeg++;
                                       /* EEPROM transfer sequence updated */
       /* Instruction byte transmission */
       switch(ucEepromSeq){
         case CEEPSEQ_INST:
              /* Instruction byte transmission timing */
              P_CS |= 0b11110000;
                                                             /* Non-active */
              NOP();
              P_CS = (P_CS & 0b00001111) | ucEepromCs;
                                                             /* EEPROM selected */
              SIO10 = 0b00000010;
                                                              /* Transmission of write
                                                                specification */
```

break;

```
case CEEPSEQ_ADDRH:
          /* Transmission of the higher bits of the 24-bit address */
          SIO10 = (unsigned char)(ushEepromAddress>>8);
          break;
     case CEEPSEQ_ADDRM:
          /* Transmission of the middle bits of the 24-bit address */
          SIO10 = (unsigned char)(ushEepromAddress);
          break;
     case CEEPSEQ_ADDRL:
          /* Transmission of the lower bits of the 24-bit address */
          SIO10 = 0x000;
          break;
     case CEEPSEQ_DATA:
     default:
          /* Starting data transmission */
          /* Starting DMA transfer */
          if(bI2sMemoryPage){
          /* Page 2 being transmitted */
              DRA1 = (unsigned short)&ucMemoryPage1[1];
               /* Transmit buffer set to page 1 */
          else{
          /* Page 1 being transmitted */
              DRA1 = (unsigned short)&ucMemoryPage2[1];
              /* Transmit buffer set to page 2 */
                                    /* One page */
          DBC1 = 3*2*42-1;
          DST1 = 1;
                                     /* DMA1 transfer enabled (for CSI10 transmission) */
          DMAIF1 = 0;
                                     /* INTDM1 interrupt request cleared */
          DMAMK1 = 0;
                                     /* INTDM1 interrupt servicing enabled */
          CSIIF10 = 0;
                                     /* INTCSI10 interrupt request cleared */
          CSIMK10 = 1;
                                     /* INTCSI10 interrupt servicing disabled */
          DMAMK0 = 1;
                                     /* INTDMO interrupt servicing disabled */
          SS0L.2 = 1;
                                     /* CSI00 operation starts (trigger bit) */
          if(bI2sMemoryPage){
          /* Page 2 being transmitted */
              SIO10 = *ucMemoryPage1;
                                            /* Transmit data set (INTCSI00 occurs) */
          else{
              SIO10 = *ucMemoryPage2;
                                             /* Transmit data set (INTCSI00 occurs) */
          /* Page 1 being transmitted */
          break;
else{
During playback
                                    /* EEPROM transfer sequence updated */
 ucEepromSeq++;
  /* Instruction byte transmission */
  switch(ucEepromSeq){
     case CEEPSEQ_ADDRH:
          /* Transmission of the higher bits of the 24-bit address */
          SIO10 = (unsigned char)(ushEepromAddress>>8);
          break;
```

case CEEPSEO ADDRM:

```
/* Transmission of the middle bits of the 24-bit address */
              SIO10 = (unsigned char)(ushEepromAddress);
              break;
         case CEEPSEQ_ADDRL:
              /* Transmission of the lower bits of the 24-bit address */
              SIO10 = 0x000;
              break;
         case CEEPSEO DATA:
         default:
          /* Starting data reception */
          SCR02 = 0b0111000000000111;
                                       /* Communication format setting */
                    ||||||||||||+++----- DLS022 to DLS020: 8-bit data length */
          /*
          /*
                    ||||||||||+------<Fixed to 0> */
          /*
                    ||||||||++---- SLC021 and SLC020: Unused (fixed to 0) */
                    ||||||||+-----<Fixed to 0> */
          /*
                    |||||||+----- DIR02: Input and output performed with MSB first */
          /*
          /*
                    ||||||++----- PTC021 and PTC020: Unused (fixed to 00) */
          /*
                    |||||+---- EOC02: Unused (fixed to 0) */
          /*
                    ||||+-----<Fixed to 0> */
                    ||++----- CKP02/DAP02: Phases of data and clock in CSI mode
          /*
                                                       selected */
                                          [11 selected] */
                                          SCK02___| |_| |_| |_| |_| |_| |_| |
          /*
                                          SO02 __|__|__|
                                                  D7 D6 D5 D4 D3 D2 D1 D0
                                                                                   * /
                              SI02 input timing ____|__|__
          /*
                                                                                   * /
          /*
                                                                                   * /
          /*
                    ++---- TXE00/RXE00: Only reception performed
                                                                                   */
         DRA1 = (unsigned short)&ucMemoryPage1[0];
                                                      /* Address for setting dummy data */
         DBC1 = 3*2*42-1;
                                                      /* Page size set */
         if(bI2sMemoryPage){
         /* Page 2 being transmitted */
             DRA0 = (unsigned short)&ucMemoryPage1[0];/* Receive buffer set to page 1 */
         else{
         /* Page 1 being transmitted */
             DRA0 = (unsigned short)&ucMemoryPage2[0];/* Receive buffer set to page 2 */
             DBC0 = 3*2*42;
                                                   /* Page size set */
             /* Starting DMA transfer */
             DST1 = 1; /* DMA1 transfer enabled (for CSI10 transmission) */
                         /* DMA0 transfer enabled (for CSI10 reception) */
             DMAMK1 = 1; /* INTDM1 interrupt servicing disabled */
             CSIIF10 = 0; /* INTCSI10 interrupt request cleared */
             CSIMK10 = 1; /* INTCSI10 interrupt servicing disabled */
             DMAIF0 = 0; /* INTDMO interrupt request cleared */
             DMAMK0 = 0; /* INTDM0 interrupt servicing enabled */
             SSOL.2 = 1; /* CSI10 operation starts (trigger bit) */
             SIO10 = 0x0FF;/* Dummy data set (INTCSI00 occurs) */
             break;
       }
    }
}
```

```
INTDMA0 interrupt servicing
    (using INTDMA0 for CSI reception)
______
    This interrupt occurs once data of one page has been received from an
    EEPROM during playback. Which of the four EEPROMs is to be used is
    selected and operation of the I2S bus interface is started and stopped.
    Register bank 1 used
*******************************
 _interrupt void fn_intdma0(void)
    /* Waiting for completion of waiting for communication completion */
    while(SSR02 & 0b000000001000000)
    /* Completing receiving data of one page */
    P_CS |= 0b11110000; /* Non-active */
    ucEepromSeq = CEEPSEQ_INST;
    if(ucPlayMode==CPLAY){
    /* During playback */
     Starting the operation of the I2S bus interface
     -----*/
           /* Selecting EEPROM */
           if((ucEepromCs & 0b10000000)==0b00000000){
           /* Selecting all EEPROMs once */
                  ushEepromAddress++;
                  if(ushEepromAddress>=128000/256){
                         /* Stopping the operation of the I2S bus interface */
                          P_LRCLK = 1; /* LRCLK output disabled (high level) */
                         TTOL.0 = 1; /* TOOO output operation stopped (trigger bit) */
                          ST0L.0 = 1; /* CSI000 output operation stopped (trigger bit) */ ST0L.2 = 1; /* CSI010 output operation stopped (trigger bit) */
                                                     /* Playback being terminated */
                          ucPlayMode = CPLAY_END;
                   }
                  else{
                          ucEepromCs = 0b11100000;
           else{
                  ucEepromCs = (ucEepromCs | 0b00001000) <<1;</pre>
    else if(ucPlayMode==CPLAY_START){
    /* Starting preparing for playback */
    /* Starting reading from an EEPROM */
           ucPlayMode = CPLAY_SET;
                                                      /* Preparing for playback */
           P_CS = (P_CS & 0b00001111) | 0b11010000;
                                                      /* EEPROM selected */
           bI2sMemoryPage = 0;
           CSIIF10 = 0;
                                        /* INTCSI10 interrupt request cleared */
           CSIMK10 = 0;
                                        /* INTCSI10 interrupt servicing enabled */
           SSOL.2 = 1;
                                        /* CSI10 operation starts (trigger bit) */
           SIO10 = 0b00000011;
                                       /* Transmit data (reading specified) set (INTCSI10
                                           occurs) */
    else if(ucPlayMode==CPLAY_SET){
    /* Preparing for playback */
                                               /* During playback */
           ucPlayMode = CPLAY;
                                            /* Start of the transmit buffer set */
           ucI2sAddress = &ucMemoryPage1[1];
           bI2sMemoryPage = 0;
                                               /* page 1 transmit */
           /* Starting the operation of the I2S bus interface */
           SSOL.0 = 1;
                                       /* CSI00 operation starts (trigger bit) */
```

```
P_LRCLK = 0;
                                    /* LRCLK operation starts */
          TSOL.0 = 1;
                                   /* TO00 output operation starts (trigger bit) */
          SIO00 = ucMemoryPage1[0];
                                   /* Transmit data set (INTCSI00 occurs) */
    DST1 = 0;
               /* DMA1 transfer stopped */
               /* DMA0 transfer stopped */
    DST0 = 0;
    DMAMK0 = 1;  /* INTDM0 interrupt servicing disabled */
}
/****************************
    INTDMA1 interrupt servicing
    (using INTDMA1 for CSI transmission)
    This interrupt occurs when data of one page has been transmitted to an EEPROM
    during recording. Which of the four EEPROMs is to be used is selected and
    operation of the I2S bus interface is stopped.
    Register bank 1 used
****************************
 _interrupt void fn_intdma1(void)
    /* Waiting for completion of waiting for communication completion */
    while(SSR02 & 0b000000001000000) {}
    /* Completing transmitting data of one page */
    P_CS |= 0b11110000;
                             /* Completing transmitting data of one page */
    ucEepromSeq = CEEPSEQ_RESET;
    /* EEPROM selection */
    if((ucEepromCs & 0b10000000)==0b00000000){
          ushEepromAddress++;
          if(ushEepromAddress>=128000/256){
                 /* Stopping the operation of the I2S bus interface */
                 P_LRCLK = 1;
                                   /* LRCLK output disabled (high level) */
                                   /* T000 output operation stopped (trigger bit) */
                 TT0L.0 = 1;
                                   /* CSI000 output operation stopped (trigger bit) */
                 ST0L.0 = 1;
                 ST0L.2 = 1;
                                   /* CSI010 output operation stopped (trigger bit) */
                 ucPlayMode = CPLAY_END;
                                         /* Playback stopped */
          else{
                 ucEepromCs = 0b11100000;
          }
    else{
          ucEepromCs = (ucEepromCs|0b00001000) <<1;</pre>
               /* DMA1 transfer stopped */
    DST0 = 0;
               /* DMA0 transfer stopped */
    }
/*****************************
    I2C bus interface write processing for setting the registers
    in the audio codec
______
The data set to the registers in the audio codec is written by using the
functions of I2C bus interface IICO.
```

```
[I N] *addr :Higher 4 bits of the start address of the ROM table holding
                the register setting values
          size :ROM table size
    [OUT] -
*******************************
void fn_I2cWrite(unsigned char *addr, unsigned char size)
    register unsigned char cnt;
    IICE0 = 1;
                                  /* Operation enabled */
    for(cnt=0; cnt<=size/3; cnt++){</pre>
          /* Start condition issuance */
          STT0 = 1;
          /* Slave address transmission */
          while(!STD0) {} /* Address transmission period? No, */
          IICIF0 = 0;
          if(ACKD0){
                /* Write address transmission */
                /* Data transmission starts */
                while(!IICIF0) {} /* Transmission completed? No, */
                if(ACKD0){
                      /* Write data transmission */
                      addr++; /* Reference position updated */
IICIF0 = 0; /* INTIIC10 interrupt request clear
                                        /* INTIIC10 interrupt request cleared */
                      IIC0 = *addr;
                                        /* Data transmission starts */
                      if(ACKD0){
                             /* stop condition issued */
                             SPT0 = 1;
                             /* Wait control */
                             addr++;
                                               /* Reference position updated */
                             if(*addr!=0){
                                   TDR01 = 195*(*addr)-1; /* Interval set (5ms*addr) */
                                   TMIF01 = 0;
                                                    /* INTTM01 interrupt request
                                                        cleared */
                                   TSOL.1 = 1;
                                                     /* Timer operation starts */
                                                    /* Interval elapsed? No, */
                                   while(!TMIF01) {}
                                   TT0L.1 = 1;
                                                     /* Timer operation stopped */
                                               /* Reference position updated */
                             addr++;
                      }
                      else{
                             SPT0 = 1;
                                       /* Stop condition issuance */
                            cnt--;
                                        /* Retransmission */
                            addr--;
                      }
                }
                else{
                                /* Stop condition issuance */
                      SPT0 = 1;
                                  /* Retransmission */
                      cnt--;
                }
          }
          else{
                           /* Stop condition issuance */
                SPT0 = 1;
                cnt--;
                            /* Retransmission */
          }
    }
}
```

APPENDIX B REVISION HISTORY

Editon	Data Published	Page	Revision
1st edition	February 2009	-	-

For further information, please contact:

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan Tel: 044-435-5111 http://www.necel.com/

[America]

NEC Electronics America, Inc.

2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
800-366-9782
http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH

Arcadiastrasse 10 40472 Düsseldorf, Germany Tel: 0211-65030 http://www.eu.necel.com/

Hanover Office

Podbielskistrasse 166 B 30177 Hannover Tel: 0 511 33 40 2-0

Munich Office

Werner-Eckert-Strasse 9 81829 München Tel: 0 89 92 10 03-0

Stuttgart Office

Industriestrasse 3 70565 Stuttgart Tel: 0 711 99 01 0-0

United Kingdom Branch

Cygnus House, Sunrise Parkway Linford Wood, Milton Keynes MK14 6NP, U.K. Tel: 01908-691-133

Succursale Française

9, rue Paul Dautier, B.P. 52 78142 Velizy-Villacoublay Cédex France

Tel: 01-3067-5800

Sucursal en España Juan Esplandiu, 15 28007 Madrid, Spain

Tel: 091-504-2787

Tyskland Filial

Täby Centrum Entrance S (7th floor) 18322 Täby, Sweden Tel: 08 638 72 00

Filiale Italiana

Via Fabio Filzi, 25/A 20124 Milano, Italy Tel: 02-667541

Branch The Netherlands

Steijgerweg 6 5616 HS Eindhoven The Netherlands Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd

7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: 010-8235-1155 http://www.cn.necel.com/

Shanghai Branch

Room 2509-2510, Bank of China Tower, 200 Yincheng Road Central, Pudong New Area, Shanghai, P.R.China P.C:200120 Tel:021-5888-5400 http://www.cn.necel.com/

Shenzhen Branch

Unit 01, 39/F, Excellence Times Square Building, No. 4068 Yi Tian Road, Futian District, Shenzhen, P.R.China P.C:518048 Tel:0755-8282-9800 http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: 2886-9318 http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan, R. O. C. Tel: 02-8175-9600 http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.

238A Thomson Road, #12-08 Novena Square, Singapore 307684 Tel: 6253-8311 http://www.sg.necel.com/

NEC Electronics Korea Ltd.

11F., Samik Lavied'or Bldg., 720-2, Yeoksam-Dong, Kangnam-Ku, Seoul, 135-080, Korea Tel: 02-558-3737 http://www.kr.necel.com/